2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
10 #include <linux/file.h>
11 #include <linux/slab.h>
13 #include <linux/kexec.h>
14 #include <linux/spinlock.h>
15 #include <linux/list.h>
16 #include <linux/highmem.h>
17 #include <linux/syscalls.h>
18 #include <linux/reboot.h>
19 #include <linux/syscalls.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
24 #include <asm/uaccess.h>
26 #include <asm/system.h>
27 #include <asm/semaphore.h>
29 /* Location of the reserved area for the crash kernel */
30 struct resource crashk_res = {
31 .name = "Crash kernel",
34 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
37 int kexec_should_crash(struct task_struct *p)
39 if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops)
45 * When kexec transitions to the new kernel there is a one-to-one
46 * mapping between physical and virtual addresses. On processors
47 * where you can disable the MMU this is trivial, and easy. For
48 * others it is still a simple predictable page table to setup.
50 * In that environment kexec copies the new kernel to its final
51 * resting place. This means I can only support memory whose
52 * physical address can fit in an unsigned long. In particular
53 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
54 * If the assembly stub has more restrictive requirements
55 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
56 * defined more restrictively in <asm/kexec.h>.
58 * The code for the transition from the current kernel to the
59 * the new kernel is placed in the control_code_buffer, whose size
60 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
61 * page of memory is necessary, but some architectures require more.
62 * Because this memory must be identity mapped in the transition from
63 * virtual to physical addresses it must live in the range
64 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
67 * The assembly stub in the control code buffer is passed a linked list
68 * of descriptor pages detailing the source pages of the new kernel,
69 * and the destination addresses of those source pages. As this data
70 * structure is not used in the context of the current OS, it must
73 * The code has been made to work with highmem pages and will use a
74 * destination page in its final resting place (if it happens
75 * to allocate it). The end product of this is that most of the
76 * physical address space, and most of RAM can be used.
78 * Future directions include:
79 * - allocating a page table with the control code buffer identity
80 * mapped, to simplify machine_kexec and make kexec_on_panic more
85 * KIMAGE_NO_DEST is an impossible destination address..., for
86 * allocating pages whose destination address we do not care about.
88 #define KIMAGE_NO_DEST (-1UL)
90 static int kimage_is_destination_range(struct kimage *image,
91 unsigned long start, unsigned long end);
92 static struct page *kimage_alloc_page(struct kimage *image,
96 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
97 unsigned long nr_segments,
98 struct kexec_segment __user *segments)
100 size_t segment_bytes;
101 struct kimage *image;
105 /* Allocate a controlling structure */
107 image = kmalloc(sizeof(*image), GFP_KERNEL);
111 memset(image, 0, sizeof(*image));
113 image->entry = &image->head;
114 image->last_entry = &image->head;
115 image->control_page = ~0; /* By default this does not apply */
116 image->start = entry;
117 image->type = KEXEC_TYPE_DEFAULT;
119 /* Initialize the list of control pages */
120 INIT_LIST_HEAD(&image->control_pages);
122 /* Initialize the list of destination pages */
123 INIT_LIST_HEAD(&image->dest_pages);
125 /* Initialize the list of unuseable pages */
126 INIT_LIST_HEAD(&image->unuseable_pages);
128 /* Read in the segments */
129 image->nr_segments = nr_segments;
130 segment_bytes = nr_segments * sizeof(*segments);
131 result = copy_from_user(image->segment, segments, segment_bytes);
136 * Verify we have good destination addresses. The caller is
137 * responsible for making certain we don't attempt to load
138 * the new image into invalid or reserved areas of RAM. This
139 * just verifies it is an address we can use.
141 * Since the kernel does everything in page size chunks ensure
142 * the destination addreses are page aligned. Too many
143 * special cases crop of when we don't do this. The most
144 * insidious is getting overlapping destination addresses
145 * simply because addresses are changed to page size
148 result = -EADDRNOTAVAIL;
149 for (i = 0; i < nr_segments; i++) {
150 unsigned long mstart, mend;
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
154 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
156 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
160 /* Verify our destination addresses do not overlap.
161 * If we alloed overlapping destination addresses
162 * through very weird things can happen with no
163 * easy explanation as one segment stops on another.
166 for (i = 0; i < nr_segments; i++) {
167 unsigned long mstart, mend;
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 for (j = 0; j < i; j++) {
173 unsigned long pstart, pend;
174 pstart = image->segment[j].mem;
175 pend = pstart + image->segment[j].memsz;
176 /* Do the segments overlap ? */
177 if ((mend > pstart) && (mstart < pend))
182 /* Ensure our buffer sizes are strictly less than
183 * our memory sizes. This should always be the case,
184 * and it is easier to check up front than to be surprised
188 for (i = 0; i < nr_segments; i++) {
189 if (image->segment[i].bufsz > image->segment[i].memsz)
204 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
205 unsigned long nr_segments,
206 struct kexec_segment __user *segments)
209 struct kimage *image;
211 /* Allocate and initialize a controlling structure */
213 result = do_kimage_alloc(&image, entry, nr_segments, segments);
220 * Find a location for the control code buffer, and add it
221 * the vector of segments so that it's pages will also be
222 * counted as destination pages.
225 image->control_code_page = kimage_alloc_control_pages(image,
226 get_order(KEXEC_CONTROL_CODE_SIZE));
227 if (!image->control_code_page) {
228 printk(KERN_ERR "Could not allocate control_code_buffer\n");
242 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
243 unsigned long nr_segments,
244 struct kexec_segment __user *segments)
247 struct kimage *image;
251 /* Verify we have a valid entry point */
252 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
253 result = -EADDRNOTAVAIL;
257 /* Allocate and initialize a controlling structure */
258 result = do_kimage_alloc(&image, entry, nr_segments, segments);
262 /* Enable the special crash kernel control page
265 image->control_page = crashk_res.start;
266 image->type = KEXEC_TYPE_CRASH;
269 * Verify we have good destination addresses. Normally
270 * the caller is responsible for making certain we don't
271 * attempt to load the new image into invalid or reserved
272 * areas of RAM. But crash kernels are preloaded into a
273 * reserved area of ram. We must ensure the addresses
274 * are in the reserved area otherwise preloading the
275 * kernel could corrupt things.
277 result = -EADDRNOTAVAIL;
278 for (i = 0; i < nr_segments; i++) {
279 unsigned long mstart, mend;
281 mstart = image->segment[i].mem;
282 mend = mstart + image->segment[i].memsz - 1;
283 /* Ensure we are within the crash kernel limits */
284 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
289 * Find a location for the control code buffer, and add
290 * the vector of segments so that it's pages will also be
291 * counted as destination pages.
294 image->control_code_page = kimage_alloc_control_pages(image,
295 get_order(KEXEC_CONTROL_CODE_SIZE));
296 if (!image->control_code_page) {
297 printk(KERN_ERR "Could not allocate control_code_buffer\n");
311 static int kimage_is_destination_range(struct kimage *image,
317 for (i = 0; i < image->nr_segments; i++) {
318 unsigned long mstart, mend;
320 mstart = image->segment[i].mem;
321 mend = mstart + image->segment[i].memsz;
322 if ((end > mstart) && (start < mend))
329 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
333 pages = alloc_pages(gfp_mask, order);
335 unsigned int count, i;
336 pages->mapping = NULL;
337 set_page_private(pages, order);
339 for (i = 0; i < count; i++)
340 SetPageReserved(pages + i);
346 static void kimage_free_pages(struct page *page)
348 unsigned int order, count, i;
350 order = page_private(page);
352 for (i = 0; i < count; i++)
353 ClearPageReserved(page + i);
354 __free_pages(page, order);
357 static void kimage_free_page_list(struct list_head *list)
359 struct list_head *pos, *next;
361 list_for_each_safe(pos, next, list) {
364 page = list_entry(pos, struct page, lru);
365 list_del(&page->lru);
366 kimage_free_pages(page);
370 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
373 /* Control pages are special, they are the intermediaries
374 * that are needed while we copy the rest of the pages
375 * to their final resting place. As such they must
376 * not conflict with either the destination addresses
377 * or memory the kernel is already using.
379 * The only case where we really need more than one of
380 * these are for architectures where we cannot disable
381 * the MMU and must instead generate an identity mapped
382 * page table for all of the memory.
384 * At worst this runs in O(N) of the image size.
386 struct list_head extra_pages;
391 INIT_LIST_HEAD(&extra_pages);
393 /* Loop while I can allocate a page and the page allocated
394 * is a destination page.
397 unsigned long pfn, epfn, addr, eaddr;
399 pages = kimage_alloc_pages(GFP_KERNEL, order);
402 pfn = page_to_pfn(pages);
404 addr = pfn << PAGE_SHIFT;
405 eaddr = epfn << PAGE_SHIFT;
406 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
407 kimage_is_destination_range(image, addr, eaddr)) {
408 list_add(&pages->lru, &extra_pages);
414 /* Remember the allocated page... */
415 list_add(&pages->lru, &image->control_pages);
417 /* Because the page is already in it's destination
418 * location we will never allocate another page at
419 * that address. Therefore kimage_alloc_pages
420 * will not return it (again) and we don't need
421 * to give it an entry in image->segment[].
424 /* Deal with the destination pages I have inadvertently allocated.
426 * Ideally I would convert multi-page allocations into single
427 * page allocations, and add everyting to image->dest_pages.
429 * For now it is simpler to just free the pages.
431 kimage_free_page_list(&extra_pages);
436 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
439 /* Control pages are special, they are the intermediaries
440 * that are needed while we copy the rest of the pages
441 * to their final resting place. As such they must
442 * not conflict with either the destination addresses
443 * or memory the kernel is already using.
445 * Control pages are also the only pags we must allocate
446 * when loading a crash kernel. All of the other pages
447 * are specified by the segments and we just memcpy
448 * into them directly.
450 * The only case where we really need more than one of
451 * these are for architectures where we cannot disable
452 * the MMU and must instead generate an identity mapped
453 * page table for all of the memory.
455 * Given the low demand this implements a very simple
456 * allocator that finds the first hole of the appropriate
457 * size in the reserved memory region, and allocates all
458 * of the memory up to and including the hole.
460 unsigned long hole_start, hole_end, size;
464 size = (1 << order) << PAGE_SHIFT;
465 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
466 hole_end = hole_start + size - 1;
467 while (hole_end <= crashk_res.end) {
470 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
472 if (hole_end > crashk_res.end)
474 /* See if I overlap any of the segments */
475 for (i = 0; i < image->nr_segments; i++) {
476 unsigned long mstart, mend;
478 mstart = image->segment[i].mem;
479 mend = mstart + image->segment[i].memsz - 1;
480 if ((hole_end >= mstart) && (hole_start <= mend)) {
481 /* Advance the hole to the end of the segment */
482 hole_start = (mend + (size - 1)) & ~(size - 1);
483 hole_end = hole_start + size - 1;
487 /* If I don't overlap any segments I have found my hole! */
488 if (i == image->nr_segments) {
489 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
494 image->control_page = hole_end;
500 struct page *kimage_alloc_control_pages(struct kimage *image,
503 struct page *pages = NULL;
505 switch (image->type) {
506 case KEXEC_TYPE_DEFAULT:
507 pages = kimage_alloc_normal_control_pages(image, order);
509 case KEXEC_TYPE_CRASH:
510 pages = kimage_alloc_crash_control_pages(image, order);
517 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
519 if (*image->entry != 0)
522 if (image->entry == image->last_entry) {
523 kimage_entry_t *ind_page;
526 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
530 ind_page = page_address(page);
531 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
532 image->entry = ind_page;
533 image->last_entry = ind_page +
534 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
536 *image->entry = entry;
543 static int kimage_set_destination(struct kimage *image,
544 unsigned long destination)
548 destination &= PAGE_MASK;
549 result = kimage_add_entry(image, destination | IND_DESTINATION);
551 image->destination = destination;
557 static int kimage_add_page(struct kimage *image, unsigned long page)
562 result = kimage_add_entry(image, page | IND_SOURCE);
564 image->destination += PAGE_SIZE;
570 static void kimage_free_extra_pages(struct kimage *image)
572 /* Walk through and free any extra destination pages I may have */
573 kimage_free_page_list(&image->dest_pages);
575 /* Walk through and free any unuseable pages I have cached */
576 kimage_free_page_list(&image->unuseable_pages);
579 static int kimage_terminate(struct kimage *image)
581 if (*image->entry != 0)
584 *image->entry = IND_DONE;
589 #define for_each_kimage_entry(image, ptr, entry) \
590 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
591 ptr = (entry & IND_INDIRECTION)? \
592 phys_to_virt((entry & PAGE_MASK)): ptr +1)
594 static void kimage_free_entry(kimage_entry_t entry)
598 page = pfn_to_page(entry >> PAGE_SHIFT);
599 kimage_free_pages(page);
602 static void kimage_free(struct kimage *image)
604 kimage_entry_t *ptr, entry;
605 kimage_entry_t ind = 0;
610 kimage_free_extra_pages(image);
611 for_each_kimage_entry(image, ptr, entry) {
612 if (entry & IND_INDIRECTION) {
613 /* Free the previous indirection page */
614 if (ind & IND_INDIRECTION)
615 kimage_free_entry(ind);
616 /* Save this indirection page until we are
621 else if (entry & IND_SOURCE)
622 kimage_free_entry(entry);
624 /* Free the final indirection page */
625 if (ind & IND_INDIRECTION)
626 kimage_free_entry(ind);
628 /* Handle any machine specific cleanup */
629 machine_kexec_cleanup(image);
631 /* Free the kexec control pages... */
632 kimage_free_page_list(&image->control_pages);
636 static kimage_entry_t *kimage_dst_used(struct kimage *image,
639 kimage_entry_t *ptr, entry;
640 unsigned long destination = 0;
642 for_each_kimage_entry(image, ptr, entry) {
643 if (entry & IND_DESTINATION)
644 destination = entry & PAGE_MASK;
645 else if (entry & IND_SOURCE) {
646 if (page == destination)
648 destination += PAGE_SIZE;
655 static struct page *kimage_alloc_page(struct kimage *image,
657 unsigned long destination)
660 * Here we implement safeguards to ensure that a source page
661 * is not copied to its destination page before the data on
662 * the destination page is no longer useful.
664 * To do this we maintain the invariant that a source page is
665 * either its own destination page, or it is not a
666 * destination page at all.
668 * That is slightly stronger than required, but the proof
669 * that no problems will not occur is trivial, and the
670 * implementation is simply to verify.
672 * When allocating all pages normally this algorithm will run
673 * in O(N) time, but in the worst case it will run in O(N^2)
674 * time. If the runtime is a problem the data structures can
681 * Walk through the list of destination pages, and see if I
684 list_for_each_entry(page, &image->dest_pages, lru) {
685 addr = page_to_pfn(page) << PAGE_SHIFT;
686 if (addr == destination) {
687 list_del(&page->lru);
695 /* Allocate a page, if we run out of memory give up */
696 page = kimage_alloc_pages(gfp_mask, 0);
699 /* If the page cannot be used file it away */
700 if (page_to_pfn(page) >
701 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
702 list_add(&page->lru, &image->unuseable_pages);
705 addr = page_to_pfn(page) << PAGE_SHIFT;
707 /* If it is the destination page we want use it */
708 if (addr == destination)
711 /* If the page is not a destination page use it */
712 if (!kimage_is_destination_range(image, addr,
717 * I know that the page is someones destination page.
718 * See if there is already a source page for this
719 * destination page. And if so swap the source pages.
721 old = kimage_dst_used(image, addr);
724 unsigned long old_addr;
725 struct page *old_page;
727 old_addr = *old & PAGE_MASK;
728 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
729 copy_highpage(page, old_page);
730 *old = addr | (*old & ~PAGE_MASK);
732 /* The old page I have found cannot be a
733 * destination page, so return it.
740 /* Place the page on the destination list I
743 list_add(&page->lru, &image->dest_pages);
750 static int kimage_load_normal_segment(struct kimage *image,
751 struct kexec_segment *segment)
754 unsigned long ubytes, mbytes;
756 unsigned char __user *buf;
760 ubytes = segment->bufsz;
761 mbytes = segment->memsz;
762 maddr = segment->mem;
764 result = kimage_set_destination(image, maddr);
771 size_t uchunk, mchunk;
773 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
778 result = kimage_add_page(image, page_to_pfn(page)
784 /* Start with a clear page */
785 memset(ptr, 0, PAGE_SIZE);
786 ptr += maddr & ~PAGE_MASK;
787 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
795 result = copy_from_user(ptr, buf, uchunk);
798 result = (result < 0) ? result : -EIO;
810 static int kimage_load_crash_segment(struct kimage *image,
811 struct kexec_segment *segment)
813 /* For crash dumps kernels we simply copy the data from
814 * user space to it's destination.
815 * We do things a page at a time for the sake of kmap.
818 unsigned long ubytes, mbytes;
820 unsigned char __user *buf;
824 ubytes = segment->bufsz;
825 mbytes = segment->memsz;
826 maddr = segment->mem;
830 size_t uchunk, mchunk;
832 page = pfn_to_page(maddr >> PAGE_SHIFT);
838 ptr += maddr & ~PAGE_MASK;
839 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
844 if (uchunk > ubytes) {
846 /* Zero the trailing part of the page */
847 memset(ptr + uchunk, 0, mchunk - uchunk);
849 result = copy_from_user(ptr, buf, uchunk);
852 result = (result < 0) ? result : -EIO;
864 static int kimage_load_segment(struct kimage *image,
865 struct kexec_segment *segment)
867 int result = -ENOMEM;
869 switch (image->type) {
870 case KEXEC_TYPE_DEFAULT:
871 result = kimage_load_normal_segment(image, segment);
873 case KEXEC_TYPE_CRASH:
874 result = kimage_load_crash_segment(image, segment);
882 * Exec Kernel system call: for obvious reasons only root may call it.
884 * This call breaks up into three pieces.
885 * - A generic part which loads the new kernel from the current
886 * address space, and very carefully places the data in the
889 * - A generic part that interacts with the kernel and tells all of
890 * the devices to shut down. Preventing on-going dmas, and placing
891 * the devices in a consistent state so a later kernel can
894 * - A machine specific part that includes the syscall number
895 * and the copies the image to it's final destination. And
896 * jumps into the image at entry.
898 * kexec does not sync, or unmount filesystems so if you need
899 * that to happen you need to do that yourself.
901 struct kimage *kexec_image = NULL;
902 static struct kimage *kexec_crash_image = NULL;
904 * A home grown binary mutex.
905 * Nothing can wait so this mutex is safe to use
906 * in interrupt context :)
908 static int kexec_lock = 0;
910 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
911 struct kexec_segment __user *segments,
914 struct kimage **dest_image, *image;
918 /* We only trust the superuser with rebooting the system. */
919 if (!capable(CAP_SYS_BOOT))
923 * Verify we have a legal set of flags
924 * This leaves us room for future extensions.
926 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
929 /* Verify we are on the appropriate architecture */
930 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
931 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
934 /* Put an artificial cap on the number
935 * of segments passed to kexec_load.
937 if (nr_segments > KEXEC_SEGMENT_MAX)
943 /* Because we write directly to the reserved memory
944 * region when loading crash kernels we need a mutex here to
945 * prevent multiple crash kernels from attempting to load
946 * simultaneously, and to prevent a crash kernel from loading
947 * over the top of a in use crash kernel.
949 * KISS: always take the mutex.
951 locked = xchg(&kexec_lock, 1);
955 dest_image = &kexec_image;
956 if (flags & KEXEC_ON_CRASH)
957 dest_image = &kexec_crash_image;
958 if (nr_segments > 0) {
961 /* Loading another kernel to reboot into */
962 if ((flags & KEXEC_ON_CRASH) == 0)
963 result = kimage_normal_alloc(&image, entry,
964 nr_segments, segments);
965 /* Loading another kernel to switch to if this one crashes */
966 else if (flags & KEXEC_ON_CRASH) {
967 /* Free any current crash dump kernel before
970 kimage_free(xchg(&kexec_crash_image, NULL));
971 result = kimage_crash_alloc(&image, entry,
972 nr_segments, segments);
977 result = machine_kexec_prepare(image);
981 for (i = 0; i < nr_segments; i++) {
982 result = kimage_load_segment(image, &image->segment[i]);
986 result = kimage_terminate(image);
990 /* Install the new kernel, and Uninstall the old */
991 image = xchg(dest_image, image);
994 xchg(&kexec_lock, 0); /* Release the mutex */
1000 #ifdef CONFIG_COMPAT
1001 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1002 unsigned long nr_segments,
1003 struct compat_kexec_segment __user *segments,
1004 unsigned long flags)
1006 struct compat_kexec_segment in;
1007 struct kexec_segment out, __user *ksegments;
1008 unsigned long i, result;
1010 /* Don't allow clients that don't understand the native
1011 * architecture to do anything.
1013 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1016 if (nr_segments > KEXEC_SEGMENT_MAX)
1019 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1020 for (i=0; i < nr_segments; i++) {
1021 result = copy_from_user(&in, &segments[i], sizeof(in));
1025 out.buf = compat_ptr(in.buf);
1026 out.bufsz = in.bufsz;
1028 out.memsz = in.memsz;
1030 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1035 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1039 void crash_kexec(struct pt_regs *regs)
1041 struct kimage *image;
1045 /* Take the kexec_lock here to prevent sys_kexec_load
1046 * running on one cpu from replacing the crash kernel
1047 * we are using after a panic on a different cpu.
1049 * If the crash kernel was not located in a fixed area
1050 * of memory the xchg(&kexec_crash_image) would be
1051 * sufficient. But since I reuse the memory...
1053 locked = xchg(&kexec_lock, 1);
1055 image = xchg(&kexec_crash_image, NULL);
1057 machine_crash_shutdown(regs);
1058 machine_kexec(image);
1060 xchg(&kexec_lock, 0);