Merge branch 'linus' into core/percpu
[linux-2.6] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45 static acpi_size dmar_tbl_size;
46
47 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
48 {
49         /*
50          * add INCLUDE_ALL at the tail, so scan the list will find it at
51          * the very end.
52          */
53         if (drhd->include_all)
54                 list_add_tail(&drhd->list, &dmar_drhd_units);
55         else
56                 list_add(&drhd->list, &dmar_drhd_units);
57 }
58
59 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
60                                            struct pci_dev **dev, u16 segment)
61 {
62         struct pci_bus *bus;
63         struct pci_dev *pdev = NULL;
64         struct acpi_dmar_pci_path *path;
65         int count;
66
67         bus = pci_find_bus(segment, scope->bus);
68         path = (struct acpi_dmar_pci_path *)(scope + 1);
69         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
70                 / sizeof(struct acpi_dmar_pci_path);
71
72         while (count) {
73                 if (pdev)
74                         pci_dev_put(pdev);
75                 /*
76                  * Some BIOSes list non-exist devices in DMAR table, just
77                  * ignore it
78                  */
79                 if (!bus) {
80                         printk(KERN_WARNING
81                         PREFIX "Device scope bus [%d] not found\n",
82                         scope->bus);
83                         break;
84                 }
85                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
86                 if (!pdev) {
87                         printk(KERN_WARNING PREFIX
88                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
89                                 segment, bus->number, path->dev, path->fn);
90                         break;
91                 }
92                 path ++;
93                 count --;
94                 bus = pdev->subordinate;
95         }
96         if (!pdev) {
97                 printk(KERN_WARNING PREFIX
98                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
99                 segment, scope->bus, path->dev, path->fn);
100                 *dev = NULL;
101                 return 0;
102         }
103         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
104                         pdev->subordinate) || (scope->entry_type == \
105                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
106                 pci_dev_put(pdev);
107                 printk(KERN_WARNING PREFIX
108                         "Device scope type does not match for %s\n",
109                          pci_name(pdev));
110                 return -EINVAL;
111         }
112         *dev = pdev;
113         return 0;
114 }
115
116 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
117                                        struct pci_dev ***devices, u16 segment)
118 {
119         struct acpi_dmar_device_scope *scope;
120         void * tmp = start;
121         int index;
122         int ret;
123
124         *cnt = 0;
125         while (start < end) {
126                 scope = start;
127                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
128                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
129                         (*cnt)++;
130                 else
131                         printk(KERN_WARNING PREFIX
132                                 "Unsupported device scope\n");
133                 start += scope->length;
134         }
135         if (*cnt == 0)
136                 return 0;
137
138         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
139         if (!*devices)
140                 return -ENOMEM;
141
142         start = tmp;
143         index = 0;
144         while (start < end) {
145                 scope = start;
146                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
147                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
148                         ret = dmar_parse_one_dev_scope(scope,
149                                 &(*devices)[index], segment);
150                         if (ret) {
151                                 kfree(*devices);
152                                 return ret;
153                         }
154                         index ++;
155                 }
156                 start += scope->length;
157         }
158
159         return 0;
160 }
161
162 /**
163  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
164  * structure which uniquely represent one DMA remapping hardware unit
165  * present in the platform
166  */
167 static int __init
168 dmar_parse_one_drhd(struct acpi_dmar_header *header)
169 {
170         struct acpi_dmar_hardware_unit *drhd;
171         struct dmar_drhd_unit *dmaru;
172         int ret = 0;
173
174         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
175         if (!dmaru)
176                 return -ENOMEM;
177
178         dmaru->hdr = header;
179         drhd = (struct acpi_dmar_hardware_unit *)header;
180         dmaru->reg_base_addr = drhd->address;
181         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
182
183         ret = alloc_iommu(dmaru);
184         if (ret) {
185                 kfree(dmaru);
186                 return ret;
187         }
188         dmar_register_drhd_unit(dmaru);
189         return 0;
190 }
191
192 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
193 {
194         struct acpi_dmar_hardware_unit *drhd;
195         int ret = 0;
196
197         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
198
199         if (dmaru->include_all)
200                 return 0;
201
202         ret = dmar_parse_dev_scope((void *)(drhd + 1),
203                                 ((void *)drhd) + drhd->header.length,
204                                 &dmaru->devices_cnt, &dmaru->devices,
205                                 drhd->segment);
206         if (ret) {
207                 list_del(&dmaru->list);
208                 kfree(dmaru);
209         }
210         return ret;
211 }
212
213 #ifdef CONFIG_DMAR
214 LIST_HEAD(dmar_rmrr_units);
215
216 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
217 {
218         list_add(&rmrr->list, &dmar_rmrr_units);
219 }
220
221
222 static int __init
223 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
224 {
225         struct acpi_dmar_reserved_memory *rmrr;
226         struct dmar_rmrr_unit *rmrru;
227
228         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
229         if (!rmrru)
230                 return -ENOMEM;
231
232         rmrru->hdr = header;
233         rmrr = (struct acpi_dmar_reserved_memory *)header;
234         rmrru->base_address = rmrr->base_address;
235         rmrru->end_address = rmrr->end_address;
236
237         dmar_register_rmrr_unit(rmrru);
238         return 0;
239 }
240
241 static int __init
242 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
243 {
244         struct acpi_dmar_reserved_memory *rmrr;
245         int ret;
246
247         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
248         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
249                 ((void *)rmrr) + rmrr->header.length,
250                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
251
252         if (ret || (rmrru->devices_cnt == 0)) {
253                 list_del(&rmrru->list);
254                 kfree(rmrru);
255         }
256         return ret;
257 }
258 #endif
259
260 static void __init
261 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
262 {
263         struct acpi_dmar_hardware_unit *drhd;
264         struct acpi_dmar_reserved_memory *rmrr;
265
266         switch (header->type) {
267         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
268                 drhd = (struct acpi_dmar_hardware_unit *)header;
269                 printk (KERN_INFO PREFIX
270                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
271                         drhd->flags, (unsigned long long)drhd->address);
272                 break;
273         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
274                 rmrr = (struct acpi_dmar_reserved_memory *)header;
275
276                 printk (KERN_INFO PREFIX
277                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
278                         (unsigned long long)rmrr->base_address,
279                         (unsigned long long)rmrr->end_address);
280                 break;
281         }
282 }
283
284 /**
285  * dmar_table_detect - checks to see if the platform supports DMAR devices
286  */
287 static int __init dmar_table_detect(void)
288 {
289         acpi_status status = AE_OK;
290
291         /* if we could find DMAR table, then there are DMAR devices */
292         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
293                                 (struct acpi_table_header **)&dmar_tbl,
294                                 &dmar_tbl_size);
295
296         if (ACPI_SUCCESS(status) && !dmar_tbl) {
297                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
298                 status = AE_NOT_FOUND;
299         }
300
301         return (ACPI_SUCCESS(status) ? 1 : 0);
302 }
303
304 /**
305  * parse_dmar_table - parses the DMA reporting table
306  */
307 static int __init
308 parse_dmar_table(void)
309 {
310         struct acpi_table_dmar *dmar;
311         struct acpi_dmar_header *entry_header;
312         int ret = 0;
313
314         /*
315          * Do it again, earlier dmar_tbl mapping could be mapped with
316          * fixed map.
317          */
318         dmar_table_detect();
319
320         dmar = (struct acpi_table_dmar *)dmar_tbl;
321         if (!dmar)
322                 return -ENODEV;
323
324         if (dmar->width < PAGE_SHIFT - 1) {
325                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
326                 return -EINVAL;
327         }
328
329         printk (KERN_INFO PREFIX "Host address width %d\n",
330                 dmar->width + 1);
331
332         entry_header = (struct acpi_dmar_header *)(dmar + 1);
333         while (((unsigned long)entry_header) <
334                         (((unsigned long)dmar) + dmar_tbl->length)) {
335                 /* Avoid looping forever on bad ACPI tables */
336                 if (entry_header->length == 0) {
337                         printk(KERN_WARNING PREFIX
338                                 "Invalid 0-length structure\n");
339                         ret = -EINVAL;
340                         break;
341                 }
342
343                 dmar_table_print_dmar_entry(entry_header);
344
345                 switch (entry_header->type) {
346                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
347                         ret = dmar_parse_one_drhd(entry_header);
348                         break;
349                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
350 #ifdef CONFIG_DMAR
351                         ret = dmar_parse_one_rmrr(entry_header);
352 #endif
353                         break;
354                 default:
355                         printk(KERN_WARNING PREFIX
356                                 "Unknown DMAR structure type\n");
357                         ret = 0; /* for forward compatibility */
358                         break;
359                 }
360                 if (ret)
361                         break;
362
363                 entry_header = ((void *)entry_header + entry_header->length);
364         }
365         return ret;
366 }
367
368 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
369                           struct pci_dev *dev)
370 {
371         int index;
372
373         while (dev) {
374                 for (index = 0; index < cnt; index++)
375                         if (dev == devices[index])
376                                 return 1;
377
378                 /* Check our parent */
379                 dev = dev->bus->self;
380         }
381
382         return 0;
383 }
384
385 struct dmar_drhd_unit *
386 dmar_find_matched_drhd_unit(struct pci_dev *dev)
387 {
388         struct dmar_drhd_unit *dmaru = NULL;
389         struct acpi_dmar_hardware_unit *drhd;
390
391         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
392                 drhd = container_of(dmaru->hdr,
393                                     struct acpi_dmar_hardware_unit,
394                                     header);
395
396                 if (dmaru->include_all &&
397                     drhd->segment == pci_domain_nr(dev->bus))
398                         return dmaru;
399
400                 if (dmar_pci_device_match(dmaru->devices,
401                                           dmaru->devices_cnt, dev))
402                         return dmaru;
403         }
404
405         return NULL;
406 }
407
408 int __init dmar_dev_scope_init(void)
409 {
410         struct dmar_drhd_unit *drhd, *drhd_n;
411         int ret = -ENODEV;
412
413         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
414                 ret = dmar_parse_dev(drhd);
415                 if (ret)
416                         return ret;
417         }
418
419 #ifdef CONFIG_DMAR
420         {
421                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
422                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
423                         ret = rmrr_parse_dev(rmrr);
424                         if (ret)
425                                 return ret;
426                 }
427         }
428 #endif
429
430         return ret;
431 }
432
433
434 int __init dmar_table_init(void)
435 {
436         static int dmar_table_initialized;
437         int ret;
438
439         if (dmar_table_initialized)
440                 return 0;
441
442         dmar_table_initialized = 1;
443
444         ret = parse_dmar_table();
445         if (ret) {
446                 if (ret != -ENODEV)
447                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
448                 return ret;
449         }
450
451         if (list_empty(&dmar_drhd_units)) {
452                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
453                 return -ENODEV;
454         }
455
456 #ifdef CONFIG_DMAR
457         if (list_empty(&dmar_rmrr_units))
458                 printk(KERN_INFO PREFIX "No RMRR found\n");
459 #endif
460
461 #ifdef CONFIG_INTR_REMAP
462         parse_ioapics_under_ir();
463 #endif
464         return 0;
465 }
466
467 void __init detect_intel_iommu(void)
468 {
469         int ret;
470
471         ret = dmar_table_detect();
472
473         {
474 #ifdef CONFIG_INTR_REMAP
475                 struct acpi_table_dmar *dmar;
476                 /*
477                  * for now we will disable dma-remapping when interrupt
478                  * remapping is enabled.
479                  * When support for queued invalidation for IOTLB invalidation
480                  * is added, we will not need this any more.
481                  */
482                 dmar = (struct acpi_table_dmar *) dmar_tbl;
483                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
484                         printk(KERN_INFO
485                                "Queued invalidation will be enabled to support "
486                                "x2apic and Intr-remapping.\n");
487 #endif
488 #ifdef CONFIG_DMAR
489                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
490                     !dmar_disabled)
491                         iommu_detected = 1;
492 #endif
493         }
494         early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
495         dmar_tbl = NULL;
496 }
497
498
499 int alloc_iommu(struct dmar_drhd_unit *drhd)
500 {
501         struct intel_iommu *iommu;
502         int map_size;
503         u32 ver;
504         static int iommu_allocated = 0;
505         int agaw = 0;
506
507         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
508         if (!iommu)
509                 return -ENOMEM;
510
511         iommu->seq_id = iommu_allocated++;
512
513         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
514         if (!iommu->reg) {
515                 printk(KERN_ERR "IOMMU: can't map the region\n");
516                 goto error;
517         }
518         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
519         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
520
521 #ifdef CONFIG_DMAR
522         agaw = iommu_calculate_agaw(iommu);
523         if (agaw < 0) {
524                 printk(KERN_ERR
525                         "Cannot get a valid agaw for iommu (seq_id = %d)\n",
526                         iommu->seq_id);
527                 goto error;
528         }
529 #endif
530         iommu->agaw = agaw;
531
532         /* the registers might be more than one page */
533         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
534                 cap_max_fault_reg_offset(iommu->cap));
535         map_size = VTD_PAGE_ALIGN(map_size);
536         if (map_size > VTD_PAGE_SIZE) {
537                 iounmap(iommu->reg);
538                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
539                 if (!iommu->reg) {
540                         printk(KERN_ERR "IOMMU: can't map the region\n");
541                         goto error;
542                 }
543         }
544
545         ver = readl(iommu->reg + DMAR_VER_REG);
546         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
547                 (unsigned long long)drhd->reg_base_addr,
548                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
549                 (unsigned long long)iommu->cap,
550                 (unsigned long long)iommu->ecap);
551
552         spin_lock_init(&iommu->register_lock);
553
554         drhd->iommu = iommu;
555         return 0;
556 error:
557         kfree(iommu);
558         return -1;
559 }
560
561 void free_iommu(struct intel_iommu *iommu)
562 {
563         if (!iommu)
564                 return;
565
566 #ifdef CONFIG_DMAR
567         free_dmar_iommu(iommu);
568 #endif
569
570         if (iommu->reg)
571                 iounmap(iommu->reg);
572         kfree(iommu);
573 }
574
575 /*
576  * Reclaim all the submitted descriptors which have completed its work.
577  */
578 static inline void reclaim_free_desc(struct q_inval *qi)
579 {
580         while (qi->desc_status[qi->free_tail] == QI_DONE) {
581                 qi->desc_status[qi->free_tail] = QI_FREE;
582                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
583                 qi->free_cnt++;
584         }
585 }
586
587 static int qi_check_fault(struct intel_iommu *iommu, int index)
588 {
589         u32 fault;
590         int head;
591         struct q_inval *qi = iommu->qi;
592         int wait_index = (index + 1) % QI_LENGTH;
593
594         fault = readl(iommu->reg + DMAR_FSTS_REG);
595
596         /*
597          * If IQE happens, the head points to the descriptor associated
598          * with the error. No new descriptors are fetched until the IQE
599          * is cleared.
600          */
601         if (fault & DMA_FSTS_IQE) {
602                 head = readl(iommu->reg + DMAR_IQH_REG);
603                 if ((head >> 4) == index) {
604                         memcpy(&qi->desc[index], &qi->desc[wait_index],
605                                         sizeof(struct qi_desc));
606                         __iommu_flush_cache(iommu, &qi->desc[index],
607                                         sizeof(struct qi_desc));
608                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
609                         return -EINVAL;
610                 }
611         }
612
613         return 0;
614 }
615
616 /*
617  * Submit the queued invalidation descriptor to the remapping
618  * hardware unit and wait for its completion.
619  */
620 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
621 {
622         int rc = 0;
623         struct q_inval *qi = iommu->qi;
624         struct qi_desc *hw, wait_desc;
625         int wait_index, index;
626         unsigned long flags;
627
628         if (!qi)
629                 return 0;
630
631         hw = qi->desc;
632
633         spin_lock_irqsave(&qi->q_lock, flags);
634         while (qi->free_cnt < 3) {
635                 spin_unlock_irqrestore(&qi->q_lock, flags);
636                 cpu_relax();
637                 spin_lock_irqsave(&qi->q_lock, flags);
638         }
639
640         index = qi->free_head;
641         wait_index = (index + 1) % QI_LENGTH;
642
643         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
644
645         hw[index] = *desc;
646
647         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
648                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
649         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
650
651         hw[wait_index] = wait_desc;
652
653         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
654         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
655
656         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
657         qi->free_cnt -= 2;
658
659         /*
660          * update the HW tail register indicating the presence of
661          * new descriptors.
662          */
663         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
664
665         while (qi->desc_status[wait_index] != QI_DONE) {
666                 /*
667                  * We will leave the interrupts disabled, to prevent interrupt
668                  * context to queue another cmd while a cmd is already submitted
669                  * and waiting for completion on this cpu. This is to avoid
670                  * a deadlock where the interrupt context can wait indefinitely
671                  * for free slots in the queue.
672                  */
673                 rc = qi_check_fault(iommu, index);
674                 if (rc)
675                         goto out;
676
677                 spin_unlock(&qi->q_lock);
678                 cpu_relax();
679                 spin_lock(&qi->q_lock);
680         }
681 out:
682         qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
683
684         reclaim_free_desc(qi);
685         spin_unlock_irqrestore(&qi->q_lock, flags);
686
687         return rc;
688 }
689
690 /*
691  * Flush the global interrupt entry cache.
692  */
693 void qi_global_iec(struct intel_iommu *iommu)
694 {
695         struct qi_desc desc;
696
697         desc.low = QI_IEC_TYPE;
698         desc.high = 0;
699
700         /* should never fail */
701         qi_submit_sync(&desc, iommu);
702 }
703
704 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
705                      u64 type, int non_present_entry_flush)
706 {
707         struct qi_desc desc;
708
709         if (non_present_entry_flush) {
710                 if (!cap_caching_mode(iommu->cap))
711                         return 1;
712                 else
713                         did = 0;
714         }
715
716         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
717                         | QI_CC_GRAN(type) | QI_CC_TYPE;
718         desc.high = 0;
719
720         return qi_submit_sync(&desc, iommu);
721 }
722
723 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
724                    unsigned int size_order, u64 type,
725                    int non_present_entry_flush)
726 {
727         u8 dw = 0, dr = 0;
728
729         struct qi_desc desc;
730         int ih = 0;
731
732         if (non_present_entry_flush) {
733                 if (!cap_caching_mode(iommu->cap))
734                         return 1;
735                 else
736                         did = 0;
737         }
738
739         if (cap_write_drain(iommu->cap))
740                 dw = 1;
741
742         if (cap_read_drain(iommu->cap))
743                 dr = 1;
744
745         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
746                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
747         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
748                 | QI_IOTLB_AM(size_order);
749
750         return qi_submit_sync(&desc, iommu);
751 }
752
753 /*
754  * Enable Queued Invalidation interface. This is a must to support
755  * interrupt-remapping. Also used by DMA-remapping, which replaces
756  * register based IOTLB invalidation.
757  */
758 int dmar_enable_qi(struct intel_iommu *iommu)
759 {
760         u32 cmd, sts;
761         unsigned long flags;
762         struct q_inval *qi;
763
764         if (!ecap_qis(iommu->ecap))
765                 return -ENOENT;
766
767         /*
768          * queued invalidation is already setup and enabled.
769          */
770         if (iommu->qi)
771                 return 0;
772
773         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
774         if (!iommu->qi)
775                 return -ENOMEM;
776
777         qi = iommu->qi;
778
779         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
780         if (!qi->desc) {
781                 kfree(qi);
782                 iommu->qi = 0;
783                 return -ENOMEM;
784         }
785
786         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
787         if (!qi->desc_status) {
788                 free_page((unsigned long) qi->desc);
789                 kfree(qi);
790                 iommu->qi = 0;
791                 return -ENOMEM;
792         }
793
794         qi->free_head = qi->free_tail = 0;
795         qi->free_cnt = QI_LENGTH;
796
797         spin_lock_init(&qi->q_lock);
798
799         spin_lock_irqsave(&iommu->register_lock, flags);
800         /* write zero to the tail reg */
801         writel(0, iommu->reg + DMAR_IQT_REG);
802
803         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
804
805         cmd = iommu->gcmd | DMA_GCMD_QIE;
806         iommu->gcmd |= DMA_GCMD_QIE;
807         writel(cmd, iommu->reg + DMAR_GCMD_REG);
808
809         /* Make sure hardware complete it */
810         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
811         spin_unlock_irqrestore(&iommu->register_lock, flags);
812
813         return 0;
814 }