4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
40 #include "intelfbhw.h"
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
54 static struct pll_min_max plls[PLLS_MAX] = {
58 930000, 1400000, 165000, 48000,
64 1400000, 2800000, 200000, 96000,
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
79 dinfo->pll_index = PLLS_I8xx;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
85 dinfo->pll_index = PLLS_I8xx;
87 case PCI_DEVICE_ID_INTEL_85XGM:
90 dinfo->pll_index = PLLS_I8xx;
91 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93 INTEL_85X_VARIANT_MASK) {
94 case INTEL_VAR_855GME:
95 dinfo->name = "Intel(R) 855GME";
96 dinfo->chipset = INTEL_855GME;
99 dinfo->name = "Intel(R) 855GM";
100 dinfo->chipset = INTEL_855GM;
102 case INTEL_VAR_852GME:
103 dinfo->name = "Intel(R) 852GME";
104 dinfo->chipset = INTEL_852GME;
106 case INTEL_VAR_852GM:
107 dinfo->name = "Intel(R) 852GM";
108 dinfo->chipset = INTEL_852GM;
111 dinfo->name = "Intel(R) 852GM/855GM";
112 dinfo->chipset = INTEL_85XGM;
116 case PCI_DEVICE_ID_INTEL_865G:
117 dinfo->name = "Intel(R) 865G";
118 dinfo->chipset = INTEL_865G;
120 dinfo->pll_index = PLLS_I8xx;
122 case PCI_DEVICE_ID_INTEL_915G:
123 dinfo->name = "Intel(R) 915G";
124 dinfo->chipset = INTEL_915G;
126 dinfo->pll_index = PLLS_I9xx;
128 case PCI_DEVICE_ID_INTEL_915GM:
129 dinfo->name = "Intel(R) 915GM";
130 dinfo->chipset = INTEL_915GM;
132 dinfo->pll_index = PLLS_I9xx;
134 case PCI_DEVICE_ID_INTEL_945G:
135 dinfo->name = "Intel(R) 945G";
136 dinfo->chipset = INTEL_945G;
138 dinfo->pll_index = PLLS_I9xx;
140 case PCI_DEVICE_ID_INTEL_945GM:
141 dinfo->name = "Intel(R) 945GM";
142 dinfo->chipset = INTEL_945GM;
144 dinfo->pll_index = PLLS_I9xx;
146 case PCI_DEVICE_ID_INTEL_965G:
147 dinfo->name = "Intel(R) 965G";
148 dinfo->chipset = INTEL_965G;
150 dinfo->pll_index = PLLS_I9xx;
152 case PCI_DEVICE_ID_INTEL_965GM:
153 dinfo->name = "Intel(R) 965GM";
154 dinfo->chipset = INTEL_965GM;
156 dinfo->pll_index = PLLS_I9xx;
163 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
166 struct pci_dev *bridge_dev;
170 if (!pdev || !aperture_size || !stolen_size)
173 /* Find the bridge device. It is always 0:0.0 */
174 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
175 ERR_MSG("cannot find bridge device\n");
179 /* Get the fb aperture size and "stolen" memory amount. */
181 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
182 pci_dev_put(bridge_dev);
184 switch (pdev->device) {
185 case PCI_DEVICE_ID_INTEL_915G:
186 case PCI_DEVICE_ID_INTEL_915GM:
187 case PCI_DEVICE_ID_INTEL_945G:
188 case PCI_DEVICE_ID_INTEL_945GM:
189 case PCI_DEVICE_ID_INTEL_965G:
190 case PCI_DEVICE_ID_INTEL_965GM:
191 /* 915, 945 and 965 chipsets support a 256MB aperture.
192 Aperture size is determined by inspected the
193 base address of the aperture. */
194 if (pci_resource_start(pdev, 2) & 0x08000000)
195 *aperture_size = MB(128);
197 *aperture_size = MB(256);
200 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
201 *aperture_size = MB(64);
203 *aperture_size = MB(128);
207 /* Stolen memory size is reduced by the GTT and the popup.
208 GTT is 1K per MB of aperture size, and popup is 4K. */
209 stolen_overhead = (*aperture_size / MB(1)) + 4;
210 switch(pdev->device) {
211 case PCI_DEVICE_ID_INTEL_830M:
212 case PCI_DEVICE_ID_INTEL_845G:
213 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
214 case INTEL_830_GMCH_GMS_STOLEN_512:
215 *stolen_size = KB(512) - KB(stolen_overhead);
217 case INTEL_830_GMCH_GMS_STOLEN_1024:
218 *stolen_size = MB(1) - KB(stolen_overhead);
220 case INTEL_830_GMCH_GMS_STOLEN_8192:
221 *stolen_size = MB(8) - KB(stolen_overhead);
223 case INTEL_830_GMCH_GMS_LOCAL:
224 ERR_MSG("only local memory found\n");
226 case INTEL_830_GMCH_GMS_DISABLED:
227 ERR_MSG("video memory is disabled\n");
230 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
231 tmp & INTEL_830_GMCH_GMS_MASK);
236 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
237 case INTEL_855_GMCH_GMS_STOLEN_1M:
238 *stolen_size = MB(1) - KB(stolen_overhead);
240 case INTEL_855_GMCH_GMS_STOLEN_4M:
241 *stolen_size = MB(4) - KB(stolen_overhead);
243 case INTEL_855_GMCH_GMS_STOLEN_8M:
244 *stolen_size = MB(8) - KB(stolen_overhead);
246 case INTEL_855_GMCH_GMS_STOLEN_16M:
247 *stolen_size = MB(16) - KB(stolen_overhead);
249 case INTEL_855_GMCH_GMS_STOLEN_32M:
250 *stolen_size = MB(32) - KB(stolen_overhead);
252 case INTEL_915G_GMCH_GMS_STOLEN_48M:
253 *stolen_size = MB(48) - KB(stolen_overhead);
255 case INTEL_915G_GMCH_GMS_STOLEN_64M:
256 *stolen_size = MB(64) - KB(stolen_overhead);
258 case INTEL_855_GMCH_GMS_DISABLED:
259 ERR_MSG("video memory is disabled\n");
262 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
263 tmp & INTEL_855_GMCH_GMS_MASK);
269 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
273 if (INREG(LVDS) & PORT_ENABLE)
275 if (INREG(DVOA) & PORT_ENABLE)
277 if (INREG(DVOB) & PORT_ENABLE)
279 if (INREG(DVOC) & PORT_ENABLE)
285 const char * intelfbhw_dvo_to_string(int dvo)
289 else if (dvo & DVOB_PORT)
291 else if (dvo & DVOC_PORT)
293 else if (dvo & LVDS_PORT)
300 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
301 struct fb_var_screeninfo *var)
307 DBG_MSG("intelfbhw_validate_mode\n");
310 bytes_per_pixel = var->bits_per_pixel / 8;
311 if (bytes_per_pixel == 3)
314 /* Check if enough video memory. */
315 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
316 if (tmp > dinfo->fb.size) {
317 WRN_MSG("Not enough video ram for mode "
318 "(%d KByte vs %d KByte).\n",
319 BtoKB(tmp), BtoKB(dinfo->fb.size));
323 /* Check if x/y limits are OK. */
324 if (var->xres - 1 > HACTIVE_MASK) {
325 WRN_MSG("X resolution too large (%d vs %d).\n",
326 var->xres, HACTIVE_MASK + 1);
329 if (var->yres - 1 > VACTIVE_MASK) {
330 WRN_MSG("Y resolution too large (%d vs %d).\n",
331 var->yres, VACTIVE_MASK + 1);
335 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
339 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
343 /* Check for doublescan modes. */
344 if (var->vmode & FB_VMODE_DOUBLE) {
345 WRN_MSG("Mode is double-scan.\n");
349 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
350 WRN_MSG("Odd number of lines in interlaced mode\n");
354 /* Check if clock is OK. */
355 tmp = 1000000000 / var->pixclock;
356 if (tmp < MIN_CLOCK) {
357 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
358 (tmp + 500) / 1000, MIN_CLOCK / 1000);
361 if (tmp > MAX_CLOCK) {
362 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
363 (tmp + 500) / 1000, MAX_CLOCK / 1000);
370 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
372 struct intelfb_info *dinfo = GET_DINFO(info);
373 u32 offset, xoffset, yoffset;
376 DBG_MSG("intelfbhw_pan_display\n");
379 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
380 yoffset = var->yoffset;
382 if ((xoffset + var->xres > var->xres_virtual) ||
383 (yoffset + var->yres > var->yres_virtual))
386 offset = (yoffset * dinfo->pitch) +
387 (xoffset * var->bits_per_pixel) / 8;
389 offset += dinfo->fb.offset << 12;
391 dinfo->vsync.pan_offset = offset;
392 if ((var->activate & FB_ACTIVATE_VBL) &&
393 !intelfbhw_enable_irq(dinfo))
394 dinfo->vsync.pan_display = 1;
396 dinfo->vsync.pan_display = 0;
397 OUTREG(DSPABASE, offset);
403 /* Blank the screen. */
404 void intelfbhw_do_blank(int blank, struct fb_info *info)
406 struct intelfb_info *dinfo = GET_DINFO(info);
410 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
413 /* Turn plane A on or off */
414 tmp = INREG(DSPACNTR);
416 tmp &= ~DISPPLANE_PLANE_ENABLE;
418 tmp |= DISPPLANE_PLANE_ENABLE;
419 OUTREG(DSPACNTR, tmp);
421 tmp = INREG(DSPABASE);
422 OUTREG(DSPABASE, tmp);
424 /* Turn off/on the HW cursor */
426 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
428 if (dinfo->cursor_on) {
430 intelfbhw_cursor_hide(dinfo);
432 intelfbhw_cursor_show(dinfo);
433 dinfo->cursor_on = 1;
435 dinfo->cursor_blanked = blank;
438 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
440 case FB_BLANK_UNBLANK:
441 case FB_BLANK_NORMAL:
444 case FB_BLANK_VSYNC_SUSPEND:
447 case FB_BLANK_HSYNC_SUSPEND:
450 case FB_BLANK_POWERDOWN:
460 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
461 unsigned red, unsigned green, unsigned blue,
464 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
465 PALETTE_A : PALETTE_B;
468 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
469 regno, red, green, blue);
472 OUTREG(palette_reg + (regno << 2),
473 (red << PALETTE_8_RED_SHIFT) |
474 (green << PALETTE_8_GREEN_SHIFT) |
475 (blue << PALETTE_8_BLUE_SHIFT));
479 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
480 struct intelfb_hwstate *hw, int flag)
485 DBG_MSG("intelfbhw_read_hw_state\n");
491 /* Read in as much of the HW state as possible. */
492 hw->vga0_divisor = INREG(VGA0_DIVISOR);
493 hw->vga1_divisor = INREG(VGA1_DIVISOR);
494 hw->vga_pd = INREG(VGAPD);
495 hw->dpll_a = INREG(DPLL_A);
496 hw->dpll_b = INREG(DPLL_B);
497 hw->fpa0 = INREG(FPA0);
498 hw->fpa1 = INREG(FPA1);
499 hw->fpb0 = INREG(FPB0);
500 hw->fpb1 = INREG(FPB1);
506 /* This seems to be a problem with the 852GM/855GM */
507 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
508 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
509 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
516 hw->htotal_a = INREG(HTOTAL_A);
517 hw->hblank_a = INREG(HBLANK_A);
518 hw->hsync_a = INREG(HSYNC_A);
519 hw->vtotal_a = INREG(VTOTAL_A);
520 hw->vblank_a = INREG(VBLANK_A);
521 hw->vsync_a = INREG(VSYNC_A);
522 hw->src_size_a = INREG(SRC_SIZE_A);
523 hw->bclrpat_a = INREG(BCLRPAT_A);
524 hw->htotal_b = INREG(HTOTAL_B);
525 hw->hblank_b = INREG(HBLANK_B);
526 hw->hsync_b = INREG(HSYNC_B);
527 hw->vtotal_b = INREG(VTOTAL_B);
528 hw->vblank_b = INREG(VBLANK_B);
529 hw->vsync_b = INREG(VSYNC_B);
530 hw->src_size_b = INREG(SRC_SIZE_B);
531 hw->bclrpat_b = INREG(BCLRPAT_B);
536 hw->adpa = INREG(ADPA);
537 hw->dvoa = INREG(DVOA);
538 hw->dvob = INREG(DVOB);
539 hw->dvoc = INREG(DVOC);
540 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
541 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
542 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
543 hw->lvds = INREG(LVDS);
548 hw->pipe_a_conf = INREG(PIPEACONF);
549 hw->pipe_b_conf = INREG(PIPEBCONF);
550 hw->disp_arb = INREG(DISPARB);
555 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
556 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
557 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
558 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
563 for (i = 0; i < 4; i++) {
564 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
565 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
571 hw->cursor_size = INREG(CURSOR_SIZE);
576 hw->disp_a_ctrl = INREG(DSPACNTR);
577 hw->disp_b_ctrl = INREG(DSPBCNTR);
578 hw->disp_a_base = INREG(DSPABASE);
579 hw->disp_b_base = INREG(DSPBBASE);
580 hw->disp_a_stride = INREG(DSPASTRIDE);
581 hw->disp_b_stride = INREG(DSPBSTRIDE);
586 hw->vgacntrl = INREG(VGACNTRL);
591 hw->add_id = INREG(ADD_ID);
596 for (i = 0; i < 7; i++) {
597 hw->swf0x[i] = INREG(SWF00 + (i << 2));
598 hw->swf1x[i] = INREG(SWF10 + (i << 2));
600 hw->swf3x[i] = INREG(SWF30 + (i << 2));
603 for (i = 0; i < 8; i++)
604 hw->fence[i] = INREG(FENCE + (i << 2));
606 hw->instpm = INREG(INSTPM);
607 hw->mem_mode = INREG(MEM_MODE);
608 hw->fw_blc_0 = INREG(FW_BLC_0);
609 hw->fw_blc_1 = INREG(FW_BLC_1);
611 hw->hwstam = INREG16(HWSTAM);
612 hw->ier = INREG16(IER);
613 hw->iir = INREG16(IIR);
614 hw->imr = INREG16(IMR);
620 static int calc_vclock3(int index, int m, int n, int p)
622 if (p == 0 || n == 0)
624 return plls[index].ref_clk * m / n / p;
627 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
630 struct pll_min_max *pll = &plls[index];
633 m = (5 * (m1 + 2)) + (m2 + 2);
635 vco = pll->ref_clk * m / n;
637 if (index == PLLS_I8xx)
638 p = ((p1 + 2) * (1 << (p2 + 1)));
640 p = ((p1) * (p2 ? 5 : 10));
645 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
646 int *o_p1, int *o_p2)
650 if (IS_I9XX(dinfo)) {
651 if (dpll & DPLL_P1_FORCE_DIV2)
654 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
658 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
660 if (dpll & DPLL_P1_FORCE_DIV2)
663 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
664 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
673 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
674 struct intelfb_hwstate *hw)
677 int i, m1, m2, n, p1, p2;
678 int index = dinfo->pll_index;
679 DBG_MSG("intelfbhw_print_hw_state\n");
683 /* Read in as much of the HW state as possible. */
684 printk("hw state dump start\n");
685 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
686 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
687 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
688 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
689 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
690 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
692 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
694 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
696 printk(" VGA0: clock is %d\n",
697 calc_vclock(index, m1, m2, n, p1, p2, 0));
699 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
700 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
701 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
703 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
704 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
706 printk(" VGA1: clock is %d\n",
707 calc_vclock(index, m1, m2, n, p1, p2, 0));
709 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
710 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
711 printk(" FPA0: 0x%08x\n", hw->fpa0);
712 printk(" FPA1: 0x%08x\n", hw->fpa1);
713 printk(" FPB0: 0x%08x\n", hw->fpb0);
714 printk(" FPB1: 0x%08x\n", hw->fpb1);
716 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
717 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
718 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
720 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
722 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
724 printk(" PLLA0: clock is %d\n",
725 calc_vclock(index, m1, m2, n, p1, p2, 0));
727 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
733 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
735 printk(" PLLA1: clock is %d\n",
736 calc_vclock(index, m1, m2, n, p1, p2, 0));
739 printk(" PALETTE_A:\n");
740 for (i = 0; i < PALETTE_8_ENTRIES)
741 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
742 printk(" PALETTE_B:\n");
743 for (i = 0; i < PALETTE_8_ENTRIES)
744 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
747 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
748 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
749 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
750 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
751 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
752 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
753 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
754 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
755 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
756 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
757 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
758 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
759 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
760 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
761 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
762 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
764 printk(" ADPA: 0x%08x\n", hw->adpa);
765 printk(" DVOA: 0x%08x\n", hw->dvoa);
766 printk(" DVOB: 0x%08x\n", hw->dvob);
767 printk(" DVOC: 0x%08x\n", hw->dvoc);
768 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
769 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
770 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
771 printk(" LVDS: 0x%08x\n", hw->lvds);
773 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
774 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
775 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
777 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
778 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
779 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
780 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
782 printk(" CURSOR_A_PALETTE: ");
783 for (i = 0; i < 4; i++) {
784 printk("0x%08x", hw->cursor_a_palette[i]);
789 printk(" CURSOR_B_PALETTE: ");
790 for (i = 0; i < 4; i++) {
791 printk("0x%08x", hw->cursor_b_palette[i]);
797 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
799 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
800 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
801 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
802 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
803 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
804 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
806 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
807 printk(" ADD_ID: 0x%08x\n", hw->add_id);
809 for (i = 0; i < 7; i++) {
810 printk(" SWF0%d 0x%08x\n", i,
813 for (i = 0; i < 7; i++) {
814 printk(" SWF1%d 0x%08x\n", i,
817 for (i = 0; i < 3; i++) {
818 printk(" SWF3%d 0x%08x\n", i,
821 for (i = 0; i < 8; i++)
822 printk(" FENCE%d 0x%08x\n", i,
825 printk(" INSTPM 0x%08x\n", hw->instpm);
826 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
827 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
828 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
830 printk(" HWSTAM 0x%04x\n", hw->hwstam);
831 printk(" IER 0x%04x\n", hw->ier);
832 printk(" IIR 0x%04x\n", hw->iir);
833 printk(" IMR 0x%04x\n", hw->imr);
834 printk("hw state dump end\n");
840 /* Split the M parameter into M1 and M2. */
841 static int splitm(int index, unsigned int m, unsigned int *retm1,
846 struct pll_min_max *pll = &plls[index];
848 /* no point optimising too much - brute force m */
849 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
850 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
851 testm = (5 * (m1 + 2)) + (m2 + 2);
853 *retm1 = (unsigned int)m1;
854 *retm2 = (unsigned int)m2;
862 /* Split the P parameter into P1 and P2. */
863 static int splitp(int index, unsigned int p, unsigned int *retp1,
867 struct pll_min_max *pll = &plls[index];
869 if (index == PLLS_I9xx) {
870 p2 = (p % 10) ? 1 : 0;
872 p1 = p / (p2 ? 5 : 10);
874 *retp1 = (unsigned int)p1;
875 *retp2 = (unsigned int)p2;
883 p1 = (p / (1 << (p2 + 1))) - 2;
884 if (p % 4 == 0 && p1 < pll->min_p1) {
886 p1 = (p / (1 << (p2 + 1))) - 2;
888 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
889 (p1 + 2) * (1 << (p2 + 1)) != p) {
892 *retp1 = (unsigned int)p1;
893 *retp2 = (unsigned int)p2;
898 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
899 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
901 u32 m1, m2, n, p1, p2, n1, testm;
902 u32 f_vco, p, p_best = 0, m, f_out = 0;
903 u32 err_max, err_target, err_best = 10000000;
904 u32 n_best = 0, m_best = 0, f_best, f_err;
905 u32 p_min, p_max, p_inc, div_max;
906 struct pll_min_max *pll = &plls[index];
908 /* Accept 0.5% difference, but aim for 0.1% */
909 err_max = 5 * clock / 1000;
910 err_target = clock / 1000;
912 DBG_MSG("Clock is %d\n", clock);
914 div_max = pll->max_vco / clock;
916 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
918 p_max = ROUND_DOWN_TO(div_max, p_inc);
919 if (p_min < pll->min_p)
921 if (p_max > pll->max_p)
924 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
928 if (splitp(index, p, &p1, &p2)) {
929 WRN_MSG("cannot split p = %d\n", p);
937 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
942 for (testm = m - 1; testm <= m; testm++) {
943 f_out = calc_vclock3(index, testm, n, p);
944 if (splitm(index, testm, &m1, &m2)) {
945 WRN_MSG("cannot split m = %d\n",
950 f_err = clock - f_out;
951 else/* slightly bias the error for bigger clocks */
952 f_err = f_out - clock + 1;
954 if (f_err < err_best) {
963 } while ((n <= pll->max_n) && (f_out >= clock));
965 } while ((p <= p_max));
968 WRN_MSG("cannot find parameters for clock %d\n", clock);
974 splitm(index, m, &m1, &m2);
975 splitp(index, p, &p1, &p2);
978 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
979 "f: %d (%d), VCO: %d\n",
980 m, m1, m2, n, n1, p, p1, p2,
981 calc_vclock3(index, m, n, p),
982 calc_vclock(index, m1, m2, n1, p1, p2, 0),
983 calc_vclock3(index, m, n, p) * p);
989 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
994 static __inline__ int check_overflow(u32 value, u32 limit,
995 const char *description)
998 WRN_MSG("%s value %d exceeds limit %d\n",
999 description, value, limit);
1005 /* It is assumed that hw is filled in with the initial state information. */
1006 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1007 struct intelfb_hwstate *hw,
1008 struct fb_var_screeninfo *var)
1011 u32 *dpll, *fp0, *fp1;
1012 u32 m1, m2, n, p1, p2, clock_target, clock;
1013 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1014 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1015 u32 vsync_pol, hsync_pol;
1016 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1017 u32 stride_alignment;
1019 DBG_MSG("intelfbhw_mode_to_hw\n");
1022 hw->vgacntrl |= VGA_DISABLE;
1024 /* Check whether pipe A or pipe B is enabled. */
1025 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1027 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1030 /* Set which pipe's registers will be set. */
1031 if (pipe == PIPE_B) {
1041 ss = &hw->src_size_b;
1042 pipe_conf = &hw->pipe_b_conf;
1053 ss = &hw->src_size_a;
1054 pipe_conf = &hw->pipe_a_conf;
1057 /* Use ADPA register for sync control. */
1058 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1061 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1062 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1063 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1064 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1065 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1066 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1067 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1068 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1070 /* Connect correct pipe to the analog port DAC */
1071 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1072 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1074 /* Set DPMS state to D0 (on) */
1075 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1076 hw->adpa |= ADPA_DPMS_D0;
1078 hw->adpa |= ADPA_DAC_ENABLE;
1080 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1081 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1082 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1084 /* Desired clock in kHz */
1085 clock_target = 1000000000 / var->pixclock;
1087 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1088 &n, &p1, &p2, &clock)) {
1089 WRN_MSG("calc_pll_params failed\n");
1093 /* Check for overflow. */
1094 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1096 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1098 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1100 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1102 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1105 *dpll &= ~DPLL_P1_FORCE_DIV2;
1106 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1107 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1109 if (IS_I9XX(dinfo)) {
1110 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1111 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1113 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1115 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1116 (m1 << FP_M1_DIVISOR_SHIFT) |
1117 (m2 << FP_M2_DIVISOR_SHIFT);
1120 hw->dvob &= ~PORT_ENABLE;
1121 hw->dvoc &= ~PORT_ENABLE;
1123 /* Use display plane A. */
1124 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1125 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1126 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1127 switch (intelfb_var_to_depth(var)) {
1129 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1132 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1135 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1138 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1141 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1142 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1144 /* Set CRTC registers. */
1145 hactive = var->xres;
1146 hsync_start = hactive + var->right_margin;
1147 hsync_end = hsync_start + var->hsync_len;
1148 htotal = hsync_end + var->left_margin;
1149 hblank_start = hactive;
1150 hblank_end = htotal;
1152 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1153 hactive, hsync_start, hsync_end, htotal, hblank_start,
1156 vactive = var->yres;
1157 if (var->vmode & FB_VMODE_INTERLACED)
1158 vactive--; /* the chip adds 2 halflines automatically */
1159 vsync_start = vactive + var->lower_margin;
1160 vsync_end = vsync_start + var->vsync_len;
1161 vtotal = vsync_end + var->upper_margin;
1162 vblank_start = vactive;
1163 vblank_end = vtotal;
1164 vblank_end = vsync_end + 1;
1166 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1167 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1170 /* Adjust for register values, and check for overflow. */
1172 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1175 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1178 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1181 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1184 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1187 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1191 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1194 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1197 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1200 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1203 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1206 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1209 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1210 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1211 (hblank_end << HSYNCEND_SHIFT);
1212 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1214 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1215 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1216 (vblank_end << VSYNCEND_SHIFT);
1217 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1218 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1219 (vactive << SRC_SIZE_VERT_SHIFT);
1221 hw->disp_a_stride = dinfo->pitch;
1222 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1224 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1225 var->xoffset * var->bits_per_pixel / 8;
1227 hw->disp_a_base += dinfo->fb.offset << 12;
1229 /* Check stride alignment. */
1230 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1232 if (hw->disp_a_stride % stride_alignment != 0) {
1233 WRN_MSG("display stride %d has bad alignment %d\n",
1234 hw->disp_a_stride, stride_alignment);
1238 /* Set the palette to 8-bit mode. */
1239 *pipe_conf &= ~PIPECONF_GAMMA;
1241 if (var->vmode & FB_VMODE_INTERLACED)
1242 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1244 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1249 /* Program a (non-VGA) video mode. */
1250 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1251 const struct intelfb_hwstate *hw, int blank)
1255 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1256 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1257 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1258 u32 hsync_reg, htotal_reg, hblank_reg;
1259 u32 vsync_reg, vtotal_reg, vblank_reg;
1261 u32 count, tmp_val[3];
1263 /* Assume single pipe, display plane A, analog CRT. */
1266 DBG_MSG("intelfbhw_program_mode\n");
1270 tmp = INREG(VGACNTRL);
1272 OUTREG(VGACNTRL, tmp);
1274 /* Check whether pipe A or pipe B is enabled. */
1275 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1277 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1282 if (pipe == PIPE_B) {
1286 pipe_conf = &hw->pipe_b_conf;
1293 ss = &hw->src_size_b;
1297 pipe_conf_reg = PIPEBCONF;
1298 pipe_stat_reg = PIPEBSTAT;
1299 hsync_reg = HSYNC_B;
1300 htotal_reg = HTOTAL_B;
1301 hblank_reg = HBLANK_B;
1302 vsync_reg = VSYNC_B;
1303 vtotal_reg = VTOTAL_B;
1304 vblank_reg = VBLANK_B;
1305 src_size_reg = SRC_SIZE_B;
1310 pipe_conf = &hw->pipe_a_conf;
1317 ss = &hw->src_size_a;
1321 pipe_conf_reg = PIPEACONF;
1322 pipe_stat_reg = PIPEASTAT;
1323 hsync_reg = HSYNC_A;
1324 htotal_reg = HTOTAL_A;
1325 hblank_reg = HBLANK_A;
1326 vsync_reg = VSYNC_A;
1327 vtotal_reg = VTOTAL_A;
1328 vblank_reg = VBLANK_A;
1329 src_size_reg = SRC_SIZE_A;
1333 tmp = INREG(pipe_conf_reg);
1334 tmp &= ~PIPECONF_ENABLE;
1335 OUTREG(pipe_conf_reg, tmp);
1339 tmp_val[count % 3] = INREG(PIPEA_DSL);
1340 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1344 if (count % 200 == 0) {
1345 tmp = INREG(pipe_conf_reg);
1346 tmp &= ~PIPECONF_ENABLE;
1347 OUTREG(pipe_conf_reg, tmp);
1349 } while (count < 2000);
1351 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1353 /* Disable planes A and B. */
1354 tmp = INREG(DSPACNTR);
1355 tmp &= ~DISPPLANE_PLANE_ENABLE;
1356 OUTREG(DSPACNTR, tmp);
1357 tmp = INREG(DSPBCNTR);
1358 tmp &= ~DISPPLANE_PLANE_ENABLE;
1359 OUTREG(DSPBCNTR, tmp);
1361 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1364 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1365 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1366 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1370 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1371 tmp |= ADPA_DPMS_D3;
1374 /* do some funky magic - xyzzy */
1375 OUTREG(0x61204, 0xabcd0000);
1378 tmp = INREG(dpll_reg);
1379 tmp &= ~DPLL_VCO_ENABLE;
1380 OUTREG(dpll_reg, tmp);
1382 /* Set PLL parameters */
1383 OUTREG(fp0_reg, *fp0);
1384 OUTREG(fp1_reg, *fp1);
1387 OUTREG(dpll_reg, *dpll);
1390 OUTREG(DVOB, hw->dvob);
1391 OUTREG(DVOC, hw->dvoc);
1393 /* undo funky magic */
1394 OUTREG(0x61204, 0x00000000);
1397 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1398 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1400 /* Set pipe parameters */
1401 OUTREG(hsync_reg, *hs);
1402 OUTREG(hblank_reg, *hb);
1403 OUTREG(htotal_reg, *ht);
1404 OUTREG(vsync_reg, *vs);
1405 OUTREG(vblank_reg, *vb);
1406 OUTREG(vtotal_reg, *vt);
1407 OUTREG(src_size_reg, *ss);
1409 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1410 FB_VMODE_ODD_FLD_FIRST)) {
1411 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1412 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1414 case FB_VMODE_INTERLACED: /* even lines first */
1415 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1417 default: /* non-interlaced */
1418 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1421 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1425 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1426 tmp |= ADPA_DPMS_D0;
1429 /* setup display plane */
1430 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1432 * i830M errata: the display plane must be enabled
1433 * to allow writes to the other bits in the plane
1436 tmp = INREG(DSPACNTR);
1437 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1438 tmp |= DISPPLANE_PLANE_ENABLE;
1439 OUTREG(DSPACNTR, tmp);
1441 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1446 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1447 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1448 OUTREG(DSPABASE, hw->disp_a_base);
1452 tmp = INREG(DSPACNTR);
1453 tmp |= DISPPLANE_PLANE_ENABLE;
1454 OUTREG(DSPACNTR, tmp);
1455 OUTREG(DSPABASE, hw->disp_a_base);
1461 /* forward declarations */
1462 static void refresh_ring(struct intelfb_info *dinfo);
1463 static void reset_state(struct intelfb_info *dinfo);
1464 static void do_flush(struct intelfb_info *dinfo);
1466 static u32 get_ring_space(struct intelfb_info *dinfo)
1470 if (dinfo->ring_tail >= dinfo->ring_head)
1471 ring_space = dinfo->ring.size -
1472 (dinfo->ring_tail - dinfo->ring_head);
1474 ring_space = dinfo->ring_head - dinfo->ring_tail;
1476 if (ring_space > RING_MIN_FREE)
1477 ring_space -= RING_MIN_FREE;
1484 static int wait_ring(struct intelfb_info *dinfo, int n)
1488 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1491 DBG_MSG("wait_ring: %d\n", n);
1494 end = jiffies + (HZ * 3);
1495 while (dinfo->ring_space < n) {
1496 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1497 dinfo->ring_space = get_ring_space(dinfo);
1499 if (dinfo->ring_head != last_head) {
1500 end = jiffies + (HZ * 3);
1501 last_head = dinfo->ring_head;
1504 if (time_before(end, jiffies)) {
1508 refresh_ring(dinfo);
1510 end = jiffies + (HZ * 3);
1513 WRN_MSG("ring buffer : space: %d wanted %d\n",
1514 dinfo->ring_space, n);
1515 WRN_MSG("lockup - turning off hardware "
1517 dinfo->ring_lockup = 1;
1526 static void do_flush(struct intelfb_info *dinfo)
1529 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1534 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1537 DBG_MSG("intelfbhw_do_sync\n");
1544 * Send a flush, then wait until the ring is empty. This is what
1545 * the XFree86 driver does, and actually it doesn't seem a lot worse
1546 * than the recommended method (both have problems).
1549 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1550 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1553 static void refresh_ring(struct intelfb_info *dinfo)
1556 DBG_MSG("refresh_ring\n");
1559 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1560 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1561 dinfo->ring_space = get_ring_space(dinfo);
1564 static void reset_state(struct intelfb_info *dinfo)
1570 DBG_MSG("reset_state\n");
1573 for (i = 0; i < FENCE_NUM; i++)
1574 OUTREG(FENCE + (i << 2), 0);
1576 /* Flush the ring buffer if it's enabled. */
1577 tmp = INREG(PRI_RING_LENGTH);
1578 if (tmp & RING_ENABLE) {
1580 DBG_MSG("reset_state: ring was enabled\n");
1582 refresh_ring(dinfo);
1583 intelfbhw_do_sync(dinfo);
1587 OUTREG(PRI_RING_LENGTH, 0);
1588 OUTREG(PRI_RING_HEAD, 0);
1589 OUTREG(PRI_RING_TAIL, 0);
1590 OUTREG(PRI_RING_START, 0);
1593 /* Stop the 2D engine, and turn off the ring buffer. */
1594 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1597 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1598 dinfo->accel, dinfo->ring_active);
1604 dinfo->ring_active = 0;
1609 * Enable the ring buffer, and initialise the 2D engine.
1610 * It is assumed that the graphics engine has been stopped by previously
1611 * calling intelfb_2d_stop().
1613 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1616 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1617 dinfo->accel, dinfo->ring_active);
1623 /* Initialise the primary ring buffer. */
1624 OUTREG(PRI_RING_LENGTH, 0);
1625 OUTREG(PRI_RING_TAIL, 0);
1626 OUTREG(PRI_RING_HEAD, 0);
1628 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1629 OUTREG(PRI_RING_LENGTH,
1630 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1631 RING_NO_REPORT | RING_ENABLE);
1632 refresh_ring(dinfo);
1633 dinfo->ring_active = 1;
1636 /* 2D fillrect (solid fill or invert) */
1637 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1638 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1640 u32 br00, br09, br13, br14, br16;
1643 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1644 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1647 br00 = COLOR_BLT_CMD;
1648 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1649 br13 = (rop << ROP_SHIFT) | pitch;
1650 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1655 br13 |= COLOR_DEPTH_8;
1658 br13 |= COLOR_DEPTH_16;
1661 br13 |= COLOR_DEPTH_32;
1662 br00 |= WRITE_ALPHA | WRITE_RGB;
1676 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1677 dinfo->ring_tail, dinfo->ring_space);
1682 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1683 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1685 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1688 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1689 curx, cury, dstx, dsty, w, h, pitch, bpp);
1692 br00 = XY_SRC_COPY_BLT_CMD;
1693 br09 = dinfo->fb_start;
1694 br11 = (pitch << PITCH_SHIFT);
1695 br12 = dinfo->fb_start;
1696 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1697 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1698 br23 = ((dstx + w) << WIDTH_SHIFT) |
1699 ((dsty + h) << HEIGHT_SHIFT);
1700 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1704 br13 |= COLOR_DEPTH_8;
1707 br13 |= COLOR_DEPTH_16;
1710 br13 |= COLOR_DEPTH_32;
1711 br00 |= WRITE_ALPHA | WRITE_RGB;
1727 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1728 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1731 int nbytes, ndwords, pad, tmp;
1732 u32 br00, br09, br13, br18, br19, br22, br23;
1733 int dat, ix, iy, iw;
1737 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1740 /* size in bytes of a padded scanline */
1741 nbytes = ROUND_UP_TO(w, 16) / 8;
1743 /* Total bytes of padded scanline data to write out. */
1744 nbytes = nbytes * h;
1747 * Check if the glyph data exceeds the immediate mode limit.
1748 * It would take a large font (1K pixels) to hit this limit.
1750 if (nbytes > MAX_MONO_IMM_SIZE)
1753 /* Src data is packaged a dword (32-bit) at a time. */
1754 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1757 * Ring has to be padded to a quad word. But because the command starts
1758 with 7 bytes, pad only if there is an even number of ndwords
1760 pad = !(ndwords % 2);
1762 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1763 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1764 br09 = dinfo->fb_start;
1765 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1768 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1769 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1773 br13 |= COLOR_DEPTH_8;
1776 br13 |= COLOR_DEPTH_16;
1779 br13 |= COLOR_DEPTH_32;
1780 br00 |= WRITE_ALPHA | WRITE_RGB;
1784 START_RING(8 + ndwords);
1793 iw = ROUND_UP_TO(w, 8) / 8;
1796 for (j = 0; j < 2; ++j) {
1797 for (i = 0; i < 2; ++i) {
1798 if (ix != iw || i == 0)
1799 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1801 if (ix == iw && iy != (h-1)) {
1815 /* HW cursor functions. */
1816 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1821 DBG_MSG("intelfbhw_cursor_init\n");
1824 if (dinfo->mobile || IS_I9XX(dinfo)) {
1825 if (!dinfo->cursor.physical)
1827 tmp = INREG(CURSOR_A_CONTROL);
1828 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1829 CURSOR_MEM_TYPE_LOCAL |
1830 (1 << CURSOR_PIPE_SELECT_SHIFT));
1831 tmp |= CURSOR_MODE_DISABLE;
1832 OUTREG(CURSOR_A_CONTROL, tmp);
1833 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1835 tmp = INREG(CURSOR_CONTROL);
1836 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1837 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1838 tmp = CURSOR_FORMAT_3C;
1839 OUTREG(CURSOR_CONTROL, tmp);
1840 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1841 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1842 (64 << CURSOR_SIZE_V_SHIFT);
1843 OUTREG(CURSOR_SIZE, tmp);
1847 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1852 DBG_MSG("intelfbhw_cursor_hide\n");
1855 dinfo->cursor_on = 0;
1856 if (dinfo->mobile || IS_I9XX(dinfo)) {
1857 if (!dinfo->cursor.physical)
1859 tmp = INREG(CURSOR_A_CONTROL);
1860 tmp &= ~CURSOR_MODE_MASK;
1861 tmp |= CURSOR_MODE_DISABLE;
1862 OUTREG(CURSOR_A_CONTROL, tmp);
1864 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1866 tmp = INREG(CURSOR_CONTROL);
1867 tmp &= ~CURSOR_ENABLE;
1868 OUTREG(CURSOR_CONTROL, tmp);
1872 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1877 DBG_MSG("intelfbhw_cursor_show\n");
1880 dinfo->cursor_on = 1;
1882 if (dinfo->cursor_blanked)
1885 if (dinfo->mobile || IS_I9XX(dinfo)) {
1886 if (!dinfo->cursor.physical)
1888 tmp = INREG(CURSOR_A_CONTROL);
1889 tmp &= ~CURSOR_MODE_MASK;
1890 tmp |= CURSOR_MODE_64_4C_AX;
1891 OUTREG(CURSOR_A_CONTROL, tmp);
1893 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1895 tmp = INREG(CURSOR_CONTROL);
1896 tmp |= CURSOR_ENABLE;
1897 OUTREG(CURSOR_CONTROL, tmp);
1901 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1906 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1910 * Sets the position. The coordinates are assumed to already
1911 * have any offset adjusted. Assume that the cursor is never
1912 * completely off-screen, and that x, y are always >= 0.
1915 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1916 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1917 OUTREG(CURSOR_A_POSITION, tmp);
1920 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1923 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1926 DBG_MSG("intelfbhw_cursor_setcolor\n");
1929 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1930 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1931 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1932 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1935 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1938 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1939 int i, j, w = width / 8;
1940 int mod = width % 8, t_mask, d_mask;
1943 DBG_MSG("intelfbhw_cursor_load\n");
1946 if (!dinfo->cursor.virtual)
1949 t_mask = 0xff >> mod;
1950 d_mask = ~(0xff >> mod);
1951 for (i = height; i--; ) {
1952 for (j = 0; j < w; j++) {
1953 writeb(0x00, addr + j);
1954 writeb(*(data++), addr + j+8);
1957 writeb(t_mask, addr + j);
1958 writeb(*(data++) & d_mask, addr + j+8);
1964 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1966 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1970 DBG_MSG("intelfbhw_cursor_reset\n");
1973 if (!dinfo->cursor.virtual)
1976 for (i = 64; i--; ) {
1977 for (j = 0; j < 8; j++) {
1978 writeb(0xff, addr + j+0);
1979 writeb(0x00, addr + j+8);
1985 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1988 struct intelfb_info *dinfo = dev_id;
1990 spin_lock(&dinfo->int_lock);
1993 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
1994 tmp &= PIPE_A_EVENT_INTERRUPT;
1996 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
1999 spin_unlock(&dinfo->int_lock);
2000 return IRQ_RETVAL(0); /* not us */
2003 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2004 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2007 if (dinfo->vsync.pan_display) {
2008 dinfo->vsync.pan_display = 0;
2009 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2012 dinfo->vsync.count++;
2013 wake_up_interruptible(&dinfo->vsync.wait);
2015 spin_unlock(&dinfo->int_lock);
2017 return IRQ_RETVAL(1);
2020 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2023 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2024 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2025 "intelfb", dinfo)) {
2026 clear_bit(0, &dinfo->irq_flags);
2030 spin_lock_irq(&dinfo->int_lock);
2031 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2034 spin_lock_irq(&dinfo->int_lock);
2036 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2037 tmp = PIPE_A_EVENT_INTERRUPT;
2039 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2040 if (tmp != INREG16(IER)) {
2041 DBG_MSG("changing IER to 0x%X\n", tmp);
2045 spin_unlock_irq(&dinfo->int_lock);
2049 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2051 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2052 if (dinfo->vsync.pan_display) {
2053 dinfo->vsync.pan_display = 0;
2054 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2056 spin_lock_irq(&dinfo->int_lock);
2057 OUTREG16(HWSTAM, 0xffff);
2058 OUTREG16(IMR, 0xffff);
2061 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2062 spin_unlock_irq(&dinfo->int_lock);
2064 free_irq(dinfo->pdev->irq, dinfo);
2068 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2070 struct intelfb_vsync *vsync;
2076 vsync = &dinfo->vsync;
2082 ret = intelfbhw_enable_irq(dinfo);
2086 count = vsync->count;
2087 ret = wait_event_interruptible_timeout(vsync->wait,
2088 count != vsync->count, HZ / 10);
2092 DBG_MSG("wait_for_vsync timed out!\n");