Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / sound / pci / ctxfi / cttimer.c
1 /*
2  * PCM timer handling on ctxfi
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  */
8
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/moduleparam.h>
12 #include <sound/core.h>
13 #include <sound/pcm.h>
14 #include "ctatc.h"
15 #include "cthardware.h"
16 #include "cttimer.h"
17
18 static int use_system_timer;
19 MODULE_PARM_DESC(use_system_timer, "Foce to use system-timer");
20 module_param(use_system_timer, bool, S_IRUGO);
21
22 struct ct_timer_ops {
23         void (*init)(struct ct_timer_instance *);
24         void (*prepare)(struct ct_timer_instance *);
25         void (*start)(struct ct_timer_instance *);
26         void (*stop)(struct ct_timer_instance *);
27         void (*free_instance)(struct ct_timer_instance *);
28         void (*interrupt)(struct ct_timer *);
29         void (*free_global)(struct ct_timer *);
30 };
31
32 /* timer instance -- assigned to each PCM stream */
33 struct ct_timer_instance {
34         spinlock_t lock;
35         struct ct_timer *timer_base;
36         struct ct_atc_pcm *apcm;
37         struct snd_pcm_substream *substream;
38         struct timer_list timer;
39         struct list_head instance_list;
40         struct list_head running_list;
41         unsigned int position;
42         unsigned int frag_count;
43         unsigned int running:1;
44         unsigned int need_update:1;
45 };
46
47 /* timer instance manager */
48 struct ct_timer {
49         spinlock_t lock;                /* global timer lock (for xfitimer) */
50         spinlock_t list_lock;           /* lock for instance list */
51         struct ct_atc *atc;
52         struct ct_timer_ops *ops;
53         struct list_head instance_head;
54         struct list_head running_head;
55         unsigned int wc;                /* current wallclock */
56         unsigned int irq_handling:1;    /* in IRQ handling */
57         unsigned int reprogram:1;       /* need to reprogram the internval */
58         unsigned int running:1;         /* global timer running */
59 };
60
61
62 /*
63  * system-timer-based updates
64  */
65
66 static void ct_systimer_callback(unsigned long data)
67 {
68         struct ct_timer_instance *ti = (struct ct_timer_instance *)data;
69         struct snd_pcm_substream *substream = ti->substream;
70         struct snd_pcm_runtime *runtime = substream->runtime;
71         struct ct_atc_pcm *apcm = ti->apcm;
72         unsigned int period_size = runtime->period_size;
73         unsigned int buffer_size = runtime->buffer_size;
74         unsigned long flags;
75         unsigned int position, dist, interval;
76
77         position = substream->ops->pointer(substream);
78         dist = (position + buffer_size - ti->position) % buffer_size;
79         if (dist >= period_size ||
80             position / period_size != ti->position / period_size) {
81                 apcm->interrupt(apcm);
82                 ti->position = position;
83         }
84         /* Add extra HZ*5/1000 to avoid overrun issue when recording
85          * at 8kHz in 8-bit format or at 88kHz in 24-bit format. */
86         interval = ((period_size - (position % period_size))
87                    * HZ + (runtime->rate - 1)) / runtime->rate + HZ * 5 / 1000;
88         spin_lock_irqsave(&ti->lock, flags);
89         if (ti->running)
90                 mod_timer(&ti->timer, jiffies + interval);
91         spin_unlock_irqrestore(&ti->lock, flags);
92 }
93
94 static void ct_systimer_init(struct ct_timer_instance *ti)
95 {
96         setup_timer(&ti->timer, ct_systimer_callback,
97                     (unsigned long)ti);
98 }
99
100 static void ct_systimer_start(struct ct_timer_instance *ti)
101 {
102         struct snd_pcm_runtime *runtime = ti->substream->runtime;
103         unsigned long flags;
104
105         spin_lock_irqsave(&ti->lock, flags);
106         ti->running = 1;
107         mod_timer(&ti->timer,
108                   jiffies + (runtime->period_size * HZ +
109                              (runtime->rate - 1)) / runtime->rate);
110         spin_unlock_irqrestore(&ti->lock, flags);
111 }
112
113 static void ct_systimer_stop(struct ct_timer_instance *ti)
114 {
115         unsigned long flags;
116
117         spin_lock_irqsave(&ti->lock, flags);
118         ti->running = 0;
119         del_timer(&ti->timer);
120         spin_unlock_irqrestore(&ti->lock, flags);
121 }
122
123 static void ct_systimer_prepare(struct ct_timer_instance *ti)
124 {
125         ct_systimer_stop(ti);
126         try_to_del_timer_sync(&ti->timer);
127 }
128
129 #define ct_systimer_free        ct_systimer_prepare
130
131 static struct ct_timer_ops ct_systimer_ops = {
132         .init = ct_systimer_init,
133         .free_instance = ct_systimer_free,
134         .prepare = ct_systimer_prepare,
135         .start = ct_systimer_start,
136         .stop = ct_systimer_stop,
137 };
138
139
140 /*
141  * Handling multiple streams using a global emu20k1 timer irq
142  */
143
144 #define CT_TIMER_FREQ   48000
145 #define MIN_TICKS       1
146 #define MAX_TICKS       ((1 << 13) - 1)
147
148 static void ct_xfitimer_irq_rearm(struct ct_timer *atimer, int ticks)
149 {
150         struct hw *hw = atimer->atc->hw;
151         if (ticks > MAX_TICKS)
152                 ticks = MAX_TICKS;
153         hw->set_timer_tick(hw, ticks);
154         if (!atimer->running)
155                 hw->set_timer_irq(hw, 1);
156         atimer->running = 1;
157 }
158
159 static void ct_xfitimer_irq_stop(struct ct_timer *atimer)
160 {
161         if (atimer->running) {
162                 struct hw *hw = atimer->atc->hw;
163                 hw->set_timer_irq(hw, 0);
164                 hw->set_timer_tick(hw, 0);
165                 atimer->running = 0;
166         }
167 }
168
169 static inline unsigned int ct_xfitimer_get_wc(struct ct_timer *atimer)
170 {
171         struct hw *hw = atimer->atc->hw;
172         return hw->get_wc(hw);
173 }
174
175 /*
176  * reprogram the timer interval;
177  * checks the running instance list and determines the next timer interval.
178  * also updates the each stream position, returns the number of streams
179  * to call snd_pcm_period_elapsed() appropriately
180  *
181  * call this inside the lock and irq disabled
182  */
183 static int ct_xfitimer_reprogram(struct ct_timer *atimer, int can_update)
184 {
185         struct ct_timer_instance *ti;
186         unsigned int min_intr = (unsigned int)-1;
187         int updates = 0;
188         unsigned int wc, diff;
189
190         if (list_empty(&atimer->running_head)) {
191                 ct_xfitimer_irq_stop(atimer);
192                 atimer->reprogram = 0; /* clear flag */
193                 return 0;
194         }
195
196         wc = ct_xfitimer_get_wc(atimer);
197         diff = wc - atimer->wc;
198         atimer->wc = wc;
199         list_for_each_entry(ti, &atimer->running_head, running_list) {
200                 if (ti->frag_count > diff)
201                         ti->frag_count -= diff;
202                 else {
203                         unsigned int pos;
204                         unsigned int period_size, rate;
205
206                         period_size = ti->substream->runtime->period_size;
207                         rate = ti->substream->runtime->rate;
208                         pos = ti->substream->ops->pointer(ti->substream);
209                         if (pos / period_size != ti->position / period_size) {
210                                 ti->need_update = 1;
211                                 ti->position = pos;
212                                 updates++;
213                         }
214                         pos %= period_size;
215                         pos = period_size - pos;
216                         ti->frag_count = div_u64((u64)pos * CT_TIMER_FREQ +
217                                                  rate - 1, rate);
218                 }
219                 if (ti->need_update && !can_update)
220                         min_intr = 0; /* pending to the next irq */
221                 if (ti->frag_count < min_intr)
222                         min_intr = ti->frag_count;
223         }
224
225         if (min_intr < MIN_TICKS)
226                 min_intr = MIN_TICKS;
227         ct_xfitimer_irq_rearm(atimer, min_intr);
228         atimer->reprogram = 0; /* clear flag */
229         return updates;
230 }
231
232 /* look through the instance list and call period_elapsed if needed */
233 static void ct_xfitimer_check_period(struct ct_timer *atimer)
234 {
235         struct ct_timer_instance *ti;
236         unsigned long flags;
237
238         spin_lock_irqsave(&atimer->list_lock, flags);
239         list_for_each_entry(ti, &atimer->instance_head, instance_list) {
240                 if (ti->running && ti->need_update) {
241                         ti->need_update = 0;
242                         ti->apcm->interrupt(ti->apcm);
243                 }
244         }
245         spin_unlock_irqrestore(&atimer->list_lock, flags);
246 }
247
248 /* Handle timer-interrupt */
249 static void ct_xfitimer_callback(struct ct_timer *atimer)
250 {
251         int update;
252         unsigned long flags;
253
254         spin_lock_irqsave(&atimer->lock, flags);
255         atimer->irq_handling = 1;
256         do {
257                 update = ct_xfitimer_reprogram(atimer, 1);
258                 spin_unlock(&atimer->lock);
259                 if (update)
260                         ct_xfitimer_check_period(atimer);
261                 spin_lock(&atimer->lock);
262         } while (atimer->reprogram);
263         atimer->irq_handling = 0;
264         spin_unlock_irqrestore(&atimer->lock, flags);
265 }
266
267 static void ct_xfitimer_prepare(struct ct_timer_instance *ti)
268 {
269         ti->frag_count = ti->substream->runtime->period_size;
270         ti->running = 0;
271         ti->need_update = 0;
272 }
273
274
275 /* start/stop the timer */
276 static void ct_xfitimer_update(struct ct_timer *atimer)
277 {
278         unsigned long flags;
279
280         spin_lock_irqsave(&atimer->lock, flags);
281         if (atimer->irq_handling) {
282                 /* reached from IRQ handler; let it handle later */
283                 atimer->reprogram = 1;
284                 spin_unlock_irqrestore(&atimer->lock, flags);
285                 return;
286         }
287
288         ct_xfitimer_irq_stop(atimer);
289         ct_xfitimer_reprogram(atimer, 0);
290         spin_unlock_irqrestore(&atimer->lock, flags);
291 }
292
293 static void ct_xfitimer_start(struct ct_timer_instance *ti)
294 {
295         struct ct_timer *atimer = ti->timer_base;
296         unsigned long flags;
297
298         spin_lock_irqsave(&atimer->lock, flags);
299         if (list_empty(&ti->running_list))
300                 atimer->wc = ct_xfitimer_get_wc(atimer);
301         ti->running = 1;
302         ti->need_update = 0;
303         list_add(&ti->running_list, &atimer->running_head);
304         spin_unlock_irqrestore(&atimer->lock, flags);
305         ct_xfitimer_update(atimer);
306 }
307
308 static void ct_xfitimer_stop(struct ct_timer_instance *ti)
309 {
310         struct ct_timer *atimer = ti->timer_base;
311         unsigned long flags;
312
313         spin_lock_irqsave(&atimer->lock, flags);
314         list_del_init(&ti->running_list);
315         ti->running = 0;
316         spin_unlock_irqrestore(&atimer->lock, flags);
317         ct_xfitimer_update(atimer);
318 }
319
320 static void ct_xfitimer_free_global(struct ct_timer *atimer)
321 {
322         ct_xfitimer_irq_stop(atimer);
323 }
324
325 static struct ct_timer_ops ct_xfitimer_ops = {
326         .prepare = ct_xfitimer_prepare,
327         .start = ct_xfitimer_start,
328         .stop = ct_xfitimer_stop,
329         .interrupt = ct_xfitimer_callback,
330         .free_global = ct_xfitimer_free_global,
331 };
332
333 /*
334  * timer instance
335  */
336
337 struct ct_timer_instance *
338 ct_timer_instance_new(struct ct_timer *atimer, struct ct_atc_pcm *apcm)
339 {
340         struct ct_timer_instance *ti;
341
342         ti = kzalloc(sizeof(*ti), GFP_KERNEL);
343         if (!ti)
344                 return NULL;
345         spin_lock_init(&ti->lock);
346         INIT_LIST_HEAD(&ti->instance_list);
347         INIT_LIST_HEAD(&ti->running_list);
348         ti->timer_base = atimer;
349         ti->apcm = apcm;
350         ti->substream = apcm->substream;
351         if (atimer->ops->init)
352                 atimer->ops->init(ti);
353
354         spin_lock_irq(&atimer->list_lock);
355         list_add(&ti->instance_list, &atimer->instance_head);
356         spin_unlock_irq(&atimer->list_lock);
357
358         return ti;
359 }
360
361 void ct_timer_prepare(struct ct_timer_instance *ti)
362 {
363         if (ti->timer_base->ops->prepare)
364                 ti->timer_base->ops->prepare(ti);
365         ti->position = 0;
366         ti->running = 0;
367 }
368
369 void ct_timer_start(struct ct_timer_instance *ti)
370 {
371         struct ct_timer *atimer = ti->timer_base;
372         atimer->ops->start(ti);
373 }
374
375 void ct_timer_stop(struct ct_timer_instance *ti)
376 {
377         struct ct_timer *atimer = ti->timer_base;
378         atimer->ops->stop(ti);
379 }
380
381 void ct_timer_instance_free(struct ct_timer_instance *ti)
382 {
383         struct ct_timer *atimer = ti->timer_base;
384
385         atimer->ops->stop(ti); /* to be sure */
386         if (atimer->ops->free_instance)
387                 atimer->ops->free_instance(ti);
388
389         spin_lock_irq(&atimer->list_lock);
390         list_del(&ti->instance_list);
391         spin_unlock_irq(&atimer->list_lock);
392
393         kfree(ti);
394 }
395
396 /*
397  * timer manager
398  */
399
400 static void ct_timer_interrupt(void *data, unsigned int status)
401 {
402         struct ct_timer *timer = data;
403
404         /* Interval timer interrupt */
405         if ((status & IT_INT) && timer->ops->interrupt)
406                 timer->ops->interrupt(timer);
407 }
408
409 struct ct_timer *ct_timer_new(struct ct_atc *atc)
410 {
411         struct ct_timer *atimer;
412         struct hw *hw;
413
414         atimer = kzalloc(sizeof(*atimer), GFP_KERNEL);
415         if (!atimer)
416                 return NULL;
417         spin_lock_init(&atimer->lock);
418         spin_lock_init(&atimer->list_lock);
419         INIT_LIST_HEAD(&atimer->instance_head);
420         INIT_LIST_HEAD(&atimer->running_head);
421         atimer->atc = atc;
422         hw = atc->hw;
423         if (!use_system_timer && hw->set_timer_irq) {
424                 snd_printd(KERN_INFO "ctxfi: Use xfi-native timer\n");
425                 atimer->ops = &ct_xfitimer_ops;
426                 hw->irq_callback_data = atimer;
427                 hw->irq_callback = ct_timer_interrupt;
428         } else {
429                 snd_printd(KERN_INFO "ctxfi: Use system timer\n");
430                 atimer->ops = &ct_systimer_ops;
431         }
432         return atimer;
433 }
434
435 void ct_timer_free(struct ct_timer *atimer)
436 {
437         struct hw *hw = atimer->atc->hw;
438         hw->irq_callback = NULL;
439         if (atimer->ops->free_global)
440                 atimer->ops->free_global(atimer);
441         kfree(atimer);
442 }
443