[NET]: Move the get_net() from sock_copy()
[linux-2.6] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:     $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:     Ross Biro
13  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *              Alan Cox        :       Numerous verify_area() problems
19  *              Alan Cox        :       Connecting on a connecting socket
20  *                                      now returns an error for tcp.
21  *              Alan Cox        :       sock->protocol is set correctly.
22  *                                      and is not sometimes left as 0.
23  *              Alan Cox        :       connect handles icmp errors on a
24  *                                      connect properly. Unfortunately there
25  *                                      is a restart syscall nasty there. I
26  *                                      can't match BSD without hacking the C
27  *                                      library. Ideas urgently sought!
28  *              Alan Cox        :       Disallow bind() to addresses that are
29  *                                      not ours - especially broadcast ones!!
30  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
31  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
32  *                                      instead they leave that for the DESTROY timer.
33  *              Alan Cox        :       Clean up error flag in accept
34  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
35  *                                      was buggy. Put a remove_sock() in the handler
36  *                                      for memory when we hit 0. Also altered the timer
37  *                                      code. The ACK stuff can wait and needs major
38  *                                      TCP layer surgery.
39  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
40  *                                      and fixed timer/inet_bh race.
41  *              Alan Cox        :       Added zapped flag for TCP
42  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
43  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
45  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
48  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
49  *      Pauline Middelink       :       identd support
50  *              Alan Cox        :       Fixed connect() taking signals I think.
51  *              Alan Cox        :       SO_LINGER supported
52  *              Alan Cox        :       Error reporting fixes
53  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
54  *              Alan Cox        :       inet sockets don't set sk->type!
55  *              Alan Cox        :       Split socket option code
56  *              Alan Cox        :       Callbacks
57  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
58  *              Alex            :       Removed restriction on inet fioctl
59  *              Alan Cox        :       Splitting INET from NET core
60  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
61  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
62  *              Alan Cox        :       Split IP from generic code
63  *              Alan Cox        :       New kfree_skbmem()
64  *              Alan Cox        :       Make SO_DEBUG superuser only.
65  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
66  *                                      (compatibility fix)
67  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
68  *              Alan Cox        :       Allocator for a socket is settable.
69  *              Alan Cox        :       SO_ERROR includes soft errors.
70  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
71  *              Alan Cox        :       Generic socket allocation to make hooks
72  *                                      easier (suggested by Craig Metz).
73  *              Michael Pall    :       SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
81  *              Andi Kleen      :       Fix write_space callback
82  *              Chris Evans     :       Security fixes - signedness again
83  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *              This program is free software; you can redistribute it and/or
89  *              modify it under the terms of the GNU General Public License
90  *              as published by the Free Software Foundation; either version
91  *              2 of the License, or (at your option) any later version.
92  */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127
128 #include <linux/filter.h>
129
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS         256
203 #define _SK_MEM_OVERHEAD        (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218         struct timeval tv;
219
220         if (optlen < sizeof(tv))
221                 return -EINVAL;
222         if (copy_from_user(&tv, optval, sizeof(tv)))
223                 return -EFAULT;
224         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225                 return -EDOM;
226
227         if (tv.tv_sec < 0) {
228                 static int warned __read_mostly;
229
230                 *timeo_p = 0;
231                 if (warned < 10 && net_ratelimit())
232                         warned++;
233                         printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234                                "tries to set negative timeout\n",
235                                 current->comm, task_pid_nr(current));
236                 return 0;
237         }
238         *timeo_p = MAX_SCHEDULE_TIMEOUT;
239         if (tv.tv_sec == 0 && tv.tv_usec == 0)
240                 return 0;
241         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242                 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243         return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248         static int warned;
249         static char warncomm[TASK_COMM_LEN];
250         if (strcmp(warncomm, current->comm) && warned < 5) {
251                 strcpy(warncomm,  current->comm);
252                 printk(KERN_WARNING "process `%s' is using obsolete "
253                        "%s SO_BSDCOMPAT\n", warncomm, name);
254                 warned++;
255         }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260         if (sock_flag(sk, SOCK_TIMESTAMP)) {
261                 sock_reset_flag(sk, SOCK_TIMESTAMP);
262                 net_disable_timestamp();
263         }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269         int err = 0;
270         int skb_len;
271
272         /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273            number of warnings when compiling with -W --ANK
274          */
275         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276             (unsigned)sk->sk_rcvbuf) {
277                 err = -ENOMEM;
278                 goto out;
279         }
280
281         err = sk_filter(sk, skb);
282         if (err)
283                 goto out;
284
285         skb->dev = NULL;
286         skb_set_owner_r(skb, sk);
287
288         /* Cache the SKB length before we tack it onto the receive
289          * queue.  Once it is added it no longer belongs to us and
290          * may be freed by other threads of control pulling packets
291          * from the queue.
292          */
293         skb_len = skb->len;
294
295         skb_queue_tail(&sk->sk_receive_queue, skb);
296
297         if (!sock_flag(sk, SOCK_DEAD))
298                 sk->sk_data_ready(sk, skb_len);
299 out:
300         return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306         int rc = NET_RX_SUCCESS;
307
308         if (sk_filter(sk, skb))
309                 goto discard_and_relse;
310
311         skb->dev = NULL;
312
313         if (nested)
314                 bh_lock_sock_nested(sk);
315         else
316                 bh_lock_sock(sk);
317         if (!sock_owned_by_user(sk)) {
318                 /*
319                  * trylock + unlock semantics:
320                  */
321                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322
323                 rc = sk->sk_backlog_rcv(sk, skb);
324
325                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326         } else
327                 sk_add_backlog(sk, skb);
328         bh_unlock_sock(sk);
329 out:
330         sock_put(sk);
331         return rc;
332 discard_and_relse:
333         kfree_skb(skb);
334         goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340         struct dst_entry *dst = sk->sk_dst_cache;
341
342         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343                 sk->sk_dst_cache = NULL;
344                 dst_release(dst);
345                 return NULL;
346         }
347
348         return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354         struct dst_entry *dst = sk_dst_get(sk);
355
356         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357                 sk_dst_reset(sk);
358                 dst_release(dst);
359                 return NULL;
360         }
361
362         return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368         int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370         struct net *net = sk->sk_net;
371         char devname[IFNAMSIZ];
372         int index;
373
374         /* Sorry... */
375         ret = -EPERM;
376         if (!capable(CAP_NET_RAW))
377                 goto out;
378
379         ret = -EINVAL;
380         if (optlen < 0)
381                 goto out;
382
383         /* Bind this socket to a particular device like "eth0",
384          * as specified in the passed interface name. If the
385          * name is "" or the option length is zero the socket
386          * is not bound.
387          */
388         if (optlen > IFNAMSIZ - 1)
389                 optlen = IFNAMSIZ - 1;
390         memset(devname, 0, sizeof(devname));
391
392         ret = -EFAULT;
393         if (copy_from_user(devname, optval, optlen))
394                 goto out;
395
396         if (devname[0] == '\0') {
397                 index = 0;
398         } else {
399                 struct net_device *dev = dev_get_by_name(net, devname);
400
401                 ret = -ENODEV;
402                 if (!dev)
403                         goto out;
404
405                 index = dev->ifindex;
406                 dev_put(dev);
407         }
408
409         lock_sock(sk);
410         sk->sk_bound_dev_if = index;
411         sk_dst_reset(sk);
412         release_sock(sk);
413
414         ret = 0;
415
416 out:
417 #endif
418
419         return ret;
420 }
421
422 /*
423  *      This is meant for all protocols to use and covers goings on
424  *      at the socket level. Everything here is generic.
425  */
426
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428                     char __user *optval, int optlen)
429 {
430         struct sock *sk=sock->sk;
431         int val;
432         int valbool;
433         struct linger ling;
434         int ret = 0;
435
436         /*
437          *      Options without arguments
438          */
439
440 #ifdef SO_DONTLINGER            /* Compatibility item... */
441         if (optname == SO_DONTLINGER) {
442                 lock_sock(sk);
443                 sock_reset_flag(sk, SOCK_LINGER);
444                 release_sock(sk);
445                 return 0;
446         }
447 #endif
448
449         if (optname == SO_BINDTODEVICE)
450                 return sock_bindtodevice(sk, optval, optlen);
451
452         if (optlen < sizeof(int))
453                 return -EINVAL;
454
455         if (get_user(val, (int __user *)optval))
456                 return -EFAULT;
457
458         valbool = val?1:0;
459
460         lock_sock(sk);
461
462         switch(optname) {
463         case SO_DEBUG:
464                 if (val && !capable(CAP_NET_ADMIN)) {
465                         ret = -EACCES;
466                 }
467                 else if (valbool)
468                         sock_set_flag(sk, SOCK_DBG);
469                 else
470                         sock_reset_flag(sk, SOCK_DBG);
471                 break;
472         case SO_REUSEADDR:
473                 sk->sk_reuse = valbool;
474                 break;
475         case SO_TYPE:
476         case SO_ERROR:
477                 ret = -ENOPROTOOPT;
478                 break;
479         case SO_DONTROUTE:
480                 if (valbool)
481                         sock_set_flag(sk, SOCK_LOCALROUTE);
482                 else
483                         sock_reset_flag(sk, SOCK_LOCALROUTE);
484                 break;
485         case SO_BROADCAST:
486                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487                 break;
488         case SO_SNDBUF:
489                 /* Don't error on this BSD doesn't and if you think
490                    about it this is right. Otherwise apps have to
491                    play 'guess the biggest size' games. RCVBUF/SNDBUF
492                    are treated in BSD as hints */
493
494                 if (val > sysctl_wmem_max)
495                         val = sysctl_wmem_max;
496 set_sndbuf:
497                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498                 if ((val * 2) < SOCK_MIN_SNDBUF)
499                         sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500                 else
501                         sk->sk_sndbuf = val * 2;
502
503                 /*
504                  *      Wake up sending tasks if we
505                  *      upped the value.
506                  */
507                 sk->sk_write_space(sk);
508                 break;
509
510         case SO_SNDBUFFORCE:
511                 if (!capable(CAP_NET_ADMIN)) {
512                         ret = -EPERM;
513                         break;
514                 }
515                 goto set_sndbuf;
516
517         case SO_RCVBUF:
518                 /* Don't error on this BSD doesn't and if you think
519                    about it this is right. Otherwise apps have to
520                    play 'guess the biggest size' games. RCVBUF/SNDBUF
521                    are treated in BSD as hints */
522
523                 if (val > sysctl_rmem_max)
524                         val = sysctl_rmem_max;
525 set_rcvbuf:
526                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527                 /*
528                  * We double it on the way in to account for
529                  * "struct sk_buff" etc. overhead.   Applications
530                  * assume that the SO_RCVBUF setting they make will
531                  * allow that much actual data to be received on that
532                  * socket.
533                  *
534                  * Applications are unaware that "struct sk_buff" and
535                  * other overheads allocate from the receive buffer
536                  * during socket buffer allocation.
537                  *
538                  * And after considering the possible alternatives,
539                  * returning the value we actually used in getsockopt
540                  * is the most desirable behavior.
541                  */
542                 if ((val * 2) < SOCK_MIN_RCVBUF)
543                         sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544                 else
545                         sk->sk_rcvbuf = val * 2;
546                 break;
547
548         case SO_RCVBUFFORCE:
549                 if (!capable(CAP_NET_ADMIN)) {
550                         ret = -EPERM;
551                         break;
552                 }
553                 goto set_rcvbuf;
554
555         case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557                 if (sk->sk_protocol == IPPROTO_TCP)
558                         tcp_set_keepalive(sk, valbool);
559 #endif
560                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561                 break;
562
563         case SO_OOBINLINE:
564                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565                 break;
566
567         case SO_NO_CHECK:
568                 sk->sk_no_check = valbool;
569                 break;
570
571         case SO_PRIORITY:
572                 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573                         sk->sk_priority = val;
574                 else
575                         ret = -EPERM;
576                 break;
577
578         case SO_LINGER:
579                 if (optlen < sizeof(ling)) {
580                         ret = -EINVAL;  /* 1003.1g */
581                         break;
582                 }
583                 if (copy_from_user(&ling,optval,sizeof(ling))) {
584                         ret = -EFAULT;
585                         break;
586                 }
587                 if (!ling.l_onoff)
588                         sock_reset_flag(sk, SOCK_LINGER);
589                 else {
590 #if (BITS_PER_LONG == 32)
591                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593                         else
594 #endif
595                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596                         sock_set_flag(sk, SOCK_LINGER);
597                 }
598                 break;
599
600         case SO_BSDCOMPAT:
601                 sock_warn_obsolete_bsdism("setsockopt");
602                 break;
603
604         case SO_PASSCRED:
605                 if (valbool)
606                         set_bit(SOCK_PASSCRED, &sock->flags);
607                 else
608                         clear_bit(SOCK_PASSCRED, &sock->flags);
609                 break;
610
611         case SO_TIMESTAMP:
612         case SO_TIMESTAMPNS:
613                 if (valbool)  {
614                         if (optname == SO_TIMESTAMP)
615                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616                         else
617                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618                         sock_set_flag(sk, SOCK_RCVTSTAMP);
619                         sock_enable_timestamp(sk);
620                 } else {
621                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
622                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623                 }
624                 break;
625
626         case SO_RCVLOWAT:
627                 if (val < 0)
628                         val = INT_MAX;
629                 sk->sk_rcvlowat = val ? : 1;
630                 break;
631
632         case SO_RCVTIMEO:
633                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634                 break;
635
636         case SO_SNDTIMEO:
637                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638                 break;
639
640         case SO_ATTACH_FILTER:
641                 ret = -EINVAL;
642                 if (optlen == sizeof(struct sock_fprog)) {
643                         struct sock_fprog fprog;
644
645                         ret = -EFAULT;
646                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
647                                 break;
648
649                         ret = sk_attach_filter(&fprog, sk);
650                 }
651                 break;
652
653         case SO_DETACH_FILTER:
654                 ret = sk_detach_filter(sk);
655                 break;
656
657         case SO_PASSSEC:
658                 if (valbool)
659                         set_bit(SOCK_PASSSEC, &sock->flags);
660                 else
661                         clear_bit(SOCK_PASSSEC, &sock->flags);
662                 break;
663
664                 /* We implement the SO_SNDLOWAT etc to
665                    not be settable (1003.1g 5.3) */
666         default:
667                 ret = -ENOPROTOOPT;
668                 break;
669         }
670         release_sock(sk);
671         return ret;
672 }
673
674
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676                     char __user *optval, int __user *optlen)
677 {
678         struct sock *sk = sock->sk;
679
680         union {
681                 int val;
682                 struct linger ling;
683                 struct timeval tm;
684         } v;
685
686         unsigned int lv = sizeof(int);
687         int len;
688
689         if (get_user(len, optlen))
690                 return -EFAULT;
691         if (len < 0)
692                 return -EINVAL;
693
694         switch(optname) {
695         case SO_DEBUG:
696                 v.val = sock_flag(sk, SOCK_DBG);
697                 break;
698
699         case SO_DONTROUTE:
700                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
701                 break;
702
703         case SO_BROADCAST:
704                 v.val = !!sock_flag(sk, SOCK_BROADCAST);
705                 break;
706
707         case SO_SNDBUF:
708                 v.val = sk->sk_sndbuf;
709                 break;
710
711         case SO_RCVBUF:
712                 v.val = sk->sk_rcvbuf;
713                 break;
714
715         case SO_REUSEADDR:
716                 v.val = sk->sk_reuse;
717                 break;
718
719         case SO_KEEPALIVE:
720                 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721                 break;
722
723         case SO_TYPE:
724                 v.val = sk->sk_type;
725                 break;
726
727         case SO_ERROR:
728                 v.val = -sock_error(sk);
729                 if (v.val==0)
730                         v.val = xchg(&sk->sk_err_soft, 0);
731                 break;
732
733         case SO_OOBINLINE:
734                 v.val = !!sock_flag(sk, SOCK_URGINLINE);
735                 break;
736
737         case SO_NO_CHECK:
738                 v.val = sk->sk_no_check;
739                 break;
740
741         case SO_PRIORITY:
742                 v.val = sk->sk_priority;
743                 break;
744
745         case SO_LINGER:
746                 lv              = sizeof(v.ling);
747                 v.ling.l_onoff  = !!sock_flag(sk, SOCK_LINGER);
748                 v.ling.l_linger = sk->sk_lingertime / HZ;
749                 break;
750
751         case SO_BSDCOMPAT:
752                 sock_warn_obsolete_bsdism("getsockopt");
753                 break;
754
755         case SO_TIMESTAMP:
756                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
758                 break;
759
760         case SO_TIMESTAMPNS:
761                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762                 break;
763
764         case SO_RCVTIMEO:
765                 lv=sizeof(struct timeval);
766                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767                         v.tm.tv_sec = 0;
768                         v.tm.tv_usec = 0;
769                 } else {
770                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772                 }
773                 break;
774
775         case SO_SNDTIMEO:
776                 lv=sizeof(struct timeval);
777                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778                         v.tm.tv_sec = 0;
779                         v.tm.tv_usec = 0;
780                 } else {
781                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783                 }
784                 break;
785
786         case SO_RCVLOWAT:
787                 v.val = sk->sk_rcvlowat;
788                 break;
789
790         case SO_SNDLOWAT:
791                 v.val=1;
792                 break;
793
794         case SO_PASSCRED:
795                 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796                 break;
797
798         case SO_PEERCRED:
799                 if (len > sizeof(sk->sk_peercred))
800                         len = sizeof(sk->sk_peercred);
801                 if (copy_to_user(optval, &sk->sk_peercred, len))
802                         return -EFAULT;
803                 goto lenout;
804
805         case SO_PEERNAME:
806         {
807                 char address[128];
808
809                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810                         return -ENOTCONN;
811                 if (lv < len)
812                         return -EINVAL;
813                 if (copy_to_user(optval, address, len))
814                         return -EFAULT;
815                 goto lenout;
816         }
817
818         /* Dubious BSD thing... Probably nobody even uses it, but
819          * the UNIX standard wants it for whatever reason... -DaveM
820          */
821         case SO_ACCEPTCONN:
822                 v.val = sk->sk_state == TCP_LISTEN;
823                 break;
824
825         case SO_PASSSEC:
826                 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827                 break;
828
829         case SO_PEERSEC:
830                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
831
832         default:
833                 return -ENOPROTOOPT;
834         }
835
836         if (len > lv)
837                 len = lv;
838         if (copy_to_user(optval, &v, len))
839                 return -EFAULT;
840 lenout:
841         if (put_user(len, optlen))
842                 return -EFAULT;
843         return 0;
844 }
845
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853         sock_lock_init_class_and_name(sk,
854                         af_family_slock_key_strings[sk->sk_family],
855                         af_family_slock_keys + sk->sk_family,
856                         af_family_key_strings[sk->sk_family],
857                         af_family_keys + sk->sk_family);
858 }
859
860 static void sock_copy(struct sock *nsk, const struct sock *osk)
861 {
862 #ifdef CONFIG_SECURITY_NETWORK
863         void *sptr = nsk->sk_security;
864 #endif
865
866         memcpy(nsk, osk, osk->sk_prot->obj_size);
867 #ifdef CONFIG_SECURITY_NETWORK
868         nsk->sk_security = sptr;
869         security_sk_clone(osk, nsk);
870 #endif
871 }
872
873 /**
874  *      sk_alloc - All socket objects are allocated here
875  *      @net: the applicable net namespace
876  *      @family: protocol family
877  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
878  *      @prot: struct proto associated with this new sock instance
879  *      @zero_it: if we should zero the newly allocated sock
880  */
881 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
882                       struct proto *prot, int zero_it)
883 {
884         struct sock *sk = NULL;
885         struct kmem_cache *slab = prot->slab;
886
887         if (slab != NULL)
888                 sk = kmem_cache_alloc(slab, priority);
889         else
890                 sk = kmalloc(prot->obj_size, priority);
891
892         if (sk) {
893                 if (zero_it) {
894                         memset(sk, 0, prot->obj_size);
895                         sk->sk_family = family;
896                         /*
897                          * See comment in struct sock definition to understand
898                          * why we need sk_prot_creator -acme
899                          */
900                         sk->sk_prot = sk->sk_prot_creator = prot;
901                         sock_lock_init(sk);
902                         sk->sk_net = get_net(net);
903                 }
904
905                 if (security_sk_alloc(sk, family, priority))
906                         goto out_free;
907
908                 if (!try_module_get(prot->owner))
909                         goto out_free;
910         }
911         return sk;
912
913 out_free:
914         if (slab != NULL)
915                 kmem_cache_free(slab, sk);
916         else
917                 kfree(sk);
918         return NULL;
919 }
920
921 void sk_free(struct sock *sk)
922 {
923         struct sk_filter *filter;
924         struct module *owner = sk->sk_prot_creator->owner;
925
926         if (sk->sk_destruct)
927                 sk->sk_destruct(sk);
928
929         filter = rcu_dereference(sk->sk_filter);
930         if (filter) {
931                 sk_filter_uncharge(sk, filter);
932                 rcu_assign_pointer(sk->sk_filter, NULL);
933         }
934
935         sock_disable_timestamp(sk);
936
937         if (atomic_read(&sk->sk_omem_alloc))
938                 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
939                        __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
940
941         security_sk_free(sk);
942         put_net(sk->sk_net);
943         if (sk->sk_prot_creator->slab != NULL)
944                 kmem_cache_free(sk->sk_prot_creator->slab, sk);
945         else
946                 kfree(sk);
947         module_put(owner);
948 }
949
950 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
951 {
952         struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
953
954         if (newsk != NULL) {
955                 struct sk_filter *filter;
956
957                 sock_copy(newsk, sk);
958
959                 /* SANITY */
960                 get_net(newsk->sk_net);
961                 sk_node_init(&newsk->sk_node);
962                 sock_lock_init(newsk);
963                 bh_lock_sock(newsk);
964                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
965
966                 atomic_set(&newsk->sk_rmem_alloc, 0);
967                 atomic_set(&newsk->sk_wmem_alloc, 0);
968                 atomic_set(&newsk->sk_omem_alloc, 0);
969                 skb_queue_head_init(&newsk->sk_receive_queue);
970                 skb_queue_head_init(&newsk->sk_write_queue);
971 #ifdef CONFIG_NET_DMA
972                 skb_queue_head_init(&newsk->sk_async_wait_queue);
973 #endif
974
975                 rwlock_init(&newsk->sk_dst_lock);
976                 rwlock_init(&newsk->sk_callback_lock);
977                 lockdep_set_class_and_name(&newsk->sk_callback_lock,
978                                 af_callback_keys + newsk->sk_family,
979                                 af_family_clock_key_strings[newsk->sk_family]);
980
981                 newsk->sk_dst_cache     = NULL;
982                 newsk->sk_wmem_queued   = 0;
983                 newsk->sk_forward_alloc = 0;
984                 newsk->sk_send_head     = NULL;
985                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
986
987                 sock_reset_flag(newsk, SOCK_DONE);
988                 skb_queue_head_init(&newsk->sk_error_queue);
989
990                 filter = newsk->sk_filter;
991                 if (filter != NULL)
992                         sk_filter_charge(newsk, filter);
993
994                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
995                         /* It is still raw copy of parent, so invalidate
996                          * destructor and make plain sk_free() */
997                         newsk->sk_destruct = NULL;
998                         sk_free(newsk);
999                         newsk = NULL;
1000                         goto out;
1001                 }
1002
1003                 newsk->sk_err      = 0;
1004                 newsk->sk_priority = 0;
1005                 atomic_set(&newsk->sk_refcnt, 2);
1006
1007                 /*
1008                  * Increment the counter in the same struct proto as the master
1009                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1010                  * is the same as sk->sk_prot->socks, as this field was copied
1011                  * with memcpy).
1012                  *
1013                  * This _changes_ the previous behaviour, where
1014                  * tcp_create_openreq_child always was incrementing the
1015                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1016                  * to be taken into account in all callers. -acme
1017                  */
1018                 sk_refcnt_debug_inc(newsk);
1019                 newsk->sk_socket = NULL;
1020                 newsk->sk_sleep  = NULL;
1021
1022                 if (newsk->sk_prot->sockets_allocated)
1023                         atomic_inc(newsk->sk_prot->sockets_allocated);
1024         }
1025 out:
1026         return newsk;
1027 }
1028
1029 EXPORT_SYMBOL_GPL(sk_clone);
1030
1031 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1032 {
1033         __sk_dst_set(sk, dst);
1034         sk->sk_route_caps = dst->dev->features;
1035         if (sk->sk_route_caps & NETIF_F_GSO)
1036                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1037         if (sk_can_gso(sk)) {
1038                 if (dst->header_len)
1039                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1040                 else
1041                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1042         }
1043 }
1044 EXPORT_SYMBOL_GPL(sk_setup_caps);
1045
1046 void __init sk_init(void)
1047 {
1048         if (num_physpages <= 4096) {
1049                 sysctl_wmem_max = 32767;
1050                 sysctl_rmem_max = 32767;
1051                 sysctl_wmem_default = 32767;
1052                 sysctl_rmem_default = 32767;
1053         } else if (num_physpages >= 131072) {
1054                 sysctl_wmem_max = 131071;
1055                 sysctl_rmem_max = 131071;
1056         }
1057 }
1058
1059 /*
1060  *      Simple resource managers for sockets.
1061  */
1062
1063
1064 /*
1065  * Write buffer destructor automatically called from kfree_skb.
1066  */
1067 void sock_wfree(struct sk_buff *skb)
1068 {
1069         struct sock *sk = skb->sk;
1070
1071         /* In case it might be waiting for more memory. */
1072         atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1073         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1074                 sk->sk_write_space(sk);
1075         sock_put(sk);
1076 }
1077
1078 /*
1079  * Read buffer destructor automatically called from kfree_skb.
1080  */
1081 void sock_rfree(struct sk_buff *skb)
1082 {
1083         struct sock *sk = skb->sk;
1084
1085         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1086 }
1087
1088
1089 int sock_i_uid(struct sock *sk)
1090 {
1091         int uid;
1092
1093         read_lock(&sk->sk_callback_lock);
1094         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1095         read_unlock(&sk->sk_callback_lock);
1096         return uid;
1097 }
1098
1099 unsigned long sock_i_ino(struct sock *sk)
1100 {
1101         unsigned long ino;
1102
1103         read_lock(&sk->sk_callback_lock);
1104         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1105         read_unlock(&sk->sk_callback_lock);
1106         return ino;
1107 }
1108
1109 /*
1110  * Allocate a skb from the socket's send buffer.
1111  */
1112 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1113                              gfp_t priority)
1114 {
1115         if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1116                 struct sk_buff * skb = alloc_skb(size, priority);
1117                 if (skb) {
1118                         skb_set_owner_w(skb, sk);
1119                         return skb;
1120                 }
1121         }
1122         return NULL;
1123 }
1124
1125 /*
1126  * Allocate a skb from the socket's receive buffer.
1127  */
1128 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1129                              gfp_t priority)
1130 {
1131         if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1132                 struct sk_buff *skb = alloc_skb(size, priority);
1133                 if (skb) {
1134                         skb_set_owner_r(skb, sk);
1135                         return skb;
1136                 }
1137         }
1138         return NULL;
1139 }
1140
1141 /*
1142  * Allocate a memory block from the socket's option memory buffer.
1143  */
1144 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1145 {
1146         if ((unsigned)size <= sysctl_optmem_max &&
1147             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1148                 void *mem;
1149                 /* First do the add, to avoid the race if kmalloc
1150                  * might sleep.
1151                  */
1152                 atomic_add(size, &sk->sk_omem_alloc);
1153                 mem = kmalloc(size, priority);
1154                 if (mem)
1155                         return mem;
1156                 atomic_sub(size, &sk->sk_omem_alloc);
1157         }
1158         return NULL;
1159 }
1160
1161 /*
1162  * Free an option memory block.
1163  */
1164 void sock_kfree_s(struct sock *sk, void *mem, int size)
1165 {
1166         kfree(mem);
1167         atomic_sub(size, &sk->sk_omem_alloc);
1168 }
1169
1170 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1171    I think, these locks should be removed for datagram sockets.
1172  */
1173 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1174 {
1175         DEFINE_WAIT(wait);
1176
1177         clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1178         for (;;) {
1179                 if (!timeo)
1180                         break;
1181                 if (signal_pending(current))
1182                         break;
1183                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1184                 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1185                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1186                         break;
1187                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1188                         break;
1189                 if (sk->sk_err)
1190                         break;
1191                 timeo = schedule_timeout(timeo);
1192         }
1193         finish_wait(sk->sk_sleep, &wait);
1194         return timeo;
1195 }
1196
1197
1198 /*
1199  *      Generic send/receive buffer handlers
1200  */
1201
1202 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1203                                             unsigned long header_len,
1204                                             unsigned long data_len,
1205                                             int noblock, int *errcode)
1206 {
1207         struct sk_buff *skb;
1208         gfp_t gfp_mask;
1209         long timeo;
1210         int err;
1211
1212         gfp_mask = sk->sk_allocation;
1213         if (gfp_mask & __GFP_WAIT)
1214                 gfp_mask |= __GFP_REPEAT;
1215
1216         timeo = sock_sndtimeo(sk, noblock);
1217         while (1) {
1218                 err = sock_error(sk);
1219                 if (err != 0)
1220                         goto failure;
1221
1222                 err = -EPIPE;
1223                 if (sk->sk_shutdown & SEND_SHUTDOWN)
1224                         goto failure;
1225
1226                 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1227                         skb = alloc_skb(header_len, gfp_mask);
1228                         if (skb) {
1229                                 int npages;
1230                                 int i;
1231
1232                                 /* No pages, we're done... */
1233                                 if (!data_len)
1234                                         break;
1235
1236                                 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1237                                 skb->truesize += data_len;
1238                                 skb_shinfo(skb)->nr_frags = npages;
1239                                 for (i = 0; i < npages; i++) {
1240                                         struct page *page;
1241                                         skb_frag_t *frag;
1242
1243                                         page = alloc_pages(sk->sk_allocation, 0);
1244                                         if (!page) {
1245                                                 err = -ENOBUFS;
1246                                                 skb_shinfo(skb)->nr_frags = i;
1247                                                 kfree_skb(skb);
1248                                                 goto failure;
1249                                         }
1250
1251                                         frag = &skb_shinfo(skb)->frags[i];
1252                                         frag->page = page;
1253                                         frag->page_offset = 0;
1254                                         frag->size = (data_len >= PAGE_SIZE ?
1255                                                       PAGE_SIZE :
1256                                                       data_len);
1257                                         data_len -= PAGE_SIZE;
1258                                 }
1259
1260                                 /* Full success... */
1261                                 break;
1262                         }
1263                         err = -ENOBUFS;
1264                         goto failure;
1265                 }
1266                 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1267                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1268                 err = -EAGAIN;
1269                 if (!timeo)
1270                         goto failure;
1271                 if (signal_pending(current))
1272                         goto interrupted;
1273                 timeo = sock_wait_for_wmem(sk, timeo);
1274         }
1275
1276         skb_set_owner_w(skb, sk);
1277         return skb;
1278
1279 interrupted:
1280         err = sock_intr_errno(timeo);
1281 failure:
1282         *errcode = err;
1283         return NULL;
1284 }
1285
1286 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1287                                     int noblock, int *errcode)
1288 {
1289         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1290 }
1291
1292 static void __lock_sock(struct sock *sk)
1293 {
1294         DEFINE_WAIT(wait);
1295
1296         for (;;) {
1297                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1298                                         TASK_UNINTERRUPTIBLE);
1299                 spin_unlock_bh(&sk->sk_lock.slock);
1300                 schedule();
1301                 spin_lock_bh(&sk->sk_lock.slock);
1302                 if (!sock_owned_by_user(sk))
1303                         break;
1304         }
1305         finish_wait(&sk->sk_lock.wq, &wait);
1306 }
1307
1308 static void __release_sock(struct sock *sk)
1309 {
1310         struct sk_buff *skb = sk->sk_backlog.head;
1311
1312         do {
1313                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1314                 bh_unlock_sock(sk);
1315
1316                 do {
1317                         struct sk_buff *next = skb->next;
1318
1319                         skb->next = NULL;
1320                         sk->sk_backlog_rcv(sk, skb);
1321
1322                         /*
1323                          * We are in process context here with softirqs
1324                          * disabled, use cond_resched_softirq() to preempt.
1325                          * This is safe to do because we've taken the backlog
1326                          * queue private:
1327                          */
1328                         cond_resched_softirq();
1329
1330                         skb = next;
1331                 } while (skb != NULL);
1332
1333                 bh_lock_sock(sk);
1334         } while ((skb = sk->sk_backlog.head) != NULL);
1335 }
1336
1337 /**
1338  * sk_wait_data - wait for data to arrive at sk_receive_queue
1339  * @sk:    sock to wait on
1340  * @timeo: for how long
1341  *
1342  * Now socket state including sk->sk_err is changed only under lock,
1343  * hence we may omit checks after joining wait queue.
1344  * We check receive queue before schedule() only as optimization;
1345  * it is very likely that release_sock() added new data.
1346  */
1347 int sk_wait_data(struct sock *sk, long *timeo)
1348 {
1349         int rc;
1350         DEFINE_WAIT(wait);
1351
1352         prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1353         set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1354         rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1355         clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1356         finish_wait(sk->sk_sleep, &wait);
1357         return rc;
1358 }
1359
1360 EXPORT_SYMBOL(sk_wait_data);
1361
1362 /*
1363  * Set of default routines for initialising struct proto_ops when
1364  * the protocol does not support a particular function. In certain
1365  * cases where it makes no sense for a protocol to have a "do nothing"
1366  * function, some default processing is provided.
1367  */
1368
1369 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1370 {
1371         return -EOPNOTSUPP;
1372 }
1373
1374 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1375                     int len, int flags)
1376 {
1377         return -EOPNOTSUPP;
1378 }
1379
1380 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1381 {
1382         return -EOPNOTSUPP;
1383 }
1384
1385 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1386 {
1387         return -EOPNOTSUPP;
1388 }
1389
1390 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1391                     int *len, int peer)
1392 {
1393         return -EOPNOTSUPP;
1394 }
1395
1396 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1397 {
1398         return 0;
1399 }
1400
1401 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1402 {
1403         return -EOPNOTSUPP;
1404 }
1405
1406 int sock_no_listen(struct socket *sock, int backlog)
1407 {
1408         return -EOPNOTSUPP;
1409 }
1410
1411 int sock_no_shutdown(struct socket *sock, int how)
1412 {
1413         return -EOPNOTSUPP;
1414 }
1415
1416 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1417                     char __user *optval, int optlen)
1418 {
1419         return -EOPNOTSUPP;
1420 }
1421
1422 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1423                     char __user *optval, int __user *optlen)
1424 {
1425         return -EOPNOTSUPP;
1426 }
1427
1428 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1429                     size_t len)
1430 {
1431         return -EOPNOTSUPP;
1432 }
1433
1434 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1435                     size_t len, int flags)
1436 {
1437         return -EOPNOTSUPP;
1438 }
1439
1440 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1441 {
1442         /* Mirror missing mmap method error code */
1443         return -ENODEV;
1444 }
1445
1446 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1447 {
1448         ssize_t res;
1449         struct msghdr msg = {.msg_flags = flags};
1450         struct kvec iov;
1451         char *kaddr = kmap(page);
1452         iov.iov_base = kaddr + offset;
1453         iov.iov_len = size;
1454         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1455         kunmap(page);
1456         return res;
1457 }
1458
1459 /*
1460  *      Default Socket Callbacks
1461  */
1462
1463 static void sock_def_wakeup(struct sock *sk)
1464 {
1465         read_lock(&sk->sk_callback_lock);
1466         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1467                 wake_up_interruptible_all(sk->sk_sleep);
1468         read_unlock(&sk->sk_callback_lock);
1469 }
1470
1471 static void sock_def_error_report(struct sock *sk)
1472 {
1473         read_lock(&sk->sk_callback_lock);
1474         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1475                 wake_up_interruptible(sk->sk_sleep);
1476         sk_wake_async(sk,0,POLL_ERR);
1477         read_unlock(&sk->sk_callback_lock);
1478 }
1479
1480 static void sock_def_readable(struct sock *sk, int len)
1481 {
1482         read_lock(&sk->sk_callback_lock);
1483         if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1484                 wake_up_interruptible(sk->sk_sleep);
1485         sk_wake_async(sk,1,POLL_IN);
1486         read_unlock(&sk->sk_callback_lock);
1487 }
1488
1489 static void sock_def_write_space(struct sock *sk)
1490 {
1491         read_lock(&sk->sk_callback_lock);
1492
1493         /* Do not wake up a writer until he can make "significant"
1494          * progress.  --DaveM
1495          */
1496         if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1497                 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1498                         wake_up_interruptible(sk->sk_sleep);
1499
1500                 /* Should agree with poll, otherwise some programs break */
1501                 if (sock_writeable(sk))
1502                         sk_wake_async(sk, 2, POLL_OUT);
1503         }
1504
1505         read_unlock(&sk->sk_callback_lock);
1506 }
1507
1508 static void sock_def_destruct(struct sock *sk)
1509 {
1510         kfree(sk->sk_protinfo);
1511 }
1512
1513 void sk_send_sigurg(struct sock *sk)
1514 {
1515         if (sk->sk_socket && sk->sk_socket->file)
1516                 if (send_sigurg(&sk->sk_socket->file->f_owner))
1517                         sk_wake_async(sk, 3, POLL_PRI);
1518 }
1519
1520 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1521                     unsigned long expires)
1522 {
1523         if (!mod_timer(timer, expires))
1524                 sock_hold(sk);
1525 }
1526
1527 EXPORT_SYMBOL(sk_reset_timer);
1528
1529 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1530 {
1531         if (timer_pending(timer) && del_timer(timer))
1532                 __sock_put(sk);
1533 }
1534
1535 EXPORT_SYMBOL(sk_stop_timer);
1536
1537 void sock_init_data(struct socket *sock, struct sock *sk)
1538 {
1539         skb_queue_head_init(&sk->sk_receive_queue);
1540         skb_queue_head_init(&sk->sk_write_queue);
1541         skb_queue_head_init(&sk->sk_error_queue);
1542 #ifdef CONFIG_NET_DMA
1543         skb_queue_head_init(&sk->sk_async_wait_queue);
1544 #endif
1545
1546         sk->sk_send_head        =       NULL;
1547
1548         init_timer(&sk->sk_timer);
1549
1550         sk->sk_allocation       =       GFP_KERNEL;
1551         sk->sk_rcvbuf           =       sysctl_rmem_default;
1552         sk->sk_sndbuf           =       sysctl_wmem_default;
1553         sk->sk_state            =       TCP_CLOSE;
1554         sk->sk_socket           =       sock;
1555
1556         sock_set_flag(sk, SOCK_ZAPPED);
1557
1558         if (sock) {
1559                 sk->sk_type     =       sock->type;
1560                 sk->sk_sleep    =       &sock->wait;
1561                 sock->sk        =       sk;
1562         } else
1563                 sk->sk_sleep    =       NULL;
1564
1565         rwlock_init(&sk->sk_dst_lock);
1566         rwlock_init(&sk->sk_callback_lock);
1567         lockdep_set_class_and_name(&sk->sk_callback_lock,
1568                         af_callback_keys + sk->sk_family,
1569                         af_family_clock_key_strings[sk->sk_family]);
1570
1571         sk->sk_state_change     =       sock_def_wakeup;
1572         sk->sk_data_ready       =       sock_def_readable;
1573         sk->sk_write_space      =       sock_def_write_space;
1574         sk->sk_error_report     =       sock_def_error_report;
1575         sk->sk_destruct         =       sock_def_destruct;
1576
1577         sk->sk_sndmsg_page      =       NULL;
1578         sk->sk_sndmsg_off       =       0;
1579
1580         sk->sk_peercred.pid     =       0;
1581         sk->sk_peercred.uid     =       -1;
1582         sk->sk_peercred.gid     =       -1;
1583         sk->sk_write_pending    =       0;
1584         sk->sk_rcvlowat         =       1;
1585         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
1586         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
1587
1588         sk->sk_stamp = ktime_set(-1L, -1L);
1589
1590         atomic_set(&sk->sk_refcnt, 1);
1591 }
1592
1593 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1594 {
1595         might_sleep();
1596         spin_lock_bh(&sk->sk_lock.slock);
1597         if (sk->sk_lock.owned)
1598                 __lock_sock(sk);
1599         sk->sk_lock.owned = 1;
1600         spin_unlock(&sk->sk_lock.slock);
1601         /*
1602          * The sk_lock has mutex_lock() semantics here:
1603          */
1604         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1605         local_bh_enable();
1606 }
1607
1608 EXPORT_SYMBOL(lock_sock_nested);
1609
1610 void fastcall release_sock(struct sock *sk)
1611 {
1612         /*
1613          * The sk_lock has mutex_unlock() semantics:
1614          */
1615         mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1616
1617         spin_lock_bh(&sk->sk_lock.slock);
1618         if (sk->sk_backlog.tail)
1619                 __release_sock(sk);
1620         sk->sk_lock.owned = 0;
1621         if (waitqueue_active(&sk->sk_lock.wq))
1622                 wake_up(&sk->sk_lock.wq);
1623         spin_unlock_bh(&sk->sk_lock.slock);
1624 }
1625 EXPORT_SYMBOL(release_sock);
1626
1627 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1628 {
1629         struct timeval tv;
1630         if (!sock_flag(sk, SOCK_TIMESTAMP))
1631                 sock_enable_timestamp(sk);
1632         tv = ktime_to_timeval(sk->sk_stamp);
1633         if (tv.tv_sec == -1)
1634                 return -ENOENT;
1635         if (tv.tv_sec == 0) {
1636                 sk->sk_stamp = ktime_get_real();
1637                 tv = ktime_to_timeval(sk->sk_stamp);
1638         }
1639         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1640 }
1641 EXPORT_SYMBOL(sock_get_timestamp);
1642
1643 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1644 {
1645         struct timespec ts;
1646         if (!sock_flag(sk, SOCK_TIMESTAMP))
1647                 sock_enable_timestamp(sk);
1648         ts = ktime_to_timespec(sk->sk_stamp);
1649         if (ts.tv_sec == -1)
1650                 return -ENOENT;
1651         if (ts.tv_sec == 0) {
1652                 sk->sk_stamp = ktime_get_real();
1653                 ts = ktime_to_timespec(sk->sk_stamp);
1654         }
1655         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1656 }
1657 EXPORT_SYMBOL(sock_get_timestampns);
1658
1659 void sock_enable_timestamp(struct sock *sk)
1660 {
1661         if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1662                 sock_set_flag(sk, SOCK_TIMESTAMP);
1663                 net_enable_timestamp();
1664         }
1665 }
1666
1667 /*
1668  *      Get a socket option on an socket.
1669  *
1670  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
1671  *      asynchronous errors should be reported by getsockopt. We assume
1672  *      this means if you specify SO_ERROR (otherwise whats the point of it).
1673  */
1674 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1675                            char __user *optval, int __user *optlen)
1676 {
1677         struct sock *sk = sock->sk;
1678
1679         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1680 }
1681
1682 EXPORT_SYMBOL(sock_common_getsockopt);
1683
1684 #ifdef CONFIG_COMPAT
1685 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1686                                   char __user *optval, int __user *optlen)
1687 {
1688         struct sock *sk = sock->sk;
1689
1690         if (sk->sk_prot->compat_getsockopt != NULL)
1691                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1692                                                       optval, optlen);
1693         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1694 }
1695 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1696 #endif
1697
1698 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1699                         struct msghdr *msg, size_t size, int flags)
1700 {
1701         struct sock *sk = sock->sk;
1702         int addr_len = 0;
1703         int err;
1704
1705         err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1706                                    flags & ~MSG_DONTWAIT, &addr_len);
1707         if (err >= 0)
1708                 msg->msg_namelen = addr_len;
1709         return err;
1710 }
1711
1712 EXPORT_SYMBOL(sock_common_recvmsg);
1713
1714 /*
1715  *      Set socket options on an inet socket.
1716  */
1717 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1718                            char __user *optval, int optlen)
1719 {
1720         struct sock *sk = sock->sk;
1721
1722         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1723 }
1724
1725 EXPORT_SYMBOL(sock_common_setsockopt);
1726
1727 #ifdef CONFIG_COMPAT
1728 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1729                                   char __user *optval, int optlen)
1730 {
1731         struct sock *sk = sock->sk;
1732
1733         if (sk->sk_prot->compat_setsockopt != NULL)
1734                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1735                                                       optval, optlen);
1736         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1737 }
1738 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1739 #endif
1740
1741 void sk_common_release(struct sock *sk)
1742 {
1743         if (sk->sk_prot->destroy)
1744                 sk->sk_prot->destroy(sk);
1745
1746         /*
1747          * Observation: when sock_common_release is called, processes have
1748          * no access to socket. But net still has.
1749          * Step one, detach it from networking:
1750          *
1751          * A. Remove from hash tables.
1752          */
1753
1754         sk->sk_prot->unhash(sk);
1755
1756         /*
1757          * In this point socket cannot receive new packets, but it is possible
1758          * that some packets are in flight because some CPU runs receiver and
1759          * did hash table lookup before we unhashed socket. They will achieve
1760          * receive queue and will be purged by socket destructor.
1761          *
1762          * Also we still have packets pending on receive queue and probably,
1763          * our own packets waiting in device queues. sock_destroy will drain
1764          * receive queue, but transmitted packets will delay socket destruction
1765          * until the last reference will be released.
1766          */
1767
1768         sock_orphan(sk);
1769
1770         xfrm_sk_free_policy(sk);
1771
1772         sk_refcnt_debug_release(sk);
1773         sock_put(sk);
1774 }
1775
1776 EXPORT_SYMBOL(sk_common_release);
1777
1778 static DEFINE_RWLOCK(proto_list_lock);
1779 static LIST_HEAD(proto_list);
1780
1781 int proto_register(struct proto *prot, int alloc_slab)
1782 {
1783         char *request_sock_slab_name = NULL;
1784         char *timewait_sock_slab_name;
1785         int rc = -ENOBUFS;
1786
1787         if (alloc_slab) {
1788                 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1789                                                SLAB_HWCACHE_ALIGN, NULL);
1790
1791                 if (prot->slab == NULL) {
1792                         printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1793                                prot->name);
1794                         goto out;
1795                 }
1796
1797                 if (prot->rsk_prot != NULL) {
1798                         static const char mask[] = "request_sock_%s";
1799
1800                         request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1801                         if (request_sock_slab_name == NULL)
1802                                 goto out_free_sock_slab;
1803
1804                         sprintf(request_sock_slab_name, mask, prot->name);
1805                         prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1806                                                                  prot->rsk_prot->obj_size, 0,
1807                                                                  SLAB_HWCACHE_ALIGN, NULL);
1808
1809                         if (prot->rsk_prot->slab == NULL) {
1810                                 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1811                                        prot->name);
1812                                 goto out_free_request_sock_slab_name;
1813                         }
1814                 }
1815
1816                 if (prot->twsk_prot != NULL) {
1817                         static const char mask[] = "tw_sock_%s";
1818
1819                         timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1820
1821                         if (timewait_sock_slab_name == NULL)
1822                                 goto out_free_request_sock_slab;
1823
1824                         sprintf(timewait_sock_slab_name, mask, prot->name);
1825                         prot->twsk_prot->twsk_slab =
1826                                 kmem_cache_create(timewait_sock_slab_name,
1827                                                   prot->twsk_prot->twsk_obj_size,
1828                                                   0, SLAB_HWCACHE_ALIGN,
1829                                                   NULL);
1830                         if (prot->twsk_prot->twsk_slab == NULL)
1831                                 goto out_free_timewait_sock_slab_name;
1832                 }
1833         }
1834
1835         write_lock(&proto_list_lock);
1836         list_add(&prot->node, &proto_list);
1837         write_unlock(&proto_list_lock);
1838         rc = 0;
1839 out:
1840         return rc;
1841 out_free_timewait_sock_slab_name:
1842         kfree(timewait_sock_slab_name);
1843 out_free_request_sock_slab:
1844         if (prot->rsk_prot && prot->rsk_prot->slab) {
1845                 kmem_cache_destroy(prot->rsk_prot->slab);
1846                 prot->rsk_prot->slab = NULL;
1847         }
1848 out_free_request_sock_slab_name:
1849         kfree(request_sock_slab_name);
1850 out_free_sock_slab:
1851         kmem_cache_destroy(prot->slab);
1852         prot->slab = NULL;
1853         goto out;
1854 }
1855
1856 EXPORT_SYMBOL(proto_register);
1857
1858 void proto_unregister(struct proto *prot)
1859 {
1860         write_lock(&proto_list_lock);
1861         list_del(&prot->node);
1862         write_unlock(&proto_list_lock);
1863
1864         if (prot->slab != NULL) {
1865                 kmem_cache_destroy(prot->slab);
1866                 prot->slab = NULL;
1867         }
1868
1869         if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1870                 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1871
1872                 kmem_cache_destroy(prot->rsk_prot->slab);
1873                 kfree(name);
1874                 prot->rsk_prot->slab = NULL;
1875         }
1876
1877         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1878                 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1879
1880                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1881                 kfree(name);
1882                 prot->twsk_prot->twsk_slab = NULL;
1883         }
1884 }
1885
1886 EXPORT_SYMBOL(proto_unregister);
1887
1888 #ifdef CONFIG_PROC_FS
1889 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1890 {
1891         read_lock(&proto_list_lock);
1892         return seq_list_start_head(&proto_list, *pos);
1893 }
1894
1895 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1896 {
1897         return seq_list_next(v, &proto_list, pos);
1898 }
1899
1900 static void proto_seq_stop(struct seq_file *seq, void *v)
1901 {
1902         read_unlock(&proto_list_lock);
1903 }
1904
1905 static char proto_method_implemented(const void *method)
1906 {
1907         return method == NULL ? 'n' : 'y';
1908 }
1909
1910 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1911 {
1912         seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1913                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1914                    proto->name,
1915                    proto->obj_size,
1916                    proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1917                    proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1918                    proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1919                    proto->max_header,
1920                    proto->slab == NULL ? "no" : "yes",
1921                    module_name(proto->owner),
1922                    proto_method_implemented(proto->close),
1923                    proto_method_implemented(proto->connect),
1924                    proto_method_implemented(proto->disconnect),
1925                    proto_method_implemented(proto->accept),
1926                    proto_method_implemented(proto->ioctl),
1927                    proto_method_implemented(proto->init),
1928                    proto_method_implemented(proto->destroy),
1929                    proto_method_implemented(proto->shutdown),
1930                    proto_method_implemented(proto->setsockopt),
1931                    proto_method_implemented(proto->getsockopt),
1932                    proto_method_implemented(proto->sendmsg),
1933                    proto_method_implemented(proto->recvmsg),
1934                    proto_method_implemented(proto->sendpage),
1935                    proto_method_implemented(proto->bind),
1936                    proto_method_implemented(proto->backlog_rcv),
1937                    proto_method_implemented(proto->hash),
1938                    proto_method_implemented(proto->unhash),
1939                    proto_method_implemented(proto->get_port),
1940                    proto_method_implemented(proto->enter_memory_pressure));
1941 }
1942
1943 static int proto_seq_show(struct seq_file *seq, void *v)
1944 {
1945         if (v == &proto_list)
1946                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1947                            "protocol",
1948                            "size",
1949                            "sockets",
1950                            "memory",
1951                            "press",
1952                            "maxhdr",
1953                            "slab",
1954                            "module",
1955                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1956         else
1957                 proto_seq_printf(seq, list_entry(v, struct proto, node));
1958         return 0;
1959 }
1960
1961 static const struct seq_operations proto_seq_ops = {
1962         .start  = proto_seq_start,
1963         .next   = proto_seq_next,
1964         .stop   = proto_seq_stop,
1965         .show   = proto_seq_show,
1966 };
1967
1968 static int proto_seq_open(struct inode *inode, struct file *file)
1969 {
1970         return seq_open(file, &proto_seq_ops);
1971 }
1972
1973 static const struct file_operations proto_seq_fops = {
1974         .owner          = THIS_MODULE,
1975         .open           = proto_seq_open,
1976         .read           = seq_read,
1977         .llseek         = seq_lseek,
1978         .release        = seq_release,
1979 };
1980
1981 static int __init proto_init(void)
1982 {
1983         /* register /proc/net/protocols */
1984         return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1985 }
1986
1987 subsys_initcall(proto_init);
1988
1989 #endif /* PROC_FS */
1990
1991 EXPORT_SYMBOL(sk_alloc);
1992 EXPORT_SYMBOL(sk_free);
1993 EXPORT_SYMBOL(sk_send_sigurg);
1994 EXPORT_SYMBOL(sock_alloc_send_skb);
1995 EXPORT_SYMBOL(sock_init_data);
1996 EXPORT_SYMBOL(sock_kfree_s);
1997 EXPORT_SYMBOL(sock_kmalloc);
1998 EXPORT_SYMBOL(sock_no_accept);
1999 EXPORT_SYMBOL(sock_no_bind);
2000 EXPORT_SYMBOL(sock_no_connect);
2001 EXPORT_SYMBOL(sock_no_getname);
2002 EXPORT_SYMBOL(sock_no_getsockopt);
2003 EXPORT_SYMBOL(sock_no_ioctl);
2004 EXPORT_SYMBOL(sock_no_listen);
2005 EXPORT_SYMBOL(sock_no_mmap);
2006 EXPORT_SYMBOL(sock_no_poll);
2007 EXPORT_SYMBOL(sock_no_recvmsg);
2008 EXPORT_SYMBOL(sock_no_sendmsg);
2009 EXPORT_SYMBOL(sock_no_sendpage);
2010 EXPORT_SYMBOL(sock_no_setsockopt);
2011 EXPORT_SYMBOL(sock_no_shutdown);
2012 EXPORT_SYMBOL(sock_no_socketpair);
2013 EXPORT_SYMBOL(sock_rfree);
2014 EXPORT_SYMBOL(sock_setsockopt);
2015 EXPORT_SYMBOL(sock_wfree);
2016 EXPORT_SYMBOL(sock_wmalloc);
2017 EXPORT_SYMBOL(sock_i_uid);
2018 EXPORT_SYMBOL(sock_i_ino);
2019 EXPORT_SYMBOL(sysctl_optmem_max);
2020 #ifdef CONFIG_SYSCTL
2021 EXPORT_SYMBOL(sysctl_rmem_max);
2022 EXPORT_SYMBOL(sysctl_wmem_max);
2023 #endif