2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: scan.c,v 1.121 2005/07/20 15:32:28 dedekind Exp $
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
22 #define DEFAULT_EMPTY_SCAN_SIZE 1024
24 #define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
25 c->free_size -= _x; c->dirty_size += _x; \
26 jeb->free_size -= _x ; jeb->dirty_size += _x; \
28 #define USED_SPACE(x) do { typeof(x) _x = (x); \
29 c->free_size -= _x; c->used_size += _x; \
30 jeb->free_size -= _x ; jeb->used_size += _x; \
32 #define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
33 c->free_size -= _x; c->unchecked_size += _x; \
34 jeb->free_size -= _x ; jeb->unchecked_size += _x; \
37 #define noisy_printk(noise, args...) do { \
39 printk(KERN_NOTICE args); \
42 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
47 static uint32_t pseudo_random;
49 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
50 unsigned char *buf, uint32_t buf_size);
52 /* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
53 * Returning an error will abort the mount - bad checksums etc. should just mark the space
56 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
57 struct jffs2_raw_inode *ri, uint32_t ofs);
58 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
59 struct jffs2_raw_dirent *rd, uint32_t ofs);
61 #define BLK_STATE_ALLFF 0
62 #define BLK_STATE_CLEAN 1
63 #define BLK_STATE_PARTDIRTY 2
64 #define BLK_STATE_CLEANMARKER 3
65 #define BLK_STATE_ALLDIRTY 4
66 #define BLK_STATE_BADBLOCK 5
68 static inline int min_free(struct jffs2_sb_info *c)
70 uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
71 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
72 if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
73 return c->wbuf_pagesize;
79 static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) {
80 if (sector_size < DEFAULT_EMPTY_SCAN_SIZE)
83 return DEFAULT_EMPTY_SCAN_SIZE;
86 int jffs2_scan_medium(struct jffs2_sb_info *c)
89 uint32_t empty_blocks = 0, bad_blocks = 0;
90 unsigned char *flashbuf = NULL;
91 uint32_t buf_size = 0;
96 ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
97 if (!ret && pointlen < c->mtd->size) {
98 /* Don't muck about if it won't let us point to the whole flash */
99 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
100 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
104 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
108 /* For NAND it's quicker to read a whole eraseblock at a time,
110 if (jffs2_cleanmarker_oob(c))
111 buf_size = c->sector_size;
113 buf_size = PAGE_SIZE;
115 /* Respect kmalloc limitations */
116 if (buf_size > 128*1024)
119 D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
120 flashbuf = kmalloc(buf_size, GFP_KERNEL);
125 for (i=0; i<c->nr_blocks; i++) {
126 struct jffs2_eraseblock *jeb = &c->blocks[i];
128 ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);
133 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
135 /* Now decide which list to put it on */
137 case BLK_STATE_ALLFF:
139 * Empty block. Since we can't be sure it
140 * was entirely erased, we just queue it for erase
141 * again. It will be marked as such when the erase
142 * is complete. Meanwhile we still count it as empty
146 list_add(&jeb->list, &c->erase_pending_list);
147 c->nr_erasing_blocks++;
150 case BLK_STATE_CLEANMARKER:
151 /* Only a CLEANMARKER node is valid */
152 if (!jeb->dirty_size) {
153 /* It's actually free */
154 list_add(&jeb->list, &c->free_list);
158 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
159 list_add(&jeb->list, &c->erase_pending_list);
160 c->nr_erasing_blocks++;
164 case BLK_STATE_CLEAN:
165 /* Full (or almost full) of clean data. Clean list */
166 list_add(&jeb->list, &c->clean_list);
169 case BLK_STATE_PARTDIRTY:
170 /* Some data, but not full. Dirty list. */
171 /* We want to remember the block with most free space
172 and stick it in the 'nextblock' position to start writing to it. */
173 if (jeb->free_size > min_free(c) &&
174 (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
175 /* Better candidate for the next writes to go to */
177 c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
178 c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
179 c->free_size -= c->nextblock->free_size;
180 c->wasted_size -= c->nextblock->wasted_size;
181 c->nextblock->free_size = c->nextblock->wasted_size = 0;
182 if (VERYDIRTY(c, c->nextblock->dirty_size)) {
183 list_add(&c->nextblock->list, &c->very_dirty_list);
185 list_add(&c->nextblock->list, &c->dirty_list);
190 jeb->dirty_size += jeb->free_size + jeb->wasted_size;
191 c->dirty_size += jeb->free_size + jeb->wasted_size;
192 c->free_size -= jeb->free_size;
193 c->wasted_size -= jeb->wasted_size;
194 jeb->free_size = jeb->wasted_size = 0;
195 if (VERYDIRTY(c, jeb->dirty_size)) {
196 list_add(&jeb->list, &c->very_dirty_list);
198 list_add(&jeb->list, &c->dirty_list);
203 case BLK_STATE_ALLDIRTY:
204 /* Nothing valid - not even a clean marker. Needs erasing. */
205 /* For now we just put it on the erasing list. We'll start the erases later */
206 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
207 list_add(&jeb->list, &c->erase_pending_list);
208 c->nr_erasing_blocks++;
211 case BLK_STATE_BADBLOCK:
212 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
213 list_add(&jeb->list, &c->bad_list);
214 c->bad_size += c->sector_size;
215 c->free_size -= c->sector_size;
219 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
224 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
225 if (c->nextblock && (c->nextblock->dirty_size)) {
226 c->nextblock->wasted_size += c->nextblock->dirty_size;
227 c->wasted_size += c->nextblock->dirty_size;
228 c->dirty_size -= c->nextblock->dirty_size;
229 c->nextblock->dirty_size = 0;
231 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
232 if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
233 /* If we're going to start writing into a block which already
234 contains data, and the end of the data isn't page-aligned,
235 skip a little and align it. */
237 uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);
239 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
241 c->nextblock->wasted_size += skip;
242 c->wasted_size += skip;
244 c->nextblock->free_size -= skip;
245 c->free_size -= skip;
248 if (c->nr_erasing_blocks) {
249 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) {
250 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
251 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
255 jffs2_erase_pending_trigger(c);
263 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
268 static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
269 uint32_t ofs, uint32_t len)
274 ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
276 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
280 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
283 D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
284 D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
285 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
289 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
290 unsigned char *buf, uint32_t buf_size) {
291 struct jffs2_unknown_node *node;
292 struct jffs2_unknown_node crcnode;
293 uint32_t ofs, prevofs;
294 uint32_t hdr_crc, buf_ofs, buf_len;
297 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
298 int cleanmarkerfound = 0;
302 prevofs = jeb->offset - 1;
304 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));
306 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
307 if (jffs2_cleanmarker_oob(c)) {
308 int ret = jffs2_check_nand_cleanmarker(c, jeb);
309 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
310 /* Even if it's not found, we still scan to see
311 if the block is empty. We use this information
312 to decide whether to erase it or not. */
314 case 0: cleanmarkerfound = 1; break;
316 case 2: return BLK_STATE_BADBLOCK;
317 case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
322 buf_ofs = jeb->offset;
325 buf_len = c->sector_size;
327 buf_len = EMPTY_SCAN_SIZE(c->sector_size);
328 err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
333 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */
336 /* Scan only 4KiB of 0xFF before declaring it's empty */
337 while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
340 if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
341 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
342 if (jffs2_cleanmarker_oob(c)) {
343 /* scan oob, take care of cleanmarker */
344 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
345 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
347 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
348 case 1: return BLK_STATE_ALLDIRTY;
353 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
354 if (c->cleanmarker_size == 0)
355 return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */
357 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */
360 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
365 /* Now ofs is a complete physical flash offset as it always was... */
371 while(ofs < jeb->offset + c->sector_size) {
373 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
378 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
382 if (ofs == prevofs) {
383 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
390 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
391 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
392 jeb->offset, c->sector_size, ofs, sizeof(*node)));
393 DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
397 if (buf_ofs + buf_len < ofs + sizeof(*node)) {
398 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
399 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
400 sizeof(struct jffs2_unknown_node), buf_len, ofs));
401 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
407 node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];
409 if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
411 uint32_t empty_start;
416 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
418 inbuf_ofs = ofs - buf_ofs;
419 while (inbuf_ofs < buf_len) {
420 if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
421 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
423 DIRTY_SPACE(ofs-empty_start);
431 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));
433 /* If we're only checking the beginning of a block with a cleanmarker,
435 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
436 c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_phys) {
437 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
438 return BLK_STATE_CLEANMARKER;
441 /* See how much more there is to read in this eraseblock... */
442 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
444 /* No more to read. Break out of main loop without marking
445 this range of empty space as dirty (because it's not) */
446 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
450 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
451 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
458 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
459 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
464 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
465 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
470 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
471 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
472 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
477 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
478 /* OK. We're out of possibilities. Whinge and move on */
479 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
480 JFFS2_MAGIC_BITMASK, ofs,
481 je16_to_cpu(node->magic));
486 /* We seem to have a node of sorts. Check the CRC */
487 crcnode.magic = node->magic;
488 crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
489 crcnode.totlen = node->totlen;
490 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);
492 if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
493 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
494 ofs, je16_to_cpu(node->magic),
495 je16_to_cpu(node->nodetype),
496 je32_to_cpu(node->totlen),
497 je32_to_cpu(node->hdr_crc),
504 if (ofs + je32_to_cpu(node->totlen) >
505 jeb->offset + c->sector_size) {
506 /* Eep. Node goes over the end of the erase block. */
507 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
508 ofs, je32_to_cpu(node->totlen));
509 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
515 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
516 /* Wheee. This is an obsoleted node */
517 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
518 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
519 ofs += PAD(je32_to_cpu(node->totlen));
523 switch(je16_to_cpu(node->nodetype)) {
524 case JFFS2_NODETYPE_INODE:
525 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
526 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
527 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
528 sizeof(struct jffs2_raw_inode), buf_len, ofs));
529 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
535 err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
537 ofs += PAD(je32_to_cpu(node->totlen));
540 case JFFS2_NODETYPE_DIRENT:
541 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
542 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
543 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
544 je32_to_cpu(node->totlen), buf_len, ofs));
545 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
551 err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
553 ofs += PAD(je32_to_cpu(node->totlen));
556 case JFFS2_NODETYPE_CLEANMARKER:
557 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
558 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
559 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
560 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
561 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
562 ofs += PAD(sizeof(struct jffs2_unknown_node));
563 } else if (jeb->first_node) {
564 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
565 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
566 ofs += PAD(sizeof(struct jffs2_unknown_node));
568 struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
570 printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
573 marker_ref->next_in_ino = NULL;
574 marker_ref->next_phys = NULL;
575 marker_ref->flash_offset = ofs | REF_NORMAL;
576 marker_ref->__totlen = c->cleanmarker_size;
577 jeb->first_node = jeb->last_node = marker_ref;
579 USED_SPACE(PAD(c->cleanmarker_size));
580 ofs += PAD(c->cleanmarker_size);
584 case JFFS2_NODETYPE_PADDING:
585 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
586 ofs += PAD(je32_to_cpu(node->totlen));
590 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
591 case JFFS2_FEATURE_ROCOMPAT:
592 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
593 c->flags |= JFFS2_SB_FLAG_RO;
594 if (!(jffs2_is_readonly(c)))
596 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
597 ofs += PAD(je32_to_cpu(node->totlen));
600 case JFFS2_FEATURE_INCOMPAT:
601 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
604 case JFFS2_FEATURE_RWCOMPAT_DELETE:
605 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
606 DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
607 ofs += PAD(je32_to_cpu(node->totlen));
610 case JFFS2_FEATURE_RWCOMPAT_COPY:
611 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
612 USED_SPACE(PAD(je32_to_cpu(node->totlen)));
613 ofs += PAD(je32_to_cpu(node->totlen));
620 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
621 jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));
623 /* mark_node_obsolete can add to wasted !! */
624 if (jeb->wasted_size) {
625 jeb->dirty_size += jeb->wasted_size;
626 c->dirty_size += jeb->wasted_size;
627 c->wasted_size -= jeb->wasted_size;
628 jeb->wasted_size = 0;
631 if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size
632 && (!jeb->first_node || !jeb->first_node->next_phys) )
633 return BLK_STATE_CLEANMARKER;
635 /* move blocks with max 4 byte dirty space to cleanlist */
636 else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
637 c->dirty_size -= jeb->dirty_size;
638 c->wasted_size += jeb->dirty_size;
639 jeb->wasted_size += jeb->dirty_size;
641 return BLK_STATE_CLEAN;
642 } else if (jeb->used_size || jeb->unchecked_size)
643 return BLK_STATE_PARTDIRTY;
645 return BLK_STATE_ALLDIRTY;
648 static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
650 struct jffs2_inode_cache *ic;
652 ic = jffs2_get_ino_cache(c, ino);
656 if (ino > c->highest_ino)
657 c->highest_ino = ino;
659 ic = jffs2_alloc_inode_cache();
661 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
664 memset(ic, 0, sizeof(*ic));
667 ic->nodes = (void *)ic;
668 jffs2_add_ino_cache(c, ic);
674 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
675 struct jffs2_raw_inode *ri, uint32_t ofs)
677 struct jffs2_raw_node_ref *raw;
678 struct jffs2_inode_cache *ic;
679 uint32_t ino = je32_to_cpu(ri->ino);
681 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));
683 /* We do very little here now. Just check the ino# to which we should attribute
684 this node; we can do all the CRC checking etc. later. There's a tradeoff here --
685 we used to scan the flash once only, reading everything we want from it into
686 memory, then building all our in-core data structures and freeing the extra
687 information. Now we allow the first part of the mount to complete a lot quicker,
688 but we have to go _back_ to the flash in order to finish the CRC checking, etc.
689 Which means that the _full_ amount of time to get to proper write mode with GC
690 operational may actually be _longer_ than before. Sucks to be me. */
692 raw = jffs2_alloc_raw_node_ref();
694 printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
698 ic = jffs2_get_ino_cache(c, ino);
700 /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
701 first node we found for this inode. Do a CRC check to protect against the former
703 uint32_t crc = crc32(0, ri, sizeof(*ri)-8);
705 if (crc != je32_to_cpu(ri->node_crc)) {
706 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
707 ofs, je32_to_cpu(ri->node_crc), crc);
708 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
709 DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
710 jffs2_free_raw_node_ref(raw);
713 ic = jffs2_scan_make_ino_cache(c, ino);
715 jffs2_free_raw_node_ref(raw);
720 /* Wheee. It worked */
722 raw->flash_offset = ofs | REF_UNCHECKED;
723 raw->__totlen = PAD(je32_to_cpu(ri->totlen));
724 raw->next_phys = NULL;
725 raw->next_in_ino = ic->nodes;
728 if (!jeb->first_node)
729 jeb->first_node = raw;
731 jeb->last_node->next_phys = raw;
732 jeb->last_node = raw;
734 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n",
735 je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
736 je32_to_cpu(ri->offset),
737 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));
739 pseudo_random += je32_to_cpu(ri->version);
741 UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
745 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
746 struct jffs2_raw_dirent *rd, uint32_t ofs)
748 struct jffs2_raw_node_ref *raw;
749 struct jffs2_full_dirent *fd;
750 struct jffs2_inode_cache *ic;
753 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));
755 /* We don't get here unless the node is still valid, so we don't have to
756 mask in the ACCURATE bit any more. */
757 crc = crc32(0, rd, sizeof(*rd)-8);
759 if (crc != je32_to_cpu(rd->node_crc)) {
760 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
761 ofs, je32_to_cpu(rd->node_crc), crc);
762 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
763 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
767 pseudo_random += je32_to_cpu(rd->version);
769 fd = jffs2_alloc_full_dirent(rd->nsize+1);
773 memcpy(&fd->name, rd->name, rd->nsize);
774 fd->name[rd->nsize] = 0;
776 crc = crc32(0, fd->name, rd->nsize);
777 if (crc != je32_to_cpu(rd->name_crc)) {
778 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
779 ofs, je32_to_cpu(rd->name_crc), crc);
780 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
781 jffs2_free_full_dirent(fd);
782 /* FIXME: Why do we believe totlen? */
783 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
784 DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
787 raw = jffs2_alloc_raw_node_ref();
789 jffs2_free_full_dirent(fd);
790 printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
793 ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
795 jffs2_free_full_dirent(fd);
796 jffs2_free_raw_node_ref(raw);
800 raw->__totlen = PAD(je32_to_cpu(rd->totlen));
801 raw->flash_offset = ofs | REF_PRISTINE;
802 raw->next_phys = NULL;
803 raw->next_in_ino = ic->nodes;
805 if (!jeb->first_node)
806 jeb->first_node = raw;
808 jeb->last_node->next_phys = raw;
809 jeb->last_node = raw;
813 fd->version = je32_to_cpu(rd->version);
814 fd->ino = je32_to_cpu(rd->ino);
815 fd->nhash = full_name_hash(fd->name, rd->nsize);
817 USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
818 jffs2_add_fd_to_list(c, fd, &ic->scan_dents);
823 static int count_list(struct list_head *l)
826 struct list_head *tmp;
828 list_for_each(tmp, l) {
834 /* Note: This breaks if list_empty(head). I don't care. You
835 might, if you copy this code and use it elsewhere :) */
836 static void rotate_list(struct list_head *head, uint32_t count)
838 struct list_head *n = head->next;
847 void jffs2_rotate_lists(struct jffs2_sb_info *c)
852 x = count_list(&c->clean_list);
854 rotateby = pseudo_random % x;
855 D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));
857 rotate_list((&c->clean_list), rotateby);
859 D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
860 list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
862 D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
865 x = count_list(&c->very_dirty_list);
867 rotateby = pseudo_random % x;
868 D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));
870 rotate_list((&c->very_dirty_list), rotateby);
872 D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
873 list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
875 D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
878 x = count_list(&c->dirty_list);
880 rotateby = pseudo_random % x;
881 D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));
883 rotate_list((&c->dirty_list), rotateby);
885 D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
886 list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
888 D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
891 x = count_list(&c->erasable_list);
893 rotateby = pseudo_random % x;
894 D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));
896 rotate_list((&c->erasable_list), rotateby);
898 D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
899 list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
901 D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
904 if (c->nr_erasing_blocks) {
905 rotateby = pseudo_random % c->nr_erasing_blocks;
906 D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));
908 rotate_list((&c->erase_pending_list), rotateby);
910 D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
911 list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
913 D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
916 if (c->nr_free_blocks) {
917 rotateby = pseudo_random % c->nr_free_blocks;
918 D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));
920 rotate_list((&c->free_list), rotateby);
922 D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
923 list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
925 D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));