4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/bootmem.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
25 * Access to this subsystem has to be serialized externally. (this is
26 * true for the boot process anyway)
28 unsigned long max_low_pfn;
29 unsigned long min_low_pfn;
30 unsigned long max_pfn;
32 EXPORT_SYMBOL(max_pfn); /* This is exported so
33 * dma_get_required_mask(), which uses
34 * it, can be an inline function */
36 /* return the number of _pages_ that will be allocated for the boot bitmap */
37 unsigned long __init bootmem_bootmap_pages (unsigned long pages)
39 unsigned long mapsize;
41 mapsize = (pages+7)/8;
42 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
43 mapsize >>= PAGE_SHIFT;
49 * Called once to set up the allocator itself.
51 static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
52 unsigned long mapstart, unsigned long start, unsigned long end)
54 bootmem_data_t *bdata = pgdat->bdata;
55 unsigned long mapsize = ((end - start)+7)/8;
57 pgdat->pgdat_next = pgdat_list;
60 mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL);
61 bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
62 bdata->node_boot_start = (start << PAGE_SHIFT);
63 bdata->node_low_pfn = end;
66 * Initially all pages are reserved - setup_arch() has to
67 * register free RAM areas explicitly.
69 memset(bdata->node_bootmem_map, 0xff, mapsize);
75 * Marks a particular physical memory range as unallocatable. Usable RAM
76 * might be used for boot-time allocations - or it might get added
77 * to the free page pool later on.
79 static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
83 * round up, partially reserved pages are considered
86 unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
87 unsigned long eidx = (addr + size - bdata->node_boot_start +
88 PAGE_SIZE-1)/PAGE_SIZE;
89 unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
93 BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
94 BUG_ON(end > bdata->node_low_pfn);
96 for (i = sidx; i < eidx; i++)
97 if (test_and_set_bit(i, bdata->node_bootmem_map)) {
98 #ifdef CONFIG_DEBUG_BOOTMEM
99 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
104 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
109 * round down end of usable mem, partially free pages are
110 * considered reserved.
113 unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
114 unsigned long end = (addr + size)/PAGE_SIZE;
117 BUG_ON(end > bdata->node_low_pfn);
119 if (addr < bdata->last_success)
120 bdata->last_success = addr;
123 * Round up the beginning of the address.
125 start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
126 sidx = start - (bdata->node_boot_start/PAGE_SIZE);
128 for (i = sidx; i < eidx; i++) {
129 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
135 * We 'merge' subsequent allocations to save space. We might 'lose'
136 * some fraction of a page if allocations cannot be satisfied due to
137 * size constraints on boxes where there is physical RAM space
138 * fragmentation - in these cases (mostly large memory boxes) this
141 * On low memory boxes we get it right in 100% of the cases.
143 * alignment has to be a power of 2 value.
145 * NOTE: This function is _not_ reentrant.
148 __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
149 unsigned long align, unsigned long goal)
151 unsigned long offset, remaining_size, areasize, preferred;
152 unsigned long i, start = 0, incr, eidx;
156 printk("__alloc_bootmem_core(): zero-sized request\n");
159 BUG_ON(align & (align-1));
161 eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
164 (bdata->node_boot_start & (align - 1UL)) != 0)
165 offset = (align - (bdata->node_boot_start & (align - 1UL)));
166 offset >>= PAGE_SHIFT;
169 * We try to allocate bootmem pages above 'goal'
170 * first, then we try to allocate lower pages.
172 if (goal && (goal >= bdata->node_boot_start) &&
173 ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
174 preferred = goal - bdata->node_boot_start;
176 if (bdata->last_success >= preferred)
177 preferred = bdata->last_success;
181 preferred = ((preferred + align - 1) & ~(align - 1)) >> PAGE_SHIFT;
183 areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
184 incr = align >> PAGE_SHIFT ? : 1;
187 for (i = preferred; i < eidx; i += incr) {
189 i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
191 if (test_bit(i, bdata->node_bootmem_map))
193 for (j = i + 1; j < i + areasize; ++j) {
196 if (test_bit (j, bdata->node_bootmem_map))
205 if (preferred > offset) {
212 bdata->last_success = start << PAGE_SHIFT;
213 BUG_ON(start >= eidx);
216 * Is the next page of the previous allocation-end the start
217 * of this allocation's buffer? If yes then we can 'merge'
218 * the previous partial page with this allocation.
220 if (align < PAGE_SIZE &&
221 bdata->last_offset && bdata->last_pos+1 == start) {
222 offset = (bdata->last_offset+align-1) & ~(align-1);
223 BUG_ON(offset > PAGE_SIZE);
224 remaining_size = PAGE_SIZE-offset;
225 if (size < remaining_size) {
227 /* last_pos unchanged */
228 bdata->last_offset = offset+size;
229 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
230 bdata->node_boot_start);
232 remaining_size = size - remaining_size;
233 areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
234 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
235 bdata->node_boot_start);
236 bdata->last_pos = start+areasize-1;
237 bdata->last_offset = remaining_size;
239 bdata->last_offset &= ~PAGE_MASK;
241 bdata->last_pos = start + areasize - 1;
242 bdata->last_offset = size & ~PAGE_MASK;
243 ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
247 * Reserve the area now:
249 for (i = start; i < start+areasize; i++)
250 if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
252 memset(ret, 0, size);
256 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
259 bootmem_data_t *bdata = pgdat->bdata;
260 unsigned long i, count, total = 0;
265 BUG_ON(!bdata->node_bootmem_map);
268 /* first extant page of the node */
269 page = virt_to_page(phys_to_virt(bdata->node_boot_start));
270 idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
271 map = bdata->node_bootmem_map;
272 /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
273 if (bdata->node_boot_start == 0 ||
274 ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
276 for (i = 0; i < idx; ) {
277 unsigned long v = ~map[i / BITS_PER_LONG];
278 if (gofast && v == ~0UL) {
281 count += BITS_PER_LONG;
282 __ClearPageReserved(page);
283 order = ffs(BITS_PER_LONG) - 1;
284 set_page_refs(page, order);
285 for (j = 1; j < BITS_PER_LONG; j++) {
286 if (j + 16 < BITS_PER_LONG)
287 prefetchw(page + j + 16);
288 __ClearPageReserved(page + j);
290 __free_pages(page, order);
292 page += BITS_PER_LONG;
295 for (m = 1; m && i < idx; m<<=1, page++, i++) {
298 __ClearPageReserved(page);
299 set_page_refs(page, 0);
305 page += BITS_PER_LONG;
311 * Now free the allocator bitmap itself, it's not
314 page = virt_to_page(bdata->node_bootmem_map);
316 for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
318 __ClearPageReserved(page);
319 set_page_count(page, 1);
323 bdata->node_bootmem_map = NULL;
328 unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
330 return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
333 void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
335 reserve_bootmem_core(pgdat->bdata, physaddr, size);
338 void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
340 free_bootmem_core(pgdat->bdata, physaddr, size);
343 unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
345 return(free_all_bootmem_core(pgdat));
348 unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
352 return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
355 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
356 void __init reserve_bootmem (unsigned long addr, unsigned long size)
358 reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
360 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
362 void __init free_bootmem (unsigned long addr, unsigned long size)
364 free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
367 unsigned long __init free_all_bootmem (void)
369 return(free_all_bootmem_core(NODE_DATA(0)));
372 void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
374 pg_data_t *pgdat = pgdat_list;
377 for_each_pgdat(pgdat)
378 if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
383 * Whoops, we cannot satisfy the allocation request.
385 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
386 panic("Out of memory");
390 void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal)
394 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
398 return __alloc_bootmem(size, align, goal);