Merge branch 'for-linus' of git://neil.brown.name/md
[linux-2.6] / arch / alpha / kernel / smp.c
1 /*
2  *      linux/arch/alpha/kernel/smp.c
3  *
4  *      2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5  *            Renamed modified smp_call_function to smp_call_function_on_cpu()
6  *            Created an function that conforms to the old calling convention
7  *            of smp_call_function().
8  *
9  *            This is helpful for DCPI.
10  *
11  */
12
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
30
31 #include <asm/hwrpb.h>
32 #include <asm/ptrace.h>
33 #include <asm/atomic.h>
34
35 #include <asm/io.h>
36 #include <asm/irq.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41
42 #include "proto.h"
43 #include "irq_impl.h"
44
45
46 #define DEBUG_SMP 0
47 #if DEBUG_SMP
48 #define DBGS(args)      printk args
49 #else
50 #define DBGS(args)
51 #endif
52
53 /* A collection of per-processor data.  */
54 struct cpuinfo_alpha cpu_data[NR_CPUS];
55 EXPORT_SYMBOL(cpu_data);
56
57 /* A collection of single bit ipi messages.  */
58 static struct {
59         unsigned long bits ____cacheline_aligned;
60 } ipi_data[NR_CPUS] __cacheline_aligned;
61
62 enum ipi_message_type {
63         IPI_RESCHEDULE,
64         IPI_CALL_FUNC,
65         IPI_CALL_FUNC_SINGLE,
66         IPI_CPU_STOP,
67 };
68
69 /* Set to a secondary's cpuid when it comes online.  */
70 static int smp_secondary_alive __devinitdata = 0;
71
72 /* Which cpus ids came online.  */
73 cpumask_t cpu_online_map;
74
75 EXPORT_SYMBOL(cpu_online_map);
76
77 int smp_num_probed;             /* Internal processor count */
78 int smp_num_cpus = 1;           /* Number that came online.  */
79 EXPORT_SYMBOL(smp_num_cpus);
80
81 /*
82  * Called by both boot and secondaries to move global data into
83  *  per-processor storage.
84  */
85 static inline void __init
86 smp_store_cpu_info(int cpuid)
87 {
88         cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
89         cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
90         cpu_data[cpuid].need_new_asn = 0;
91         cpu_data[cpuid].asn_lock = 0;
92 }
93
94 /*
95  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
96  */
97 static inline void __init
98 smp_setup_percpu_timer(int cpuid)
99 {
100         cpu_data[cpuid].prof_counter = 1;
101         cpu_data[cpuid].prof_multiplier = 1;
102 }
103
104 static void __init
105 wait_boot_cpu_to_stop(int cpuid)
106 {
107         unsigned long stop = jiffies + 10*HZ;
108
109         while (time_before(jiffies, stop)) {
110                 if (!smp_secondary_alive)
111                         return;
112                 barrier();
113         }
114
115         printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
116         for (;;)
117                 barrier();
118 }
119
120 /*
121  * Where secondaries begin a life of C.
122  */
123 void __init
124 smp_callin(void)
125 {
126         int cpuid = hard_smp_processor_id();
127
128         if (cpu_test_and_set(cpuid, cpu_online_map)) {
129                 printk("??, cpu 0x%x already present??\n", cpuid);
130                 BUG();
131         }
132
133         /* Turn on machine checks.  */
134         wrmces(7);
135
136         /* Set trap vectors.  */
137         trap_init();
138
139         /* Set interrupt vector.  */
140         wrent(entInt, 0);
141
142         /* Get our local ticker going. */
143         smp_setup_percpu_timer(cpuid);
144
145         /* Call platform-specific callin, if specified */
146         if (alpha_mv.smp_callin) alpha_mv.smp_callin();
147
148         /* All kernel threads share the same mm context.  */
149         atomic_inc(&init_mm.mm_count);
150         current->active_mm = &init_mm;
151
152         /* Must have completely accurate bogos.  */
153         local_irq_enable();
154
155         /* Wait boot CPU to stop with irq enabled before running
156            calibrate_delay. */
157         wait_boot_cpu_to_stop(cpuid);
158         mb();
159         calibrate_delay();
160
161         smp_store_cpu_info(cpuid);
162         /* Allow master to continue only after we written loops_per_jiffy.  */
163         wmb();
164         smp_secondary_alive = 1;
165
166         DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
167               cpuid, current, current->active_mm));
168
169         /* Do nothing.  */
170         cpu_idle();
171 }
172
173 /* Wait until hwrpb->txrdy is clear for cpu.  Return -1 on timeout.  */
174 static int __devinit
175 wait_for_txrdy (unsigned long cpumask)
176 {
177         unsigned long timeout;
178
179         if (!(hwrpb->txrdy & cpumask))
180                 return 0;
181
182         timeout = jiffies + 10*HZ;
183         while (time_before(jiffies, timeout)) {
184                 if (!(hwrpb->txrdy & cpumask))
185                         return 0;
186                 udelay(10);
187                 barrier();
188         }
189
190         return -1;
191 }
192
193 /*
194  * Send a message to a secondary's console.  "START" is one such
195  * interesting message.  ;-)
196  */
197 static void __init
198 send_secondary_console_msg(char *str, int cpuid)
199 {
200         struct percpu_struct *cpu;
201         register char *cp1, *cp2;
202         unsigned long cpumask;
203         size_t len;
204
205         cpu = (struct percpu_struct *)
206                 ((char*)hwrpb
207                  + hwrpb->processor_offset
208                  + cpuid * hwrpb->processor_size);
209
210         cpumask = (1UL << cpuid);
211         if (wait_for_txrdy(cpumask))
212                 goto timeout;
213
214         cp2 = str;
215         len = strlen(cp2);
216         *(unsigned int *)&cpu->ipc_buffer[0] = len;
217         cp1 = (char *) &cpu->ipc_buffer[1];
218         memcpy(cp1, cp2, len);
219
220         /* atomic test and set */
221         wmb();
222         set_bit(cpuid, &hwrpb->rxrdy);
223
224         if (wait_for_txrdy(cpumask))
225                 goto timeout;
226         return;
227
228  timeout:
229         printk("Processor %x not ready\n", cpuid);
230 }
231
232 /*
233  * A secondary console wants to send a message.  Receive it.
234  */
235 static void
236 recv_secondary_console_msg(void)
237 {
238         int mycpu, i, cnt;
239         unsigned long txrdy = hwrpb->txrdy;
240         char *cp1, *cp2, buf[80];
241         struct percpu_struct *cpu;
242
243         DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
244
245         mycpu = hard_smp_processor_id();
246
247         for (i = 0; i < NR_CPUS; i++) {
248                 if (!(txrdy & (1UL << i)))
249                         continue;
250
251                 DBGS(("recv_secondary_console_msg: "
252                       "TXRDY contains CPU %d.\n", i));
253
254                 cpu = (struct percpu_struct *)
255                   ((char*)hwrpb
256                    + hwrpb->processor_offset
257                    + i * hwrpb->processor_size);
258
259                 DBGS(("recv_secondary_console_msg: on %d from %d"
260                       " HALT_REASON 0x%lx FLAGS 0x%lx\n",
261                       mycpu, i, cpu->halt_reason, cpu->flags));
262
263                 cnt = cpu->ipc_buffer[0] >> 32;
264                 if (cnt <= 0 || cnt >= 80)
265                         strcpy(buf, "<<< BOGUS MSG >>>");
266                 else {
267                         cp1 = (char *) &cpu->ipc_buffer[11];
268                         cp2 = buf;
269                         strcpy(cp2, cp1);
270                         
271                         while ((cp2 = strchr(cp2, '\r')) != 0) {
272                                 *cp2 = ' ';
273                                 if (cp2[1] == '\n')
274                                         cp2[1] = ' ';
275                         }
276                 }
277
278                 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
279                       "message is '%s'\n", mycpu, buf));
280         }
281
282         hwrpb->txrdy = 0;
283 }
284
285 /*
286  * Convince the console to have a secondary cpu begin execution.
287  */
288 static int __init
289 secondary_cpu_start(int cpuid, struct task_struct *idle)
290 {
291         struct percpu_struct *cpu;
292         struct pcb_struct *hwpcb, *ipcb;
293         unsigned long timeout;
294           
295         cpu = (struct percpu_struct *)
296                 ((char*)hwrpb
297                  + hwrpb->processor_offset
298                  + cpuid * hwrpb->processor_size);
299         hwpcb = (struct pcb_struct *) cpu->hwpcb;
300         ipcb = &task_thread_info(idle)->pcb;
301
302         /* Initialize the CPU's HWPCB to something just good enough for
303            us to get started.  Immediately after starting, we'll swpctx
304            to the target idle task's pcb.  Reuse the stack in the mean
305            time.  Precalculate the target PCBB.  */
306         hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
307         hwpcb->usp = 0;
308         hwpcb->ptbr = ipcb->ptbr;
309         hwpcb->pcc = 0;
310         hwpcb->asn = 0;
311         hwpcb->unique = virt_to_phys(ipcb);
312         hwpcb->flags = ipcb->flags;
313         hwpcb->res1 = hwpcb->res2 = 0;
314
315 #if 0
316         DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
317               hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
318 #endif
319         DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
320               cpuid, idle->state, ipcb->flags));
321
322         /* Setup HWRPB fields that SRM uses to activate secondary CPU */
323         hwrpb->CPU_restart = __smp_callin;
324         hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
325
326         /* Recalculate and update the HWRPB checksum */
327         hwrpb_update_checksum(hwrpb);
328
329         /*
330          * Send a "start" command to the specified processor.
331          */
332
333         /* SRM III 3.4.1.3 */
334         cpu->flags |= 0x22;     /* turn on Context Valid and Restart Capable */
335         cpu->flags &= ~1;       /* turn off Bootstrap In Progress */
336         wmb();
337
338         send_secondary_console_msg("START\r\n", cpuid);
339
340         /* Wait 10 seconds for an ACK from the console.  */
341         timeout = jiffies + 10*HZ;
342         while (time_before(jiffies, timeout)) {
343                 if (cpu->flags & 1)
344                         goto started;
345                 udelay(10);
346                 barrier();
347         }
348         printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
349         return -1;
350
351  started:
352         DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
353         return 0;
354 }
355
356 /*
357  * Bring one cpu online.
358  */
359 static int __cpuinit
360 smp_boot_one_cpu(int cpuid)
361 {
362         struct task_struct *idle;
363         unsigned long timeout;
364
365         /* Cook up an idler for this guy.  Note that the address we
366            give to kernel_thread is irrelevant -- it's going to start
367            where HWRPB.CPU_restart says to start.  But this gets all
368            the other task-y sort of data structures set up like we
369            wish.  We can't use kernel_thread since we must avoid
370            rescheduling the child.  */
371         idle = fork_idle(cpuid);
372         if (IS_ERR(idle))
373                 panic("failed fork for CPU %d", cpuid);
374
375         DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n",
376               cpuid, idle->state, idle->flags));
377
378         /* Signal the secondary to wait a moment.  */
379         smp_secondary_alive = -1;
380
381         /* Whirrr, whirrr, whirrrrrrrrr... */
382         if (secondary_cpu_start(cpuid, idle))
383                 return -1;
384
385         /* Notify the secondary CPU it can run calibrate_delay.  */
386         mb();
387         smp_secondary_alive = 0;
388
389         /* We've been acked by the console; wait one second for
390            the task to start up for real.  */
391         timeout = jiffies + 1*HZ;
392         while (time_before(jiffies, timeout)) {
393                 if (smp_secondary_alive == 1)
394                         goto alive;
395                 udelay(10);
396                 barrier();
397         }
398
399         /* We failed to boot the CPU.  */
400
401         printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
402         return -1;
403
404  alive:
405         /* Another "Red Snapper". */
406         return 0;
407 }
408
409 /*
410  * Called from setup_arch.  Detect an SMP system and which processors
411  * are present.
412  */
413 void __init
414 setup_smp(void)
415 {
416         struct percpu_struct *cpubase, *cpu;
417         unsigned long i;
418
419         if (boot_cpuid != 0) {
420                 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
421                        boot_cpuid);
422         }
423
424         if (hwrpb->nr_processors > 1) {
425                 int boot_cpu_palrev;
426
427                 DBGS(("setup_smp: nr_processors %ld\n",
428                       hwrpb->nr_processors));
429
430                 cpubase = (struct percpu_struct *)
431                         ((char*)hwrpb + hwrpb->processor_offset);
432                 boot_cpu_palrev = cpubase->pal_revision;
433
434                 for (i = 0; i < hwrpb->nr_processors; i++) {
435                         cpu = (struct percpu_struct *)
436                                 ((char *)cpubase + i*hwrpb->processor_size);
437                         if ((cpu->flags & 0x1cc) == 0x1cc) {
438                                 smp_num_probed++;
439                                 cpu_set(i, cpu_present_map);
440                                 cpu->pal_revision = boot_cpu_palrev;
441                         }
442
443                         DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
444                               i, cpu->flags, cpu->type));
445                         DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
446                               i, cpu->pal_revision));
447                 }
448         } else {
449                 smp_num_probed = 1;
450         }
451
452         printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_map = %lx\n",
453                smp_num_probed, cpu_present_map.bits[0]);
454 }
455
456 /*
457  * Called by smp_init prepare the secondaries
458  */
459 void __init
460 smp_prepare_cpus(unsigned int max_cpus)
461 {
462         /* Take care of some initial bookkeeping.  */
463         memset(ipi_data, 0, sizeof(ipi_data));
464
465         current_thread_info()->cpu = boot_cpuid;
466
467         smp_store_cpu_info(boot_cpuid);
468         smp_setup_percpu_timer(boot_cpuid);
469
470         /* Nothing to do on a UP box, or when told not to.  */
471         if (smp_num_probed == 1 || max_cpus == 0) {
472                 cpu_present_map = cpumask_of_cpu(boot_cpuid);
473                 printk(KERN_INFO "SMP mode deactivated.\n");
474                 return;
475         }
476
477         printk(KERN_INFO "SMP starting up secondaries.\n");
478
479         smp_num_cpus = smp_num_probed;
480 }
481
482 void __devinit
483 smp_prepare_boot_cpu(void)
484 {
485 }
486
487 int __cpuinit
488 __cpu_up(unsigned int cpu)
489 {
490         smp_boot_one_cpu(cpu);
491
492         return cpu_online(cpu) ? 0 : -ENOSYS;
493 }
494
495 void __init
496 smp_cpus_done(unsigned int max_cpus)
497 {
498         int cpu;
499         unsigned long bogosum = 0;
500
501         for(cpu = 0; cpu < NR_CPUS; cpu++) 
502                 if (cpu_online(cpu))
503                         bogosum += cpu_data[cpu].loops_per_jiffy;
504         
505         printk(KERN_INFO "SMP: Total of %d processors activated "
506                "(%lu.%02lu BogoMIPS).\n",
507                num_online_cpus(), 
508                (bogosum + 2500) / (500000/HZ),
509                ((bogosum + 2500) / (5000/HZ)) % 100);
510 }
511
512 \f
513 void
514 smp_percpu_timer_interrupt(struct pt_regs *regs)
515 {
516         struct pt_regs *old_regs;
517         int cpu = smp_processor_id();
518         unsigned long user = user_mode(regs);
519         struct cpuinfo_alpha *data = &cpu_data[cpu];
520
521         old_regs = set_irq_regs(regs);
522
523         /* Record kernel PC.  */
524         profile_tick(CPU_PROFILING);
525
526         if (!--data->prof_counter) {
527                 /* We need to make like a normal interrupt -- otherwise
528                    timer interrupts ignore the global interrupt lock,
529                    which would be a Bad Thing.  */
530                 irq_enter();
531
532                 update_process_times(user);
533
534                 data->prof_counter = data->prof_multiplier;
535
536                 irq_exit();
537         }
538         set_irq_regs(old_regs);
539 }
540
541 int
542 setup_profiling_timer(unsigned int multiplier)
543 {
544         return -EINVAL;
545 }
546
547 \f
548 static void
549 send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation)
550 {
551         int i;
552
553         mb();
554         for_each_cpu_mask(i, to_whom)
555                 set_bit(operation, &ipi_data[i].bits);
556
557         mb();
558         for_each_cpu_mask(i, to_whom)
559                 wripir(i);
560 }
561
562 void
563 handle_ipi(struct pt_regs *regs)
564 {
565         int this_cpu = smp_processor_id();
566         unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
567         unsigned long ops;
568
569 #if 0
570         DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
571               this_cpu, *pending_ipis, regs->pc));
572 #endif
573
574         mb();   /* Order interrupt and bit testing. */
575         while ((ops = xchg(pending_ipis, 0)) != 0) {
576           mb(); /* Order bit clearing and data access. */
577           do {
578                 unsigned long which;
579
580                 which = ops & -ops;
581                 ops &= ~which;
582                 which = __ffs(which);
583
584                 switch (which) {
585                 case IPI_RESCHEDULE:
586                         /* Reschedule callback.  Everything to be done
587                            is done by the interrupt return path.  */
588                         break;
589
590                 case IPI_CALL_FUNC:
591                         generic_smp_call_function_interrupt();
592                         break;
593
594                 case IPI_CALL_FUNC_SINGLE:
595                         generic_smp_call_function_single_interrupt();
596                         break;
597
598                 case IPI_CPU_STOP:
599                         halt();
600
601                 default:
602                         printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
603                                this_cpu, which);
604                         break;
605                 }
606           } while (ops);
607
608           mb(); /* Order data access and bit testing. */
609         }
610
611         cpu_data[this_cpu].ipi_count++;
612
613         if (hwrpb->txrdy)
614                 recv_secondary_console_msg();
615 }
616
617 void
618 smp_send_reschedule(int cpu)
619 {
620 #ifdef DEBUG_IPI_MSG
621         if (cpu == hard_smp_processor_id())
622                 printk(KERN_WARNING
623                        "smp_send_reschedule: Sending IPI to self.\n");
624 #endif
625         send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
626 }
627
628 void
629 smp_send_stop(void)
630 {
631         cpumask_t to_whom = cpu_possible_map;
632         cpu_clear(smp_processor_id(), to_whom);
633 #ifdef DEBUG_IPI_MSG
634         if (hard_smp_processor_id() != boot_cpu_id)
635                 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
636 #endif
637         send_ipi_message(to_whom, IPI_CPU_STOP);
638 }
639
640 void arch_send_call_function_ipi(cpumask_t mask)
641 {
642         send_ipi_message(mask, IPI_CALL_FUNC);
643 }
644
645 void arch_send_call_function_single_ipi(int cpu)
646 {
647         send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
648 }
649
650 static void
651 ipi_imb(void *ignored)
652 {
653         imb();
654 }
655
656 void
657 smp_imb(void)
658 {
659         /* Must wait other processors to flush their icache before continue. */
660         if (on_each_cpu(ipi_imb, NULL, 1))
661                 printk(KERN_CRIT "smp_imb: timed out\n");
662 }
663 EXPORT_SYMBOL(smp_imb);
664
665 static void
666 ipi_flush_tlb_all(void *ignored)
667 {
668         tbia();
669 }
670
671 void
672 flush_tlb_all(void)
673 {
674         /* Although we don't have any data to pass, we do want to
675            synchronize with the other processors.  */
676         if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
677                 printk(KERN_CRIT "flush_tlb_all: timed out\n");
678         }
679 }
680
681 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
682
683 static void
684 ipi_flush_tlb_mm(void *x)
685 {
686         struct mm_struct *mm = (struct mm_struct *) x;
687         if (mm == current->active_mm && !asn_locked())
688                 flush_tlb_current(mm);
689         else
690                 flush_tlb_other(mm);
691 }
692
693 void
694 flush_tlb_mm(struct mm_struct *mm)
695 {
696         preempt_disable();
697
698         if (mm == current->active_mm) {
699                 flush_tlb_current(mm);
700                 if (atomic_read(&mm->mm_users) <= 1) {
701                         int cpu, this_cpu = smp_processor_id();
702                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
703                                 if (!cpu_online(cpu) || cpu == this_cpu)
704                                         continue;
705                                 if (mm->context[cpu])
706                                         mm->context[cpu] = 0;
707                         }
708                         preempt_enable();
709                         return;
710                 }
711         }
712
713         if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
714                 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
715         }
716
717         preempt_enable();
718 }
719 EXPORT_SYMBOL(flush_tlb_mm);
720
721 struct flush_tlb_page_struct {
722         struct vm_area_struct *vma;
723         struct mm_struct *mm;
724         unsigned long addr;
725 };
726
727 static void
728 ipi_flush_tlb_page(void *x)
729 {
730         struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
731         struct mm_struct * mm = data->mm;
732
733         if (mm == current->active_mm && !asn_locked())
734                 flush_tlb_current_page(mm, data->vma, data->addr);
735         else
736                 flush_tlb_other(mm);
737 }
738
739 void
740 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
741 {
742         struct flush_tlb_page_struct data;
743         struct mm_struct *mm = vma->vm_mm;
744
745         preempt_disable();
746
747         if (mm == current->active_mm) {
748                 flush_tlb_current_page(mm, vma, addr);
749                 if (atomic_read(&mm->mm_users) <= 1) {
750                         int cpu, this_cpu = smp_processor_id();
751                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
752                                 if (!cpu_online(cpu) || cpu == this_cpu)
753                                         continue;
754                                 if (mm->context[cpu])
755                                         mm->context[cpu] = 0;
756                         }
757                         preempt_enable();
758                         return;
759                 }
760         }
761
762         data.vma = vma;
763         data.mm = mm;
764         data.addr = addr;
765
766         if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
767                 printk(KERN_CRIT "flush_tlb_page: timed out\n");
768         }
769
770         preempt_enable();
771 }
772 EXPORT_SYMBOL(flush_tlb_page);
773
774 void
775 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
776 {
777         /* On the Alpha we always flush the whole user tlb.  */
778         flush_tlb_mm(vma->vm_mm);
779 }
780 EXPORT_SYMBOL(flush_tlb_range);
781
782 static void
783 ipi_flush_icache_page(void *x)
784 {
785         struct mm_struct *mm = (struct mm_struct *) x;
786         if (mm == current->active_mm && !asn_locked())
787                 __load_new_mm_context(mm);
788         else
789                 flush_tlb_other(mm);
790 }
791
792 void
793 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
794                         unsigned long addr, int len)
795 {
796         struct mm_struct *mm = vma->vm_mm;
797
798         if ((vma->vm_flags & VM_EXEC) == 0)
799                 return;
800
801         preempt_disable();
802
803         if (mm == current->active_mm) {
804                 __load_new_mm_context(mm);
805                 if (atomic_read(&mm->mm_users) <= 1) {
806                         int cpu, this_cpu = smp_processor_id();
807                         for (cpu = 0; cpu < NR_CPUS; cpu++) {
808                                 if (!cpu_online(cpu) || cpu == this_cpu)
809                                         continue;
810                                 if (mm->context[cpu])
811                                         mm->context[cpu] = 0;
812                         }
813                         preempt_enable();
814                         return;
815                 }
816         }
817
818         if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
819                 printk(KERN_CRIT "flush_icache_page: timed out\n");
820         }
821
822         preempt_enable();
823 }