Merge master.kernel.org:/pub/scm/linux/kernel/git/lethal/sh64-2.6
[linux-2.6] / drivers / ieee1394 / ohci1394.c
1 /*
2  * ohci1394.c - driver for OHCI 1394 boards
3  * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4  *                        Gord Peters <GordPeters@smarttech.com>
5  *              2001      Ben Collins <bcollins@debian.org>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software Foundation,
19  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23  * Things known to be working:
24  * . Async Request Transmit
25  * . Async Response Receive
26  * . Async Request Receive
27  * . Async Response Transmit
28  * . Iso Receive
29  * . DMA mmap for iso receive
30  * . Config ROM generation
31  *
32  * Things implemented, but still in test phase:
33  * . Iso Transmit
34  * . Async Stream Packets Transmit (Receive done via Iso interface)
35  *
36  * Things not implemented:
37  * . DMA error recovery
38  *
39  * Known bugs:
40  * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41  *   added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42  */
43
44 /*
45  * Acknowledgments:
46  *
47  * Adam J Richter <adam@yggdrasil.com>
48  *  . Use of pci_class to find device
49  *
50  * Emilie Chung <emilie.chung@axis.com>
51  *  . Tip on Async Request Filter
52  *
53  * Pascal Drolet <pascal.drolet@informission.ca>
54  *  . Various tips for optimization and functionnalities
55  *
56  * Robert Ficklin <rficklin@westengineering.com>
57  *  . Loop in irq_handler
58  *
59  * James Goodwin <jamesg@Filanet.com>
60  *  . Various tips on initialization, self-id reception, etc.
61  *
62  * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63  *  . Apple PowerBook detection
64  *
65  * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66  *  . Reset the board properly before leaving + misc cleanups
67  *
68  * Leon van Stuivenberg <leonvs@iae.nl>
69  *  . Bug fixes
70  *
71  * Ben Collins <bcollins@debian.org>
72  *  . Working big-endian support
73  *  . Updated to 2.4.x module scheme (PCI aswell)
74  *  . Config ROM generation
75  *
76  * Manfred Weihs <weihs@ict.tuwien.ac.at>
77  *  . Reworked code for initiating bus resets
78  *    (long, short, with or without hold-off)
79  *
80  * Nandu Santhi <contactnandu@users.sourceforge.net>
81  *  . Added support for nVidia nForce2 onboard Firewire chipset
82  *
83  */
84
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
101
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/sched.h>
106 #include <linux/types.h>
107 #include <linux/vmalloc.h>
108 #include <linux/init.h>
109
110 #ifdef CONFIG_PPC_PMAC
111 #include <asm/machdep.h>
112 #include <asm/pmac_feature.h>
113 #include <asm/prom.h>
114 #include <asm/pci-bridge.h>
115 #endif
116
117 #include "csr1212.h"
118 #include "ieee1394.h"
119 #include "ieee1394_types.h"
120 #include "hosts.h"
121 #include "dma.h"
122 #include "iso.h"
123 #include "ieee1394_core.h"
124 #include "highlevel.h"
125 #include "ohci1394.h"
126
127 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128 #define OHCI1394_DEBUG
129 #endif
130
131 #ifdef DBGMSG
132 #undef DBGMSG
133 #endif
134
135 #ifdef OHCI1394_DEBUG
136 #define DBGMSG(fmt, args...) \
137 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138 #else
139 #define DBGMSG(fmt, args...) do {} while (0)
140 #endif
141
142 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143 #define OHCI_DMA_ALLOC(fmt, args...) \
144         HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145                 ++global_outstanding_dmas, ## args)
146 #define OHCI_DMA_FREE(fmt, args...) \
147         HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148                 --global_outstanding_dmas, ## args)
149 static int global_outstanding_dmas = 0;
150 #else
151 #define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
152 #define OHCI_DMA_FREE(fmt, args...) do {} while (0)
153 #endif
154
155 /* print general (card independent) information */
156 #define PRINT_G(level, fmt, args...) \
157 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
158
159 /* print card specific information */
160 #define PRINT(level, fmt, args...) \
161 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
162
163 /* Module Parameters */
164 static int phys_dma = 1;
165 module_param(phys_dma, int, 0444);
166 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
167
168 static void dma_trm_tasklet(unsigned long data);
169 static void dma_trm_reset(struct dma_trm_ctx *d);
170
171 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172                              enum context_type type, int ctx, int num_desc,
173                              int buf_size, int split_buf_size, int context_base);
174 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
176
177 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178                              enum context_type type, int ctx, int num_desc,
179                              int context_base);
180
181 static void ohci1394_pci_remove(struct pci_dev *pdev);
182
183 #ifndef __LITTLE_ENDIAN
184 const static size_t hdr_sizes[] = {
185         3,      /* TCODE_WRITEQ */
186         4,      /* TCODE_WRITEB */
187         3,      /* TCODE_WRITE_RESPONSE */
188         0,      /* reserved */
189         3,      /* TCODE_READQ */
190         4,      /* TCODE_READB */
191         3,      /* TCODE_READQ_RESPONSE */
192         4,      /* TCODE_READB_RESPONSE */
193         1,      /* TCODE_CYCLE_START */
194         4,      /* TCODE_LOCK_REQUEST */
195         2,      /* TCODE_ISO_DATA */
196         4,      /* TCODE_LOCK_RESPONSE */
197                 /* rest is reserved or link-internal */
198 };
199
200 static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
201 {
202         size_t size;
203
204         if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
205                 return;
206
207         size = hdr_sizes[tcode];
208         while (size--)
209                 data[size] = le32_to_cpu(data[size]);
210 }
211 #else
212 #define header_le32_to_cpu(w,x) do {} while (0)
213 #endif /* !LITTLE_ENDIAN */
214
215 /***********************************
216  * IEEE-1394 functionality section *
217  ***********************************/
218
219 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
220 {
221         int i;
222         unsigned long flags;
223         quadlet_t r;
224
225         spin_lock_irqsave (&ohci->phy_reg_lock, flags);
226
227         reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
228
229         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
230                 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
231                         break;
232
233                 mdelay(1);
234         }
235
236         r = reg_read(ohci, OHCI1394_PhyControl);
237
238         if (i >= OHCI_LOOP_COUNT)
239                 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
240                        r, r & 0x80000000, i);
241
242         spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
243
244         return (r & 0x00ff0000) >> 16;
245 }
246
247 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
248 {
249         int i;
250         unsigned long flags;
251         u32 r = 0;
252
253         spin_lock_irqsave (&ohci->phy_reg_lock, flags);
254
255         reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
256
257         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
258                 r = reg_read(ohci, OHCI1394_PhyControl);
259                 if (!(r & 0x00004000))
260                         break;
261
262                 mdelay(1);
263         }
264
265         if (i == OHCI_LOOP_COUNT)
266                 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
267                        r, r & 0x00004000, i);
268
269         spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
270
271         return;
272 }
273
274 /* Or's our value into the current value */
275 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
276 {
277         u8 old;
278
279         old = get_phy_reg (ohci, addr);
280         old |= data;
281         set_phy_reg (ohci, addr, old);
282
283         return;
284 }
285
286 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
287                                 int phyid, int isroot)
288 {
289         quadlet_t *q = ohci->selfid_buf_cpu;
290         quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
291         size_t size;
292         quadlet_t q0, q1;
293
294         /* Check status of self-id reception */
295
296         if (ohci->selfid_swap)
297                 q0 = le32_to_cpu(q[0]);
298         else
299                 q0 = q[0];
300
301         if ((self_id_count & 0x80000000) ||
302             ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
303                 PRINT(KERN_ERR,
304                       "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
305                       self_id_count, q0, ohci->self_id_errors);
306
307                 /* Tip by James Goodwin <jamesg@Filanet.com>:
308                  * We had an error, generate another bus reset in response.  */
309                 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
310                         set_phy_reg_mask (ohci, 1, 0x40);
311                         ohci->self_id_errors++;
312                 } else {
313                         PRINT(KERN_ERR,
314                               "Too many errors on SelfID error reception, giving up!");
315                 }
316                 return;
317         }
318
319         /* SelfID Ok, reset error counter. */
320         ohci->self_id_errors = 0;
321
322         size = ((self_id_count & 0x00001FFC) >> 2) - 1;
323         q++;
324
325         while (size > 0) {
326                 if (ohci->selfid_swap) {
327                         q0 = le32_to_cpu(q[0]);
328                         q1 = le32_to_cpu(q[1]);
329                 } else {
330                         q0 = q[0];
331                         q1 = q[1];
332                 }
333
334                 if (q0 == ~q1) {
335                         DBGMSG ("SelfID packet 0x%x received", q0);
336                         hpsb_selfid_received(host, cpu_to_be32(q0));
337                         if (((q0 & 0x3f000000) >> 24) == phyid)
338                                 DBGMSG ("SelfID for this node is 0x%08x", q0);
339                 } else {
340                         PRINT(KERN_ERR,
341                               "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
342                 }
343                 q += 2;
344                 size -= 2;
345         }
346
347         DBGMSG("SelfID complete");
348
349         return;
350 }
351
352 static void ohci_soft_reset(struct ti_ohci *ohci) {
353         int i;
354
355         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
356
357         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
358                 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
359                         break;
360                 mdelay(1);
361         }
362         DBGMSG ("Soft reset finished");
363 }
364
365
366 /* Generate the dma receive prgs and start the context */
367 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
368 {
369         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
370         int i;
371
372         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
373
374         for (i=0; i<d->num_desc; i++) {
375                 u32 c;
376
377                 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
378                 if (generate_irq)
379                         c |= DMA_CTL_IRQ;
380
381                 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
382
383                 /* End of descriptor list? */
384                 if (i + 1 < d->num_desc) {
385                         d->prg_cpu[i]->branchAddress =
386                                 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
387                 } else {
388                         d->prg_cpu[i]->branchAddress =
389                                 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
390                 }
391
392                 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
393                 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
394         }
395
396         d->buf_ind = 0;
397         d->buf_offset = 0;
398
399         if (d->type == DMA_CTX_ISO) {
400                 /* Clear contextControl */
401                 reg_write(ohci, d->ctrlClear, 0xffffffff);
402
403                 /* Set bufferFill, isochHeader, multichannel for IR context */
404                 reg_write(ohci, d->ctrlSet, 0xd0000000);
405
406                 /* Set the context match register to match on all tags */
407                 reg_write(ohci, d->ctxtMatch, 0xf0000000);
408
409                 /* Clear the multi channel mask high and low registers */
410                 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
411                 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
412
413                 /* Set up isoRecvIntMask to generate interrupts */
414                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
415         }
416
417         /* Tell the controller where the first AR program is */
418         reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
419
420         /* Run context */
421         reg_write(ohci, d->ctrlSet, 0x00008000);
422
423         DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
424 }
425
426 /* Initialize the dma transmit context */
427 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
428 {
429         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
430
431         /* Stop the context */
432         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
433
434         d->prg_ind = 0;
435         d->sent_ind = 0;
436         d->free_prgs = d->num_desc;
437         d->branchAddrPtr = NULL;
438         INIT_LIST_HEAD(&d->fifo_list);
439         INIT_LIST_HEAD(&d->pending_list);
440
441         if (d->type == DMA_CTX_ISO) {
442                 /* enable interrupts */
443                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
444         }
445
446         DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
447 }
448
449 /* Count the number of available iso contexts */
450 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
451 {
452         int i,ctx=0;
453         u32 tmp;
454
455         reg_write(ohci, reg, 0xffffffff);
456         tmp = reg_read(ohci, reg);
457
458         DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
459
460         /* Count the number of contexts */
461         for (i=0; i<32; i++) {
462                 if (tmp & 1) ctx++;
463                 tmp >>= 1;
464         }
465         return ctx;
466 }
467
468 /* Global initialization */
469 static void ohci_initialize(struct ti_ohci *ohci)
470 {
471         char irq_buf[16];
472         quadlet_t buf;
473         int num_ports, i;
474
475         spin_lock_init(&ohci->phy_reg_lock);
476
477         /* Put some defaults to these undefined bus options */
478         buf = reg_read(ohci, OHCI1394_BusOptions);
479         buf |=  0x60000000; /* Enable CMC and ISC */
480         if (hpsb_disable_irm)
481                 buf &= ~0x80000000;
482         else
483                 buf |=  0x80000000; /* Enable IRMC */
484         buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
485         buf &= ~0x18000000; /* Disable PMC and BMC */
486         reg_write(ohci, OHCI1394_BusOptions, buf);
487
488         /* Set the bus number */
489         reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
490
491         /* Enable posted writes */
492         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
493
494         /* Clear link control register */
495         reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
496
497         /* Enable cycle timer and cycle master and set the IRM
498          * contender bit in our self ID packets if appropriate. */
499         reg_write(ohci, OHCI1394_LinkControlSet,
500                   OHCI1394_LinkControl_CycleTimerEnable |
501                   OHCI1394_LinkControl_CycleMaster);
502         i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
503         if (hpsb_disable_irm)
504                 i &= ~PHY_04_CONTENDER;
505         else
506                 i |= PHY_04_CONTENDER;
507         set_phy_reg(ohci, 4, i);
508
509         /* Set up self-id dma buffer */
510         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
511
512         /* enable self-id and phys */
513         reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
514                   OHCI1394_LinkControl_RcvPhyPkt);
515
516         /* Set the Config ROM mapping register */
517         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
518
519         /* Now get our max packet size */
520         ohci->max_packet_size =
521                 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
522                 
523         /* Don't accept phy packets into AR request context */
524         reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
525
526         /* Clear the interrupt mask */
527         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
528         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
529
530         /* Clear the interrupt mask */
531         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
532         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
533
534         /* Initialize AR dma */
535         initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
536         initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
537
538         /* Initialize AT dma */
539         initialize_dma_trm_ctx(&ohci->at_req_context);
540         initialize_dma_trm_ctx(&ohci->at_resp_context);
541         
542         /* Initialize IR Legacy DMA channel mask */
543         ohci->ir_legacy_channels = 0;
544
545         /* Accept AR requests from all nodes */
546         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
547
548         /* Set the address range of the physical response unit.
549          * Most controllers do not implement it as a writable register though.
550          * They will keep a hardwired offset of 0x00010000 and show 0x0 as
551          * register content.
552          * To actually enable physical responses is the job of our interrupt
553          * handler which programs the physical request filter. */
554         reg_write(ohci, OHCI1394_PhyUpperBound,
555                   OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
556
557         DBGMSG("physUpperBoundOffset=%08x",
558                reg_read(ohci, OHCI1394_PhyUpperBound));
559
560         /* Specify AT retries */
561         reg_write(ohci, OHCI1394_ATRetries,
562                   OHCI1394_MAX_AT_REQ_RETRIES |
563                   (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
564                   (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
565
566         /* We don't want hardware swapping */
567         reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
568
569         /* Enable interrupts */
570         reg_write(ohci, OHCI1394_IntMaskSet,
571                   OHCI1394_unrecoverableError |
572                   OHCI1394_masterIntEnable |
573                   OHCI1394_busReset |
574                   OHCI1394_selfIDComplete |
575                   OHCI1394_RSPkt |
576                   OHCI1394_RQPkt |
577                   OHCI1394_respTxComplete |
578                   OHCI1394_reqTxComplete |
579                   OHCI1394_isochRx |
580                   OHCI1394_isochTx |
581                   OHCI1394_postedWriteErr |
582                   OHCI1394_cycleTooLong |
583                   OHCI1394_cycleInconsistent);
584
585         /* Enable link */
586         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
587
588         buf = reg_read(ohci, OHCI1394_Version);
589         sprintf (irq_buf, "%d", ohci->dev->irq);
590         PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s]  "
591               "MMIO=[%llx-%llx]  Max Packet=[%d]  IR/IT contexts=[%d/%d]",
592               ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
593               ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
594               (unsigned long long)pci_resource_start(ohci->dev, 0),
595               (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
596               ohci->max_packet_size,
597               ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
598
599         /* Check all of our ports to make sure that if anything is
600          * connected, we enable that port. */
601         num_ports = get_phy_reg(ohci, 2) & 0xf;
602         for (i = 0; i < num_ports; i++) {
603                 unsigned int status;
604
605                 set_phy_reg(ohci, 7, i);
606                 status = get_phy_reg(ohci, 8);
607
608                 if (status & 0x20)
609                         set_phy_reg(ohci, 8, status & ~1);
610         }
611
612         /* Serial EEPROM Sanity check. */
613         if ((ohci->max_packet_size < 512) ||
614             (ohci->max_packet_size > 4096)) {
615                 /* Serial EEPROM contents are suspect, set a sane max packet
616                  * size and print the raw contents for bug reports if verbose
617                  * debug is enabled. */
618 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
619                 int i;
620 #endif
621
622                 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
623                       "attempting to setting max_packet_size to 512 bytes");
624                 reg_write(ohci, OHCI1394_BusOptions,
625                           (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
626                 ohci->max_packet_size = 512;
627 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
628                 PRINT(KERN_DEBUG, "    EEPROM Present: %d",
629                       (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
630                 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
631
632                 for (i = 0;
633                      ((i < 1000) &&
634                       (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
635                         udelay(10);
636
637                 for (i = 0; i < 0x20; i++) {
638                         reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
639                         PRINT(KERN_DEBUG, "    EEPROM %02x: %02x", i,
640                               (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
641                 }
642 #endif
643         }
644 }
645
646 /*
647  * Insert a packet in the DMA fifo and generate the DMA prg
648  * FIXME: rewrite the program in order to accept packets crossing
649  *        page boundaries.
650  *        check also that a single dma descriptor doesn't cross a
651  *        page boundary.
652  */
653 static void insert_packet(struct ti_ohci *ohci,
654                           struct dma_trm_ctx *d, struct hpsb_packet *packet)
655 {
656         u32 cycleTimer;
657         int idx = d->prg_ind;
658
659         DBGMSG("Inserting packet for node " NODE_BUS_FMT
660                ", tlabel=%d, tcode=0x%x, speed=%d",
661                NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
662                packet->tcode, packet->speed_code);
663
664         d->prg_cpu[idx]->begin.address = 0;
665         d->prg_cpu[idx]->begin.branchAddress = 0;
666
667         if (d->type == DMA_CTX_ASYNC_RESP) {
668                 /*
669                  * For response packets, we need to put a timeout value in
670                  * the 16 lower bits of the status... let's try 1 sec timeout
671                  */
672                 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
673                 d->prg_cpu[idx]->begin.status = cpu_to_le32(
674                         (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
675                         ((cycleTimer&0x01fff000)>>12));
676
677                 DBGMSG("cycleTimer: %08x timeStamp: %08x",
678                        cycleTimer, d->prg_cpu[idx]->begin.status);
679         } else 
680                 d->prg_cpu[idx]->begin.status = 0;
681
682         if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
683
684                 if (packet->type == hpsb_raw) {
685                         d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
686                         d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
687                         d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
688                 } else {
689                         d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
690                                 (packet->header[0] & 0xFFFF);
691
692                         if (packet->tcode == TCODE_ISO_DATA) {
693                                 /* Sending an async stream packet */
694                                 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
695                         } else {
696                                 /* Sending a normal async request or response */
697                                 d->prg_cpu[idx]->data[1] =
698                                         (packet->header[1] & 0xFFFF) |
699                                         (packet->header[0] & 0xFFFF0000);
700                                 d->prg_cpu[idx]->data[2] = packet->header[2];
701                                 d->prg_cpu[idx]->data[3] = packet->header[3];
702                         }
703                         header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
704                 }
705
706                 if (packet->data_size) { /* block transmit */
707                         if (packet->tcode == TCODE_STREAM_DATA){
708                                 d->prg_cpu[idx]->begin.control =
709                                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
710                                                     DMA_CTL_IMMEDIATE | 0x8);
711                         } else {
712                                 d->prg_cpu[idx]->begin.control =
713                                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
714                                                     DMA_CTL_IMMEDIATE | 0x10);
715                         }
716                         d->prg_cpu[idx]->end.control =
717                                 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
718                                             DMA_CTL_IRQ |
719                                             DMA_CTL_BRANCH |
720                                             packet->data_size);
721                         /*
722                          * Check that the packet data buffer
723                          * does not cross a page boundary.
724                          *
725                          * XXX Fix this some day. eth1394 seems to trigger
726                          * it, but ignoring it doesn't seem to cause a
727                          * problem.
728                          */
729 #if 0
730                         if (cross_bound((unsigned long)packet->data,
731                                         packet->data_size)>0) {
732                                 /* FIXME: do something about it */
733                                 PRINT(KERN_ERR,
734                                       "%s: packet data addr: %p size %Zd bytes "
735                                       "cross page boundary", __FUNCTION__,
736                                       packet->data, packet->data_size);
737                         }
738 #endif
739                         d->prg_cpu[idx]->end.address = cpu_to_le32(
740                                 pci_map_single(ohci->dev, packet->data,
741                                                packet->data_size,
742                                                PCI_DMA_TODEVICE));
743                         OHCI_DMA_ALLOC("single, block transmit packet");
744
745                         d->prg_cpu[idx]->end.branchAddress = 0;
746                         d->prg_cpu[idx]->end.status = 0;
747                         if (d->branchAddrPtr)
748                                 *(d->branchAddrPtr) =
749                                         cpu_to_le32(d->prg_bus[idx] | 0x3);
750                         d->branchAddrPtr =
751                                 &(d->prg_cpu[idx]->end.branchAddress);
752                 } else { /* quadlet transmit */
753                         if (packet->type == hpsb_raw)
754                                 d->prg_cpu[idx]->begin.control =
755                                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
756                                                     DMA_CTL_IMMEDIATE |
757                                                     DMA_CTL_IRQ |
758                                                     DMA_CTL_BRANCH |
759                                                     (packet->header_size + 4));
760                         else
761                                 d->prg_cpu[idx]->begin.control =
762                                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
763                                                     DMA_CTL_IMMEDIATE |
764                                                     DMA_CTL_IRQ |
765                                                     DMA_CTL_BRANCH |
766                                                     packet->header_size);
767
768                         if (d->branchAddrPtr)
769                                 *(d->branchAddrPtr) =
770                                         cpu_to_le32(d->prg_bus[idx] | 0x2);
771                         d->branchAddrPtr =
772                                 &(d->prg_cpu[idx]->begin.branchAddress);
773                 }
774
775         } else { /* iso packet */
776                 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
777                         (packet->header[0] & 0xFFFF);
778                 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
779                 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
780
781                 d->prg_cpu[idx]->begin.control =
782                         cpu_to_le32(DMA_CTL_OUTPUT_MORE |
783                                     DMA_CTL_IMMEDIATE | 0x8);
784                 d->prg_cpu[idx]->end.control =
785                         cpu_to_le32(DMA_CTL_OUTPUT_LAST |
786                                     DMA_CTL_UPDATE |
787                                     DMA_CTL_IRQ |
788                                     DMA_CTL_BRANCH |
789                                     packet->data_size);
790                 d->prg_cpu[idx]->end.address = cpu_to_le32(
791                                 pci_map_single(ohci->dev, packet->data,
792                                 packet->data_size, PCI_DMA_TODEVICE));
793                 OHCI_DMA_ALLOC("single, iso transmit packet");
794
795                 d->prg_cpu[idx]->end.branchAddress = 0;
796                 d->prg_cpu[idx]->end.status = 0;
797                 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
798                        "                       begin=%08x %08x %08x %08x\n"
799                        "                             %08x %08x %08x %08x\n"
800                        "                       end  =%08x %08x %08x %08x",
801                        d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
802                        d->prg_cpu[idx]->begin.control,
803                        d->prg_cpu[idx]->begin.address,
804                        d->prg_cpu[idx]->begin.branchAddress,
805                        d->prg_cpu[idx]->begin.status,
806                        d->prg_cpu[idx]->data[0],
807                        d->prg_cpu[idx]->data[1],
808                        d->prg_cpu[idx]->data[2],
809                        d->prg_cpu[idx]->data[3],
810                        d->prg_cpu[idx]->end.control,
811                        d->prg_cpu[idx]->end.address,
812                        d->prg_cpu[idx]->end.branchAddress,
813                        d->prg_cpu[idx]->end.status);
814                 if (d->branchAddrPtr)
815                         *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
816                 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
817         }
818         d->free_prgs--;
819
820         /* queue the packet in the appropriate context queue */
821         list_add_tail(&packet->driver_list, &d->fifo_list);
822         d->prg_ind = (d->prg_ind + 1) % d->num_desc;
823 }
824
825 /*
826  * This function fills the FIFO with the (eventual) pending packets
827  * and runs or wakes up the DMA prg if necessary.
828  *
829  * The function MUST be called with the d->lock held.
830  */
831 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
832 {
833         struct hpsb_packet *packet, *ptmp;
834         int idx = d->prg_ind;
835         int z = 0;
836
837         /* insert the packets into the dma fifo */
838         list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
839                 if (!d->free_prgs)
840                         break;
841
842                 /* For the first packet only */
843                 if (!z)
844                         z = (packet->data_size) ? 3 : 2;
845
846                 /* Insert the packet */
847                 list_del_init(&packet->driver_list);
848                 insert_packet(ohci, d, packet);
849         }
850
851         /* Nothing must have been done, either no free_prgs or no packets */
852         if (z == 0)
853                 return;
854
855         /* Is the context running ? (should be unless it is
856            the first packet to be sent in this context) */
857         if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
858                 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
859
860                 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
861                 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
862
863                 /* Check that the node id is valid, and not 63 */
864                 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
865                         PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
866                 else
867                         reg_write(ohci, d->ctrlSet, 0x8000);
868         } else {
869                 /* Wake up the dma context if necessary */
870                 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
871                         DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
872
873                 /* do this always, to avoid race condition */
874                 reg_write(ohci, d->ctrlSet, 0x1000);
875         }
876
877         return;
878 }
879
880 /* Transmission of an async or iso packet */
881 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
882 {
883         struct ti_ohci *ohci = host->hostdata;
884         struct dma_trm_ctx *d;
885         unsigned long flags;
886
887         if (packet->data_size > ohci->max_packet_size) {
888                 PRINT(KERN_ERR,
889                       "Transmit packet size %Zd is too big",
890                       packet->data_size);
891                 return -EOVERFLOW;
892         }
893
894         /* Decide whether we have an iso, a request, or a response packet */
895         if (packet->type == hpsb_raw)
896                 d = &ohci->at_req_context;
897         else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
898                 /* The legacy IT DMA context is initialized on first
899                  * use.  However, the alloc cannot be run from
900                  * interrupt context, so we bail out if that is the
901                  * case. I don't see anyone sending ISO packets from
902                  * interrupt context anyway... */
903
904                 if (ohci->it_legacy_context.ohci == NULL) {
905                         if (in_interrupt()) {
906                                 PRINT(KERN_ERR,
907                                       "legacy IT context cannot be initialized during interrupt");
908                                 return -EINVAL;
909                         }
910
911                         if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
912                                               DMA_CTX_ISO, 0, IT_NUM_DESC,
913                                               OHCI1394_IsoXmitContextBase) < 0) {
914                                 PRINT(KERN_ERR,
915                                       "error initializing legacy IT context");
916                                 return -ENOMEM;
917                         }
918
919                         initialize_dma_trm_ctx(&ohci->it_legacy_context);
920                 }
921
922                 d = &ohci->it_legacy_context;
923         } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
924                 d = &ohci->at_resp_context;
925         else
926                 d = &ohci->at_req_context;
927
928         spin_lock_irqsave(&d->lock,flags);
929
930         list_add_tail(&packet->driver_list, &d->pending_list);
931
932         dma_trm_flush(ohci, d);
933
934         spin_unlock_irqrestore(&d->lock,flags);
935
936         return 0;
937 }
938
939 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
940 {
941         struct ti_ohci *ohci = host->hostdata;
942         int retval = 0;
943         unsigned long flags;
944         int phy_reg;
945
946         switch (cmd) {
947         case RESET_BUS:
948                 switch (arg) {
949                 case SHORT_RESET:
950                         phy_reg = get_phy_reg(ohci, 5);
951                         phy_reg |= 0x40;
952                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
953                         break;
954                 case LONG_RESET:
955                         phy_reg = get_phy_reg(ohci, 1);
956                         phy_reg |= 0x40;
957                         set_phy_reg(ohci, 1, phy_reg); /* set IBR */
958                         break;
959                 case SHORT_RESET_NO_FORCE_ROOT:
960                         phy_reg = get_phy_reg(ohci, 1);
961                         if (phy_reg & 0x80) {
962                                 phy_reg &= ~0x80;
963                                 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
964                         }
965
966                         phy_reg = get_phy_reg(ohci, 5);
967                         phy_reg |= 0x40;
968                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
969                         break;
970                 case LONG_RESET_NO_FORCE_ROOT:
971                         phy_reg = get_phy_reg(ohci, 1);
972                         phy_reg &= ~0x80;
973                         phy_reg |= 0x40;
974                         set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
975                         break;
976                 case SHORT_RESET_FORCE_ROOT:
977                         phy_reg = get_phy_reg(ohci, 1);
978                         if (!(phy_reg & 0x80)) {
979                                 phy_reg |= 0x80;
980                                 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
981                         }
982
983                         phy_reg = get_phy_reg(ohci, 5);
984                         phy_reg |= 0x40;
985                         set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
986                         break;
987                 case LONG_RESET_FORCE_ROOT:
988                         phy_reg = get_phy_reg(ohci, 1);
989                         phy_reg |= 0xc0;
990                         set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
991                         break;
992                 default:
993                         retval = -1;
994                 }
995                 break;
996
997         case GET_CYCLE_COUNTER:
998                 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
999                 break;
1000
1001         case SET_CYCLE_COUNTER:
1002                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1003                 break;
1004
1005         case SET_BUS_ID:
1006                 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1007                 break;
1008
1009         case ACT_CYCLE_MASTER:
1010                 if (arg) {
1011                         /* check if we are root and other nodes are present */
1012                         u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1013                         if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1014                                 /*
1015                                  * enable cycleTimer, cycleMaster
1016                                  */
1017                                 DBGMSG("Cycle master enabled");
1018                                 reg_write(ohci, OHCI1394_LinkControlSet,
1019                                           OHCI1394_LinkControl_CycleTimerEnable |
1020                                           OHCI1394_LinkControl_CycleMaster);
1021                         }
1022                 } else {
1023                         /* disable cycleTimer, cycleMaster, cycleSource */
1024                         reg_write(ohci, OHCI1394_LinkControlClear,
1025                                   OHCI1394_LinkControl_CycleTimerEnable |
1026                                   OHCI1394_LinkControl_CycleMaster |
1027                                   OHCI1394_LinkControl_CycleSource);
1028                 }
1029                 break;
1030
1031         case CANCEL_REQUESTS:
1032                 DBGMSG("Cancel request received");
1033                 dma_trm_reset(&ohci->at_req_context);
1034                 dma_trm_reset(&ohci->at_resp_context);
1035                 break;
1036
1037         case ISO_LISTEN_CHANNEL:
1038         {
1039                 u64 mask;
1040                 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1041                 int ir_legacy_active;
1042
1043                 if (arg<0 || arg>63) {
1044                         PRINT(KERN_ERR,
1045                               "%s: IS0 listen channel %d is out of range",
1046                               __FUNCTION__, arg);
1047                         return -EFAULT;
1048                 }
1049
1050                 mask = (u64)0x1<<arg;
1051
1052                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1053
1054                 if (ohci->ISO_channel_usage & mask) {
1055                         PRINT(KERN_ERR,
1056                               "%s: IS0 listen channel %d is already used",
1057                               __FUNCTION__, arg);
1058                         spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1059                         return -EFAULT;
1060                 }
1061
1062                 ir_legacy_active = ohci->ir_legacy_channels;
1063
1064                 ohci->ISO_channel_usage |= mask;
1065                 ohci->ir_legacy_channels |= mask;
1066
1067                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1068
1069                 if (!ir_legacy_active) {
1070                         if (ohci1394_register_iso_tasklet(ohci,
1071                                           &ohci->ir_legacy_tasklet) < 0) {
1072                                 PRINT(KERN_ERR, "No IR DMA context available");
1073                                 return -EBUSY;
1074                         }
1075
1076                         /* the IR context can be assigned to any DMA context
1077                          * by ohci1394_register_iso_tasklet */
1078                         d->ctx = ohci->ir_legacy_tasklet.context;
1079                         d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1080                                 32*d->ctx;
1081                         d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1082                                 32*d->ctx;
1083                         d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1084                         d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1085
1086                         initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1087
1088                         if (printk_ratelimit())
1089                                 DBGMSG("IR legacy activated");
1090                 }
1091
1092                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1093
1094                 if (arg>31)
1095                         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1096                                   1<<(arg-32));
1097                 else
1098                         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1099                                   1<<arg);
1100
1101                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1102                 DBGMSG("Listening enabled on channel %d", arg);
1103                 break;
1104         }
1105         case ISO_UNLISTEN_CHANNEL:
1106         {
1107                 u64 mask;
1108
1109                 if (arg<0 || arg>63) {
1110                         PRINT(KERN_ERR,
1111                               "%s: IS0 unlisten channel %d is out of range",
1112                               __FUNCTION__, arg);
1113                         return -EFAULT;
1114                 }
1115
1116                 mask = (u64)0x1<<arg;
1117
1118                 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1119
1120                 if (!(ohci->ISO_channel_usage & mask)) {
1121                         PRINT(KERN_ERR,
1122                               "%s: IS0 unlisten channel %d is not used",
1123                               __FUNCTION__, arg);
1124                         spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1125                         return -EFAULT;
1126                 }
1127
1128                 ohci->ISO_channel_usage &= ~mask;
1129                 ohci->ir_legacy_channels &= ~mask;
1130
1131                 if (arg>31)
1132                         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1133                                   1<<(arg-32));
1134                 else
1135                         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1136                                   1<<arg);
1137
1138                 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1139                 DBGMSG("Listening disabled on channel %d", arg);
1140
1141                 if (ohci->ir_legacy_channels == 0) {
1142                         stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1143                         DBGMSG("ISO legacy receive context stopped");
1144                 }
1145
1146                 break;
1147         }
1148         default:
1149                 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1150                         cmd);
1151                 break;
1152         }
1153         return retval;
1154 }
1155
1156 /***********************************
1157  * rawiso ISO reception            *
1158  ***********************************/
1159
1160 /*
1161   We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1162   buffer is split into "blocks" (regions described by one DMA
1163   descriptor). Each block must be one page or less in size, and
1164   must not cross a page boundary.
1165
1166   There is one little wrinkle with buffer-fill mode: a packet that
1167   starts in the final block may wrap around into the first block. But
1168   the user API expects all packets to be contiguous. Our solution is
1169   to keep the very last page of the DMA buffer in reserve - if a
1170   packet spans the gap, we copy its tail into this page.
1171 */
1172
1173 struct ohci_iso_recv {
1174         struct ti_ohci *ohci;
1175
1176         struct ohci1394_iso_tasklet task;
1177         int task_active;
1178
1179         enum { BUFFER_FILL_MODE = 0,
1180                PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1181
1182         /* memory and PCI mapping for the DMA descriptors */
1183         struct dma_prog_region prog;
1184         struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1185
1186         /* how many DMA blocks fit in the buffer */
1187         unsigned int nblocks;
1188
1189         /* stride of DMA blocks */
1190         unsigned int buf_stride;
1191
1192         /* number of blocks to batch between interrupts */
1193         int block_irq_interval;
1194
1195         /* block that DMA will finish next */
1196         int block_dma;
1197
1198         /* (buffer-fill only) block that the reader will release next */
1199         int block_reader;
1200
1201         /* (buffer-fill only) bytes of buffer the reader has released,
1202            less than one block */
1203         int released_bytes;
1204
1205         /* (buffer-fill only) buffer offset at which the next packet will appear */
1206         int dma_offset;
1207
1208         /* OHCI DMA context control registers */
1209         u32 ContextControlSet;
1210         u32 ContextControlClear;
1211         u32 CommandPtr;
1212         u32 ContextMatch;
1213 };
1214
1215 static void ohci_iso_recv_task(unsigned long data);
1216 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1217 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1218 static int  ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1219 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1220
1221 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1222 {
1223         struct ti_ohci *ohci = iso->host->hostdata;
1224         struct ohci_iso_recv *recv;
1225         int ctx;
1226         int ret = -ENOMEM;
1227
1228         recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1229         if (!recv)
1230                 return -ENOMEM;
1231
1232         iso->hostdata = recv;
1233         recv->ohci = ohci;
1234         recv->task_active = 0;
1235         dma_prog_region_init(&recv->prog);
1236         recv->block = NULL;
1237
1238         /* use buffer-fill mode, unless irq_interval is 1
1239            (note: multichannel requires buffer-fill) */
1240
1241         if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1242              iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1243                 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1244         } else {
1245                 recv->dma_mode = BUFFER_FILL_MODE;
1246         }
1247
1248         /* set nblocks, buf_stride, block_irq_interval */
1249
1250         if (recv->dma_mode == BUFFER_FILL_MODE) {
1251                 recv->buf_stride = PAGE_SIZE;
1252
1253                 /* one block per page of data in the DMA buffer, minus the final guard page */
1254                 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1255                 if (recv->nblocks < 3) {
1256                         DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1257                         goto err;
1258                 }
1259
1260                 /* iso->irq_interval is in packets - translate that to blocks */
1261                 if (iso->irq_interval == 1)
1262                         recv->block_irq_interval = 1;
1263                 else
1264                         recv->block_irq_interval = iso->irq_interval *
1265                                                         ((recv->nblocks+1)/iso->buf_packets);
1266                 if (recv->block_irq_interval*4 > recv->nblocks)
1267                         recv->block_irq_interval = recv->nblocks/4;
1268                 if (recv->block_irq_interval < 1)
1269                         recv->block_irq_interval = 1;
1270
1271         } else {
1272                 int max_packet_size;
1273
1274                 recv->nblocks = iso->buf_packets;
1275                 recv->block_irq_interval = iso->irq_interval;
1276                 if (recv->block_irq_interval * 4 > iso->buf_packets)
1277                         recv->block_irq_interval = iso->buf_packets / 4;
1278                 if (recv->block_irq_interval < 1)
1279                 recv->block_irq_interval = 1;
1280
1281                 /* choose a buffer stride */
1282                 /* must be a power of 2, and <= PAGE_SIZE */
1283
1284                 max_packet_size = iso->buf_size / iso->buf_packets;
1285
1286                 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1287                     recv->buf_stride *= 2);
1288
1289                 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1290                    recv->buf_stride > PAGE_SIZE) {
1291                         /* this shouldn't happen, but anyway... */
1292                         DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1293                         goto err;
1294                 }
1295         }
1296
1297         recv->block_reader = 0;
1298         recv->released_bytes = 0;
1299         recv->block_dma = 0;
1300         recv->dma_offset = 0;
1301
1302         /* size of DMA program = one descriptor per block */
1303         if (dma_prog_region_alloc(&recv->prog,
1304                                  sizeof(struct dma_cmd) * recv->nblocks,
1305                                  recv->ohci->dev))
1306                 goto err;
1307
1308         recv->block = (struct dma_cmd*) recv->prog.kvirt;
1309
1310         ohci1394_init_iso_tasklet(&recv->task,
1311                                   iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1312                                                        OHCI_ISO_RECEIVE,
1313                                   ohci_iso_recv_task, (unsigned long) iso);
1314
1315         if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1316                 ret = -EBUSY;
1317                 goto err;
1318         }
1319
1320         recv->task_active = 1;
1321
1322         /* recv context registers are spaced 32 bytes apart */
1323         ctx = recv->task.context;
1324         recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1325         recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1326         recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1327         recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1328
1329         if (iso->channel == -1) {
1330                 /* clear multi-channel selection mask */
1331                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1332                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1333         }
1334
1335         /* write the DMA program */
1336         ohci_iso_recv_program(iso);
1337
1338         DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1339                " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1340                recv->dma_mode == BUFFER_FILL_MODE ?
1341                "buffer-fill" : "packet-per-buffer",
1342                iso->buf_size/PAGE_SIZE, iso->buf_size,
1343                recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1344
1345         return 0;
1346
1347 err:
1348         ohci_iso_recv_shutdown(iso);
1349         return ret;
1350 }
1351
1352 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1353 {
1354         struct ohci_iso_recv *recv = iso->hostdata;
1355
1356         /* disable interrupts */
1357         reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1358
1359         /* halt DMA */
1360         ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1361 }
1362
1363 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1364 {
1365         struct ohci_iso_recv *recv = iso->hostdata;
1366
1367         if (recv->task_active) {
1368                 ohci_iso_recv_stop(iso);
1369                 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1370                 recv->task_active = 0;
1371         }
1372
1373         dma_prog_region_free(&recv->prog);
1374         kfree(recv);
1375         iso->hostdata = NULL;
1376 }
1377
1378 /* set up a "gapped" ring buffer DMA program */
1379 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1380 {
1381         struct ohci_iso_recv *recv = iso->hostdata;
1382         int blk;
1383
1384         /* address of 'branch' field in previous DMA descriptor */
1385         u32 *prev_branch = NULL;
1386
1387         for (blk = 0; blk < recv->nblocks; blk++) {
1388                 u32 control;
1389
1390                 /* the DMA descriptor */
1391                 struct dma_cmd *cmd = &recv->block[blk];
1392
1393                 /* offset of the DMA descriptor relative to the DMA prog buffer */
1394                 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1395
1396                 /* offset of this packet's data within the DMA buffer */
1397                 unsigned long buf_offset = blk * recv->buf_stride;
1398
1399                 if (recv->dma_mode == BUFFER_FILL_MODE) {
1400                         control = 2 << 28; /* INPUT_MORE */
1401                 } else {
1402                         control = 3 << 28; /* INPUT_LAST */
1403                 }
1404
1405                 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1406
1407                 /* interrupt on last block, and at intervals */
1408                 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1409                         control |= 3 << 20; /* want interrupt */
1410                 }
1411
1412                 control |= 3 << 18; /* enable branch to address */
1413                 control |= recv->buf_stride;
1414
1415                 cmd->control = cpu_to_le32(control);
1416                 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1417                 cmd->branchAddress = 0; /* filled in on next loop */
1418                 cmd->status = cpu_to_le32(recv->buf_stride);
1419
1420                 /* link the previous descriptor to this one */
1421                 if (prev_branch) {
1422                         *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1423                 }
1424
1425                 prev_branch = &cmd->branchAddress;
1426         }
1427
1428         /* the final descriptor's branch address and Z should be left at 0 */
1429 }
1430
1431 /* listen or unlisten to a specific channel (multi-channel mode only) */
1432 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1433 {
1434         struct ohci_iso_recv *recv = iso->hostdata;
1435         int reg, i;
1436
1437         if (channel < 32) {
1438                 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1439                 i = channel;
1440         } else {
1441                 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1442                 i = channel - 32;
1443         }
1444
1445         reg_write(recv->ohci, reg, (1 << i));
1446
1447         /* issue a dummy read to force all PCI writes to be posted immediately */
1448         mb();
1449         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1450 }
1451
1452 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1453 {
1454         struct ohci_iso_recv *recv = iso->hostdata;
1455         int i;
1456
1457         for (i = 0; i < 64; i++) {
1458                 if (mask & (1ULL << i)) {
1459                         if (i < 32)
1460                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1461                         else
1462                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1463                 } else {
1464                         if (i < 32)
1465                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1466                         else
1467                                 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1468                 }
1469         }
1470
1471         /* issue a dummy read to force all PCI writes to be posted immediately */
1472         mb();
1473         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1474 }
1475
1476 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1477 {
1478         struct ohci_iso_recv *recv = iso->hostdata;
1479         struct ti_ohci *ohci = recv->ohci;
1480         u32 command, contextMatch;
1481
1482         reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1483         wmb();
1484
1485         /* always keep ISO headers */
1486         command = (1 << 30);
1487
1488         if (recv->dma_mode == BUFFER_FILL_MODE)
1489                 command |= (1 << 31);
1490
1491         reg_write(recv->ohci, recv->ContextControlSet, command);
1492
1493         /* match on specified tags */
1494         contextMatch = tag_mask << 28;
1495
1496         if (iso->channel == -1) {
1497                 /* enable multichannel reception */
1498                 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1499         } else {
1500                 /* listen on channel */
1501                 contextMatch |= iso->channel;
1502         }
1503
1504         if (cycle != -1) {
1505                 u32 seconds;
1506
1507                 /* enable cycleMatch */
1508                 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1509
1510                 /* set starting cycle */
1511                 cycle &= 0x1FFF;
1512
1513                 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1514                    just snarf them from the current time */
1515                 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1516
1517                 /* advance one second to give some extra time for DMA to start */
1518                 seconds += 1;
1519
1520                 cycle |= (seconds & 3) << 13;
1521
1522                 contextMatch |= cycle << 12;
1523         }
1524
1525         if (sync != -1) {
1526                 /* set sync flag on first DMA descriptor */
1527                 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1528                 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1529
1530                 /* match sync field */
1531                 contextMatch |= (sync&0xf)<<8;
1532         }
1533
1534         reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1535
1536         /* address of first descriptor block */
1537         command = dma_prog_region_offset_to_bus(&recv->prog,
1538                                                 recv->block_dma * sizeof(struct dma_cmd));
1539         command |= 1; /* Z=1 */
1540
1541         reg_write(recv->ohci, recv->CommandPtr, command);
1542
1543         /* enable interrupts */
1544         reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1545
1546         wmb();
1547
1548         /* run */
1549         reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1550
1551         /* issue a dummy read of the cycle timer register to force
1552            all PCI writes to be posted immediately */
1553         mb();
1554         reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1555
1556         /* check RUN */
1557         if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1558                 PRINT(KERN_ERR,
1559                       "Error starting IR DMA (ContextControl 0x%08x)\n",
1560                       reg_read(recv->ohci, recv->ContextControlSet));
1561                 return -1;
1562         }
1563
1564         return 0;
1565 }
1566
1567 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1568 {
1569         /* re-use the DMA descriptor for the block */
1570         /* by linking the previous descriptor to it */
1571
1572         int next_i = block;
1573         int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1574
1575         struct dma_cmd *next = &recv->block[next_i];
1576         struct dma_cmd *prev = &recv->block[prev_i];
1577         
1578         /* ignore out-of-range requests */
1579         if ((block < 0) || (block > recv->nblocks))
1580                 return;
1581
1582         /* 'next' becomes the new end of the DMA chain,
1583            so disable branch and enable interrupt */
1584         next->branchAddress = 0;
1585         next->control |= cpu_to_le32(3 << 20);
1586         next->status = cpu_to_le32(recv->buf_stride);
1587
1588         /* link prev to next */
1589         prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1590                                                                         sizeof(struct dma_cmd) * next_i)
1591                                           | 1); /* Z=1 */
1592
1593         /* disable interrupt on previous DMA descriptor, except at intervals */
1594         if ((prev_i % recv->block_irq_interval) == 0) {
1595                 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1596         } else {
1597                 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1598         }
1599         wmb();
1600
1601         /* wake up DMA in case it fell asleep */
1602         reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1603 }
1604
1605 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1606                                              struct hpsb_iso_packet_info *info)
1607 {
1608         /* release the memory where the packet was */
1609         recv->released_bytes += info->total_len;
1610
1611         /* have we released enough memory for one block? */
1612         while (recv->released_bytes > recv->buf_stride) {
1613                 ohci_iso_recv_release_block(recv, recv->block_reader);
1614                 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1615                 recv->released_bytes -= recv->buf_stride;
1616         }
1617 }
1618
1619 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1620 {
1621         struct ohci_iso_recv *recv = iso->hostdata;
1622         if (recv->dma_mode == BUFFER_FILL_MODE) {
1623                 ohci_iso_recv_bufferfill_release(recv, info);
1624         } else {
1625                 ohci_iso_recv_release_block(recv, info - iso->infos);
1626         }
1627 }
1628
1629 /* parse all packets from blocks that have been fully received */
1630 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1631 {
1632         int wake = 0;
1633         int runaway = 0;
1634         struct ti_ohci *ohci = recv->ohci;
1635
1636         while (1) {
1637                 /* we expect the next parsable packet to begin at recv->dma_offset */
1638                 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1639
1640                 unsigned int offset;
1641                 unsigned short len, cycle, total_len;
1642                 unsigned char channel, tag, sy;
1643
1644                 unsigned char *p = iso->data_buf.kvirt;
1645
1646                 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1647
1648                 /* don't loop indefinitely */
1649                 if (runaway++ > 100000) {
1650                         atomic_inc(&iso->overflows);
1651                         PRINT(KERN_ERR,
1652                               "IR DMA error - Runaway during buffer parsing!\n");
1653                         break;
1654                 }
1655
1656                 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1657                 if (this_block == recv->block_dma)
1658                         break;
1659
1660                 wake = 1;
1661
1662                 /* parse data length, tag, channel, and sy */
1663
1664                 /* note: we keep our own local copies of 'len' and 'offset'
1665                    so the user can't mess with them by poking in the mmap area */
1666
1667                 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1668
1669                 if (len > 4096) {
1670                         PRINT(KERN_ERR,
1671                               "IR DMA error - bogus 'len' value %u\n", len);
1672                 }
1673
1674                 channel = p[recv->dma_offset+1] & 0x3F;
1675                 tag = p[recv->dma_offset+1] >> 6;
1676                 sy = p[recv->dma_offset+0] & 0xF;
1677
1678                 /* advance to data payload */
1679                 recv->dma_offset += 4;
1680
1681                 /* check for wrap-around */
1682                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1683                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1684                 }
1685
1686                 /* dma_offset now points to the first byte of the data payload */
1687                 offset = recv->dma_offset;
1688
1689                 /* advance to xferStatus/timeStamp */
1690                 recv->dma_offset += len;
1691
1692                 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1693                 /* payload is padded to 4 bytes */
1694                 if (len % 4) {
1695                         recv->dma_offset += 4 - (len%4);
1696                         total_len += 4 - (len%4);
1697                 }
1698
1699                 /* check for wrap-around */
1700                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1701                         /* uh oh, the packet data wraps from the last
1702                            to the first DMA block - make the packet
1703                            contiguous by copying its "tail" into the
1704                            guard page */
1705
1706                         int guard_off = recv->buf_stride*recv->nblocks;
1707                         int tail_len = len - (guard_off - offset);
1708
1709                         if (tail_len > 0  && tail_len < recv->buf_stride) {
1710                                 memcpy(iso->data_buf.kvirt + guard_off,
1711                                        iso->data_buf.kvirt,
1712                                        tail_len);
1713                         }
1714
1715                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1716                 }
1717
1718                 /* parse timestamp */
1719                 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1720                 cycle &= 0x1FFF;
1721
1722                 /* advance to next packet */
1723                 recv->dma_offset += 4;
1724
1725                 /* check for wrap-around */
1726                 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1727                         recv->dma_offset -= recv->buf_stride*recv->nblocks;
1728                 }
1729
1730                 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1731         }
1732
1733         if (wake)
1734                 hpsb_iso_wake(iso);
1735 }
1736
1737 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1738 {
1739         int loop;
1740         struct ti_ohci *ohci = recv->ohci;
1741
1742         /* loop over all blocks */
1743         for (loop = 0; loop < recv->nblocks; loop++) {
1744
1745                 /* check block_dma to see if it's done */
1746                 struct dma_cmd *im = &recv->block[recv->block_dma];
1747
1748                 /* check the DMA descriptor for new writes to xferStatus */
1749                 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1750
1751                 /* rescount is the number of bytes *remaining to be written* in the block */
1752                 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1753
1754                 unsigned char event = xferstatus & 0x1F;
1755
1756                 if (!event) {
1757                         /* nothing has happened to this block yet */
1758                         break;
1759                 }
1760
1761                 if (event != 0x11) {
1762                         atomic_inc(&iso->overflows);
1763                         PRINT(KERN_ERR,
1764                               "IR DMA error - OHCI error code 0x%02x\n", event);
1765                 }
1766
1767                 if (rescount != 0) {
1768                         /* the card is still writing to this block;
1769                            we can't touch it until it's done */
1770                         break;
1771                 }
1772
1773                 /* OK, the block is finished... */
1774
1775                 /* sync our view of the block */
1776                 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1777
1778                 /* reset the DMA descriptor */
1779                 im->status = recv->buf_stride;
1780
1781                 /* advance block_dma */
1782                 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1783
1784                 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1785                         atomic_inc(&iso->overflows);
1786                         DBGMSG("ISO reception overflow - "
1787                                "ran out of DMA blocks");
1788                 }
1789         }
1790
1791         /* parse any packets that have arrived */
1792         ohci_iso_recv_bufferfill_parse(iso, recv);
1793 }
1794
1795 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1796 {
1797         int count;
1798         int wake = 0;
1799         struct ti_ohci *ohci = recv->ohci;
1800
1801         /* loop over the entire buffer */
1802         for (count = 0; count < recv->nblocks; count++) {
1803                 u32 packet_len = 0;
1804
1805                 /* pointer to the DMA descriptor */
1806                 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1807
1808                 /* check the DMA descriptor for new writes to xferStatus */
1809                 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1810                 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1811
1812                 unsigned char event = xferstatus & 0x1F;
1813
1814                 if (!event) {
1815                         /* this packet hasn't come in yet; we are done for now */
1816                         goto out;
1817                 }
1818
1819                 if (event == 0x11) {
1820                         /* packet received successfully! */
1821
1822                         /* rescount is the number of bytes *remaining* in the packet buffer,
1823                            after the packet was written */
1824                         packet_len = recv->buf_stride - rescount;
1825
1826                 } else if (event == 0x02) {
1827                         PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1828                 } else if (event) {
1829                         PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1830                 }
1831
1832                 /* sync our view of the buffer */
1833                 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1834
1835                 /* record the per-packet info */
1836                 {
1837                         /* iso header is 8 bytes ahead of the data payload */
1838                         unsigned char *hdr;
1839
1840                         unsigned int offset;
1841                         unsigned short cycle;
1842                         unsigned char channel, tag, sy;
1843
1844                         offset = iso->pkt_dma * recv->buf_stride;
1845                         hdr = iso->data_buf.kvirt + offset;
1846
1847                         /* skip iso header */
1848                         offset += 8;
1849                         packet_len -= 8;
1850
1851                         cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1852                         channel = hdr[5] & 0x3F;
1853                         tag = hdr[5] >> 6;
1854                         sy = hdr[4] & 0xF;
1855
1856                         hpsb_iso_packet_received(iso, offset, packet_len,
1857                                         recv->buf_stride, cycle, channel, tag, sy);
1858                 }
1859
1860                 /* reset the DMA descriptor */
1861                 il->status = recv->buf_stride;
1862
1863                 wake = 1;
1864                 recv->block_dma = iso->pkt_dma;
1865         }
1866
1867 out:
1868         if (wake)
1869                 hpsb_iso_wake(iso);
1870 }
1871
1872 static void ohci_iso_recv_task(unsigned long data)
1873 {
1874         struct hpsb_iso *iso = (struct hpsb_iso*) data;
1875         struct ohci_iso_recv *recv = iso->hostdata;
1876
1877         if (recv->dma_mode == BUFFER_FILL_MODE)
1878                 ohci_iso_recv_bufferfill_task(iso, recv);
1879         else
1880                 ohci_iso_recv_packetperbuf_task(iso, recv);
1881 }
1882
1883 /***********************************
1884  * rawiso ISO transmission         *
1885  ***********************************/
1886
1887 struct ohci_iso_xmit {
1888         struct ti_ohci *ohci;
1889         struct dma_prog_region prog;
1890         struct ohci1394_iso_tasklet task;
1891         int task_active;
1892
1893         u32 ContextControlSet;
1894         u32 ContextControlClear;
1895         u32 CommandPtr;
1896 };
1897
1898 /* transmission DMA program:
1899    one OUTPUT_MORE_IMMEDIATE for the IT header
1900    one OUTPUT_LAST for the buffer data */
1901
1902 struct iso_xmit_cmd {
1903         struct dma_cmd output_more_immediate;
1904         u8 iso_hdr[8];
1905         u32 unused[2];
1906         struct dma_cmd output_last;
1907 };
1908
1909 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1910 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1911 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1912 static void ohci_iso_xmit_task(unsigned long data);
1913
1914 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1915 {
1916         struct ohci_iso_xmit *xmit;
1917         unsigned int prog_size;
1918         int ctx;
1919         int ret = -ENOMEM;
1920
1921         xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1922         if (!xmit)
1923                 return -ENOMEM;
1924
1925         iso->hostdata = xmit;
1926         xmit->ohci = iso->host->hostdata;
1927         xmit->task_active = 0;
1928
1929         dma_prog_region_init(&xmit->prog);
1930
1931         prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1932
1933         if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1934                 goto err;
1935
1936         ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1937                                   ohci_iso_xmit_task, (unsigned long) iso);
1938
1939         if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1940                 ret = -EBUSY;
1941                 goto err;
1942         }
1943
1944         xmit->task_active = 1;
1945
1946         /* xmit context registers are spaced 16 bytes apart */
1947         ctx = xmit->task.context;
1948         xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1949         xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1950         xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1951
1952         return 0;
1953
1954 err:
1955         ohci_iso_xmit_shutdown(iso);
1956         return ret;
1957 }
1958
1959 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1960 {
1961         struct ohci_iso_xmit *xmit = iso->hostdata;
1962         struct ti_ohci *ohci = xmit->ohci;
1963
1964         /* disable interrupts */
1965         reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1966
1967         /* halt DMA */
1968         if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1969                 /* XXX the DMA context will lock up if you try to send too much data! */
1970                 PRINT(KERN_ERR,
1971                       "you probably exceeded the OHCI card's bandwidth limit - "
1972                       "reload the module and reduce xmit bandwidth");
1973         }
1974 }
1975
1976 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1977 {
1978         struct ohci_iso_xmit *xmit = iso->hostdata;
1979
1980         if (xmit->task_active) {
1981                 ohci_iso_xmit_stop(iso);
1982                 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1983                 xmit->task_active = 0;
1984         }
1985
1986         dma_prog_region_free(&xmit->prog);
1987         kfree(xmit);
1988         iso->hostdata = NULL;
1989 }
1990
1991 static void ohci_iso_xmit_task(unsigned long data)
1992 {
1993         struct hpsb_iso *iso = (struct hpsb_iso*) data;
1994         struct ohci_iso_xmit *xmit = iso->hostdata;
1995         struct ti_ohci *ohci = xmit->ohci;
1996         int wake = 0;
1997         int count;
1998
1999         /* check the whole buffer if necessary, starting at pkt_dma */
2000         for (count = 0; count < iso->buf_packets; count++) {
2001                 int cycle;
2002
2003                 /* DMA descriptor */
2004                 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2005
2006                 /* check for new writes to xferStatus */
2007                 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2008                 u8  event = xferstatus & 0x1F;
2009
2010                 if (!event) {
2011                         /* packet hasn't been sent yet; we are done for now */
2012                         break;
2013                 }
2014
2015                 if (event != 0x11)
2016                         PRINT(KERN_ERR,
2017                               "IT DMA error - OHCI error code 0x%02x\n", event);
2018
2019                 /* at least one packet went out, so wake up the writer */
2020                 wake = 1;
2021
2022                 /* parse cycle */
2023                 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2024
2025                 /* tell the subsystem the packet has gone out */
2026                 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2027
2028                 /* reset the DMA descriptor for next time */
2029                 cmd->output_last.status = 0;
2030         }
2031
2032         if (wake)
2033                 hpsb_iso_wake(iso);
2034 }
2035
2036 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2037 {
2038         struct ohci_iso_xmit *xmit = iso->hostdata;
2039         struct ti_ohci *ohci = xmit->ohci;
2040
2041         int next_i, prev_i;
2042         struct iso_xmit_cmd *next, *prev;
2043
2044         unsigned int offset;
2045         unsigned short len;
2046         unsigned char tag, sy;
2047
2048         /* check that the packet doesn't cross a page boundary
2049            (we could allow this if we added OUTPUT_MORE descriptor support) */
2050         if (cross_bound(info->offset, info->len)) {
2051                 PRINT(KERN_ERR,
2052                       "rawiso xmit: packet %u crosses a page boundary",
2053                       iso->first_packet);
2054                 return -EINVAL;
2055         }
2056
2057         offset = info->offset;
2058         len = info->len;
2059         tag = info->tag;
2060         sy = info->sy;
2061
2062         /* sync up the card's view of the buffer */
2063         dma_region_sync_for_device(&iso->data_buf, offset, len);
2064
2065         /* append first_packet to the DMA chain */
2066         /* by linking the previous descriptor to it */
2067         /* (next will become the new end of the DMA chain) */
2068
2069         next_i = iso->first_packet;
2070         prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2071
2072         next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2073         prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2074
2075         /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2076         memset(next, 0, sizeof(struct iso_xmit_cmd));
2077         next->output_more_immediate.control = cpu_to_le32(0x02000008);
2078
2079         /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2080
2081         /* tcode = 0xA, and sy */
2082         next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2083
2084         /* tag and channel number */
2085         next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2086
2087         /* transmission speed */
2088         next->iso_hdr[2] = iso->speed & 0x7;
2089
2090         /* payload size */
2091         next->iso_hdr[6] = len & 0xFF;
2092         next->iso_hdr[7] = len >> 8;
2093
2094         /* set up the OUTPUT_LAST */
2095         next->output_last.control = cpu_to_le32(1 << 28);
2096         next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2097         next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2098         next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2099         next->output_last.control |= cpu_to_le32(len);
2100
2101         /* payload bus address */
2102         next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2103
2104         /* leave branchAddress at zero for now */
2105
2106         /* re-write the previous DMA descriptor to chain to this one */
2107
2108         /* set prev branch address to point to next (Z=3) */
2109         prev->output_last.branchAddress = cpu_to_le32(
2110                 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2111
2112         /* disable interrupt, unless required by the IRQ interval */
2113         if (prev_i % iso->irq_interval) {
2114                 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2115         } else {
2116                 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2117         }
2118
2119         wmb();
2120
2121         /* wake DMA in case it is sleeping */
2122         reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2123
2124         /* issue a dummy read of the cycle timer to force all PCI
2125            writes to be posted immediately */
2126         mb();
2127         reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2128
2129         return 0;
2130 }
2131
2132 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2133 {
2134         struct ohci_iso_xmit *xmit = iso->hostdata;
2135         struct ti_ohci *ohci = xmit->ohci;
2136
2137         /* clear out the control register */
2138         reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2139         wmb();
2140
2141         /* address and length of first descriptor block (Z=3) */
2142         reg_write(xmit->ohci, xmit->CommandPtr,
2143                   dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2144
2145         /* cycle match */
2146         if (cycle != -1) {
2147                 u32 start = cycle & 0x1FFF;
2148
2149                 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2150                    just snarf them from the current time */
2151                 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2152
2153                 /* advance one second to give some extra time for DMA to start */
2154                 seconds += 1;
2155
2156                 start |= (seconds & 3) << 13;
2157
2158                 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2159         }
2160
2161         /* enable interrupts */
2162         reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2163
2164         /* run */
2165         reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2166         mb();
2167
2168         /* wait 100 usec to give the card time to go active */
2169         udelay(100);
2170
2171         /* check the RUN bit */
2172         if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2173                 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2174                       reg_read(xmit->ohci, xmit->ContextControlSet));
2175                 return -1;
2176         }
2177
2178         return 0;
2179 }
2180
2181 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2182 {
2183
2184         switch(cmd) {
2185         case XMIT_INIT:
2186                 return ohci_iso_xmit_init(iso);
2187         case XMIT_START:
2188                 return ohci_iso_xmit_start(iso, arg);
2189         case XMIT_STOP:
2190                 ohci_iso_xmit_stop(iso);
2191                 return 0;
2192         case XMIT_QUEUE:
2193                 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2194         case XMIT_SHUTDOWN:
2195                 ohci_iso_xmit_shutdown(iso);
2196                 return 0;
2197
2198         case RECV_INIT:
2199                 return ohci_iso_recv_init(iso);
2200         case RECV_START: {
2201                 int *args = (int*) arg;
2202                 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2203         }
2204         case RECV_STOP:
2205                 ohci_iso_recv_stop(iso);
2206                 return 0;
2207         case RECV_RELEASE:
2208                 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2209                 return 0;
2210         case RECV_FLUSH:
2211                 ohci_iso_recv_task((unsigned long) iso);
2212                 return 0;
2213         case RECV_SHUTDOWN:
2214                 ohci_iso_recv_shutdown(iso);
2215                 return 0;
2216         case RECV_LISTEN_CHANNEL:
2217                 ohci_iso_recv_change_channel(iso, arg, 1);
2218                 return 0;
2219         case RECV_UNLISTEN_CHANNEL:
2220                 ohci_iso_recv_change_channel(iso, arg, 0);
2221                 return 0;
2222         case RECV_SET_CHANNEL_MASK:
2223                 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2224                 return 0;
2225
2226         default:
2227                 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2228                         cmd);
2229                 break;
2230         }
2231         return -EINVAL;
2232 }
2233
2234 /***************************************
2235  * IEEE-1394 functionality section END *
2236  ***************************************/
2237
2238
2239 /********************************************************
2240  * Global stuff (interrupt handler, init/shutdown code) *
2241  ********************************************************/
2242
2243 static void dma_trm_reset(struct dma_trm_ctx *d)
2244 {
2245         unsigned long flags;
2246         LIST_HEAD(packet_list);
2247         struct ti_ohci *ohci = d->ohci;
2248         struct hpsb_packet *packet, *ptmp;
2249
2250         ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2251
2252         /* Lock the context, reset it and release it. Move the packets
2253          * that were pending in the context to packet_list and free
2254          * them after releasing the lock. */
2255
2256         spin_lock_irqsave(&d->lock, flags);
2257
2258         list_splice(&d->fifo_list, &packet_list);
2259         list_splice(&d->pending_list, &packet_list);
2260         INIT_LIST_HEAD(&d->fifo_list);
2261         INIT_LIST_HEAD(&d->pending_list);
2262
2263         d->branchAddrPtr = NULL;
2264         d->sent_ind = d->prg_ind;
2265         d->free_prgs = d->num_desc;
2266
2267         spin_unlock_irqrestore(&d->lock, flags);
2268
2269         if (list_empty(&packet_list))
2270                 return;
2271
2272         PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2273
2274         /* Now process subsystem callbacks for the packets from this
2275          * context. */
2276         list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2277                 list_del_init(&packet->driver_list);
2278                 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2279         }
2280 }
2281
2282 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2283                                        quadlet_t rx_event,
2284                                        quadlet_t tx_event)
2285 {
2286         struct ohci1394_iso_tasklet *t;
2287         unsigned long mask;
2288         unsigned long flags;
2289
2290         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2291
2292         list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2293                 mask = 1 << t->context;
2294
2295                 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2296                         tasklet_schedule(&t->tasklet);
2297                 else if (rx_event & mask)
2298                         tasklet_schedule(&t->tasklet);
2299         }
2300
2301         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2302 }
2303
2304 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2305                              struct pt_regs *regs_are_unused)
2306 {
2307         quadlet_t event, node_id;
2308         struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2309         struct hpsb_host *host = ohci->host;
2310         int phyid = -1, isroot = 0;
2311         unsigned long flags;
2312
2313         /* Read and clear the interrupt event register.  Don't clear
2314          * the busReset event, though. This is done when we get the
2315          * selfIDComplete interrupt. */
2316         spin_lock_irqsave(&ohci->event_lock, flags);
2317         event = reg_read(ohci, OHCI1394_IntEventClear);
2318         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2319         spin_unlock_irqrestore(&ohci->event_lock, flags);
2320
2321         if (!event)
2322                 return IRQ_NONE;
2323
2324         /* If event is ~(u32)0 cardbus card was ejected.  In this case
2325          * we just return, and clean up in the ohci1394_pci_remove
2326          * function. */
2327         if (event == ~(u32) 0) {
2328                 DBGMSG("Device removed.");
2329                 return IRQ_NONE;
2330         }
2331
2332         DBGMSG("IntEvent: %08x", event);
2333
2334         if (event & OHCI1394_unrecoverableError) {
2335                 int ctx;
2336                 PRINT(KERN_ERR, "Unrecoverable error!");
2337
2338                 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2339                         PRINT(KERN_ERR, "Async Req Tx Context died: "
2340                                 "ctrl[%08x] cmdptr[%08x]",
2341                                 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2342                                 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2343
2344                 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2345                         PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2346                                 "ctrl[%08x] cmdptr[%08x]",
2347                                 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2348                                 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2349
2350                 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2351                         PRINT(KERN_ERR, "Async Req Rcv Context died: "
2352                                 "ctrl[%08x] cmdptr[%08x]",
2353                                 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2354                                 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2355
2356                 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2357                         PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2358                                 "ctrl[%08x] cmdptr[%08x]",
2359                                 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2360                                 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2361
2362                 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2363                         if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2364                                 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2365                                         "ctrl[%08x] cmdptr[%08x]", ctx,
2366                                         reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2367                                         reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2368                 }
2369
2370                 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2371                         if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2372                                 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2373                                         "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2374                                         reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2375                                         reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2376                                         reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2377                 }
2378
2379                 event &= ~OHCI1394_unrecoverableError;
2380         }
2381         if (event & OHCI1394_postedWriteErr) {
2382                 PRINT(KERN_ERR, "physical posted write error");
2383                 /* no recovery strategy yet, had to involve protocol drivers */
2384         }
2385         if (event & OHCI1394_cycleTooLong) {
2386                 if(printk_ratelimit())
2387                         PRINT(KERN_WARNING, "isochronous cycle too long");
2388                 else
2389                         DBGMSG("OHCI1394_cycleTooLong");
2390                 reg_write(ohci, OHCI1394_LinkControlSet,
2391                           OHCI1394_LinkControl_CycleMaster);
2392                 event &= ~OHCI1394_cycleTooLong;
2393         }
2394         if (event & OHCI1394_cycleInconsistent) {
2395                 /* We subscribe to the cycleInconsistent event only to
2396                  * clear the corresponding event bit... otherwise,
2397                  * isochronous cycleMatch DMA won't work. */
2398                 DBGMSG("OHCI1394_cycleInconsistent");
2399                 event &= ~OHCI1394_cycleInconsistent;
2400         }
2401         if (event & OHCI1394_busReset) {
2402                 /* The busReset event bit can't be cleared during the
2403                  * selfID phase, so we disable busReset interrupts, to
2404                  * avoid burying the cpu in interrupt requests. */
2405                 spin_lock_irqsave(&ohci->event_lock, flags);
2406                 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2407
2408                 if (ohci->check_busreset) {
2409                         int loop_count = 0;
2410
2411                         udelay(10);
2412
2413                         while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2414                                 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2415
2416                                 spin_unlock_irqrestore(&ohci->event_lock, flags);
2417                                 udelay(10);
2418                                 spin_lock_irqsave(&ohci->event_lock, flags);
2419
2420                                 /* The loop counter check is to prevent the driver
2421                                  * from remaining in this state forever. For the
2422                                  * initial bus reset, the loop continues for ever
2423                                  * and the system hangs, until some device is plugged-in
2424                                  * or out manually into a port! The forced reset seems
2425                                  * to solve this problem. This mainly effects nForce2. */
2426                                 if (loop_count > 10000) {
2427                                         ohci_devctl(host, RESET_BUS, LONG_RESET);
2428                                         DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2429                                         loop_count = 0;
2430                                 }
2431
2432                                 loop_count++;
2433                         }
2434                 }
2435                 spin_unlock_irqrestore(&ohci->event_lock, flags);
2436                 if (!host->in_bus_reset) {
2437                         DBGMSG("irq_handler: Bus reset requested");
2438
2439                         /* Subsystem call */
2440                         hpsb_bus_reset(ohci->host);
2441                 }
2442                 event &= ~OHCI1394_busReset;
2443         }
2444         if (event & OHCI1394_reqTxComplete) {
2445                 struct dma_trm_ctx *d = &ohci->at_req_context;
2446                 DBGMSG("Got reqTxComplete interrupt "
2447                        "status=0x%08X", reg_read(ohci, d->ctrlSet));
2448                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2449                         ohci1394_stop_context(ohci, d->ctrlClear,
2450                                               "reqTxComplete");
2451                 else
2452                         dma_trm_tasklet((unsigned long)d);
2453                         //tasklet_schedule(&d->task);
2454                 event &= ~OHCI1394_reqTxComplete;
2455         }
2456         if (event & OHCI1394_respTxComplete) {
2457                 struct dma_trm_ctx *d = &ohci->at_resp_context;
2458                 DBGMSG("Got respTxComplete interrupt "
2459                        "status=0x%08X", reg_read(ohci, d->ctrlSet));
2460                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2461                         ohci1394_stop_context(ohci, d->ctrlClear,
2462                                               "respTxComplete");
2463                 else
2464                         tasklet_schedule(&d->task);
2465                 event &= ~OHCI1394_respTxComplete;
2466         }
2467         if (event & OHCI1394_RQPkt) {
2468                 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2469                 DBGMSG("Got RQPkt interrupt status=0x%08X",
2470                        reg_read(ohci, d->ctrlSet));
2471                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2472                         ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2473                 else
2474                         tasklet_schedule(&d->task);
2475                 event &= ~OHCI1394_RQPkt;
2476         }
2477         if (event & OHCI1394_RSPkt) {
2478                 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2479                 DBGMSG("Got RSPkt interrupt status=0x%08X",
2480                        reg_read(ohci, d->ctrlSet));
2481                 if (reg_read(ohci, d->ctrlSet) & 0x800)
2482                         ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2483                 else
2484                         tasklet_schedule(&d->task);
2485                 event &= ~OHCI1394_RSPkt;
2486         }
2487         if (event & OHCI1394_isochRx) {
2488                 quadlet_t rx_event;
2489
2490                 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2491                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2492                 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2493                 event &= ~OHCI1394_isochRx;
2494         }
2495         if (event & OHCI1394_isochTx) {
2496                 quadlet_t tx_event;
2497
2498                 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2499                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2500                 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2501                 event &= ~OHCI1394_isochTx;
2502         }
2503         if (event & OHCI1394_selfIDComplete) {
2504                 if (host->in_bus_reset) {
2505                         node_id = reg_read(ohci, OHCI1394_NodeID);
2506
2507                         if (!(node_id & 0x80000000)) {
2508                                 PRINT(KERN_ERR,
2509                                       "SelfID received, but NodeID invalid "
2510                                       "(probably new bus reset occurred): %08X",
2511                                       node_id);
2512                                 goto selfid_not_valid;
2513                         }
2514
2515                         phyid =  node_id & 0x0000003f;
2516                         isroot = (node_id & 0x40000000) != 0;
2517
2518                         DBGMSG("SelfID interrupt received "
2519                               "(phyid %d, %s)", phyid,
2520                               (isroot ? "root" : "not root"));
2521
2522                         handle_selfid(ohci, host, phyid, isroot);
2523
2524                         /* Clear the bus reset event and re-enable the
2525                          * busReset interrupt.  */
2526                         spin_lock_irqsave(&ohci->event_lock, flags);
2527                         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2528                         reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2529                         spin_unlock_irqrestore(&ohci->event_lock, flags);
2530
2531                         /* Turn on phys dma reception.
2532                          *
2533                          * TODO: Enable some sort of filtering management.
2534                          */
2535                         if (phys_dma) {
2536                                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2537                                           0xffffffff);
2538                                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2539                                           0xffffffff);
2540                         }
2541
2542                         DBGMSG("PhyReqFilter=%08x%08x",
2543                                reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2544                                reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2545
2546                         hpsb_selfid_complete(host, phyid, isroot);
2547                 } else
2548                         PRINT(KERN_ERR,
2549                               "SelfID received outside of bus reset sequence");
2550
2551 selfid_not_valid:
2552                 event &= ~OHCI1394_selfIDComplete;
2553         }
2554
2555         /* Make sure we handle everything, just in case we accidentally
2556          * enabled an interrupt that we didn't write a handler for.  */
2557         if (event)
2558                 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2559                       event);
2560
2561         return IRQ_HANDLED;
2562 }
2563
2564 /* Put the buffer back into the dma context */
2565 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2566 {
2567         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2568         DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2569
2570         d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2571         d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2572         idx = (idx + d->num_desc - 1 ) % d->num_desc;
2573         d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2574
2575         /* To avoid a race, ensure 1394 interface hardware sees the inserted
2576          * context program descriptors before it sees the wakeup bit set. */
2577         wmb();
2578         
2579         /* wake up the dma context if necessary */
2580         if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2581                 PRINT(KERN_INFO,
2582                       "Waking dma ctx=%d ... processing is probably too slow",
2583                       d->ctx);
2584         }
2585
2586         /* do this always, to avoid race condition */
2587         reg_write(ohci, d->ctrlSet, 0x1000);
2588 }
2589
2590 #define cond_le32_to_cpu(data, noswap) \
2591         (noswap ? data : le32_to_cpu(data))
2592
2593 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2594                             -1, 0, -1, 0, -1, -1, 16, -1};
2595
2596 /*
2597  * Determine the length of a packet in the buffer
2598  * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2599  */
2600 static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2601                                 quadlet_t *buf_ptr, int offset,
2602                                 unsigned char tcode, int noswap)
2603 {
2604         int length = -1;
2605
2606         if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2607                 length = TCODE_SIZE[tcode];
2608                 if (length == 0) {
2609                         if (offset + 12 >= d->buf_size) {
2610                                 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2611                                                 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2612                         } else {
2613                                 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2614                         }
2615                         length += 20;
2616                 }
2617         } else if (d->type == DMA_CTX_ISO) {
2618                 /* Assumption: buffer fill mode with header/trailer */
2619                 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2620         }
2621
2622         if (length > 0 && length % 4)
2623                 length += 4 - (length % 4);
2624
2625         return length;
2626 }
2627
2628 /* Tasklet that processes dma receive buffers */
2629 static void dma_rcv_tasklet (unsigned long data)
2630 {
2631         struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2632         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2633         unsigned int split_left, idx, offset, rescount;
2634         unsigned char tcode;
2635         int length, bytes_left, ack;
2636         unsigned long flags;
2637         quadlet_t *buf_ptr;
2638         char *split_ptr;
2639         char msg[256];
2640
2641         spin_lock_irqsave(&d->lock, flags);
2642
2643         idx = d->buf_ind;
2644         offset = d->buf_offset;
2645         buf_ptr = d->buf_cpu[idx] + offset/4;
2646
2647         rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2648         bytes_left = d->buf_size - rescount - offset;
2649
2650         while (bytes_left > 0) {
2651                 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2652
2653                 /* packet_length() will return < 4 for an error */
2654                 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2655
2656                 if (length < 4) { /* something is wrong */
2657                         sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2658                                 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2659                                 d->ctx, length);
2660                         ohci1394_stop_context(ohci, d->ctrlClear, msg);
2661                         spin_unlock_irqrestore(&d->lock, flags);
2662                         return;
2663                 }
2664
2665                 /* The first case is where we have a packet that crosses
2666                  * over more than one descriptor. The next case is where
2667                  * it's all in the first descriptor.  */
2668                 if ((offset + length) > d->buf_size) {
2669                         DBGMSG("Split packet rcv'd");
2670                         if (length > d->split_buf_size) {
2671                                 ohci1394_stop_context(ohci, d->ctrlClear,
2672                                              "Split packet size exceeded");
2673                                 d->buf_ind = idx;
2674                                 d->buf_offset = offset;
2675                                 spin_unlock_irqrestore(&d->lock, flags);
2676                                 return;
2677                         }
2678
2679                         if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2680                             == d->buf_size) {
2681                                 /* Other part of packet not written yet.
2682                                  * this should never happen I think
2683                                  * anyway we'll get it on the next call.  */
2684                                 PRINT(KERN_INFO,
2685                                       "Got only half a packet!");
2686                                 d->buf_ind = idx;
2687                                 d->buf_offset = offset;
2688                                 spin_unlock_irqrestore(&d->lock, flags);
2689                                 return;
2690                         }
2691
2692                         split_left = length;
2693                         split_ptr = (char *)d->spb;
2694                         memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2695                         split_left -= d->buf_size-offset;
2696                         split_ptr += d->buf_size-offset;
2697                         insert_dma_buffer(d, idx);
2698                         idx = (idx+1) % d->num_desc;
2699                         buf_ptr = d->buf_cpu[idx];
2700                         offset=0;
2701
2702                         while (split_left >= d->buf_size) {
2703                                 memcpy(split_ptr,buf_ptr,d->buf_size);
2704                                 split_ptr += d->buf_size;
2705                                 split_left -= d->buf_size;
2706                                 insert_dma_buffer(d, idx);
2707                                 idx = (idx+1) % d->num_desc;
2708                                 buf_ptr = d->buf_cpu[idx];
2709                         }
2710
2711                         if (split_left > 0) {
2712                                 memcpy(split_ptr, buf_ptr, split_left);
2713                                 offset = split_left;
2714                                 buf_ptr += offset/4;
2715                         }
2716                 } else {
2717                         DBGMSG("Single packet rcv'd");
2718                         memcpy(d->spb, buf_ptr, length);
2719                         offset += length;
2720                         buf_ptr += length/4;
2721                         if (offset==d->buf_size) {
2722                                 insert_dma_buffer(d, idx);
2723                                 idx = (idx+1) % d->num_desc;
2724                                 buf_ptr = d->buf_cpu[idx];
2725                                 offset=0;
2726                         }
2727                 }
2728
2729                 /* We get one phy packet to the async descriptor for each
2730                  * bus reset. We always ignore it.  */
2731                 if (tcode != OHCI1394_TCODE_PHY) {
2732                         if (!ohci->no_swap_incoming)
2733                                 header_le32_to_cpu(d->spb, tcode);
2734                         DBGMSG("Packet received from node"
2735                                 " %d ack=0x%02X spd=%d tcode=0x%X"
2736                                 " length=%d ctx=%d tlabel=%d",
2737                                 (d->spb[1]>>16)&0x3f,
2738                                 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2739                                 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2740                                 tcode, length, d->ctx,
2741                                 (d->spb[0]>>10)&0x3f);
2742
2743                         ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2744                                 == 0x11) ? 1 : 0;
2745
2746                         hpsb_packet_received(ohci->host, d->spb,
2747                                              length-4, ack);
2748                 }
2749 #ifdef OHCI1394_DEBUG
2750                 else
2751                         PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2752                                d->ctx);
2753 #endif
2754
2755                 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2756
2757                 bytes_left = d->buf_size - rescount - offset;
2758
2759         }
2760
2761         d->buf_ind = idx;
2762         d->buf_offset = offset;
2763
2764         spin_unlock_irqrestore(&d->lock, flags);
2765 }
2766
2767 /* Bottom half that processes sent packets */
2768 static void dma_trm_tasklet (unsigned long data)
2769 {
2770         struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2771         struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2772         struct hpsb_packet *packet, *ptmp;
2773         unsigned long flags;
2774         u32 status, ack;
2775         size_t datasize;
2776
2777         spin_lock_irqsave(&d->lock, flags);
2778
2779         list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2780                 datasize = packet->data_size;
2781                 if (datasize && packet->type != hpsb_raw)
2782                         status = le32_to_cpu(
2783                                 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2784                 else
2785                         status = le32_to_cpu(
2786                                 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2787
2788                 if (status == 0)
2789                         /* this packet hasn't been sent yet*/
2790                         break;
2791
2792 #ifdef OHCI1394_DEBUG
2793                 if (datasize)
2794                         if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2795                                 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2796                                        "ack=0x%X spd=%d dataLength=%d ctx=%d",
2797                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2798                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2799                                        status&0x1f, (status>>5)&0x3,
2800                                        le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2801                                        d->ctx);
2802                         else
2803                                 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2804                                        "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2805                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2806                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2807                                        (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2808                                        status&0x1f, (status>>5)&0x3,
2809                                        le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2810                                        d->ctx);
2811                 else
2812                         DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2813                                "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2814                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2815                                         >>16)&0x3f,
2816                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2817                                         >>4)&0xf,
2818                                 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2819                                         >>10)&0x3f,
2820                                 status&0x1f, (status>>5)&0x3,
2821                                 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2822                                 d->ctx);
2823 #endif
2824
2825                 if (status & 0x10) {
2826                         ack = status & 0xf;
2827                 } else {
2828                         switch (status & 0x1f) {
2829                         case EVT_NO_STATUS: /* that should never happen */
2830                         case EVT_RESERVED_A: /* that should never happen */
2831                         case EVT_LONG_PACKET: /* that should never happen */
2832                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2833                                 ack = ACKX_SEND_ERROR;
2834                                 break;
2835                         case EVT_MISSING_ACK:
2836                                 ack = ACKX_TIMEOUT;
2837                                 break;
2838                         case EVT_UNDERRUN:
2839                                 ack = ACKX_SEND_ERROR;
2840                                 break;
2841                         case EVT_OVERRUN: /* that should never happen */
2842                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2843                                 ack = ACKX_SEND_ERROR;
2844                                 break;
2845                         case EVT_DESCRIPTOR_READ:
2846                         case EVT_DATA_READ:
2847                         case EVT_DATA_WRITE:
2848                                 ack = ACKX_SEND_ERROR;
2849                                 break;
2850                         case EVT_BUS_RESET: /* that should never happen */
2851                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2852                                 ack = ACKX_SEND_ERROR;
2853                                 break;
2854                         case EVT_TIMEOUT:
2855                                 ack = ACKX_TIMEOUT;
2856                                 break;
2857                         case EVT_TCODE_ERR:
2858                                 ack = ACKX_SEND_ERROR;
2859                                 break;
2860                         case EVT_RESERVED_B: /* that should never happen */
2861                         case EVT_RESERVED_C: /* that should never happen */
2862                                 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2863                                 ack = ACKX_SEND_ERROR;
2864                                 break;
2865                         case EVT_UNKNOWN:
2866                         case EVT_FLUSHED:
2867                                 ack = ACKX_SEND_ERROR;
2868                                 break;
2869                         default:
2870                                 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2871                                 ack = ACKX_SEND_ERROR;
2872                                 BUG();
2873                         }
2874                 }
2875
2876                 list_del_init(&packet->driver_list);
2877                 hpsb_packet_sent(ohci->host, packet, ack);
2878
2879                 if (datasize) {
2880                         pci_unmap_single(ohci->dev,
2881                                          cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2882                                          datasize, PCI_DMA_TODEVICE);
2883                         OHCI_DMA_FREE("single Xmit data packet");
2884                 }
2885
2886                 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2887                 d->free_prgs++;
2888         }
2889
2890         dma_trm_flush(ohci, d);
2891
2892         spin_unlock_irqrestore(&d->lock, flags);
2893 }
2894
2895 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2896 {
2897         if (d->ctrlClear) {
2898                 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2899
2900                 if (d->type == DMA_CTX_ISO) {
2901                         /* disable interrupts */
2902                         reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2903                         ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2904                 } else {
2905                         tasklet_kill(&d->task);
2906                 }
2907         }
2908 }
2909
2910
2911 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2912 {
2913         int i;
2914         struct ti_ohci *ohci = d->ohci;
2915
2916         if (ohci == NULL)
2917                 return;
2918
2919         DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2920
2921         if (d->buf_cpu) {
2922                 for (i=0; i<d->num_desc; i++)
2923                         if (d->buf_cpu[i] && d->buf_bus[i]) {
2924                                 pci_free_consistent(
2925                                         ohci->dev, d->buf_size,
2926                                         d->buf_cpu[i], d->buf_bus[i]);
2927                                 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2928                         }
2929                 kfree(d->buf_cpu);
2930                 kfree(d->buf_bus);
2931         }
2932         if (d->prg_cpu) {
2933                 for (i=0; i<d->num_desc; i++)
2934                         if (d->prg_cpu[i] && d->prg_bus[i]) {
2935                                 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2936                                 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2937                         }
2938                 pci_pool_destroy(d->prg_pool);
2939                 OHCI_DMA_FREE("dma_rcv prg pool");
2940                 kfree(d->prg_cpu);
2941                 kfree(d->prg_bus);
2942         }
2943         kfree(d->spb);
2944
2945         /* Mark this context as freed. */
2946         d->ohci = NULL;
2947 }
2948
2949 static int
2950 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2951                   enum context_type type, int ctx, int num_desc,
2952                   int buf_size, int split_buf_size, int context_base)
2953 {
2954         int i, len;
2955         static int num_allocs;
2956         static char pool_name[20];
2957
2958         d->ohci = ohci;
2959         d->type = type;
2960         d->ctx = ctx;
2961
2962         d->num_desc = num_desc;
2963         d->buf_size = buf_size;
2964         d->split_buf_size = split_buf_size;
2965
2966         d->ctrlSet = 0;
2967         d->ctrlClear = 0;
2968         d->cmdPtr = 0;
2969
2970         d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2971         d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2972
2973         if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2974                 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2975                 free_dma_rcv_ctx(d);
2976                 return -ENOMEM;
2977         }
2978
2979         d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2980         d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2981
2982         if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2983                 PRINT(KERN_ERR, "Failed to allocate dma prg");
2984                 free_dma_rcv_ctx(d);
2985                 return -ENOMEM;
2986         }
2987
2988         d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2989
2990         if (d->spb == NULL) {
2991                 PRINT(KERN_ERR, "Failed to allocate split buffer");
2992                 free_dma_rcv_ctx(d);
2993                 return -ENOMEM;
2994         }
2995         
2996         len = sprintf(pool_name, "ohci1394_rcv_prg");
2997         sprintf(pool_name+len, "%d", num_allocs);
2998         d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2999                                 sizeof(struct dma_cmd), 4, 0);
3000         if(d->prg_pool == NULL)
3001         {
3002                 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3003                 free_dma_rcv_ctx(d);
3004                 return -ENOMEM;
3005         }
3006         num_allocs++;
3007
3008         OHCI_DMA_ALLOC("dma_rcv prg pool");
3009
3010         for (i=0; i<d->num_desc; i++) {
3011                 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3012                                                      d->buf_size,
3013                                                      d->buf_bus+i);
3014                 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3015
3016                 if (d->buf_cpu[i] != NULL) {
3017                         memset(d->buf_cpu[i], 0, d->buf_size);
3018                 } else {
3019                         PRINT(KERN_ERR,
3020                               "Failed to allocate dma buffer");
3021                         free_dma_rcv_ctx(d);
3022                         return -ENOMEM;
3023                 }
3024
3025                 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3026                 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3027
3028                 if (d->prg_cpu[i] != NULL) {
3029                         memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3030                 } else {
3031                         PRINT(KERN_ERR,
3032                               "Failed to allocate dma prg");
3033                         free_dma_rcv_ctx(d);
3034                         return -ENOMEM;
3035                 }
3036         }
3037
3038         spin_lock_init(&d->lock);
3039
3040         if (type == DMA_CTX_ISO) {
3041                 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3042                                           OHCI_ISO_MULTICHANNEL_RECEIVE,
3043                                           dma_rcv_tasklet, (unsigned long) d);
3044         } else {
3045                 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3046                 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3047                 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3048
3049                 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3050         }
3051
3052         return 0;
3053 }
3054
3055 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3056 {
3057         int i;
3058         struct ti_ohci *ohci = d->ohci;
3059
3060         if (ohci == NULL)
3061                 return;
3062
3063         DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3064
3065         if (d->prg_cpu) {
3066                 for (i=0; i<d->num_desc; i++)
3067                         if (d->prg_cpu[i] && d->prg_bus[i]) {
3068                                 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3069                                 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3070                         }
3071                 pci_pool_destroy(d->prg_pool);
3072                 OHCI_DMA_FREE("dma_trm prg pool");
3073                 kfree(d->prg_cpu);
3074                 kfree(d->prg_bus);
3075         }
3076
3077         /* Mark this context as freed. */
3078         d->ohci = NULL;
3079 }
3080
3081 static int
3082 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3083                   enum context_type type, int ctx, int num_desc,
3084                   int context_base)
3085 {
3086         int i, len;
3087         static char pool_name[20];
3088         static int num_allocs=0;
3089
3090         d->ohci = ohci;
3091         d->type = type;
3092         d->ctx = ctx;
3093         d->num_desc = num_desc;
3094         d->ctrlSet = 0;
3095         d->ctrlClear = 0;
3096         d->cmdPtr = 0;
3097
3098         d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3099         d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3100
3101         if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3102                 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3103                 free_dma_trm_ctx(d);
3104                 return -ENOMEM;
3105         }
3106
3107         len = sprintf(pool_name, "ohci1394_trm_prg");
3108         sprintf(pool_name+len, "%d", num_allocs);
3109         d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3110                                 sizeof(struct at_dma_prg), 4, 0);
3111         if (d->prg_pool == NULL) {
3112                 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3113                 free_dma_trm_ctx(d);
3114                 return -ENOMEM;
3115         }
3116         num_allocs++;
3117
3118         OHCI_DMA_ALLOC("dma_rcv prg pool");
3119
3120         for (i = 0; i < d->num_desc; i++) {
3121                 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3122                 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3123
3124                 if (d->prg_cpu[i] != NULL) {
3125                         memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3126                 } else {
3127                         PRINT(KERN_ERR,
3128                               "Failed to allocate at dma prg");
3129                         free_dma_trm_ctx(d);
3130                         return -ENOMEM;
3131                 }
3132         }
3133
3134         spin_lock_init(&d->lock);
3135
3136         /* initialize tasklet */
3137         if (type == DMA_CTX_ISO) {
3138                 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3139                                           dma_trm_tasklet, (unsigned long) d);
3140                 if (ohci1394_register_iso_tasklet(ohci,
3141                                                   &ohci->it_legacy_tasklet) < 0) {
3142                         PRINT(KERN_ERR, "No IT DMA context available");
3143                         free_dma_trm_ctx(d);
3144                         return -EBUSY;
3145                 }
3146
3147                 /* IT can be assigned to any context by register_iso_tasklet */
3148                 d->ctx = ohci->it_legacy_tasklet.context;
3149                 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3150                 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3151                 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3152         } else {
3153                 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3154                 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3155                 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3156                 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3157         }
3158
3159         return 0;
3160 }
3161
3162 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3163 {
3164         struct ti_ohci *ohci = host->hostdata;
3165
3166         reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3167         reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3168
3169         memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3170 }
3171
3172
3173 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3174                                  quadlet_t data, quadlet_t compare)
3175 {
3176         struct ti_ohci *ohci = host->hostdata;
3177         int i;
3178
3179         reg_write(ohci, OHCI1394_CSRData, data);
3180         reg_write(ohci, OHCI1394_CSRCompareData, compare);
3181         reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3182
3183         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3184                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3185                         break;
3186
3187                 mdelay(1);
3188         }
3189
3190         return reg_read(ohci, OHCI1394_CSRData);
3191 }
3192
3193 static struct hpsb_host_driver ohci1394_driver = {
3194         .owner =                THIS_MODULE,
3195         .name =                 OHCI1394_DRIVER_NAME,
3196         .set_hw_config_rom =    ohci_set_hw_config_rom,
3197         .transmit_packet =      ohci_transmit,
3198         .devctl =               ohci_devctl,
3199         .isoctl =               ohci_isoctl,
3200         .hw_csr_reg =           ohci_hw_csr_reg,
3201 };
3202
3203 /***********************************
3204  * PCI Driver Interface functions  *
3205  ***********************************/
3206
3207 #define FAIL(err, fmt, args...)                 \
3208 do {                                            \
3209         PRINT_G(KERN_ERR, fmt , ## args);       \
3210         ohci1394_pci_remove(dev);               \
3211         return err;                             \
3212 } while (0)
3213
3214 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3215                                         const struct pci_device_id *ent)
3216 {
3217         struct hpsb_host *host;
3218         struct ti_ohci *ohci;   /* shortcut to currently handled device */
3219         resource_size_t ohci_base;
3220
3221         if (pci_enable_device(dev))
3222                 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3223         pci_set_master(dev);
3224
3225         host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3226         if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3227
3228         ohci = host->hostdata;
3229         ohci->dev = dev;
3230         ohci->host = host;
3231         ohci->init_state = OHCI_INIT_ALLOC_HOST;
3232         host->pdev = dev;
3233         pci_set_drvdata(dev, ohci);
3234
3235         /* We don't want hardware swapping */
3236         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237
3238         /* Some oddball Apple controllers do not order the selfid
3239          * properly, so we make up for it here.  */
3240 #ifndef __LITTLE_ENDIAN
3241         /* XXX: Need a better way to check this. I'm wondering if we can
3242          * read the values of the OHCI1394_PCI_HCI_Control and the
3243          * noByteSwapData registers to see if they were not cleared to
3244          * zero. Should this work? Obviously it's not defined what these
3245          * registers will read when they aren't supported. Bleh! */
3246         if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3247             dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3248                 ohci->no_swap_incoming = 1;
3249                 ohci->selfid_swap = 0;
3250         } else
3251                 ohci->selfid_swap = 1;
3252 #endif
3253
3254
3255 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3256 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3257 #endif
3258
3259         /* These chipsets require a bit of extra care when checking after
3260          * a busreset.  */
3261         if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3262              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3263             (dev->vendor ==  PCI_VENDOR_ID_NVIDIA &&
3264              dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3265                 ohci->check_busreset = 1;
3266
3267         /* We hardwire the MMIO length, since some CardBus adaptors
3268          * fail to report the right length.  Anyway, the ohci spec
3269          * clearly says it's 2kb, so this shouldn't be a problem. */
3270         ohci_base = pci_resource_start(dev, 0);
3271         if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3272                 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3273                       (unsigned long long)pci_resource_len(dev, 0));
3274
3275         /* Seems PCMCIA handles this internally. Not sure why. Seems
3276          * pretty bogus to force a driver to special case this.  */
3277 #ifndef PCMCIA
3278         if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3279                 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3280                         (unsigned long long)ohci_base,
3281                         (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3282 #endif
3283         ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3284
3285         ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3286         if (ohci->registers == NULL)
3287                 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3288         ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3289         DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3290
3291         /* csr_config rom allocation */
3292         ohci->csr_config_rom_cpu =
3293                 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3294                                      &ohci->csr_config_rom_bus);
3295         OHCI_DMA_ALLOC("consistent csr_config_rom");
3296         if (ohci->csr_config_rom_cpu == NULL)
3297                 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3298         ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3299
3300         /* self-id dma buffer allocation */
3301         ohci->selfid_buf_cpu =
3302                 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3303                       &ohci->selfid_buf_bus);
3304         OHCI_DMA_ALLOC("consistent selfid_buf");
3305
3306         if (ohci->selfid_buf_cpu == NULL)
3307                 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3308         ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3309
3310         if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3311                 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3312                       "8Kb boundary... may cause problems on some CXD3222 chip",
3313                       ohci->selfid_buf_cpu);
3314
3315         /* No self-id errors at startup */
3316         ohci->self_id_errors = 0;
3317
3318         ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3319         /* AR DMA request context allocation */
3320         if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3321                               DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3322                               AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3323                               OHCI1394_AsReqRcvContextBase) < 0)
3324                 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3325
3326         /* AR DMA response context allocation */
3327         if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3328                               DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3329                               AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3330                               OHCI1394_AsRspRcvContextBase) < 0)
3331                 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3332
3333         /* AT DMA request context */
3334         if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3335                               DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3336                               OHCI1394_AsReqTrContextBase) < 0)
3337                 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3338
3339         /* AT DMA response context */
3340         if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3341                               DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3342                               OHCI1394_AsRspTrContextBase) < 0)
3343                 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3344
3345         /* Start off with a soft reset, to clear everything to a sane
3346          * state. */
3347         ohci_soft_reset(ohci);
3348
3349         /* Now enable LPS, which we need in order to start accessing
3350          * most of the registers.  In fact, on some cards (ALI M5251),
3351          * accessing registers in the SClk domain without LPS enabled
3352          * will lock up the machine.  Wait 50msec to make sure we have
3353          * full link enabled.  */
3354         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3355
3356         /* Disable and clear interrupts */
3357         reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3358         reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3359
3360         mdelay(50);
3361
3362         /* Determine the number of available IR and IT contexts. */
3363         ohci->nb_iso_rcv_ctx =
3364                 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3365         ohci->nb_iso_xmit_ctx =
3366                 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3367
3368         /* Set the usage bits for non-existent contexts so they can't
3369          * be allocated */
3370         ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3371         ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3372
3373         INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3374         spin_lock_init(&ohci->iso_tasklet_list_lock);
3375         ohci->ISO_channel_usage = 0;
3376         spin_lock_init(&ohci->IR_channel_lock);
3377
3378         /* Allocate the IR DMA context right here so we don't have
3379          * to do it in interrupt path - note that this doesn't
3380          * waste much memory and avoids the jugglery required to
3381          * allocate it in IRQ path. */
3382         if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3383                               DMA_CTX_ISO, 0, IR_NUM_DESC,
3384                               IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3385                               OHCI1394_IsoRcvContextBase) < 0) {
3386                 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3387         }
3388
3389         /* We hopefully don't have to pre-allocate IT DMA like we did
3390          * for IR DMA above. Allocate it on-demand and mark inactive. */
3391         ohci->it_legacy_context.ohci = NULL;
3392         spin_lock_init(&ohci->event_lock);
3393
3394         /*
3395          * interrupts are disabled, all right, but... due to IRQF_SHARED we
3396          * might get called anyway.  We'll see no event, of course, but
3397          * we need to get to that "no event", so enough should be initialized
3398          * by that point.
3399          */
3400         if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3401                          OHCI1394_DRIVER_NAME, ohci))
3402                 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3403
3404         ohci->init_state = OHCI_INIT_HAVE_IRQ;
3405         ohci_initialize(ohci);
3406
3407         /* Set certain csr values */
3408         host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3409         host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3410         host->csr.cyc_clk_acc = 100;  /* how do we determine clk accuracy? */
3411         host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3412         host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3413
3414         if (phys_dma) {
3415                 host->low_addr_space =
3416                         (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3417                 if (!host->low_addr_space)
3418                         host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3419         }
3420         host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3421
3422         /* Tell the highlevel this host is ready */
3423         if (hpsb_add_host(host))
3424                 FAIL(-ENOMEM, "Failed to register host with highlevel");
3425
3426         ohci->init_state = OHCI_INIT_DONE;
3427
3428         return 0;
3429 #undef FAIL
3430 }
3431
3432 static void ohci1394_pci_remove(struct pci_dev *pdev)
3433 {
3434         struct ti_ohci *ohci;
3435         struct device *dev;
3436
3437         ohci = pci_get_drvdata(pdev);
3438         if (!ohci)
3439                 return;
3440
3441         dev = get_device(&ohci->host->device);
3442
3443         switch (ohci->init_state) {
3444         case OHCI_INIT_DONE:
3445                 hpsb_remove_host(ohci->host);
3446
3447                 /* Clear out BUS Options */
3448                 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3449                 reg_write(ohci, OHCI1394_BusOptions,
3450                           (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3451                           0x00ff0000);
3452                 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3453
3454         case OHCI_INIT_HAVE_IRQ:
3455                 /* Clear interrupt registers */
3456                 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3457                 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3458                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3459                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3460                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3461                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3462
3463                 /* Disable IRM Contender */
3464                 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3465
3466                 /* Clear link control register */
3467                 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3468
3469                 /* Let all other nodes know to ignore us */
3470                 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3471
3472                 /* Soft reset before we start - this disables
3473                  * interrupts and clears linkEnable and LPS. */
3474                 ohci_soft_reset(ohci);
3475                 free_irq(ohci->dev->irq, ohci);
3476
3477         case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3478                 /* The ohci_soft_reset() stops all DMA contexts, so we
3479                  * dont need to do this.  */
3480                 free_dma_rcv_ctx(&ohci->ar_req_context);
3481                 free_dma_rcv_ctx(&ohci->ar_resp_context);
3482                 free_dma_trm_ctx(&ohci->at_req_context);
3483                 free_dma_trm_ctx(&ohci->at_resp_context);
3484                 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3485                 free_dma_trm_ctx(&ohci->it_legacy_context);
3486
3487         case OHCI_INIT_HAVE_SELFID_BUFFER:
3488                 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3489                                     ohci->selfid_buf_cpu,
3490                                     ohci->selfid_buf_bus);
3491                 OHCI_DMA_FREE("consistent selfid_buf");
3492
3493         case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3494                 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3495                                     ohci->csr_config_rom_cpu,
3496                                     ohci->csr_config_rom_bus);
3497                 OHCI_DMA_FREE("consistent csr_config_rom");
3498
3499         case OHCI_INIT_HAVE_IOMAPPING:
3500                 iounmap(ohci->registers);
3501
3502         case OHCI_INIT_HAVE_MEM_REGION:
3503 #ifndef PCMCIA
3504                 release_mem_region(pci_resource_start(ohci->dev, 0),
3505                                    OHCI1394_REGISTER_SIZE);
3506 #endif
3507
3508 #ifdef CONFIG_PPC_PMAC
3509         /* On UniNorth, power down the cable and turn off the chip
3510          * clock when the module is removed to save power on
3511          * laptops. Turning it back ON is done by the arch code when
3512          * pci_enable_device() is called */
3513         {
3514                 struct device_node* of_node;
3515
3516                 of_node = pci_device_to_OF_node(ohci->dev);
3517                 if (of_node) {
3518                         pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3519                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3520                 }
3521         }
3522 #endif /* CONFIG_PPC_PMAC */
3523
3524         case OHCI_INIT_ALLOC_HOST:
3525                 pci_set_drvdata(ohci->dev, NULL);
3526         }
3527
3528         if (dev)
3529                 put_device(dev);
3530 }
3531
3532 #ifdef CONFIG_PM
3533 static int ohci1394_pci_resume (struct pci_dev *pdev)
3534 {
3535 /* PowerMac resume code comes first */
3536 #ifdef CONFIG_PPC_PMAC
3537         if (machine_is(powermac)) {
3538                 struct device_node *of_node;
3539
3540                 /* Re-enable 1394 */
3541                 of_node = pci_device_to_OF_node (pdev);
3542                 if (of_node)
3543                         pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3544         }
3545 #endif /* CONFIG_PPC_PMAC */
3546
3547         pci_set_power_state(pdev, PCI_D0);
3548         pci_restore_state(pdev);
3549         return pci_enable_device(pdev);
3550 }
3551
3552 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3553 {
3554         int err;
3555
3556         err = pci_save_state(pdev);
3557         if (err)
3558                 goto out;
3559         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3560         if (err)
3561                 goto out;
3562
3563 /* PowerMac suspend code comes last */
3564 #ifdef CONFIG_PPC_PMAC
3565         if (machine_is(powermac)) {
3566                 struct device_node *of_node;
3567
3568                 /* Disable 1394 */
3569                 of_node = pci_device_to_OF_node (pdev);
3570                 if (of_node)
3571                         pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3572         }
3573 #endif /* CONFIG_PPC_PMAC */
3574 out:
3575         return err;
3576 }
3577 #endif /* CONFIG_PM */
3578
3579 #define PCI_CLASS_FIREWIRE_OHCI     ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3580
3581 static struct pci_device_id ohci1394_pci_tbl[] = {
3582         {
3583                 .class =        PCI_CLASS_FIREWIRE_OHCI,
3584                 .class_mask =   PCI_ANY_ID,
3585                 .vendor =       PCI_ANY_ID,
3586                 .device =       PCI_ANY_ID,
3587                 .subvendor =    PCI_ANY_ID,
3588                 .subdevice =    PCI_ANY_ID,
3589         },
3590         { 0, },
3591 };
3592
3593 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3594
3595 static struct pci_driver ohci1394_pci_driver = {
3596         .name =         OHCI1394_DRIVER_NAME,
3597         .id_table =     ohci1394_pci_tbl,
3598         .probe =        ohci1394_pci_probe,
3599         .remove =       ohci1394_pci_remove,
3600 #ifdef CONFIG_PM
3601         .resume =       ohci1394_pci_resume,
3602         .suspend =      ohci1394_pci_suspend,
3603 #endif
3604 };
3605
3606 /***********************************
3607  * OHCI1394 Video Interface        *
3608  ***********************************/
3609
3610 /* essentially the only purpose of this code is to allow another
3611    module to hook into ohci's interrupt handler */
3612
3613 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3614 {
3615         int i=0;
3616
3617         /* stop the channel program if it's still running */
3618         reg_write(ohci, reg, 0x8000);
3619
3620         /* Wait until it effectively stops */
3621         while (reg_read(ohci, reg) & 0x400) {
3622                 i++;
3623                 if (i>5000) {
3624                         PRINT(KERN_ERR,
3625                               "Runaway loop while stopping context: %s...", msg ? msg : "");
3626                         return 1;
3627                 }
3628
3629                 mb();
3630                 udelay(10);
3631         }
3632         if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3633         return 0;
3634 }
3635
3636 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3637                                void (*func)(unsigned long), unsigned long data)
3638 {
3639         tasklet_init(&tasklet->tasklet, func, data);
3640         tasklet->type = type;
3641         /* We init the tasklet->link field, so we can list_del() it
3642          * without worrying whether it was added to the list or not. */
3643         INIT_LIST_HEAD(&tasklet->link);
3644 }
3645
3646 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3647                                   struct ohci1394_iso_tasklet *tasklet)
3648 {
3649         unsigned long flags, *usage;
3650         int n, i, r = -EBUSY;
3651
3652         if (tasklet->type == OHCI_ISO_TRANSMIT) {
3653                 n = ohci->nb_iso_xmit_ctx;
3654                 usage = &ohci->it_ctx_usage;
3655         }
3656         else {
3657                 n = ohci->nb_iso_rcv_ctx;
3658                 usage = &ohci->ir_ctx_usage;
3659
3660                 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3661                 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3662                         if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3663                                 return r;
3664                         }
3665                 }
3666         }
3667
3668         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3669
3670         for (i = 0; i < n; i++)
3671                 if (!test_and_set_bit(i, usage)) {
3672                         tasklet->context = i;
3673                         list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3674                         r = 0;
3675                         break;
3676                 }
3677
3678         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3679
3680         return r;
3681 }
3682
3683 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3684                                      struct ohci1394_iso_tasklet *tasklet)
3685 {
3686         unsigned long flags;
3687
3688         tasklet_kill(&tasklet->tasklet);
3689
3690         spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3691
3692         if (tasklet->type == OHCI_ISO_TRANSMIT)
3693                 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3694         else {
3695                 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3696
3697                 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3698                         clear_bit(0, &ohci->ir_multichannel_used);
3699                 }
3700         }
3701
3702         list_del(&tasklet->link);
3703
3704         spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3705 }
3706
3707 EXPORT_SYMBOL(ohci1394_stop_context);
3708 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3709 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3710 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3711
3712 /***********************************
3713  * General module initialization   *
3714  ***********************************/
3715
3716 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3717 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3718 MODULE_LICENSE("GPL");
3719
3720 static void __exit ohci1394_cleanup (void)
3721 {
3722         pci_unregister_driver(&ohci1394_pci_driver);
3723 }
3724
3725 static int __init ohci1394_init(void)
3726 {
3727         return pci_register_driver(&ohci1394_pci_driver);
3728 }
3729
3730 /* Register before most other device drivers.
3731  * Useful for remote debugging via physical DMA, e.g. using firescope. */
3732 fs_initcall(ohci1394_init);
3733 module_exit(ohci1394_cleanup);