2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
53 #include <linux/magic.h>
55 #include <asm/uaccess.h>
56 #include <asm/div64.h>
57 #include <asm/pgtable.h>
59 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
63 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69 #define SHMEM_PAGEIN VM_READ
70 #define SHMEM_TRUNCATE VM_WRITE
72 /* Definition to limit shmem_truncate's steps between cond_rescheds */
73 #define LATENCY_LIMIT 64
75 /* Pretend that each entry is of this size in directory's i_size */
76 #define BOGO_DIRENT_SIZE 20
78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 SGP_READ, /* don't exceed i_size, don't allocate page */
81 SGP_CACHE, /* don't exceed i_size, may allocate page */
82 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
83 SGP_WRITE, /* may exceed i_size, may allocate page */
87 static unsigned long shmem_default_max_blocks(void)
89 return totalram_pages / 2;
92 static unsigned long shmem_default_max_inodes(void)
94 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
98 static int shmem_getpage(struct inode *inode, unsigned long idx,
99 struct page **pagep, enum sgp_type sgp, int *type);
101 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
104 * The above definition of ENTRIES_PER_PAGE, and the use of
105 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
106 * might be reconsidered if it ever diverges from PAGE_SIZE.
108 * Mobility flags are masked out as swap vectors cannot move
110 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
111 PAGE_CACHE_SHIFT-PAGE_SHIFT);
114 static inline void shmem_dir_free(struct page *page)
116 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
119 static struct page **shmem_dir_map(struct page *page)
121 return (struct page **)kmap_atomic(page, KM_USER0);
124 static inline void shmem_dir_unmap(struct page **dir)
126 kunmap_atomic(dir, KM_USER0);
129 static swp_entry_t *shmem_swp_map(struct page *page)
131 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
134 static inline void shmem_swp_balance_unmap(void)
137 * When passing a pointer to an i_direct entry, to code which
138 * also handles indirect entries and so will shmem_swp_unmap,
139 * we must arrange for the preempt count to remain in balance.
140 * What kmap_atomic of a lowmem page does depends on config
141 * and architecture, so pretend to kmap_atomic some lowmem page.
143 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
146 static inline void shmem_swp_unmap(swp_entry_t *entry)
148 kunmap_atomic(entry, KM_USER1);
151 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
153 return sb->s_fs_info;
157 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
158 * for shared memory and for shared anonymous (/dev/zero) mappings
159 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
160 * consistent with the pre-accounting of private mappings ...
162 static inline int shmem_acct_size(unsigned long flags, loff_t size)
164 return (flags & VM_ACCOUNT)?
165 security_vm_enough_memory(VM_ACCT(size)): 0;
168 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
170 if (flags & VM_ACCOUNT)
171 vm_unacct_memory(VM_ACCT(size));
175 * ... whereas tmpfs objects are accounted incrementally as
176 * pages are allocated, in order to allow huge sparse files.
177 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
178 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 static inline int shmem_acct_block(unsigned long flags)
182 return (flags & VM_ACCOUNT)?
183 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 if (!(flags & VM_ACCOUNT))
189 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
192 static const struct super_operations shmem_ops;
193 static const struct address_space_operations shmem_aops;
194 static const struct file_operations shmem_file_operations;
195 static const struct inode_operations shmem_inode_operations;
196 static const struct inode_operations shmem_dir_inode_operations;
197 static const struct inode_operations shmem_special_inode_operations;
198 static struct vm_operations_struct shmem_vm_ops;
200 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
201 .ra_pages = 0, /* No readahead */
202 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
203 .unplug_io_fn = default_unplug_io_fn,
206 static LIST_HEAD(shmem_swaplist);
207 static DEFINE_MUTEX(shmem_swaplist_mutex);
209 static void shmem_free_blocks(struct inode *inode, long pages)
211 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
212 if (sbinfo->max_blocks) {
213 spin_lock(&sbinfo->stat_lock);
214 sbinfo->free_blocks += pages;
215 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
216 spin_unlock(&sbinfo->stat_lock);
220 static int shmem_reserve_inode(struct super_block *sb)
222 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
223 if (sbinfo->max_inodes) {
224 spin_lock(&sbinfo->stat_lock);
225 if (!sbinfo->free_inodes) {
226 spin_unlock(&sbinfo->stat_lock);
229 sbinfo->free_inodes--;
230 spin_unlock(&sbinfo->stat_lock);
235 static void shmem_free_inode(struct super_block *sb)
237 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
238 if (sbinfo->max_inodes) {
239 spin_lock(&sbinfo->stat_lock);
240 sbinfo->free_inodes++;
241 spin_unlock(&sbinfo->stat_lock);
246 * shmem_recalc_inode - recalculate the size of an inode
247 * @inode: inode to recalc
249 * We have to calculate the free blocks since the mm can drop
250 * undirtied hole pages behind our back.
252 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
253 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
255 * It has to be called with the spinlock held.
257 static void shmem_recalc_inode(struct inode *inode)
259 struct shmem_inode_info *info = SHMEM_I(inode);
262 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
264 info->alloced -= freed;
265 shmem_unacct_blocks(info->flags, freed);
266 shmem_free_blocks(inode, freed);
271 * shmem_swp_entry - find the swap vector position in the info structure
272 * @info: info structure for the inode
273 * @index: index of the page to find
274 * @page: optional page to add to the structure. Has to be preset to
277 * If there is no space allocated yet it will return NULL when
278 * page is NULL, else it will use the page for the needed block,
279 * setting it to NULL on return to indicate that it has been used.
281 * The swap vector is organized the following way:
283 * There are SHMEM_NR_DIRECT entries directly stored in the
284 * shmem_inode_info structure. So small files do not need an addional
287 * For pages with index > SHMEM_NR_DIRECT there is the pointer
288 * i_indirect which points to a page which holds in the first half
289 * doubly indirect blocks, in the second half triple indirect blocks:
291 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
292 * following layout (for SHMEM_NR_DIRECT == 16):
294 * i_indirect -> dir --> 16-19
307 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
309 unsigned long offset;
313 if (index < SHMEM_NR_DIRECT) {
314 shmem_swp_balance_unmap();
315 return info->i_direct+index;
317 if (!info->i_indirect) {
319 info->i_indirect = *page;
322 return NULL; /* need another page */
325 index -= SHMEM_NR_DIRECT;
326 offset = index % ENTRIES_PER_PAGE;
327 index /= ENTRIES_PER_PAGE;
328 dir = shmem_dir_map(info->i_indirect);
330 if (index >= ENTRIES_PER_PAGE/2) {
331 index -= ENTRIES_PER_PAGE/2;
332 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
333 index %= ENTRIES_PER_PAGE;
340 shmem_dir_unmap(dir);
341 return NULL; /* need another page */
343 shmem_dir_unmap(dir);
344 dir = shmem_dir_map(subdir);
350 if (!page || !(subdir = *page)) {
351 shmem_dir_unmap(dir);
352 return NULL; /* need a page */
357 shmem_dir_unmap(dir);
358 return shmem_swp_map(subdir) + offset;
361 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
363 long incdec = value? 1: -1;
366 info->swapped += incdec;
367 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
368 struct page *page = kmap_atomic_to_page(entry);
369 set_page_private(page, page_private(page) + incdec);
374 * shmem_swp_alloc - get the position of the swap entry for the page.
375 * @info: info structure for the inode
376 * @index: index of the page to find
377 * @sgp: check and recheck i_size? skip allocation?
379 * If the entry does not exist, allocate it.
381 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
383 struct inode *inode = &info->vfs_inode;
384 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
385 struct page *page = NULL;
388 if (sgp != SGP_WRITE &&
389 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
390 return ERR_PTR(-EINVAL);
392 while (!(entry = shmem_swp_entry(info, index, &page))) {
394 return shmem_swp_map(ZERO_PAGE(0));
396 * Test free_blocks against 1 not 0, since we have 1 data
397 * page (and perhaps indirect index pages) yet to allocate:
398 * a waste to allocate index if we cannot allocate data.
400 if (sbinfo->max_blocks) {
401 spin_lock(&sbinfo->stat_lock);
402 if (sbinfo->free_blocks <= 1) {
403 spin_unlock(&sbinfo->stat_lock);
404 return ERR_PTR(-ENOSPC);
406 sbinfo->free_blocks--;
407 inode->i_blocks += BLOCKS_PER_PAGE;
408 spin_unlock(&sbinfo->stat_lock);
411 spin_unlock(&info->lock);
412 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
414 set_page_private(page, 0);
415 spin_lock(&info->lock);
418 shmem_free_blocks(inode, 1);
419 return ERR_PTR(-ENOMEM);
421 if (sgp != SGP_WRITE &&
422 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
423 entry = ERR_PTR(-EINVAL);
426 if (info->next_index <= index)
427 info->next_index = index + 1;
430 /* another task gave its page, or truncated the file */
431 shmem_free_blocks(inode, 1);
432 shmem_dir_free(page);
434 if (info->next_index <= index && !IS_ERR(entry))
435 info->next_index = index + 1;
440 * shmem_free_swp - free some swap entries in a directory
441 * @dir: pointer to the directory
442 * @edir: pointer after last entry of the directory
443 * @punch_lock: pointer to spinlock when needed for the holepunch case
445 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
446 spinlock_t *punch_lock)
448 spinlock_t *punch_unlock = NULL;
452 for (ptr = dir; ptr < edir; ptr++) {
454 if (unlikely(punch_lock)) {
455 punch_unlock = punch_lock;
457 spin_lock(punch_unlock);
461 free_swap_and_cache(*ptr);
462 *ptr = (swp_entry_t){0};
467 spin_unlock(punch_unlock);
471 static int shmem_map_and_free_swp(struct page *subdir, int offset,
472 int limit, struct page ***dir, spinlock_t *punch_lock)
477 ptr = shmem_swp_map(subdir);
478 for (; offset < limit; offset += LATENCY_LIMIT) {
479 int size = limit - offset;
480 if (size > LATENCY_LIMIT)
481 size = LATENCY_LIMIT;
482 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
484 if (need_resched()) {
485 shmem_swp_unmap(ptr);
487 shmem_dir_unmap(*dir);
491 ptr = shmem_swp_map(subdir);
494 shmem_swp_unmap(ptr);
498 static void shmem_free_pages(struct list_head *next)
504 page = container_of(next, struct page, lru);
506 shmem_dir_free(page);
508 if (freed >= LATENCY_LIMIT) {
515 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
517 struct shmem_inode_info *info = SHMEM_I(inode);
522 unsigned long diroff;
528 LIST_HEAD(pages_to_free);
529 long nr_pages_to_free = 0;
530 long nr_swaps_freed = 0;
534 spinlock_t *needs_lock;
535 spinlock_t *punch_lock;
536 unsigned long upper_limit;
538 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
539 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
540 if (idx >= info->next_index)
543 spin_lock(&info->lock);
544 info->flags |= SHMEM_TRUNCATE;
545 if (likely(end == (loff_t) -1)) {
546 limit = info->next_index;
547 upper_limit = SHMEM_MAX_INDEX;
548 info->next_index = idx;
552 if (end + 1 >= inode->i_size) { /* we may free a little more */
553 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
555 upper_limit = SHMEM_MAX_INDEX;
557 limit = (end + 1) >> PAGE_CACHE_SHIFT;
560 needs_lock = &info->lock;
564 topdir = info->i_indirect;
565 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
566 info->i_indirect = NULL;
568 list_add(&topdir->lru, &pages_to_free);
570 spin_unlock(&info->lock);
572 if (info->swapped && idx < SHMEM_NR_DIRECT) {
573 ptr = info->i_direct;
575 if (size > SHMEM_NR_DIRECT)
576 size = SHMEM_NR_DIRECT;
577 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
581 * If there are no indirect blocks or we are punching a hole
582 * below indirect blocks, nothing to be done.
584 if (!topdir || limit <= SHMEM_NR_DIRECT)
588 * The truncation case has already dropped info->lock, and we're safe
589 * because i_size and next_index have already been lowered, preventing
590 * access beyond. But in the punch_hole case, we still need to take
591 * the lock when updating the swap directory, because there might be
592 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
593 * shmem_writepage. However, whenever we find we can remove a whole
594 * directory page (not at the misaligned start or end of the range),
595 * we first NULLify its pointer in the level above, and then have no
596 * need to take the lock when updating its contents: needs_lock and
597 * punch_lock (either pointing to info->lock or NULL) manage this.
600 upper_limit -= SHMEM_NR_DIRECT;
601 limit -= SHMEM_NR_DIRECT;
602 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
603 offset = idx % ENTRIES_PER_PAGE;
606 dir = shmem_dir_map(topdir);
607 stage = ENTRIES_PER_PAGEPAGE/2;
608 if (idx < ENTRIES_PER_PAGEPAGE/2) {
610 diroff = idx/ENTRIES_PER_PAGE;
612 dir += ENTRIES_PER_PAGE/2;
613 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
615 stage += ENTRIES_PER_PAGEPAGE;
618 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
619 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
620 if (!diroff && !offset && upper_limit >= stage) {
622 spin_lock(needs_lock);
624 spin_unlock(needs_lock);
629 list_add(&middir->lru, &pages_to_free);
631 shmem_dir_unmap(dir);
632 dir = shmem_dir_map(middir);
640 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
641 if (unlikely(idx == stage)) {
642 shmem_dir_unmap(dir);
643 dir = shmem_dir_map(topdir) +
644 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
647 idx += ENTRIES_PER_PAGEPAGE;
651 stage = idx + ENTRIES_PER_PAGEPAGE;
654 needs_lock = &info->lock;
655 if (upper_limit >= stage) {
657 spin_lock(needs_lock);
659 spin_unlock(needs_lock);
664 list_add(&middir->lru, &pages_to_free);
666 shmem_dir_unmap(dir);
668 dir = shmem_dir_map(middir);
671 punch_lock = needs_lock;
672 subdir = dir[diroff];
673 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
675 spin_lock(needs_lock);
677 spin_unlock(needs_lock);
682 list_add(&subdir->lru, &pages_to_free);
684 if (subdir && page_private(subdir) /* has swap entries */) {
686 if (size > ENTRIES_PER_PAGE)
687 size = ENTRIES_PER_PAGE;
688 freed = shmem_map_and_free_swp(subdir,
689 offset, size, &dir, punch_lock);
691 dir = shmem_dir_map(middir);
692 nr_swaps_freed += freed;
693 if (offset || punch_lock) {
694 spin_lock(&info->lock);
695 set_page_private(subdir,
696 page_private(subdir) - freed);
697 spin_unlock(&info->lock);
699 BUG_ON(page_private(subdir) != freed);
704 shmem_dir_unmap(dir);
706 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
708 * Call truncate_inode_pages again: racing shmem_unuse_inode
709 * may have swizzled a page in from swap since vmtruncate or
710 * generic_delete_inode did it, before we lowered next_index.
711 * Also, though shmem_getpage checks i_size before adding to
712 * cache, no recheck after: so fix the narrow window there too.
714 * Recalling truncate_inode_pages_range and unmap_mapping_range
715 * every time for punch_hole (which never got a chance to clear
716 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
717 * yet hardly ever necessary: try to optimize them out later.
719 truncate_inode_pages_range(inode->i_mapping, start, end);
721 unmap_mapping_range(inode->i_mapping, start,
725 spin_lock(&info->lock);
726 info->flags &= ~SHMEM_TRUNCATE;
727 info->swapped -= nr_swaps_freed;
728 if (nr_pages_to_free)
729 shmem_free_blocks(inode, nr_pages_to_free);
730 shmem_recalc_inode(inode);
731 spin_unlock(&info->lock);
734 * Empty swap vector directory pages to be freed?
736 if (!list_empty(&pages_to_free)) {
737 pages_to_free.prev->next = NULL;
738 shmem_free_pages(pages_to_free.next);
742 static void shmem_truncate(struct inode *inode)
744 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
747 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
749 struct inode *inode = dentry->d_inode;
750 struct page *page = NULL;
753 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
754 if (attr->ia_size < inode->i_size) {
756 * If truncating down to a partial page, then
757 * if that page is already allocated, hold it
758 * in memory until the truncation is over, so
759 * truncate_partial_page cannnot miss it were
760 * it assigned to swap.
762 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
763 (void) shmem_getpage(inode,
764 attr->ia_size>>PAGE_CACHE_SHIFT,
765 &page, SGP_READ, NULL);
770 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
771 * detect if any pages might have been added to cache
772 * after truncate_inode_pages. But we needn't bother
773 * if it's being fully truncated to zero-length: the
774 * nrpages check is efficient enough in that case.
777 struct shmem_inode_info *info = SHMEM_I(inode);
778 spin_lock(&info->lock);
779 info->flags &= ~SHMEM_PAGEIN;
780 spin_unlock(&info->lock);
785 error = inode_change_ok(inode, attr);
787 error = inode_setattr(inode, attr);
788 #ifdef CONFIG_TMPFS_POSIX_ACL
789 if (!error && (attr->ia_valid & ATTR_MODE))
790 error = generic_acl_chmod(inode, &shmem_acl_ops);
793 page_cache_release(page);
797 static void shmem_delete_inode(struct inode *inode)
799 struct shmem_inode_info *info = SHMEM_I(inode);
801 if (inode->i_op->truncate == shmem_truncate) {
802 truncate_inode_pages(inode->i_mapping, 0);
803 shmem_unacct_size(info->flags, inode->i_size);
805 shmem_truncate(inode);
806 if (!list_empty(&info->swaplist)) {
807 mutex_lock(&shmem_swaplist_mutex);
808 list_del_init(&info->swaplist);
809 mutex_unlock(&shmem_swaplist_mutex);
812 BUG_ON(inode->i_blocks);
813 shmem_free_inode(inode->i_sb);
817 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
821 for (ptr = dir; ptr < edir; ptr++) {
822 if (ptr->val == entry.val)
828 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
842 ptr = info->i_direct;
843 spin_lock(&info->lock);
844 if (!info->swapped) {
845 list_del_init(&info->swaplist);
848 limit = info->next_index;
850 if (size > SHMEM_NR_DIRECT)
851 size = SHMEM_NR_DIRECT;
852 offset = shmem_find_swp(entry, ptr, ptr+size);
855 if (!info->i_indirect)
858 dir = shmem_dir_map(info->i_indirect);
859 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
861 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
862 if (unlikely(idx == stage)) {
863 shmem_dir_unmap(dir-1);
864 if (cond_resched_lock(&info->lock)) {
865 /* check it has not been truncated */
866 if (limit > info->next_index) {
867 limit = info->next_index;
872 dir = shmem_dir_map(info->i_indirect) +
873 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
876 idx += ENTRIES_PER_PAGEPAGE;
880 stage = idx + ENTRIES_PER_PAGEPAGE;
882 shmem_dir_unmap(dir);
883 dir = shmem_dir_map(subdir);
886 if (subdir && page_private(subdir)) {
887 ptr = shmem_swp_map(subdir);
889 if (size > ENTRIES_PER_PAGE)
890 size = ENTRIES_PER_PAGE;
891 offset = shmem_find_swp(entry, ptr, ptr+size);
892 shmem_swp_unmap(ptr);
894 shmem_dir_unmap(dir);
900 shmem_dir_unmap(dir-1);
902 spin_unlock(&info->lock);
906 inode = igrab(&info->vfs_inode);
907 spin_unlock(&info->lock);
910 * Move _head_ to start search for next from here.
911 * But be careful: shmem_delete_inode checks list_empty without taking
912 * mutex, and there's an instant in list_move_tail when info->swaplist
913 * would appear empty, if it were the only one on shmem_swaplist. We
914 * could avoid doing it if inode NULL; or use this minor optimization.
916 if (shmem_swaplist.next != &info->swaplist)
917 list_move_tail(&shmem_swaplist, &info->swaplist);
918 mutex_unlock(&shmem_swaplist_mutex);
923 /* Precharge page using GFP_KERNEL while we can wait */
924 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
927 error = radix_tree_preload(GFP_KERNEL);
929 mem_cgroup_uncharge_cache_page(page);
934 spin_lock(&info->lock);
935 ptr = shmem_swp_entry(info, idx, NULL);
936 if (ptr && ptr->val == entry.val) {
937 error = add_to_page_cache_locked(page, inode->i_mapping,
939 /* does mem_cgroup_uncharge_cache_page on error */
940 } else /* we must compensate for our precharge above */
941 mem_cgroup_uncharge_cache_page(page);
943 if (error == -EEXIST) {
944 struct page *filepage = find_get_page(inode->i_mapping, idx);
948 * There might be a more uptodate page coming down
949 * from a stacked writepage: forget our swappage if so.
951 if (PageUptodate(filepage))
953 page_cache_release(filepage);
957 delete_from_swap_cache(page);
958 set_page_dirty(page);
959 info->flags |= SHMEM_PAGEIN;
960 shmem_swp_set(info, ptr, 0);
962 error = 1; /* not an error, but entry was found */
965 shmem_swp_unmap(ptr);
966 spin_unlock(&info->lock);
967 radix_tree_preload_end();
970 page_cache_release(page);
971 iput(inode); /* allows for NULL */
976 * shmem_unuse() search for an eventually swapped out shmem page.
978 int shmem_unuse(swp_entry_t entry, struct page *page)
980 struct list_head *p, *next;
981 struct shmem_inode_info *info;
984 mutex_lock(&shmem_swaplist_mutex);
985 list_for_each_safe(p, next, &shmem_swaplist) {
986 info = list_entry(p, struct shmem_inode_info, swaplist);
987 found = shmem_unuse_inode(info, entry, page);
992 mutex_unlock(&shmem_swaplist_mutex);
993 out: return found; /* 0 or 1 or -ENOMEM */
997 * Move the page from the page cache to the swap cache.
999 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1001 struct shmem_inode_info *info;
1002 swp_entry_t *entry, swap;
1003 struct address_space *mapping;
1004 unsigned long index;
1005 struct inode *inode;
1007 BUG_ON(!PageLocked(page));
1008 mapping = page->mapping;
1009 index = page->index;
1010 inode = mapping->host;
1011 info = SHMEM_I(inode);
1012 if (info->flags & VM_LOCKED)
1014 if (!total_swap_pages)
1018 * shmem_backing_dev_info's capabilities prevent regular writeback or
1019 * sync from ever calling shmem_writepage; but a stacking filesystem
1020 * may use the ->writepage of its underlying filesystem, in which case
1021 * tmpfs should write out to swap only in response to memory pressure,
1022 * and not for pdflush or sync. However, in those cases, we do still
1023 * want to check if there's a redundant swappage to be discarded.
1025 if (wbc->for_reclaim)
1026 swap = get_swap_page();
1030 spin_lock(&info->lock);
1031 if (index >= info->next_index) {
1032 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1035 entry = shmem_swp_entry(info, index, NULL);
1038 * The more uptodate page coming down from a stacked
1039 * writepage should replace our old swappage.
1041 free_swap_and_cache(*entry);
1042 shmem_swp_set(info, entry, 0);
1044 shmem_recalc_inode(inode);
1046 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1047 remove_from_page_cache(page);
1048 shmem_swp_set(info, entry, swap.val);
1049 shmem_swp_unmap(entry);
1050 if (list_empty(&info->swaplist))
1051 inode = igrab(inode);
1054 spin_unlock(&info->lock);
1055 swap_duplicate(swap);
1056 BUG_ON(page_mapped(page));
1057 page_cache_release(page); /* pagecache ref */
1058 set_page_dirty(page);
1061 mutex_lock(&shmem_swaplist_mutex);
1062 /* move instead of add in case we're racing */
1063 list_move_tail(&info->swaplist, &shmem_swaplist);
1064 mutex_unlock(&shmem_swaplist_mutex);
1070 shmem_swp_unmap(entry);
1072 spin_unlock(&info->lock);
1075 set_page_dirty(page);
1076 if (wbc->for_reclaim)
1077 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1084 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1088 if (!mpol || mpol->mode == MPOL_DEFAULT)
1089 return; /* show nothing */
1091 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1093 seq_printf(seq, ",mpol=%s", buffer);
1096 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1098 struct mempolicy *mpol = NULL;
1100 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1101 mpol = sbinfo->mpol;
1103 spin_unlock(&sbinfo->stat_lock);
1107 #endif /* CONFIG_TMPFS */
1109 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1110 struct shmem_inode_info *info, unsigned long idx)
1112 struct mempolicy mpol, *spol;
1113 struct vm_area_struct pvma;
1116 spol = mpol_cond_copy(&mpol,
1117 mpol_shared_policy_lookup(&info->policy, idx));
1119 /* Create a pseudo vma that just contains the policy */
1121 pvma.vm_pgoff = idx;
1123 pvma.vm_policy = spol;
1124 page = swapin_readahead(entry, gfp, &pvma, 0);
1128 static struct page *shmem_alloc_page(gfp_t gfp,
1129 struct shmem_inode_info *info, unsigned long idx)
1131 struct vm_area_struct pvma;
1133 /* Create a pseudo vma that just contains the policy */
1135 pvma.vm_pgoff = idx;
1137 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1140 * alloc_page_vma() will drop the shared policy reference
1142 return alloc_page_vma(gfp, &pvma, 0);
1144 #else /* !CONFIG_NUMA */
1146 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1149 #endif /* CONFIG_TMPFS */
1151 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1152 struct shmem_inode_info *info, unsigned long idx)
1154 return swapin_readahead(entry, gfp, NULL, 0);
1157 static inline struct page *shmem_alloc_page(gfp_t gfp,
1158 struct shmem_inode_info *info, unsigned long idx)
1160 return alloc_page(gfp);
1162 #endif /* CONFIG_NUMA */
1164 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1165 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1172 * shmem_getpage - either get the page from swap or allocate a new one
1174 * If we allocate a new one we do not mark it dirty. That's up to the
1175 * vm. If we swap it in we mark it dirty since we also free the swap
1176 * entry since a page cannot live in both the swap and page cache
1178 static int shmem_getpage(struct inode *inode, unsigned long idx,
1179 struct page **pagep, enum sgp_type sgp, int *type)
1181 struct address_space *mapping = inode->i_mapping;
1182 struct shmem_inode_info *info = SHMEM_I(inode);
1183 struct shmem_sb_info *sbinfo;
1184 struct page *filepage = *pagep;
1185 struct page *swappage;
1191 if (idx >= SHMEM_MAX_INDEX)
1198 * Normally, filepage is NULL on entry, and either found
1199 * uptodate immediately, or allocated and zeroed, or read
1200 * in under swappage, which is then assigned to filepage.
1201 * But shmem_readpage (required for splice) passes in a locked
1202 * filepage, which may be found not uptodate by other callers
1203 * too, and may need to be copied from the swappage read in.
1207 filepage = find_lock_page(mapping, idx);
1208 if (filepage && PageUptodate(filepage))
1211 gfp = mapping_gfp_mask(mapping);
1214 * Try to preload while we can wait, to not make a habit of
1215 * draining atomic reserves; but don't latch on to this cpu.
1217 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1220 radix_tree_preload_end();
1223 spin_lock(&info->lock);
1224 shmem_recalc_inode(inode);
1225 entry = shmem_swp_alloc(info, idx, sgp);
1226 if (IS_ERR(entry)) {
1227 spin_unlock(&info->lock);
1228 error = PTR_ERR(entry);
1234 /* Look it up and read it in.. */
1235 swappage = lookup_swap_cache(swap);
1237 shmem_swp_unmap(entry);
1238 /* here we actually do the io */
1239 if (type && !(*type & VM_FAULT_MAJOR)) {
1240 __count_vm_event(PGMAJFAULT);
1241 *type |= VM_FAULT_MAJOR;
1243 spin_unlock(&info->lock);
1244 swappage = shmem_swapin(swap, gfp, info, idx);
1246 spin_lock(&info->lock);
1247 entry = shmem_swp_alloc(info, idx, sgp);
1249 error = PTR_ERR(entry);
1251 if (entry->val == swap.val)
1253 shmem_swp_unmap(entry);
1255 spin_unlock(&info->lock);
1260 wait_on_page_locked(swappage);
1261 page_cache_release(swappage);
1265 /* We have to do this with page locked to prevent races */
1266 if (!trylock_page(swappage)) {
1267 shmem_swp_unmap(entry);
1268 spin_unlock(&info->lock);
1269 wait_on_page_locked(swappage);
1270 page_cache_release(swappage);
1273 if (PageWriteback(swappage)) {
1274 shmem_swp_unmap(entry);
1275 spin_unlock(&info->lock);
1276 wait_on_page_writeback(swappage);
1277 unlock_page(swappage);
1278 page_cache_release(swappage);
1281 if (!PageUptodate(swappage)) {
1282 shmem_swp_unmap(entry);
1283 spin_unlock(&info->lock);
1284 unlock_page(swappage);
1285 page_cache_release(swappage);
1291 shmem_swp_set(info, entry, 0);
1292 shmem_swp_unmap(entry);
1293 delete_from_swap_cache(swappage);
1294 spin_unlock(&info->lock);
1295 copy_highpage(filepage, swappage);
1296 unlock_page(swappage);
1297 page_cache_release(swappage);
1298 flush_dcache_page(filepage);
1299 SetPageUptodate(filepage);
1300 set_page_dirty(filepage);
1302 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1303 idx, GFP_NOWAIT))) {
1304 info->flags |= SHMEM_PAGEIN;
1305 shmem_swp_set(info, entry, 0);
1306 shmem_swp_unmap(entry);
1307 delete_from_swap_cache(swappage);
1308 spin_unlock(&info->lock);
1309 filepage = swappage;
1310 set_page_dirty(filepage);
1313 shmem_swp_unmap(entry);
1314 spin_unlock(&info->lock);
1315 unlock_page(swappage);
1316 page_cache_release(swappage);
1317 if (error == -ENOMEM) {
1318 /* allow reclaim from this memory cgroup */
1319 error = mem_cgroup_shrink_usage(current->mm,
1326 } else if (sgp == SGP_READ && !filepage) {
1327 shmem_swp_unmap(entry);
1328 filepage = find_get_page(mapping, idx);
1330 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1331 spin_unlock(&info->lock);
1332 wait_on_page_locked(filepage);
1333 page_cache_release(filepage);
1337 spin_unlock(&info->lock);
1339 shmem_swp_unmap(entry);
1340 sbinfo = SHMEM_SB(inode->i_sb);
1341 if (sbinfo->max_blocks) {
1342 spin_lock(&sbinfo->stat_lock);
1343 if (sbinfo->free_blocks == 0 ||
1344 shmem_acct_block(info->flags)) {
1345 spin_unlock(&sbinfo->stat_lock);
1346 spin_unlock(&info->lock);
1350 sbinfo->free_blocks--;
1351 inode->i_blocks += BLOCKS_PER_PAGE;
1352 spin_unlock(&sbinfo->stat_lock);
1353 } else if (shmem_acct_block(info->flags)) {
1354 spin_unlock(&info->lock);
1362 spin_unlock(&info->lock);
1363 filepage = shmem_alloc_page(gfp, info, idx);
1365 shmem_unacct_blocks(info->flags, 1);
1366 shmem_free_blocks(inode, 1);
1370 SetPageSwapBacked(filepage);
1372 /* Precharge page while we can wait, compensate after */
1373 error = mem_cgroup_cache_charge(filepage, current->mm,
1374 gfp & ~__GFP_HIGHMEM);
1376 page_cache_release(filepage);
1377 shmem_unacct_blocks(info->flags, 1);
1378 shmem_free_blocks(inode, 1);
1383 spin_lock(&info->lock);
1384 entry = shmem_swp_alloc(info, idx, sgp);
1386 error = PTR_ERR(entry);
1389 shmem_swp_unmap(entry);
1391 ret = error || swap.val;
1393 mem_cgroup_uncharge_cache_page(filepage);
1395 ret = add_to_page_cache_lru(filepage, mapping,
1398 * At add_to_page_cache_lru() failure, uncharge will
1399 * be done automatically.
1402 spin_unlock(&info->lock);
1403 page_cache_release(filepage);
1404 shmem_unacct_blocks(info->flags, 1);
1405 shmem_free_blocks(inode, 1);
1411 info->flags |= SHMEM_PAGEIN;
1415 spin_unlock(&info->lock);
1416 clear_highpage(filepage);
1417 flush_dcache_page(filepage);
1418 SetPageUptodate(filepage);
1419 if (sgp == SGP_DIRTY)
1420 set_page_dirty(filepage);
1427 if (*pagep != filepage) {
1428 unlock_page(filepage);
1429 page_cache_release(filepage);
1434 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1436 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1440 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1441 return VM_FAULT_SIGBUS;
1443 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1445 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1447 mark_page_accessed(vmf->page);
1448 return ret | VM_FAULT_LOCKED;
1452 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1454 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1455 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1458 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1461 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1464 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1465 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1469 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1471 struct inode *inode = file->f_path.dentry->d_inode;
1472 struct shmem_inode_info *info = SHMEM_I(inode);
1473 int retval = -ENOMEM;
1475 spin_lock(&info->lock);
1476 if (lock && !(info->flags & VM_LOCKED)) {
1477 if (!user_shm_lock(inode->i_size, user))
1479 info->flags |= VM_LOCKED;
1480 mapping_set_unevictable(file->f_mapping);
1482 if (!lock && (info->flags & VM_LOCKED) && user) {
1483 user_shm_unlock(inode->i_size, user);
1484 info->flags &= ~VM_LOCKED;
1485 mapping_clear_unevictable(file->f_mapping);
1486 scan_mapping_unevictable_pages(file->f_mapping);
1491 spin_unlock(&info->lock);
1495 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1497 file_accessed(file);
1498 vma->vm_ops = &shmem_vm_ops;
1499 vma->vm_flags |= VM_CAN_NONLINEAR;
1503 static struct inode *
1504 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1506 struct inode *inode;
1507 struct shmem_inode_info *info;
1508 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1510 if (shmem_reserve_inode(sb))
1513 inode = new_inode(sb);
1515 inode->i_mode = mode;
1516 inode->i_uid = current->fsuid;
1517 inode->i_gid = current->fsgid;
1518 inode->i_blocks = 0;
1519 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1520 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1521 inode->i_generation = get_seconds();
1522 info = SHMEM_I(inode);
1523 memset(info, 0, (char *)inode - (char *)info);
1524 spin_lock_init(&info->lock);
1525 INIT_LIST_HEAD(&info->swaplist);
1527 switch (mode & S_IFMT) {
1529 inode->i_op = &shmem_special_inode_operations;
1530 init_special_inode(inode, mode, dev);
1533 inode->i_mapping->a_ops = &shmem_aops;
1534 inode->i_op = &shmem_inode_operations;
1535 inode->i_fop = &shmem_file_operations;
1536 mpol_shared_policy_init(&info->policy,
1537 shmem_get_sbmpol(sbinfo));
1541 /* Some things misbehave if size == 0 on a directory */
1542 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1543 inode->i_op = &shmem_dir_inode_operations;
1544 inode->i_fop = &simple_dir_operations;
1548 * Must not load anything in the rbtree,
1549 * mpol_free_shared_policy will not be called.
1551 mpol_shared_policy_init(&info->policy, NULL);
1555 shmem_free_inode(sb);
1560 static const struct inode_operations shmem_symlink_inode_operations;
1561 static const struct inode_operations shmem_symlink_inline_operations;
1564 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1565 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1566 * below the loop driver, in the generic fashion that many filesystems support.
1568 static int shmem_readpage(struct file *file, struct page *page)
1570 struct inode *inode = page->mapping->host;
1571 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1577 shmem_write_begin(struct file *file, struct address_space *mapping,
1578 loff_t pos, unsigned len, unsigned flags,
1579 struct page **pagep, void **fsdata)
1581 struct inode *inode = mapping->host;
1582 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1584 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1588 shmem_write_end(struct file *file, struct address_space *mapping,
1589 loff_t pos, unsigned len, unsigned copied,
1590 struct page *page, void *fsdata)
1592 struct inode *inode = mapping->host;
1594 if (pos + copied > inode->i_size)
1595 i_size_write(inode, pos + copied);
1598 set_page_dirty(page);
1599 page_cache_release(page);
1604 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1606 struct inode *inode = filp->f_path.dentry->d_inode;
1607 struct address_space *mapping = inode->i_mapping;
1608 unsigned long index, offset;
1609 enum sgp_type sgp = SGP_READ;
1612 * Might this read be for a stacking filesystem? Then when reading
1613 * holes of a sparse file, we actually need to allocate those pages,
1614 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1616 if (segment_eq(get_fs(), KERNEL_DS))
1619 index = *ppos >> PAGE_CACHE_SHIFT;
1620 offset = *ppos & ~PAGE_CACHE_MASK;
1623 struct page *page = NULL;
1624 unsigned long end_index, nr, ret;
1625 loff_t i_size = i_size_read(inode);
1627 end_index = i_size >> PAGE_CACHE_SHIFT;
1628 if (index > end_index)
1630 if (index == end_index) {
1631 nr = i_size & ~PAGE_CACHE_MASK;
1636 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1638 if (desc->error == -EINVAL)
1646 * We must evaluate after, since reads (unlike writes)
1647 * are called without i_mutex protection against truncate
1649 nr = PAGE_CACHE_SIZE;
1650 i_size = i_size_read(inode);
1651 end_index = i_size >> PAGE_CACHE_SHIFT;
1652 if (index == end_index) {
1653 nr = i_size & ~PAGE_CACHE_MASK;
1656 page_cache_release(page);
1664 * If users can be writing to this page using arbitrary
1665 * virtual addresses, take care about potential aliasing
1666 * before reading the page on the kernel side.
1668 if (mapping_writably_mapped(mapping))
1669 flush_dcache_page(page);
1671 * Mark the page accessed if we read the beginning.
1674 mark_page_accessed(page);
1676 page = ZERO_PAGE(0);
1677 page_cache_get(page);
1681 * Ok, we have the page, and it's up-to-date, so
1682 * now we can copy it to user space...
1684 * The actor routine returns how many bytes were actually used..
1685 * NOTE! This may not be the same as how much of a user buffer
1686 * we filled up (we may be padding etc), so we can only update
1687 * "pos" here (the actor routine has to update the user buffer
1688 * pointers and the remaining count).
1690 ret = actor(desc, page, offset, nr);
1692 index += offset >> PAGE_CACHE_SHIFT;
1693 offset &= ~PAGE_CACHE_MASK;
1695 page_cache_release(page);
1696 if (ret != nr || !desc->count)
1702 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1703 file_accessed(filp);
1706 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1707 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1709 struct file *filp = iocb->ki_filp;
1713 loff_t *ppos = &iocb->ki_pos;
1715 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1719 for (seg = 0; seg < nr_segs; seg++) {
1720 read_descriptor_t desc;
1723 desc.arg.buf = iov[seg].iov_base;
1724 desc.count = iov[seg].iov_len;
1725 if (desc.count == 0)
1728 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1729 retval += desc.written;
1731 retval = retval ?: desc.error;
1740 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1742 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1744 buf->f_type = TMPFS_MAGIC;
1745 buf->f_bsize = PAGE_CACHE_SIZE;
1746 buf->f_namelen = NAME_MAX;
1747 spin_lock(&sbinfo->stat_lock);
1748 if (sbinfo->max_blocks) {
1749 buf->f_blocks = sbinfo->max_blocks;
1750 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1752 if (sbinfo->max_inodes) {
1753 buf->f_files = sbinfo->max_inodes;
1754 buf->f_ffree = sbinfo->free_inodes;
1756 /* else leave those fields 0 like simple_statfs */
1757 spin_unlock(&sbinfo->stat_lock);
1762 * File creation. Allocate an inode, and we're done..
1765 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1767 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1768 int error = -ENOSPC;
1771 error = security_inode_init_security(inode, dir, NULL, NULL,
1774 if (error != -EOPNOTSUPP) {
1779 error = shmem_acl_init(inode, dir);
1784 if (dir->i_mode & S_ISGID) {
1785 inode->i_gid = dir->i_gid;
1787 inode->i_mode |= S_ISGID;
1789 dir->i_size += BOGO_DIRENT_SIZE;
1790 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1791 d_instantiate(dentry, inode);
1792 dget(dentry); /* Extra count - pin the dentry in core */
1797 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1801 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1807 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1808 struct nameidata *nd)
1810 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1816 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1818 struct inode *inode = old_dentry->d_inode;
1822 * No ordinary (disk based) filesystem counts links as inodes;
1823 * but each new link needs a new dentry, pinning lowmem, and
1824 * tmpfs dentries cannot be pruned until they are unlinked.
1826 ret = shmem_reserve_inode(inode->i_sb);
1830 dir->i_size += BOGO_DIRENT_SIZE;
1831 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1833 atomic_inc(&inode->i_count); /* New dentry reference */
1834 dget(dentry); /* Extra pinning count for the created dentry */
1835 d_instantiate(dentry, inode);
1840 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1842 struct inode *inode = dentry->d_inode;
1844 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1845 shmem_free_inode(inode->i_sb);
1847 dir->i_size -= BOGO_DIRENT_SIZE;
1848 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1850 dput(dentry); /* Undo the count from "create" - this does all the work */
1854 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1856 if (!simple_empty(dentry))
1859 drop_nlink(dentry->d_inode);
1861 return shmem_unlink(dir, dentry);
1865 * The VFS layer already does all the dentry stuff for rename,
1866 * we just have to decrement the usage count for the target if
1867 * it exists so that the VFS layer correctly free's it when it
1870 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1872 struct inode *inode = old_dentry->d_inode;
1873 int they_are_dirs = S_ISDIR(inode->i_mode);
1875 if (!simple_empty(new_dentry))
1878 if (new_dentry->d_inode) {
1879 (void) shmem_unlink(new_dir, new_dentry);
1881 drop_nlink(old_dir);
1882 } else if (they_are_dirs) {
1883 drop_nlink(old_dir);
1887 old_dir->i_size -= BOGO_DIRENT_SIZE;
1888 new_dir->i_size += BOGO_DIRENT_SIZE;
1889 old_dir->i_ctime = old_dir->i_mtime =
1890 new_dir->i_ctime = new_dir->i_mtime =
1891 inode->i_ctime = CURRENT_TIME;
1895 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1899 struct inode *inode;
1900 struct page *page = NULL;
1902 struct shmem_inode_info *info;
1904 len = strlen(symname) + 1;
1905 if (len > PAGE_CACHE_SIZE)
1906 return -ENAMETOOLONG;
1908 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1912 error = security_inode_init_security(inode, dir, NULL, NULL,
1915 if (error != -EOPNOTSUPP) {
1922 info = SHMEM_I(inode);
1923 inode->i_size = len-1;
1924 if (len <= (char *)inode - (char *)info) {
1926 memcpy(info, symname, len);
1927 inode->i_op = &shmem_symlink_inline_operations;
1929 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1935 inode->i_mapping->a_ops = &shmem_aops;
1936 inode->i_op = &shmem_symlink_inode_operations;
1937 kaddr = kmap_atomic(page, KM_USER0);
1938 memcpy(kaddr, symname, len);
1939 kunmap_atomic(kaddr, KM_USER0);
1940 set_page_dirty(page);
1941 page_cache_release(page);
1943 if (dir->i_mode & S_ISGID)
1944 inode->i_gid = dir->i_gid;
1945 dir->i_size += BOGO_DIRENT_SIZE;
1946 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1947 d_instantiate(dentry, inode);
1952 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1954 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1958 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1960 struct page *page = NULL;
1961 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1962 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1968 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1970 if (!IS_ERR(nd_get_link(nd))) {
1971 struct page *page = cookie;
1973 mark_page_accessed(page);
1974 page_cache_release(page);
1978 static const struct inode_operations shmem_symlink_inline_operations = {
1979 .readlink = generic_readlink,
1980 .follow_link = shmem_follow_link_inline,
1983 static const struct inode_operations shmem_symlink_inode_operations = {
1984 .truncate = shmem_truncate,
1985 .readlink = generic_readlink,
1986 .follow_link = shmem_follow_link,
1987 .put_link = shmem_put_link,
1990 #ifdef CONFIG_TMPFS_POSIX_ACL
1992 * Superblocks without xattr inode operations will get security.* xattr
1993 * support from the VFS "for free". As soon as we have any other xattrs
1994 * like ACLs, we also need to implement the security.* handlers at
1995 * filesystem level, though.
1998 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1999 size_t list_len, const char *name,
2002 return security_inode_listsecurity(inode, list, list_len);
2005 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2006 void *buffer, size_t size)
2008 if (strcmp(name, "") == 0)
2010 return xattr_getsecurity(inode, name, buffer, size);
2013 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2014 const void *value, size_t size, int flags)
2016 if (strcmp(name, "") == 0)
2018 return security_inode_setsecurity(inode, name, value, size, flags);
2021 static struct xattr_handler shmem_xattr_security_handler = {
2022 .prefix = XATTR_SECURITY_PREFIX,
2023 .list = shmem_xattr_security_list,
2024 .get = shmem_xattr_security_get,
2025 .set = shmem_xattr_security_set,
2028 static struct xattr_handler *shmem_xattr_handlers[] = {
2029 &shmem_xattr_acl_access_handler,
2030 &shmem_xattr_acl_default_handler,
2031 &shmem_xattr_security_handler,
2036 static struct dentry *shmem_get_parent(struct dentry *child)
2038 return ERR_PTR(-ESTALE);
2041 static int shmem_match(struct inode *ino, void *vfh)
2045 inum = (inum << 32) | fh[1];
2046 return ino->i_ino == inum && fh[0] == ino->i_generation;
2049 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2050 struct fid *fid, int fh_len, int fh_type)
2052 struct inode *inode;
2053 struct dentry *dentry = NULL;
2054 u64 inum = fid->raw[2];
2055 inum = (inum << 32) | fid->raw[1];
2060 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2061 shmem_match, fid->raw);
2063 dentry = d_find_alias(inode);
2070 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2073 struct inode *inode = dentry->d_inode;
2078 if (hlist_unhashed(&inode->i_hash)) {
2079 /* Unfortunately insert_inode_hash is not idempotent,
2080 * so as we hash inodes here rather than at creation
2081 * time, we need a lock to ensure we only try
2084 static DEFINE_SPINLOCK(lock);
2086 if (hlist_unhashed(&inode->i_hash))
2087 __insert_inode_hash(inode,
2088 inode->i_ino + inode->i_generation);
2092 fh[0] = inode->i_generation;
2093 fh[1] = inode->i_ino;
2094 fh[2] = ((__u64)inode->i_ino) >> 32;
2100 static const struct export_operations shmem_export_ops = {
2101 .get_parent = shmem_get_parent,
2102 .encode_fh = shmem_encode_fh,
2103 .fh_to_dentry = shmem_fh_to_dentry,
2106 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2109 char *this_char, *value, *rest;
2111 while (options != NULL) {
2112 this_char = options;
2115 * NUL-terminate this option: unfortunately,
2116 * mount options form a comma-separated list,
2117 * but mpol's nodelist may also contain commas.
2119 options = strchr(options, ',');
2120 if (options == NULL)
2123 if (!isdigit(*options)) {
2130 if ((value = strchr(this_char,'=')) != NULL) {
2134 "tmpfs: No value for mount option '%s'\n",
2139 if (!strcmp(this_char,"size")) {
2140 unsigned long long size;
2141 size = memparse(value,&rest);
2143 size <<= PAGE_SHIFT;
2144 size *= totalram_pages;
2150 sbinfo->max_blocks =
2151 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2152 } else if (!strcmp(this_char,"nr_blocks")) {
2153 sbinfo->max_blocks = memparse(value, &rest);
2156 } else if (!strcmp(this_char,"nr_inodes")) {
2157 sbinfo->max_inodes = memparse(value, &rest);
2160 } else if (!strcmp(this_char,"mode")) {
2163 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2166 } else if (!strcmp(this_char,"uid")) {
2169 sbinfo->uid = simple_strtoul(value, &rest, 0);
2172 } else if (!strcmp(this_char,"gid")) {
2175 sbinfo->gid = simple_strtoul(value, &rest, 0);
2178 } else if (!strcmp(this_char,"mpol")) {
2179 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2182 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2190 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2196 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2199 struct shmem_sb_info config = *sbinfo;
2200 unsigned long blocks;
2201 unsigned long inodes;
2202 int error = -EINVAL;
2204 if (shmem_parse_options(data, &config, true))
2207 spin_lock(&sbinfo->stat_lock);
2208 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2209 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2210 if (config.max_blocks < blocks)
2212 if (config.max_inodes < inodes)
2215 * Those tests also disallow limited->unlimited while any are in
2216 * use, so i_blocks will always be zero when max_blocks is zero;
2217 * but we must separately disallow unlimited->limited, because
2218 * in that case we have no record of how much is already in use.
2220 if (config.max_blocks && !sbinfo->max_blocks)
2222 if (config.max_inodes && !sbinfo->max_inodes)
2226 sbinfo->max_blocks = config.max_blocks;
2227 sbinfo->free_blocks = config.max_blocks - blocks;
2228 sbinfo->max_inodes = config.max_inodes;
2229 sbinfo->free_inodes = config.max_inodes - inodes;
2231 mpol_put(sbinfo->mpol);
2232 sbinfo->mpol = config.mpol; /* transfers initial ref */
2234 spin_unlock(&sbinfo->stat_lock);
2238 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2240 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2242 if (sbinfo->max_blocks != shmem_default_max_blocks())
2243 seq_printf(seq, ",size=%luk",
2244 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2245 if (sbinfo->max_inodes != shmem_default_max_inodes())
2246 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2247 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2248 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2249 if (sbinfo->uid != 0)
2250 seq_printf(seq, ",uid=%u", sbinfo->uid);
2251 if (sbinfo->gid != 0)
2252 seq_printf(seq, ",gid=%u", sbinfo->gid);
2253 shmem_show_mpol(seq, sbinfo->mpol);
2256 #endif /* CONFIG_TMPFS */
2258 static void shmem_put_super(struct super_block *sb)
2260 kfree(sb->s_fs_info);
2261 sb->s_fs_info = NULL;
2264 static int shmem_fill_super(struct super_block *sb,
2265 void *data, int silent)
2267 struct inode *inode;
2268 struct dentry *root;
2269 struct shmem_sb_info *sbinfo;
2272 /* Round up to L1_CACHE_BYTES to resist false sharing */
2273 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2274 L1_CACHE_BYTES), GFP_KERNEL);
2278 sbinfo->max_blocks = 0;
2279 sbinfo->max_inodes = 0;
2280 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2281 sbinfo->uid = current->fsuid;
2282 sbinfo->gid = current->fsgid;
2283 sbinfo->mpol = NULL;
2284 sb->s_fs_info = sbinfo;
2288 * Per default we only allow half of the physical ram per
2289 * tmpfs instance, limiting inodes to one per page of lowmem;
2290 * but the internal instance is left unlimited.
2292 if (!(sb->s_flags & MS_NOUSER)) {
2293 sbinfo->max_blocks = shmem_default_max_blocks();
2294 sbinfo->max_inodes = shmem_default_max_inodes();
2295 if (shmem_parse_options(data, sbinfo, false)) {
2300 sb->s_export_op = &shmem_export_ops;
2302 sb->s_flags |= MS_NOUSER;
2305 spin_lock_init(&sbinfo->stat_lock);
2306 sbinfo->free_blocks = sbinfo->max_blocks;
2307 sbinfo->free_inodes = sbinfo->max_inodes;
2309 sb->s_maxbytes = SHMEM_MAX_BYTES;
2310 sb->s_blocksize = PAGE_CACHE_SIZE;
2311 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2312 sb->s_magic = TMPFS_MAGIC;
2313 sb->s_op = &shmem_ops;
2314 sb->s_time_gran = 1;
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316 sb->s_xattr = shmem_xattr_handlers;
2317 sb->s_flags |= MS_POSIXACL;
2320 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2323 inode->i_uid = sbinfo->uid;
2324 inode->i_gid = sbinfo->gid;
2325 root = d_alloc_root(inode);
2334 shmem_put_super(sb);
2338 static struct kmem_cache *shmem_inode_cachep;
2340 static struct inode *shmem_alloc_inode(struct super_block *sb)
2342 struct shmem_inode_info *p;
2343 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2346 return &p->vfs_inode;
2349 static void shmem_destroy_inode(struct inode *inode)
2351 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2352 /* only struct inode is valid if it's an inline symlink */
2353 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2355 shmem_acl_destroy_inode(inode);
2356 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2359 static void init_once(void *foo)
2361 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2363 inode_init_once(&p->vfs_inode);
2364 #ifdef CONFIG_TMPFS_POSIX_ACL
2366 p->i_default_acl = NULL;
2370 static int init_inodecache(void)
2372 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2373 sizeof(struct shmem_inode_info),
2374 0, SLAB_PANIC, init_once);
2378 static void destroy_inodecache(void)
2380 kmem_cache_destroy(shmem_inode_cachep);
2383 static const struct address_space_operations shmem_aops = {
2384 .writepage = shmem_writepage,
2385 .set_page_dirty = __set_page_dirty_no_writeback,
2387 .readpage = shmem_readpage,
2388 .write_begin = shmem_write_begin,
2389 .write_end = shmem_write_end,
2391 .migratepage = migrate_page,
2394 static const struct file_operations shmem_file_operations = {
2397 .llseek = generic_file_llseek,
2398 .read = do_sync_read,
2399 .write = do_sync_write,
2400 .aio_read = shmem_file_aio_read,
2401 .aio_write = generic_file_aio_write,
2402 .fsync = simple_sync_file,
2403 .splice_read = generic_file_splice_read,
2404 .splice_write = generic_file_splice_write,
2408 static const struct inode_operations shmem_inode_operations = {
2409 .truncate = shmem_truncate,
2410 .setattr = shmem_notify_change,
2411 .truncate_range = shmem_truncate_range,
2412 #ifdef CONFIG_TMPFS_POSIX_ACL
2413 .setxattr = generic_setxattr,
2414 .getxattr = generic_getxattr,
2415 .listxattr = generic_listxattr,
2416 .removexattr = generic_removexattr,
2417 .permission = shmem_permission,
2422 static const struct inode_operations shmem_dir_inode_operations = {
2424 .create = shmem_create,
2425 .lookup = simple_lookup,
2427 .unlink = shmem_unlink,
2428 .symlink = shmem_symlink,
2429 .mkdir = shmem_mkdir,
2430 .rmdir = shmem_rmdir,
2431 .mknod = shmem_mknod,
2432 .rename = shmem_rename,
2434 #ifdef CONFIG_TMPFS_POSIX_ACL
2435 .setattr = shmem_notify_change,
2436 .setxattr = generic_setxattr,
2437 .getxattr = generic_getxattr,
2438 .listxattr = generic_listxattr,
2439 .removexattr = generic_removexattr,
2440 .permission = shmem_permission,
2444 static const struct inode_operations shmem_special_inode_operations = {
2445 #ifdef CONFIG_TMPFS_POSIX_ACL
2446 .setattr = shmem_notify_change,
2447 .setxattr = generic_setxattr,
2448 .getxattr = generic_getxattr,
2449 .listxattr = generic_listxattr,
2450 .removexattr = generic_removexattr,
2451 .permission = shmem_permission,
2455 static const struct super_operations shmem_ops = {
2456 .alloc_inode = shmem_alloc_inode,
2457 .destroy_inode = shmem_destroy_inode,
2459 .statfs = shmem_statfs,
2460 .remount_fs = shmem_remount_fs,
2461 .show_options = shmem_show_options,
2463 .delete_inode = shmem_delete_inode,
2464 .drop_inode = generic_delete_inode,
2465 .put_super = shmem_put_super,
2468 static struct vm_operations_struct shmem_vm_ops = {
2469 .fault = shmem_fault,
2471 .set_policy = shmem_set_policy,
2472 .get_policy = shmem_get_policy,
2477 static int shmem_get_sb(struct file_system_type *fs_type,
2478 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2480 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2483 static struct file_system_type tmpfs_fs_type = {
2484 .owner = THIS_MODULE,
2486 .get_sb = shmem_get_sb,
2487 .kill_sb = kill_litter_super,
2489 static struct vfsmount *shm_mnt;
2491 static int __init init_tmpfs(void)
2495 error = bdi_init(&shmem_backing_dev_info);
2499 error = init_inodecache();
2503 error = register_filesystem(&tmpfs_fs_type);
2505 printk(KERN_ERR "Could not register tmpfs\n");
2509 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2510 tmpfs_fs_type.name, NULL);
2511 if (IS_ERR(shm_mnt)) {
2512 error = PTR_ERR(shm_mnt);
2513 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2519 unregister_filesystem(&tmpfs_fs_type);
2521 destroy_inodecache();
2523 bdi_destroy(&shmem_backing_dev_info);
2525 shm_mnt = ERR_PTR(error);
2528 module_init(init_tmpfs)
2531 * shmem_file_setup - get an unlinked file living in tmpfs
2532 * @name: name for dentry (to be seen in /proc/<pid>/maps
2533 * @size: size to be set for the file
2536 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2540 struct inode *inode;
2541 struct dentry *dentry, *root;
2544 if (IS_ERR(shm_mnt))
2545 return (void *)shm_mnt;
2547 if (size < 0 || size > SHMEM_MAX_BYTES)
2548 return ERR_PTR(-EINVAL);
2550 if (shmem_acct_size(flags, size))
2551 return ERR_PTR(-ENOMEM);
2555 this.len = strlen(name);
2556 this.hash = 0; /* will go */
2557 root = shm_mnt->mnt_root;
2558 dentry = d_alloc(root, &this);
2563 file = get_empty_filp();
2568 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2572 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2573 d_instantiate(dentry, inode);
2574 inode->i_size = size;
2575 inode->i_nlink = 0; /* It is unlinked */
2576 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2577 &shmem_file_operations);
2585 shmem_unacct_size(flags, size);
2586 return ERR_PTR(error);
2588 EXPORT_SYMBOL_GPL(shmem_file_setup);
2591 * shmem_zero_setup - setup a shared anonymous mapping
2592 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2594 int shmem_zero_setup(struct vm_area_struct *vma)
2597 loff_t size = vma->vm_end - vma->vm_start;
2599 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2601 return PTR_ERR(file);
2605 vma->vm_file = file;
2606 vma->vm_ops = &shmem_vm_ops;