Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "netport.h"
84 #include "xfrm.h"
85 #include "netlabel.h"
86 #include "audit.h"
87
88 #define XATTR_SELINUX_SUFFIX "selinux"
89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
90
91 #define NUM_SEL_MNT_OPTS 4
92
93 extern unsigned int policydb_loaded_version;
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern int selinux_compat_net;
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /* Allocate and free functions for each kind of security blob. */
159
160 static int task_alloc_security(struct task_struct *task)
161 {
162         struct task_security_struct *tsec;
163
164         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
165         if (!tsec)
166                 return -ENOMEM;
167
168         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
169         task->security = tsec;
170
171         return 0;
172 }
173
174 static void task_free_security(struct task_struct *task)
175 {
176         struct task_security_struct *tsec = task->security;
177         task->security = NULL;
178         kfree(tsec);
179 }
180
181 static int inode_alloc_security(struct inode *inode)
182 {
183         struct task_security_struct *tsec = current->security;
184         struct inode_security_struct *isec;
185
186         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
187         if (!isec)
188                 return -ENOMEM;
189
190         mutex_init(&isec->lock);
191         INIT_LIST_HEAD(&isec->list);
192         isec->inode = inode;
193         isec->sid = SECINITSID_UNLABELED;
194         isec->sclass = SECCLASS_FILE;
195         isec->task_sid = tsec->sid;
196         inode->i_security = isec;
197
198         return 0;
199 }
200
201 static void inode_free_security(struct inode *inode)
202 {
203         struct inode_security_struct *isec = inode->i_security;
204         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
205
206         spin_lock(&sbsec->isec_lock);
207         if (!list_empty(&isec->list))
208                 list_del_init(&isec->list);
209         spin_unlock(&sbsec->isec_lock);
210
211         inode->i_security = NULL;
212         kmem_cache_free(sel_inode_cache, isec);
213 }
214
215 static int file_alloc_security(struct file *file)
216 {
217         struct task_security_struct *tsec = current->security;
218         struct file_security_struct *fsec;
219
220         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
221         if (!fsec)
222                 return -ENOMEM;
223
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_reset(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         selinux_netlbl_sk_security_free(ssec);
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_error = -1,
322         Opt_context = 1,
323         Opt_fscontext = 2,
324         Opt_defcontext = 3,
325         Opt_rootcontext = 4,
326 };
327
328 static const match_table_t tokens = {
329         {Opt_context, CONTEXT_STR "%s"},
330         {Opt_fscontext, FSCONTEXT_STR "%s"},
331         {Opt_defcontext, DEFCONTEXT_STR "%s"},
332         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
333         {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         struct task_security_struct *tsec)
341 {
342         int rc;
343
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__RELABELTO, NULL);
351         return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355                         struct superblock_security_struct *sbsec,
356                         struct task_security_struct *tsec)
357 {
358         int rc;
359         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360                           FILESYSTEM__RELABELFROM, NULL);
361         if (rc)
362                 return rc;
363
364         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365                           FILESYSTEM__ASSOCIATE, NULL);
366         return rc;
367 }
368
369 static int sb_finish_set_opts(struct super_block *sb)
370 {
371         struct superblock_security_struct *sbsec = sb->s_security;
372         struct dentry *root = sb->s_root;
373         struct inode *root_inode = root->d_inode;
374         int rc = 0;
375
376         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
377                 /* Make sure that the xattr handler exists and that no
378                    error other than -ENODATA is returned by getxattr on
379                    the root directory.  -ENODATA is ok, as this may be
380                    the first boot of the SELinux kernel before we have
381                    assigned xattr values to the filesystem. */
382                 if (!root_inode->i_op->getxattr) {
383                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
384                                "xattr support\n", sb->s_id, sb->s_type->name);
385                         rc = -EOPNOTSUPP;
386                         goto out;
387                 }
388                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
389                 if (rc < 0 && rc != -ENODATA) {
390                         if (rc == -EOPNOTSUPP)
391                                 printk(KERN_WARNING "SELinux: (dev %s, type "
392                                        "%s) has no security xattr handler\n",
393                                        sb->s_id, sb->s_type->name);
394                         else
395                                 printk(KERN_WARNING "SELinux: (dev %s, type "
396                                        "%s) getxattr errno %d\n", sb->s_id,
397                                        sb->s_type->name, -rc);
398                         goto out;
399                 }
400         }
401
402         sbsec->initialized = 1;
403
404         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
406                        sb->s_id, sb->s_type->name);
407         else
408                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
409                        sb->s_id, sb->s_type->name,
410                        labeling_behaviors[sbsec->behavior-1]);
411
412         /* Initialize the root inode. */
413         rc = inode_doinit_with_dentry(root_inode, root);
414
415         /* Initialize any other inodes associated with the superblock, e.g.
416            inodes created prior to initial policy load or inodes created
417            during get_sb by a pseudo filesystem that directly
418            populates itself. */
419         spin_lock(&sbsec->isec_lock);
420 next_inode:
421         if (!list_empty(&sbsec->isec_head)) {
422                 struct inode_security_struct *isec =
423                                 list_entry(sbsec->isec_head.next,
424                                            struct inode_security_struct, list);
425                 struct inode *inode = isec->inode;
426                 spin_unlock(&sbsec->isec_lock);
427                 inode = igrab(inode);
428                 if (inode) {
429                         if (!IS_PRIVATE(inode))
430                                 inode_doinit(inode);
431                         iput(inode);
432                 }
433                 spin_lock(&sbsec->isec_lock);
434                 list_del_init(&isec->list);
435                 goto next_inode;
436         }
437         spin_unlock(&sbsec->isec_lock);
438 out:
439         return rc;
440 }
441
442 /*
443  * This function should allow an FS to ask what it's mount security
444  * options were so it can use those later for submounts, displaying
445  * mount options, or whatever.
446  */
447 static int selinux_get_mnt_opts(const struct super_block *sb,
448                                 struct security_mnt_opts *opts)
449 {
450         int rc = 0, i;
451         struct superblock_security_struct *sbsec = sb->s_security;
452         char *context = NULL;
453         u32 len;
454         char tmp;
455
456         security_init_mnt_opts(opts);
457
458         if (!sbsec->initialized)
459                 return -EINVAL;
460
461         if (!ss_initialized)
462                 return -EINVAL;
463
464         /*
465          * if we ever use sbsec flags for anything other than tracking mount
466          * settings this is going to need a mask
467          */
468         tmp = sbsec->flags;
469         /* count the number of mount options for this sb */
470         for (i = 0; i < 8; i++) {
471                 if (tmp & 0x01)
472                         opts->num_mnt_opts++;
473                 tmp >>= 1;
474         }
475
476         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
477         if (!opts->mnt_opts) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
483         if (!opts->mnt_opts_flags) {
484                 rc = -ENOMEM;
485                 goto out_free;
486         }
487
488         i = 0;
489         if (sbsec->flags & FSCONTEXT_MNT) {
490                 rc = security_sid_to_context(sbsec->sid, &context, &len);
491                 if (rc)
492                         goto out_free;
493                 opts->mnt_opts[i] = context;
494                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
495         }
496         if (sbsec->flags & CONTEXT_MNT) {
497                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
498                 if (rc)
499                         goto out_free;
500                 opts->mnt_opts[i] = context;
501                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
502         }
503         if (sbsec->flags & DEFCONTEXT_MNT) {
504                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
505                 if (rc)
506                         goto out_free;
507                 opts->mnt_opts[i] = context;
508                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
509         }
510         if (sbsec->flags & ROOTCONTEXT_MNT) {
511                 struct inode *root = sbsec->sb->s_root->d_inode;
512                 struct inode_security_struct *isec = root->i_security;
513
514                 rc = security_sid_to_context(isec->sid, &context, &len);
515                 if (rc)
516                         goto out_free;
517                 opts->mnt_opts[i] = context;
518                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
519         }
520
521         BUG_ON(i != opts->num_mnt_opts);
522
523         return 0;
524
525 out_free:
526         security_free_mnt_opts(opts);
527         return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531                       u32 old_sid, u32 new_sid)
532 {
533         /* check if the old mount command had the same options */
534         if (sbsec->initialized)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!sbsec->initialized)
543                 if (sbsec->flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         int rc = 0, i;
556         struct task_security_struct *tsec = current->security;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         spin_lock(&sb_security_lock);
575                         if (list_empty(&sbsec->list))
576                                 list_add(&sbsec->list, &superblock_security_head);
577                         spin_unlock(&sb_security_lock);
578                         goto out;
579                 }
580                 rc = -EINVAL;
581                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
582                         "before the security server is initialized\n");
583                 goto out;
584         }
585
586         /*
587          * Binary mount data FS will come through this function twice.  Once
588          * from an explicit call and once from the generic calls from the vfs.
589          * Since the generic VFS calls will not contain any security mount data
590          * we need to skip the double mount verification.
591          *
592          * This does open a hole in which we will not notice if the first
593          * mount using this sb set explict options and a second mount using
594          * this sb does not set any security options.  (The first options
595          * will be used for both mounts)
596          */
597         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
598             && (num_opts == 0))
599                 goto out;
600
601         /*
602          * parse the mount options, check if they are valid sids.
603          * also check if someone is trying to mount the same sb more
604          * than once with different security options.
605          */
606         for (i = 0; i < num_opts; i++) {
607                 u32 sid;
608                 rc = security_context_to_sid(mount_options[i],
609                                              strlen(mount_options[i]), &sid);
610                 if (rc) {
611                         printk(KERN_WARNING "SELinux: security_context_to_sid"
612                                "(%s) failed for (dev %s, type %s) errno=%d\n",
613                                mount_options[i], sb->s_id, name, rc);
614                         goto out;
615                 }
616                 switch (flags[i]) {
617                 case FSCONTEXT_MNT:
618                         fscontext_sid = sid;
619
620                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621                                         fscontext_sid))
622                                 goto out_double_mount;
623
624                         sbsec->flags |= FSCONTEXT_MNT;
625                         break;
626                 case CONTEXT_MNT:
627                         context_sid = sid;
628
629                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630                                         context_sid))
631                                 goto out_double_mount;
632
633                         sbsec->flags |= CONTEXT_MNT;
634                         break;
635                 case ROOTCONTEXT_MNT:
636                         rootcontext_sid = sid;
637
638                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639                                         rootcontext_sid))
640                                 goto out_double_mount;
641
642                         sbsec->flags |= ROOTCONTEXT_MNT;
643
644                         break;
645                 case DEFCONTEXT_MNT:
646                         defcontext_sid = sid;
647
648                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649                                         defcontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= DEFCONTEXT_MNT;
653
654                         break;
655                 default:
656                         rc = -EINVAL;
657                         goto out;
658                 }
659         }
660
661         if (sbsec->initialized) {
662                 /* previously mounted with options, but not on this attempt? */
663                 if (sbsec->flags && !num_opts)
664                         goto out_double_mount;
665                 rc = 0;
666                 goto out;
667         }
668
669         if (strcmp(sb->s_type->name, "proc") == 0)
670                 sbsec->proc = 1;
671
672         /* Determine the labeling behavior to use for this filesystem type. */
673         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674         if (rc) {
675                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676                        __func__, sb->s_type->name, rc);
677                 goto out;
678         }
679
680         /* sets the context of the superblock for the fs being mounted. */
681         if (fscontext_sid) {
682
683                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
684                 if (rc)
685                         goto out;
686
687                 sbsec->sid = fscontext_sid;
688         }
689
690         /*
691          * Switch to using mount point labeling behavior.
692          * sets the label used on all file below the mountpoint, and will set
693          * the superblock context if not already set.
694          */
695         if (context_sid) {
696                 if (!fscontext_sid) {
697                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
698                         if (rc)
699                                 goto out;
700                         sbsec->sid = context_sid;
701                 } else {
702                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
715                 if (rc)
716                         goto out;
717
718                 root_isec->sid = rootcontext_sid;
719                 root_isec->initialized = 1;
720         }
721
722         if (defcontext_sid) {
723                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
724                         rc = -EINVAL;
725                         printk(KERN_WARNING "SELinux: defcontext option is "
726                                "invalid for this filesystem type\n");
727                         goto out;
728                 }
729
730                 if (defcontext_sid != sbsec->def_sid) {
731                         rc = may_context_mount_inode_relabel(defcontext_sid,
732                                                              sbsec, tsec);
733                         if (rc)
734                                 goto out;
735                 }
736
737                 sbsec->def_sid = defcontext_sid;
738         }
739
740         rc = sb_finish_set_opts(sb);
741 out:
742         mutex_unlock(&sbsec->lock);
743         return rc;
744 out_double_mount:
745         rc = -EINVAL;
746         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
747                "security settings for (dev %s, type %s)\n", sb->s_id, name);
748         goto out;
749 }
750
751 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
752                                         struct super_block *newsb)
753 {
754         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
755         struct superblock_security_struct *newsbsec = newsb->s_security;
756
757         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
758         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
759         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
760
761         /*
762          * if the parent was able to be mounted it clearly had no special lsm
763          * mount options.  thus we can safely put this sb on the list and deal
764          * with it later
765          */
766         if (!ss_initialized) {
767                 spin_lock(&sb_security_lock);
768                 if (list_empty(&newsbsec->list))
769                         list_add(&newsbsec->list, &superblock_security_head);
770                 spin_unlock(&sb_security_lock);
771                 return;
772         }
773
774         /* how can we clone if the old one wasn't set up?? */
775         BUG_ON(!oldsbsec->initialized);
776
777         /* if fs is reusing a sb, just let its options stand... */
778         if (newsbsec->initialized)
779                 return;
780
781         mutex_lock(&newsbsec->lock);
782
783         newsbsec->flags = oldsbsec->flags;
784
785         newsbsec->sid = oldsbsec->sid;
786         newsbsec->def_sid = oldsbsec->def_sid;
787         newsbsec->behavior = oldsbsec->behavior;
788
789         if (set_context) {
790                 u32 sid = oldsbsec->mntpoint_sid;
791
792                 if (!set_fscontext)
793                         newsbsec->sid = sid;
794                 if (!set_rootcontext) {
795                         struct inode *newinode = newsb->s_root->d_inode;
796                         struct inode_security_struct *newisec = newinode->i_security;
797                         newisec->sid = sid;
798                 }
799                 newsbsec->mntpoint_sid = sid;
800         }
801         if (set_rootcontext) {
802                 const struct inode *oldinode = oldsb->s_root->d_inode;
803                 const struct inode_security_struct *oldisec = oldinode->i_security;
804                 struct inode *newinode = newsb->s_root->d_inode;
805                 struct inode_security_struct *newisec = newinode->i_security;
806
807                 newisec->sid = oldisec->sid;
808         }
809
810         sb_finish_set_opts(newsb);
811         mutex_unlock(&newsbsec->lock);
812 }
813
814 static int selinux_parse_opts_str(char *options,
815                                   struct security_mnt_opts *opts)
816 {
817         char *p;
818         char *context = NULL, *defcontext = NULL;
819         char *fscontext = NULL, *rootcontext = NULL;
820         int rc, num_mnt_opts = 0;
821
822         opts->num_mnt_opts = 0;
823
824         /* Standard string-based options. */
825         while ((p = strsep(&options, "|")) != NULL) {
826                 int token;
827                 substring_t args[MAX_OPT_ARGS];
828
829                 if (!*p)
830                         continue;
831
832                 token = match_token(p, tokens, args);
833
834                 switch (token) {
835                 case Opt_context:
836                         if (context || defcontext) {
837                                 rc = -EINVAL;
838                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
839                                 goto out_err;
840                         }
841                         context = match_strdup(&args[0]);
842                         if (!context) {
843                                 rc = -ENOMEM;
844                                 goto out_err;
845                         }
846                         break;
847
848                 case Opt_fscontext:
849                         if (fscontext) {
850                                 rc = -EINVAL;
851                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
852                                 goto out_err;
853                         }
854                         fscontext = match_strdup(&args[0]);
855                         if (!fscontext) {
856                                 rc = -ENOMEM;
857                                 goto out_err;
858                         }
859                         break;
860
861                 case Opt_rootcontext:
862                         if (rootcontext) {
863                                 rc = -EINVAL;
864                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
865                                 goto out_err;
866                         }
867                         rootcontext = match_strdup(&args[0]);
868                         if (!rootcontext) {
869                                 rc = -ENOMEM;
870                                 goto out_err;
871                         }
872                         break;
873
874                 case Opt_defcontext:
875                         if (context || defcontext) {
876                                 rc = -EINVAL;
877                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
878                                 goto out_err;
879                         }
880                         defcontext = match_strdup(&args[0]);
881                         if (!defcontext) {
882                                 rc = -ENOMEM;
883                                 goto out_err;
884                         }
885                         break;
886
887                 default:
888                         rc = -EINVAL;
889                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
890                         goto out_err;
891
892                 }
893         }
894
895         rc = -ENOMEM;
896         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
897         if (!opts->mnt_opts)
898                 goto out_err;
899
900         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
901         if (!opts->mnt_opts_flags) {
902                 kfree(opts->mnt_opts);
903                 goto out_err;
904         }
905
906         if (fscontext) {
907                 opts->mnt_opts[num_mnt_opts] = fscontext;
908                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
909         }
910         if (context) {
911                 opts->mnt_opts[num_mnt_opts] = context;
912                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
913         }
914         if (rootcontext) {
915                 opts->mnt_opts[num_mnt_opts] = rootcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
917         }
918         if (defcontext) {
919                 opts->mnt_opts[num_mnt_opts] = defcontext;
920                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
921         }
922
923         opts->num_mnt_opts = num_mnt_opts;
924         return 0;
925
926 out_err:
927         kfree(context);
928         kfree(defcontext);
929         kfree(fscontext);
930         kfree(rootcontext);
931         return rc;
932 }
933 /*
934  * string mount options parsing and call set the sbsec
935  */
936 static int superblock_doinit(struct super_block *sb, void *data)
937 {
938         int rc = 0;
939         char *options = data;
940         struct security_mnt_opts opts;
941
942         security_init_mnt_opts(&opts);
943
944         if (!data)
945                 goto out;
946
947         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
948
949         rc = selinux_parse_opts_str(options, &opts);
950         if (rc)
951                 goto out_err;
952
953 out:
954         rc = selinux_set_mnt_opts(sb, &opts);
955
956 out_err:
957         security_free_mnt_opts(&opts);
958         return rc;
959 }
960
961 static void selinux_write_opts(struct seq_file *m,
962                                struct security_mnt_opts *opts)
963 {
964         int i;
965         char *prefix;
966
967         for (i = 0; i < opts->num_mnt_opts; i++) {
968                 char *has_comma = strchr(opts->mnt_opts[i], ',');
969
970                 switch (opts->mnt_opts_flags[i]) {
971                 case CONTEXT_MNT:
972                         prefix = CONTEXT_STR;
973                         break;
974                 case FSCONTEXT_MNT:
975                         prefix = FSCONTEXT_STR;
976                         break;
977                 case ROOTCONTEXT_MNT:
978                         prefix = ROOTCONTEXT_STR;
979                         break;
980                 case DEFCONTEXT_MNT:
981                         prefix = DEFCONTEXT_STR;
982                         break;
983                 default:
984                         BUG();
985                 };
986                 /* we need a comma before each option */
987                 seq_putc(m, ',');
988                 seq_puts(m, prefix);
989                 if (has_comma)
990                         seq_putc(m, '\"');
991                 seq_puts(m, opts->mnt_opts[i]);
992                 if (has_comma)
993                         seq_putc(m, '\"');
994         }
995 }
996
997 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
998 {
999         struct security_mnt_opts opts;
1000         int rc;
1001
1002         rc = selinux_get_mnt_opts(sb, &opts);
1003         if (rc) {
1004                 /* before policy load we may get EINVAL, don't show anything */
1005                 if (rc == -EINVAL)
1006                         rc = 0;
1007                 return rc;
1008         }
1009
1010         selinux_write_opts(m, &opts);
1011
1012         security_free_mnt_opts(&opts);
1013
1014         return rc;
1015 }
1016
1017 static inline u16 inode_mode_to_security_class(umode_t mode)
1018 {
1019         switch (mode & S_IFMT) {
1020         case S_IFSOCK:
1021                 return SECCLASS_SOCK_FILE;
1022         case S_IFLNK:
1023                 return SECCLASS_LNK_FILE;
1024         case S_IFREG:
1025                 return SECCLASS_FILE;
1026         case S_IFBLK:
1027                 return SECCLASS_BLK_FILE;
1028         case S_IFDIR:
1029                 return SECCLASS_DIR;
1030         case S_IFCHR:
1031                 return SECCLASS_CHR_FILE;
1032         case S_IFIFO:
1033                 return SECCLASS_FIFO_FILE;
1034
1035         }
1036
1037         return SECCLASS_FILE;
1038 }
1039
1040 static inline int default_protocol_stream(int protocol)
1041 {
1042         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1043 }
1044
1045 static inline int default_protocol_dgram(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1048 }
1049
1050 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1051 {
1052         switch (family) {
1053         case PF_UNIX:
1054                 switch (type) {
1055                 case SOCK_STREAM:
1056                 case SOCK_SEQPACKET:
1057                         return SECCLASS_UNIX_STREAM_SOCKET;
1058                 case SOCK_DGRAM:
1059                         return SECCLASS_UNIX_DGRAM_SOCKET;
1060                 }
1061                 break;
1062         case PF_INET:
1063         case PF_INET6:
1064                 switch (type) {
1065                 case SOCK_STREAM:
1066                         if (default_protocol_stream(protocol))
1067                                 return SECCLASS_TCP_SOCKET;
1068                         else
1069                                 return SECCLASS_RAWIP_SOCKET;
1070                 case SOCK_DGRAM:
1071                         if (default_protocol_dgram(protocol))
1072                                 return SECCLASS_UDP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DCCP:
1076                         return SECCLASS_DCCP_SOCKET;
1077                 default:
1078                         return SECCLASS_RAWIP_SOCKET;
1079                 }
1080                 break;
1081         case PF_NETLINK:
1082                 switch (protocol) {
1083                 case NETLINK_ROUTE:
1084                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1085                 case NETLINK_FIREWALL:
1086                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1087                 case NETLINK_INET_DIAG:
1088                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1089                 case NETLINK_NFLOG:
1090                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1091                 case NETLINK_XFRM:
1092                         return SECCLASS_NETLINK_XFRM_SOCKET;
1093                 case NETLINK_SELINUX:
1094                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1095                 case NETLINK_AUDIT:
1096                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1097                 case NETLINK_IP6_FW:
1098                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1099                 case NETLINK_DNRTMSG:
1100                         return SECCLASS_NETLINK_DNRT_SOCKET;
1101                 case NETLINK_KOBJECT_UEVENT:
1102                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1103                 default:
1104                         return SECCLASS_NETLINK_SOCKET;
1105                 }
1106         case PF_PACKET:
1107                 return SECCLASS_PACKET_SOCKET;
1108         case PF_KEY:
1109                 return SECCLASS_KEY_SOCKET;
1110         case PF_APPLETALK:
1111                 return SECCLASS_APPLETALK_SOCKET;
1112         }
1113
1114         return SECCLASS_SOCKET;
1115 }
1116
1117 #ifdef CONFIG_PROC_FS
1118 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1119                                 u16 tclass,
1120                                 u32 *sid)
1121 {
1122         int buflen, rc;
1123         char *buffer, *path, *end;
1124
1125         buffer = (char *)__get_free_page(GFP_KERNEL);
1126         if (!buffer)
1127                 return -ENOMEM;
1128
1129         buflen = PAGE_SIZE;
1130         end = buffer+buflen;
1131         *--end = '\0';
1132         buflen--;
1133         path = end-1;
1134         *path = '/';
1135         while (de && de != de->parent) {
1136                 buflen -= de->namelen + 1;
1137                 if (buflen < 0)
1138                         break;
1139                 end -= de->namelen;
1140                 memcpy(end, de->name, de->namelen);
1141                 *--end = '/';
1142                 path = end;
1143                 de = de->parent;
1144         }
1145         rc = security_genfs_sid("proc", path, tclass, sid);
1146         free_page((unsigned long)buffer);
1147         return rc;
1148 }
1149 #else
1150 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1151                                 u16 tclass,
1152                                 u32 *sid)
1153 {
1154         return -EINVAL;
1155 }
1156 #endif
1157
1158 /* The inode's security attributes must be initialized before first use. */
1159 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1160 {
1161         struct superblock_security_struct *sbsec = NULL;
1162         struct inode_security_struct *isec = inode->i_security;
1163         u32 sid;
1164         struct dentry *dentry;
1165 #define INITCONTEXTLEN 255
1166         char *context = NULL;
1167         unsigned len = 0;
1168         int rc = 0;
1169
1170         if (isec->initialized)
1171                 goto out;
1172
1173         mutex_lock(&isec->lock);
1174         if (isec->initialized)
1175                 goto out_unlock;
1176
1177         sbsec = inode->i_sb->s_security;
1178         if (!sbsec->initialized) {
1179                 /* Defer initialization until selinux_complete_init,
1180                    after the initial policy is loaded and the security
1181                    server is ready to handle calls. */
1182                 spin_lock(&sbsec->isec_lock);
1183                 if (list_empty(&isec->list))
1184                         list_add(&isec->list, &sbsec->isec_head);
1185                 spin_unlock(&sbsec->isec_lock);
1186                 goto out_unlock;
1187         }
1188
1189         switch (sbsec->behavior) {
1190         case SECURITY_FS_USE_XATTR:
1191                 if (!inode->i_op->getxattr) {
1192                         isec->sid = sbsec->def_sid;
1193                         break;
1194                 }
1195
1196                 /* Need a dentry, since the xattr API requires one.
1197                    Life would be simpler if we could just pass the inode. */
1198                 if (opt_dentry) {
1199                         /* Called from d_instantiate or d_splice_alias. */
1200                         dentry = dget(opt_dentry);
1201                 } else {
1202                         /* Called from selinux_complete_init, try to find a dentry. */
1203                         dentry = d_find_alias(inode);
1204                 }
1205                 if (!dentry) {
1206                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1207                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1208                                inode->i_ino);
1209                         goto out_unlock;
1210                 }
1211
1212                 len = INITCONTEXTLEN;
1213                 context = kmalloc(len, GFP_NOFS);
1214                 if (!context) {
1215                         rc = -ENOMEM;
1216                         dput(dentry);
1217                         goto out_unlock;
1218                 }
1219                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1220                                            context, len);
1221                 if (rc == -ERANGE) {
1222                         /* Need a larger buffer.  Query for the right size. */
1223                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1224                                                    NULL, 0);
1225                         if (rc < 0) {
1226                                 dput(dentry);
1227                                 goto out_unlock;
1228                         }
1229                         kfree(context);
1230                         len = rc;
1231                         context = kmalloc(len, GFP_NOFS);
1232                         if (!context) {
1233                                 rc = -ENOMEM;
1234                                 dput(dentry);
1235                                 goto out_unlock;
1236                         }
1237                         rc = inode->i_op->getxattr(dentry,
1238                                                    XATTR_NAME_SELINUX,
1239                                                    context, len);
1240                 }
1241                 dput(dentry);
1242                 if (rc < 0) {
1243                         if (rc != -ENODATA) {
1244                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1245                                        "%d for dev=%s ino=%ld\n", __func__,
1246                                        -rc, inode->i_sb->s_id, inode->i_ino);
1247                                 kfree(context);
1248                                 goto out_unlock;
1249                         }
1250                         /* Map ENODATA to the default file SID */
1251                         sid = sbsec->def_sid;
1252                         rc = 0;
1253                 } else {
1254                         rc = security_context_to_sid_default(context, rc, &sid,
1255                                                              sbsec->def_sid,
1256                                                              GFP_NOFS);
1257                         if (rc) {
1258                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1259                                        "returned %d for dev=%s ino=%ld\n",
1260                                        __func__, context, -rc,
1261                                        inode->i_sb->s_id, inode->i_ino);
1262                                 kfree(context);
1263                                 /* Leave with the unlabeled SID */
1264                                 rc = 0;
1265                                 break;
1266                         }
1267                 }
1268                 kfree(context);
1269                 isec->sid = sid;
1270                 break;
1271         case SECURITY_FS_USE_TASK:
1272                 isec->sid = isec->task_sid;
1273                 break;
1274         case SECURITY_FS_USE_TRANS:
1275                 /* Default to the fs SID. */
1276                 isec->sid = sbsec->sid;
1277
1278                 /* Try to obtain a transition SID. */
1279                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1280                 rc = security_transition_sid(isec->task_sid,
1281                                              sbsec->sid,
1282                                              isec->sclass,
1283                                              &sid);
1284                 if (rc)
1285                         goto out_unlock;
1286                 isec->sid = sid;
1287                 break;
1288         case SECURITY_FS_USE_MNTPOINT:
1289                 isec->sid = sbsec->mntpoint_sid;
1290                 break;
1291         default:
1292                 /* Default to the fs superblock SID. */
1293                 isec->sid = sbsec->sid;
1294
1295                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1296                         struct proc_inode *proci = PROC_I(inode);
1297                         if (proci->pde) {
1298                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1299                                 rc = selinux_proc_get_sid(proci->pde,
1300                                                           isec->sclass,
1301                                                           &sid);
1302                                 if (rc)
1303                                         goto out_unlock;
1304                                 isec->sid = sid;
1305                         }
1306                 }
1307                 break;
1308         }
1309
1310         isec->initialized = 1;
1311
1312 out_unlock:
1313         mutex_unlock(&isec->lock);
1314 out:
1315         if (isec->sclass == SECCLASS_FILE)
1316                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317         return rc;
1318 }
1319
1320 /* Convert a Linux signal to an access vector. */
1321 static inline u32 signal_to_av(int sig)
1322 {
1323         u32 perm = 0;
1324
1325         switch (sig) {
1326         case SIGCHLD:
1327                 /* Commonly granted from child to parent. */
1328                 perm = PROCESS__SIGCHLD;
1329                 break;
1330         case SIGKILL:
1331                 /* Cannot be caught or ignored */
1332                 perm = PROCESS__SIGKILL;
1333                 break;
1334         case SIGSTOP:
1335                 /* Cannot be caught or ignored */
1336                 perm = PROCESS__SIGSTOP;
1337                 break;
1338         default:
1339                 /* All other signals. */
1340                 perm = PROCESS__SIGNAL;
1341                 break;
1342         }
1343
1344         return perm;
1345 }
1346
1347 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1348    fork check, ptrace check, etc. */
1349 static int task_has_perm(struct task_struct *tsk1,
1350                          struct task_struct *tsk2,
1351                          u32 perms)
1352 {
1353         struct task_security_struct *tsec1, *tsec2;
1354
1355         tsec1 = tsk1->security;
1356         tsec2 = tsk2->security;
1357         return avc_has_perm(tsec1->sid, tsec2->sid,
1358                             SECCLASS_PROCESS, perms, NULL);
1359 }
1360
1361 #if CAP_LAST_CAP > 63
1362 #error Fix SELinux to handle capabilities > 63.
1363 #endif
1364
1365 /* Check whether a task is allowed to use a capability. */
1366 static int task_has_capability(struct task_struct *tsk,
1367                                int cap)
1368 {
1369         struct task_security_struct *tsec;
1370         struct avc_audit_data ad;
1371         u16 sclass;
1372         u32 av = CAP_TO_MASK(cap);
1373
1374         tsec = tsk->security;
1375
1376         AVC_AUDIT_DATA_INIT(&ad, CAP);
1377         ad.tsk = tsk;
1378         ad.u.cap = cap;
1379
1380         switch (CAP_TO_INDEX(cap)) {
1381         case 0:
1382                 sclass = SECCLASS_CAPABILITY;
1383                 break;
1384         case 1:
1385                 sclass = SECCLASS_CAPABILITY2;
1386                 break;
1387         default:
1388                 printk(KERN_ERR
1389                        "SELinux:  out of range capability %d\n", cap);
1390                 BUG();
1391         }
1392         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1393 }
1394
1395 /* Check whether a task is allowed to use a system operation. */
1396 static int task_has_system(struct task_struct *tsk,
1397                            u32 perms)
1398 {
1399         struct task_security_struct *tsec;
1400
1401         tsec = tsk->security;
1402
1403         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1404                             SECCLASS_SYSTEM, perms, NULL);
1405 }
1406
1407 /* Check whether a task has a particular permission to an inode.
1408    The 'adp' parameter is optional and allows other audit
1409    data to be passed (e.g. the dentry). */
1410 static int inode_has_perm(struct task_struct *tsk,
1411                           struct inode *inode,
1412                           u32 perms,
1413                           struct avc_audit_data *adp)
1414 {
1415         struct task_security_struct *tsec;
1416         struct inode_security_struct *isec;
1417         struct avc_audit_data ad;
1418
1419         if (unlikely(IS_PRIVATE(inode)))
1420                 return 0;
1421
1422         tsec = tsk->security;
1423         isec = inode->i_security;
1424
1425         if (!adp) {
1426                 adp = &ad;
1427                 AVC_AUDIT_DATA_INIT(&ad, FS);
1428                 ad.u.fs.inode = inode;
1429         }
1430
1431         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1432 }
1433
1434 /* Same as inode_has_perm, but pass explicit audit data containing
1435    the dentry to help the auditing code to more easily generate the
1436    pathname if needed. */
1437 static inline int dentry_has_perm(struct task_struct *tsk,
1438                                   struct vfsmount *mnt,
1439                                   struct dentry *dentry,
1440                                   u32 av)
1441 {
1442         struct inode *inode = dentry->d_inode;
1443         struct avc_audit_data ad;
1444         AVC_AUDIT_DATA_INIT(&ad, FS);
1445         ad.u.fs.path.mnt = mnt;
1446         ad.u.fs.path.dentry = dentry;
1447         return inode_has_perm(tsk, inode, av, &ad);
1448 }
1449
1450 /* Check whether a task can use an open file descriptor to
1451    access an inode in a given way.  Check access to the
1452    descriptor itself, and then use dentry_has_perm to
1453    check a particular permission to the file.
1454    Access to the descriptor is implicitly granted if it
1455    has the same SID as the process.  If av is zero, then
1456    access to the file is not checked, e.g. for cases
1457    where only the descriptor is affected like seek. */
1458 static int file_has_perm(struct task_struct *tsk,
1459                                 struct file *file,
1460                                 u32 av)
1461 {
1462         struct task_security_struct *tsec = tsk->security;
1463         struct file_security_struct *fsec = file->f_security;
1464         struct inode *inode = file->f_path.dentry->d_inode;
1465         struct avc_audit_data ad;
1466         int rc;
1467
1468         AVC_AUDIT_DATA_INIT(&ad, FS);
1469         ad.u.fs.path = file->f_path;
1470
1471         if (tsec->sid != fsec->sid) {
1472                 rc = avc_has_perm(tsec->sid, fsec->sid,
1473                                   SECCLASS_FD,
1474                                   FD__USE,
1475                                   &ad);
1476                 if (rc)
1477                         return rc;
1478         }
1479
1480         /* av is zero if only checking access to the descriptor. */
1481         if (av)
1482                 return inode_has_perm(tsk, inode, av, &ad);
1483
1484         return 0;
1485 }
1486
1487 /* Check whether a task can create a file. */
1488 static int may_create(struct inode *dir,
1489                       struct dentry *dentry,
1490                       u16 tclass)
1491 {
1492         struct task_security_struct *tsec;
1493         struct inode_security_struct *dsec;
1494         struct superblock_security_struct *sbsec;
1495         u32 newsid;
1496         struct avc_audit_data ad;
1497         int rc;
1498
1499         tsec = current->security;
1500         dsec = dir->i_security;
1501         sbsec = dir->i_sb->s_security;
1502
1503         AVC_AUDIT_DATA_INIT(&ad, FS);
1504         ad.u.fs.path.dentry = dentry;
1505
1506         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1507                           DIR__ADD_NAME | DIR__SEARCH,
1508                           &ad);
1509         if (rc)
1510                 return rc;
1511
1512         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1513                 newsid = tsec->create_sid;
1514         } else {
1515                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1516                                              &newsid);
1517                 if (rc)
1518                         return rc;
1519         }
1520
1521         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1522         if (rc)
1523                 return rc;
1524
1525         return avc_has_perm(newsid, sbsec->sid,
1526                             SECCLASS_FILESYSTEM,
1527                             FILESYSTEM__ASSOCIATE, &ad);
1528 }
1529
1530 /* Check whether a task can create a key. */
1531 static int may_create_key(u32 ksid,
1532                           struct task_struct *ctx)
1533 {
1534         struct task_security_struct *tsec;
1535
1536         tsec = ctx->security;
1537
1538         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1539 }
1540
1541 #define MAY_LINK        0
1542 #define MAY_UNLINK      1
1543 #define MAY_RMDIR       2
1544
1545 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1546 static int may_link(struct inode *dir,
1547                     struct dentry *dentry,
1548                     int kind)
1549
1550 {
1551         struct task_security_struct *tsec;
1552         struct inode_security_struct *dsec, *isec;
1553         struct avc_audit_data ad;
1554         u32 av;
1555         int rc;
1556
1557         tsec = current->security;
1558         dsec = dir->i_security;
1559         isec = dentry->d_inode->i_security;
1560
1561         AVC_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path.dentry = dentry;
1563
1564         av = DIR__SEARCH;
1565         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1566         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1567         if (rc)
1568                 return rc;
1569
1570         switch (kind) {
1571         case MAY_LINK:
1572                 av = FILE__LINK;
1573                 break;
1574         case MAY_UNLINK:
1575                 av = FILE__UNLINK;
1576                 break;
1577         case MAY_RMDIR:
1578                 av = DIR__RMDIR;
1579                 break;
1580         default:
1581                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1582                         __func__, kind);
1583                 return 0;
1584         }
1585
1586         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1587         return rc;
1588 }
1589
1590 static inline int may_rename(struct inode *old_dir,
1591                              struct dentry *old_dentry,
1592                              struct inode *new_dir,
1593                              struct dentry *new_dentry)
1594 {
1595         struct task_security_struct *tsec;
1596         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1597         struct avc_audit_data ad;
1598         u32 av;
1599         int old_is_dir, new_is_dir;
1600         int rc;
1601
1602         tsec = current->security;
1603         old_dsec = old_dir->i_security;
1604         old_isec = old_dentry->d_inode->i_security;
1605         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1606         new_dsec = new_dir->i_security;
1607
1608         AVC_AUDIT_DATA_INIT(&ad, FS);
1609
1610         ad.u.fs.path.dentry = old_dentry;
1611         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1612                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1613         if (rc)
1614                 return rc;
1615         rc = avc_has_perm(tsec->sid, old_isec->sid,
1616                           old_isec->sclass, FILE__RENAME, &ad);
1617         if (rc)
1618                 return rc;
1619         if (old_is_dir && new_dir != old_dir) {
1620                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1621                                   old_isec->sclass, DIR__REPARENT, &ad);
1622                 if (rc)
1623                         return rc;
1624         }
1625
1626         ad.u.fs.path.dentry = new_dentry;
1627         av = DIR__ADD_NAME | DIR__SEARCH;
1628         if (new_dentry->d_inode)
1629                 av |= DIR__REMOVE_NAME;
1630         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1631         if (rc)
1632                 return rc;
1633         if (new_dentry->d_inode) {
1634                 new_isec = new_dentry->d_inode->i_security;
1635                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1636                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1637                                   new_isec->sclass,
1638                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1639                 if (rc)
1640                         return rc;
1641         }
1642
1643         return 0;
1644 }
1645
1646 /* Check whether a task can perform a filesystem operation. */
1647 static int superblock_has_perm(struct task_struct *tsk,
1648                                struct super_block *sb,
1649                                u32 perms,
1650                                struct avc_audit_data *ad)
1651 {
1652         struct task_security_struct *tsec;
1653         struct superblock_security_struct *sbsec;
1654
1655         tsec = tsk->security;
1656         sbsec = sb->s_security;
1657         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1658                             perms, ad);
1659 }
1660
1661 /* Convert a Linux mode and permission mask to an access vector. */
1662 static inline u32 file_mask_to_av(int mode, int mask)
1663 {
1664         u32 av = 0;
1665
1666         if ((mode & S_IFMT) != S_IFDIR) {
1667                 if (mask & MAY_EXEC)
1668                         av |= FILE__EXECUTE;
1669                 if (mask & MAY_READ)
1670                         av |= FILE__READ;
1671
1672                 if (mask & MAY_APPEND)
1673                         av |= FILE__APPEND;
1674                 else if (mask & MAY_WRITE)
1675                         av |= FILE__WRITE;
1676
1677         } else {
1678                 if (mask & MAY_EXEC)
1679                         av |= DIR__SEARCH;
1680                 if (mask & MAY_WRITE)
1681                         av |= DIR__WRITE;
1682                 if (mask & MAY_READ)
1683                         av |= DIR__READ;
1684         }
1685
1686         return av;
1687 }
1688
1689 /*
1690  * Convert a file mask to an access vector and include the correct open
1691  * open permission.
1692  */
1693 static inline u32 open_file_mask_to_av(int mode, int mask)
1694 {
1695         u32 av = file_mask_to_av(mode, mask);
1696
1697         if (selinux_policycap_openperm) {
1698                 /*
1699                  * lnk files and socks do not really have an 'open'
1700                  */
1701                 if (S_ISREG(mode))
1702                         av |= FILE__OPEN;
1703                 else if (S_ISCHR(mode))
1704                         av |= CHR_FILE__OPEN;
1705                 else if (S_ISBLK(mode))
1706                         av |= BLK_FILE__OPEN;
1707                 else if (S_ISFIFO(mode))
1708                         av |= FIFO_FILE__OPEN;
1709                 else if (S_ISDIR(mode))
1710                         av |= DIR__OPEN;
1711                 else
1712                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1713                                 "unknown mode:%x\n", __func__, mode);
1714         }
1715         return av;
1716 }
1717
1718 /* Convert a Linux file to an access vector. */
1719 static inline u32 file_to_av(struct file *file)
1720 {
1721         u32 av = 0;
1722
1723         if (file->f_mode & FMODE_READ)
1724                 av |= FILE__READ;
1725         if (file->f_mode & FMODE_WRITE) {
1726                 if (file->f_flags & O_APPEND)
1727                         av |= FILE__APPEND;
1728                 else
1729                         av |= FILE__WRITE;
1730         }
1731         if (!av) {
1732                 /*
1733                  * Special file opened with flags 3 for ioctl-only use.
1734                  */
1735                 av = FILE__IOCTL;
1736         }
1737
1738         return av;
1739 }
1740
1741 /* Hook functions begin here. */
1742
1743 static int selinux_ptrace_may_access(struct task_struct *child,
1744                                      unsigned int mode)
1745 {
1746         int rc;
1747
1748         rc = secondary_ops->ptrace_may_access(child, mode);
1749         if (rc)
1750                 return rc;
1751
1752         if (mode == PTRACE_MODE_READ) {
1753                 struct task_security_struct *tsec = current->security;
1754                 struct task_security_struct *csec = child->security;
1755                 return avc_has_perm(tsec->sid, csec->sid,
1756                                     SECCLASS_FILE, FILE__READ, NULL);
1757         }
1758
1759         return task_has_perm(current, child, PROCESS__PTRACE);
1760 }
1761
1762 static int selinux_ptrace_traceme(struct task_struct *parent)
1763 {
1764         int rc;
1765
1766         rc = secondary_ops->ptrace_traceme(parent);
1767         if (rc)
1768                 return rc;
1769
1770         return task_has_perm(parent, current, PROCESS__PTRACE);
1771 }
1772
1773 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1774                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1775 {
1776         int error;
1777
1778         error = task_has_perm(current, target, PROCESS__GETCAP);
1779         if (error)
1780                 return error;
1781
1782         return secondary_ops->capget(target, effective, inheritable, permitted);
1783 }
1784
1785 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1786                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1787 {
1788         int error;
1789
1790         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1791         if (error)
1792                 return error;
1793
1794         return task_has_perm(current, target, PROCESS__SETCAP);
1795 }
1796
1797 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1798                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1799 {
1800         secondary_ops->capset_set(target, effective, inheritable, permitted);
1801 }
1802
1803 static int selinux_capable(struct task_struct *tsk, int cap)
1804 {
1805         int rc;
1806
1807         rc = secondary_ops->capable(tsk, cap);
1808         if (rc)
1809                 return rc;
1810
1811         return task_has_capability(tsk, cap);
1812 }
1813
1814 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1815 {
1816         int buflen, rc;
1817         char *buffer, *path, *end;
1818
1819         rc = -ENOMEM;
1820         buffer = (char *)__get_free_page(GFP_KERNEL);
1821         if (!buffer)
1822                 goto out;
1823
1824         buflen = PAGE_SIZE;
1825         end = buffer+buflen;
1826         *--end = '\0';
1827         buflen--;
1828         path = end-1;
1829         *path = '/';
1830         while (table) {
1831                 const char *name = table->procname;
1832                 size_t namelen = strlen(name);
1833                 buflen -= namelen + 1;
1834                 if (buflen < 0)
1835                         goto out_free;
1836                 end -= namelen;
1837                 memcpy(end, name, namelen);
1838                 *--end = '/';
1839                 path = end;
1840                 table = table->parent;
1841         }
1842         buflen -= 4;
1843         if (buflen < 0)
1844                 goto out_free;
1845         end -= 4;
1846         memcpy(end, "/sys", 4);
1847         path = end;
1848         rc = security_genfs_sid("proc", path, tclass, sid);
1849 out_free:
1850         free_page((unsigned long)buffer);
1851 out:
1852         return rc;
1853 }
1854
1855 static int selinux_sysctl(ctl_table *table, int op)
1856 {
1857         int error = 0;
1858         u32 av;
1859         struct task_security_struct *tsec;
1860         u32 tsid;
1861         int rc;
1862
1863         rc = secondary_ops->sysctl(table, op);
1864         if (rc)
1865                 return rc;
1866
1867         tsec = current->security;
1868
1869         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1870                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1871         if (rc) {
1872                 /* Default to the well-defined sysctl SID. */
1873                 tsid = SECINITSID_SYSCTL;
1874         }
1875
1876         /* The op values are "defined" in sysctl.c, thereby creating
1877          * a bad coupling between this module and sysctl.c */
1878         if (op == 001) {
1879                 error = avc_has_perm(tsec->sid, tsid,
1880                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1881         } else {
1882                 av = 0;
1883                 if (op & 004)
1884                         av |= FILE__READ;
1885                 if (op & 002)
1886                         av |= FILE__WRITE;
1887                 if (av)
1888                         error = avc_has_perm(tsec->sid, tsid,
1889                                              SECCLASS_FILE, av, NULL);
1890         }
1891
1892         return error;
1893 }
1894
1895 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1896 {
1897         int rc = 0;
1898
1899         if (!sb)
1900                 return 0;
1901
1902         switch (cmds) {
1903         case Q_SYNC:
1904         case Q_QUOTAON:
1905         case Q_QUOTAOFF:
1906         case Q_SETINFO:
1907         case Q_SETQUOTA:
1908                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1909                                          NULL);
1910                 break;
1911         case Q_GETFMT:
1912         case Q_GETINFO:
1913         case Q_GETQUOTA:
1914                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1915                                          NULL);
1916                 break;
1917         default:
1918                 rc = 0;  /* let the kernel handle invalid cmds */
1919                 break;
1920         }
1921         return rc;
1922 }
1923
1924 static int selinux_quota_on(struct dentry *dentry)
1925 {
1926         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1927 }
1928
1929 static int selinux_syslog(int type)
1930 {
1931         int rc;
1932
1933         rc = secondary_ops->syslog(type);
1934         if (rc)
1935                 return rc;
1936
1937         switch (type) {
1938         case 3:         /* Read last kernel messages */
1939         case 10:        /* Return size of the log buffer */
1940                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1941                 break;
1942         case 6:         /* Disable logging to console */
1943         case 7:         /* Enable logging to console */
1944         case 8:         /* Set level of messages printed to console */
1945                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1946                 break;
1947         case 0:         /* Close log */
1948         case 1:         /* Open log */
1949         case 2:         /* Read from log */
1950         case 4:         /* Read/clear last kernel messages */
1951         case 5:         /* Clear ring buffer */
1952         default:
1953                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1954                 break;
1955         }
1956         return rc;
1957 }
1958
1959 /*
1960  * Check that a process has enough memory to allocate a new virtual
1961  * mapping. 0 means there is enough memory for the allocation to
1962  * succeed and -ENOMEM implies there is not.
1963  *
1964  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1965  * if the capability is granted, but __vm_enough_memory requires 1 if
1966  * the capability is granted.
1967  *
1968  * Do not audit the selinux permission check, as this is applied to all
1969  * processes that allocate mappings.
1970  */
1971 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1972 {
1973         int rc, cap_sys_admin = 0;
1974         struct task_security_struct *tsec = current->security;
1975
1976         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1977         if (rc == 0)
1978                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1979                                           SECCLASS_CAPABILITY,
1980                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1981                                           0,
1982                                           NULL);
1983
1984         if (rc == 0)
1985                 cap_sys_admin = 1;
1986
1987         return __vm_enough_memory(mm, pages, cap_sys_admin);
1988 }
1989
1990 /* binprm security operations */
1991
1992 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1993 {
1994         struct bprm_security_struct *bsec;
1995
1996         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1997         if (!bsec)
1998                 return -ENOMEM;
1999
2000         bsec->sid = SECINITSID_UNLABELED;
2001         bsec->set = 0;
2002
2003         bprm->security = bsec;
2004         return 0;
2005 }
2006
2007 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2008 {
2009         struct task_security_struct *tsec;
2010         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2011         struct inode_security_struct *isec;
2012         struct bprm_security_struct *bsec;
2013         u32 newsid;
2014         struct avc_audit_data ad;
2015         int rc;
2016
2017         rc = secondary_ops->bprm_set_security(bprm);
2018         if (rc)
2019                 return rc;
2020
2021         bsec = bprm->security;
2022
2023         if (bsec->set)
2024                 return 0;
2025
2026         tsec = current->security;
2027         isec = inode->i_security;
2028
2029         /* Default to the current task SID. */
2030         bsec->sid = tsec->sid;
2031
2032         /* Reset fs, key, and sock SIDs on execve. */
2033         tsec->create_sid = 0;
2034         tsec->keycreate_sid = 0;
2035         tsec->sockcreate_sid = 0;
2036
2037         if (tsec->exec_sid) {
2038                 newsid = tsec->exec_sid;
2039                 /* Reset exec SID on execve. */
2040                 tsec->exec_sid = 0;
2041         } else {
2042                 /* Check for a default transition on this program. */
2043                 rc = security_transition_sid(tsec->sid, isec->sid,
2044                                              SECCLASS_PROCESS, &newsid);
2045                 if (rc)
2046                         return rc;
2047         }
2048
2049         AVC_AUDIT_DATA_INIT(&ad, FS);
2050         ad.u.fs.path = bprm->file->f_path;
2051
2052         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2053                 newsid = tsec->sid;
2054
2055         if (tsec->sid == newsid) {
2056                 rc = avc_has_perm(tsec->sid, isec->sid,
2057                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2058                 if (rc)
2059                         return rc;
2060         } else {
2061                 /* Check permissions for the transition. */
2062                 rc = avc_has_perm(tsec->sid, newsid,
2063                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2064                 if (rc)
2065                         return rc;
2066
2067                 rc = avc_has_perm(newsid, isec->sid,
2068                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2069                 if (rc)
2070                         return rc;
2071
2072                 /* Clear any possibly unsafe personality bits on exec: */
2073                 current->personality &= ~PER_CLEAR_ON_SETID;
2074
2075                 /* Set the security field to the new SID. */
2076                 bsec->sid = newsid;
2077         }
2078
2079         bsec->set = 1;
2080         return 0;
2081 }
2082
2083 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2084 {
2085         return secondary_ops->bprm_check_security(bprm);
2086 }
2087
2088
2089 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2090 {
2091         struct task_security_struct *tsec = current->security;
2092         int atsecure = 0;
2093
2094         if (tsec->osid != tsec->sid) {
2095                 /* Enable secure mode for SIDs transitions unless
2096                    the noatsecure permission is granted between
2097                    the two SIDs, i.e. ahp returns 0. */
2098                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2099                                          SECCLASS_PROCESS,
2100                                          PROCESS__NOATSECURE, NULL);
2101         }
2102
2103         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2104 }
2105
2106 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2107 {
2108         kfree(bprm->security);
2109         bprm->security = NULL;
2110 }
2111
2112 extern struct vfsmount *selinuxfs_mount;
2113 extern struct dentry *selinux_null;
2114
2115 /* Derived from fs/exec.c:flush_old_files. */
2116 static inline void flush_unauthorized_files(struct files_struct *files)
2117 {
2118         struct avc_audit_data ad;
2119         struct file *file, *devnull = NULL;
2120         struct tty_struct *tty;
2121         struct fdtable *fdt;
2122         long j = -1;
2123         int drop_tty = 0;
2124
2125         tty = get_current_tty();
2126         if (tty) {
2127                 file_list_lock();
2128                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2129                 if (file) {
2130                         /* Revalidate access to controlling tty.
2131                            Use inode_has_perm on the tty inode directly rather
2132                            than using file_has_perm, as this particular open
2133                            file may belong to another process and we are only
2134                            interested in the inode-based check here. */
2135                         struct inode *inode = file->f_path.dentry->d_inode;
2136                         if (inode_has_perm(current, inode,
2137                                            FILE__READ | FILE__WRITE, NULL)) {
2138                                 drop_tty = 1;
2139                         }
2140                 }
2141                 file_list_unlock();
2142                 tty_kref_put(tty);
2143         }
2144         /* Reset controlling tty. */
2145         if (drop_tty)
2146                 no_tty();
2147
2148         /* Revalidate access to inherited open files. */
2149
2150         AVC_AUDIT_DATA_INIT(&ad, FS);
2151
2152         spin_lock(&files->file_lock);
2153         for (;;) {
2154                 unsigned long set, i;
2155                 int fd;
2156
2157                 j++;
2158                 i = j * __NFDBITS;
2159                 fdt = files_fdtable(files);
2160                 if (i >= fdt->max_fds)
2161                         break;
2162                 set = fdt->open_fds->fds_bits[j];
2163                 if (!set)
2164                         continue;
2165                 spin_unlock(&files->file_lock);
2166                 for ( ; set ; i++, set >>= 1) {
2167                         if (set & 1) {
2168                                 file = fget(i);
2169                                 if (!file)
2170                                         continue;
2171                                 if (file_has_perm(current,
2172                                                   file,
2173                                                   file_to_av(file))) {
2174                                         sys_close(i);
2175                                         fd = get_unused_fd();
2176                                         if (fd != i) {
2177                                                 if (fd >= 0)
2178                                                         put_unused_fd(fd);
2179                                                 fput(file);
2180                                                 continue;
2181                                         }
2182                                         if (devnull) {
2183                                                 get_file(devnull);
2184                                         } else {
2185                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2186                                                 if (IS_ERR(devnull)) {
2187                                                         devnull = NULL;
2188                                                         put_unused_fd(fd);
2189                                                         fput(file);
2190                                                         continue;
2191                                                 }
2192                                         }
2193                                         fd_install(fd, devnull);
2194                                 }
2195                                 fput(file);
2196                         }
2197                 }
2198                 spin_lock(&files->file_lock);
2199
2200         }
2201         spin_unlock(&files->file_lock);
2202 }
2203
2204 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2205 {
2206         struct task_security_struct *tsec;
2207         struct bprm_security_struct *bsec;
2208         u32 sid;
2209         int rc;
2210
2211         secondary_ops->bprm_apply_creds(bprm, unsafe);
2212
2213         tsec = current->security;
2214
2215         bsec = bprm->security;
2216         sid = bsec->sid;
2217
2218         tsec->osid = tsec->sid;
2219         bsec->unsafe = 0;
2220         if (tsec->sid != sid) {
2221                 /* Check for shared state.  If not ok, leave SID
2222                    unchanged and kill. */
2223                 if (unsafe & LSM_UNSAFE_SHARE) {
2224                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2225                                         PROCESS__SHARE, NULL);
2226                         if (rc) {
2227                                 bsec->unsafe = 1;
2228                                 return;
2229                         }
2230                 }
2231
2232                 /* Check for ptracing, and update the task SID if ok.
2233                    Otherwise, leave SID unchanged and kill. */
2234                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2235                         struct task_struct *tracer;
2236                         struct task_security_struct *sec;
2237                         u32 ptsid = 0;
2238
2239                         rcu_read_lock();
2240                         tracer = tracehook_tracer_task(current);
2241                         if (likely(tracer != NULL)) {
2242                                 sec = tracer->security;
2243                                 ptsid = sec->sid;
2244                         }
2245                         rcu_read_unlock();
2246
2247                         if (ptsid != 0) {
2248                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2249                                                   PROCESS__PTRACE, NULL);
2250                                 if (rc) {
2251                                         bsec->unsafe = 1;
2252                                         return;
2253                                 }
2254                         }
2255                 }
2256                 tsec->sid = sid;
2257         }
2258 }
2259
2260 /*
2261  * called after apply_creds without the task lock held
2262  */
2263 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2264 {
2265         struct task_security_struct *tsec;
2266         struct rlimit *rlim, *initrlim;
2267         struct itimerval itimer;
2268         struct bprm_security_struct *bsec;
2269         int rc, i;
2270
2271         tsec = current->security;
2272         bsec = bprm->security;
2273
2274         if (bsec->unsafe) {
2275                 force_sig_specific(SIGKILL, current);
2276                 return;
2277         }
2278         if (tsec->osid == tsec->sid)
2279                 return;
2280
2281         /* Close files for which the new task SID is not authorized. */
2282         flush_unauthorized_files(current->files);
2283
2284         /* Check whether the new SID can inherit signal state
2285            from the old SID.  If not, clear itimers to avoid
2286            subsequent signal generation and flush and unblock
2287            signals. This must occur _after_ the task SID has
2288           been updated so that any kill done after the flush
2289           will be checked against the new SID. */
2290         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2291                           PROCESS__SIGINH, NULL);
2292         if (rc) {
2293                 memset(&itimer, 0, sizeof itimer);
2294                 for (i = 0; i < 3; i++)
2295                         do_setitimer(i, &itimer, NULL);
2296                 flush_signals(current);
2297                 spin_lock_irq(&current->sighand->siglock);
2298                 flush_signal_handlers(current, 1);
2299                 sigemptyset(&current->blocked);
2300                 recalc_sigpending();
2301                 spin_unlock_irq(&current->sighand->siglock);
2302         }
2303
2304         /* Always clear parent death signal on SID transitions. */
2305         current->pdeath_signal = 0;
2306
2307         /* Check whether the new SID can inherit resource limits
2308            from the old SID.  If not, reset all soft limits to
2309            the lower of the current task's hard limit and the init
2310            task's soft limit.  Note that the setting of hard limits
2311            (even to lower them) can be controlled by the setrlimit
2312            check. The inclusion of the init task's soft limit into
2313            the computation is to avoid resetting soft limits higher
2314            than the default soft limit for cases where the default
2315            is lower than the hard limit, e.g. RLIMIT_CORE or
2316            RLIMIT_STACK.*/
2317         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2318                           PROCESS__RLIMITINH, NULL);
2319         if (rc) {
2320                 for (i = 0; i < RLIM_NLIMITS; i++) {
2321                         rlim = current->signal->rlim + i;
2322                         initrlim = init_task.signal->rlim+i;
2323                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2324                 }
2325                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2326                         /*
2327                          * This will cause RLIMIT_CPU calculations
2328                          * to be refigured.
2329                          */
2330                         current->it_prof_expires = jiffies_to_cputime(1);
2331                 }
2332         }
2333
2334         /* Wake up the parent if it is waiting so that it can
2335            recheck wait permission to the new task SID. */
2336         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2337 }
2338
2339 /* superblock security operations */
2340
2341 static int selinux_sb_alloc_security(struct super_block *sb)
2342 {
2343         return superblock_alloc_security(sb);
2344 }
2345
2346 static void selinux_sb_free_security(struct super_block *sb)
2347 {
2348         superblock_free_security(sb);
2349 }
2350
2351 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2352 {
2353         if (plen > olen)
2354                 return 0;
2355
2356         return !memcmp(prefix, option, plen);
2357 }
2358
2359 static inline int selinux_option(char *option, int len)
2360 {
2361         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2362                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2363                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2364                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2365 }
2366
2367 static inline void take_option(char **to, char *from, int *first, int len)
2368 {
2369         if (!*first) {
2370                 **to = ',';
2371                 *to += 1;
2372         } else
2373                 *first = 0;
2374         memcpy(*to, from, len);
2375         *to += len;
2376 }
2377
2378 static inline void take_selinux_option(char **to, char *from, int *first,
2379                                        int len)
2380 {
2381         int current_size = 0;
2382
2383         if (!*first) {
2384                 **to = '|';
2385                 *to += 1;
2386         } else
2387                 *first = 0;
2388
2389         while (current_size < len) {
2390                 if (*from != '"') {
2391                         **to = *from;
2392                         *to += 1;
2393                 }
2394                 from += 1;
2395                 current_size += 1;
2396         }
2397 }
2398
2399 static int selinux_sb_copy_data(char *orig, char *copy)
2400 {
2401         int fnosec, fsec, rc = 0;
2402         char *in_save, *in_curr, *in_end;
2403         char *sec_curr, *nosec_save, *nosec;
2404         int open_quote = 0;
2405
2406         in_curr = orig;
2407         sec_curr = copy;
2408
2409         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2410         if (!nosec) {
2411                 rc = -ENOMEM;
2412                 goto out;
2413         }
2414
2415         nosec_save = nosec;
2416         fnosec = fsec = 1;
2417         in_save = in_end = orig;
2418
2419         do {
2420                 if (*in_end == '"')
2421                         open_quote = !open_quote;
2422                 if ((*in_end == ',' && open_quote == 0) ||
2423                                 *in_end == '\0') {
2424                         int len = in_end - in_curr;
2425
2426                         if (selinux_option(in_curr, len))
2427                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2428                         else
2429                                 take_option(&nosec, in_curr, &fnosec, len);
2430
2431                         in_curr = in_end + 1;
2432                 }
2433         } while (*in_end++);
2434
2435         strcpy(in_save, nosec_save);
2436         free_page((unsigned long)nosec_save);
2437 out:
2438         return rc;
2439 }
2440
2441 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2442 {
2443         struct avc_audit_data ad;
2444         int rc;
2445
2446         rc = superblock_doinit(sb, data);
2447         if (rc)
2448                 return rc;
2449
2450         AVC_AUDIT_DATA_INIT(&ad, FS);
2451         ad.u.fs.path.dentry = sb->s_root;
2452         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2453 }
2454
2455 static int selinux_sb_statfs(struct dentry *dentry)
2456 {
2457         struct avc_audit_data ad;
2458
2459         AVC_AUDIT_DATA_INIT(&ad, FS);
2460         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2461         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2462 }
2463
2464 static int selinux_mount(char *dev_name,
2465                          struct path *path,
2466                          char *type,
2467                          unsigned long flags,
2468                          void *data)
2469 {
2470         int rc;
2471
2472         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2473         if (rc)
2474                 return rc;
2475
2476         if (flags & MS_REMOUNT)
2477                 return superblock_has_perm(current, path->mnt->mnt_sb,
2478                                            FILESYSTEM__REMOUNT, NULL);
2479         else
2480                 return dentry_has_perm(current, path->mnt, path->dentry,
2481                                        FILE__MOUNTON);
2482 }
2483
2484 static int selinux_umount(struct vfsmount *mnt, int flags)
2485 {
2486         int rc;
2487
2488         rc = secondary_ops->sb_umount(mnt, flags);
2489         if (rc)
2490                 return rc;
2491
2492         return superblock_has_perm(current, mnt->mnt_sb,
2493                                    FILESYSTEM__UNMOUNT, NULL);
2494 }
2495
2496 /* inode security operations */
2497
2498 static int selinux_inode_alloc_security(struct inode *inode)
2499 {
2500         return inode_alloc_security(inode);
2501 }
2502
2503 static void selinux_inode_free_security(struct inode *inode)
2504 {
2505         inode_free_security(inode);
2506 }
2507
2508 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2509                                        char **name, void **value,
2510                                        size_t *len)
2511 {
2512         struct task_security_struct *tsec;
2513         struct inode_security_struct *dsec;
2514         struct superblock_security_struct *sbsec;
2515         u32 newsid, clen;
2516         int rc;
2517         char *namep = NULL, *context;
2518
2519         tsec = current->security;
2520         dsec = dir->i_security;
2521         sbsec = dir->i_sb->s_security;
2522
2523         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2524                 newsid = tsec->create_sid;
2525         } else {
2526                 rc = security_transition_sid(tsec->sid, dsec->sid,
2527                                              inode_mode_to_security_class(inode->i_mode),
2528                                              &newsid);
2529                 if (rc) {
2530                         printk(KERN_WARNING "%s:  "
2531                                "security_transition_sid failed, rc=%d (dev=%s "
2532                                "ino=%ld)\n",
2533                                __func__,
2534                                -rc, inode->i_sb->s_id, inode->i_ino);
2535                         return rc;
2536                 }
2537         }
2538
2539         /* Possibly defer initialization to selinux_complete_init. */
2540         if (sbsec->initialized) {
2541                 struct inode_security_struct *isec = inode->i_security;
2542                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2543                 isec->sid = newsid;
2544                 isec->initialized = 1;
2545         }
2546
2547         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2548                 return -EOPNOTSUPP;
2549
2550         if (name) {
2551                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2552                 if (!namep)
2553                         return -ENOMEM;
2554                 *name = namep;
2555         }
2556
2557         if (value && len) {
2558                 rc = security_sid_to_context_force(newsid, &context, &clen);
2559                 if (rc) {
2560                         kfree(namep);
2561                         return rc;
2562                 }
2563                 *value = context;
2564                 *len = clen;
2565         }
2566
2567         return 0;
2568 }
2569
2570 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2571 {
2572         return may_create(dir, dentry, SECCLASS_FILE);
2573 }
2574
2575 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2576 {
2577         int rc;
2578
2579         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2580         if (rc)
2581                 return rc;
2582         return may_link(dir, old_dentry, MAY_LINK);
2583 }
2584
2585 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2586 {
2587         int rc;
2588
2589         rc = secondary_ops->inode_unlink(dir, dentry);
2590         if (rc)
2591                 return rc;
2592         return may_link(dir, dentry, MAY_UNLINK);
2593 }
2594
2595 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2596 {
2597         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2598 }
2599
2600 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2601 {
2602         return may_create(dir, dentry, SECCLASS_DIR);
2603 }
2604
2605 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2606 {
2607         return may_link(dir, dentry, MAY_RMDIR);
2608 }
2609
2610 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2611 {
2612         int rc;
2613
2614         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2615         if (rc)
2616                 return rc;
2617
2618         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 }
2620
2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2622                                 struct inode *new_inode, struct dentry *new_dentry)
2623 {
2624         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 }
2626
2627 static int selinux_inode_readlink(struct dentry *dentry)
2628 {
2629         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2630 }
2631
2632 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2633 {
2634         int rc;
2635
2636         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2637         if (rc)
2638                 return rc;
2639         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2640 }
2641
2642 static int selinux_inode_permission(struct inode *inode, int mask)
2643 {
2644         int rc;
2645
2646         rc = secondary_ops->inode_permission(inode, mask);
2647         if (rc)
2648                 return rc;
2649
2650         if (!mask) {
2651                 /* No permission to check.  Existence test. */
2652                 return 0;
2653         }
2654
2655         return inode_has_perm(current, inode,
2656                                open_file_mask_to_av(inode->i_mode, mask), NULL);
2657 }
2658
2659 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2660 {
2661         int rc;
2662
2663         rc = secondary_ops->inode_setattr(dentry, iattr);
2664         if (rc)
2665                 return rc;
2666
2667         if (iattr->ia_valid & ATTR_FORCE)
2668                 return 0;
2669
2670         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2671                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2672                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2673
2674         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2675 }
2676
2677 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2678 {
2679         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2680 }
2681
2682 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2683 {
2684         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2685                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2686                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2687                         if (!capable(CAP_SETFCAP))
2688                                 return -EPERM;
2689                 } else if (!capable(CAP_SYS_ADMIN)) {
2690                         /* A different attribute in the security namespace.
2691                            Restrict to administrator. */
2692                         return -EPERM;
2693                 }
2694         }
2695
2696         /* Not an attribute we recognize, so just check the
2697            ordinary setattr permission. */
2698         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2699 }
2700
2701 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2702                                   const void *value, size_t size, int flags)
2703 {
2704         struct task_security_struct *tsec = current->security;
2705         struct inode *inode = dentry->d_inode;
2706         struct inode_security_struct *isec = inode->i_security;
2707         struct superblock_security_struct *sbsec;
2708         struct avc_audit_data ad;
2709         u32 newsid;
2710         int rc = 0;
2711
2712         if (strcmp(name, XATTR_NAME_SELINUX))
2713                 return selinux_inode_setotherxattr(dentry, name);
2714
2715         sbsec = inode->i_sb->s_security;
2716         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2717                 return -EOPNOTSUPP;
2718
2719         if (!is_owner_or_cap(inode))
2720                 return -EPERM;
2721
2722         AVC_AUDIT_DATA_INIT(&ad, FS);
2723         ad.u.fs.path.dentry = dentry;
2724
2725         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2726                           FILE__RELABELFROM, &ad);
2727         if (rc)
2728                 return rc;
2729
2730         rc = security_context_to_sid(value, size, &newsid);
2731         if (rc == -EINVAL) {
2732                 if (!capable(CAP_MAC_ADMIN))
2733                         return rc;
2734                 rc = security_context_to_sid_force(value, size, &newsid);
2735         }
2736         if (rc)
2737                 return rc;
2738
2739         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2740                           FILE__RELABELTO, &ad);
2741         if (rc)
2742                 return rc;
2743
2744         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2745                                           isec->sclass);
2746         if (rc)
2747                 return rc;
2748
2749         return avc_has_perm(newsid,
2750                             sbsec->sid,
2751                             SECCLASS_FILESYSTEM,
2752                             FILESYSTEM__ASSOCIATE,
2753                             &ad);
2754 }
2755
2756 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2757                                         const void *value, size_t size,
2758                                         int flags)
2759 {
2760         struct inode *inode = dentry->d_inode;
2761         struct inode_security_struct *isec = inode->i_security;
2762         u32 newsid;
2763         int rc;
2764
2765         if (strcmp(name, XATTR_NAME_SELINUX)) {
2766                 /* Not an attribute we recognize, so nothing to do. */
2767                 return;
2768         }
2769
2770         rc = security_context_to_sid_force(value, size, &newsid);
2771         if (rc) {
2772                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2773                        "for (%s, %lu), rc=%d\n",
2774                        inode->i_sb->s_id, inode->i_ino, -rc);
2775                 return;
2776         }
2777
2778         isec->sid = newsid;
2779         return;
2780 }
2781
2782 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2783 {
2784         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2785 }
2786
2787 static int selinux_inode_listxattr(struct dentry *dentry)
2788 {
2789         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2793 {
2794         if (strcmp(name, XATTR_NAME_SELINUX))
2795                 return selinux_inode_setotherxattr(dentry, name);
2796
2797         /* No one is allowed to remove a SELinux security label.
2798            You can change the label, but all data must be labeled. */
2799         return -EACCES;
2800 }
2801
2802 /*
2803  * Copy the inode security context value to the user.
2804  *
2805  * Permission check is handled by selinux_inode_getxattr hook.
2806  */
2807 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2808 {
2809         u32 size;
2810         int error;
2811         char *context = NULL;
2812         struct task_security_struct *tsec = current->security;
2813         struct inode_security_struct *isec = inode->i_security;
2814
2815         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2816                 return -EOPNOTSUPP;
2817
2818         /*
2819          * If the caller has CAP_MAC_ADMIN, then get the raw context
2820          * value even if it is not defined by current policy; otherwise,
2821          * use the in-core value under current policy.
2822          * Use the non-auditing forms of the permission checks since
2823          * getxattr may be called by unprivileged processes commonly
2824          * and lack of permission just means that we fall back to the
2825          * in-core context value, not a denial.
2826          */
2827         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2828         if (!error)
2829                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2830                                              SECCLASS_CAPABILITY2,
2831                                              CAPABILITY2__MAC_ADMIN,
2832                                              0,
2833                                              NULL);
2834         if (!error)
2835                 error = security_sid_to_context_force(isec->sid, &context,
2836                                                       &size);
2837         else
2838                 error = security_sid_to_context(isec->sid, &context, &size);
2839         if (error)
2840                 return error;
2841         error = size;
2842         if (alloc) {
2843                 *buffer = context;
2844                 goto out_nofree;
2845         }
2846         kfree(context);
2847 out_nofree:
2848         return error;
2849 }
2850
2851 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2852                                      const void *value, size_t size, int flags)
2853 {
2854         struct inode_security_struct *isec = inode->i_security;
2855         u32 newsid;
2856         int rc;
2857
2858         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2859                 return -EOPNOTSUPP;
2860
2861         if (!value || !size)
2862                 return -EACCES;
2863
2864         rc = security_context_to_sid((void *)value, size, &newsid);
2865         if (rc)
2866                 return rc;
2867
2868         isec->sid = newsid;
2869         return 0;
2870 }
2871
2872 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2873 {
2874         const int len = sizeof(XATTR_NAME_SELINUX);
2875         if (buffer && len <= buffer_size)
2876                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2877         return len;
2878 }
2879
2880 static int selinux_inode_need_killpriv(struct dentry *dentry)
2881 {
2882         return secondary_ops->inode_need_killpriv(dentry);
2883 }
2884
2885 static int selinux_inode_killpriv(struct dentry *dentry)
2886 {
2887         return secondary_ops->inode_killpriv(dentry);
2888 }
2889
2890 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2891 {
2892         struct inode_security_struct *isec = inode->i_security;
2893         *secid = isec->sid;
2894 }
2895
2896 /* file security operations */
2897
2898 static int selinux_revalidate_file_permission(struct file *file, int mask)
2899 {
2900         int rc;
2901         struct inode *inode = file->f_path.dentry->d_inode;
2902
2903         if (!mask) {
2904                 /* No permission to check.  Existence test. */
2905                 return 0;
2906         }
2907
2908         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2909         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2910                 mask |= MAY_APPEND;
2911
2912         rc = file_has_perm(current, file,
2913                            file_mask_to_av(inode->i_mode, mask));
2914         if (rc)
2915                 return rc;
2916
2917         return selinux_netlbl_inode_permission(inode, mask);
2918 }
2919
2920 static int selinux_file_permission(struct file *file, int mask)
2921 {
2922         struct inode *inode = file->f_path.dentry->d_inode;
2923         struct task_security_struct *tsec = current->security;
2924         struct file_security_struct *fsec = file->f_security;
2925         struct inode_security_struct *isec = inode->i_security;
2926
2927         if (!mask) {
2928                 /* No permission to check.  Existence test. */
2929                 return 0;
2930         }
2931
2932         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2933             && fsec->pseqno == avc_policy_seqno())
2934                 return selinux_netlbl_inode_permission(inode, mask);
2935
2936         return selinux_revalidate_file_permission(file, mask);
2937 }
2938
2939 static int selinux_file_alloc_security(struct file *file)
2940 {
2941         return file_alloc_security(file);
2942 }
2943
2944 static void selinux_file_free_security(struct file *file)
2945 {
2946         file_free_security(file);
2947 }
2948
2949 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2950                               unsigned long arg)
2951 {
2952         u32 av = 0;
2953
2954         if (_IOC_DIR(cmd) & _IOC_WRITE)
2955                 av |= FILE__WRITE;
2956         if (_IOC_DIR(cmd) & _IOC_READ)
2957                 av |= FILE__READ;
2958         if (!av)
2959                 av = FILE__IOCTL;
2960
2961         return file_has_perm(current, file, av);
2962 }
2963
2964 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2965 {
2966 #ifndef CONFIG_PPC32
2967         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2968                 /*
2969                  * We are making executable an anonymous mapping or a
2970                  * private file mapping that will also be writable.
2971                  * This has an additional check.
2972                  */
2973                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2974                 if (rc)
2975                         return rc;
2976         }
2977 #endif
2978
2979         if (file) {
2980                 /* read access is always possible with a mapping */
2981                 u32 av = FILE__READ;
2982
2983                 /* write access only matters if the mapping is shared */
2984                 if (shared && (prot & PROT_WRITE))
2985                         av |= FILE__WRITE;
2986
2987                 if (prot & PROT_EXEC)
2988                         av |= FILE__EXECUTE;
2989
2990                 return file_has_perm(current, file, av);
2991         }
2992         return 0;
2993 }
2994
2995 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2996                              unsigned long prot, unsigned long flags,
2997                              unsigned long addr, unsigned long addr_only)
2998 {
2999         int rc = 0;
3000         u32 sid = ((struct task_security_struct *)(current->security))->sid;
3001
3002         if (addr < mmap_min_addr)
3003                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3004                                   MEMPROTECT__MMAP_ZERO, NULL);
3005         if (rc || addr_only)
3006                 return rc;
3007
3008         if (selinux_checkreqprot)
3009                 prot = reqprot;
3010
3011         return file_map_prot_check(file, prot,
3012                                    (flags & MAP_TYPE) == MAP_SHARED);
3013 }
3014
3015 static int selinux_file_mprotect(struct vm_area_struct *vma,
3016                                  unsigned long reqprot,
3017                                  unsigned long prot)
3018 {
3019         int rc;
3020
3021         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3022         if (rc)
3023                 return rc;
3024
3025         if (selinux_checkreqprot)
3026                 prot = reqprot;
3027
3028 #ifndef CONFIG_PPC32
3029         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3030                 rc = 0;
3031                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3032                     vma->vm_end <= vma->vm_mm->brk) {
3033                         rc = task_has_perm(current, current,
3034                                            PROCESS__EXECHEAP);
3035                 } else if (!vma->vm_file &&
3036                            vma->vm_start <= vma->vm_mm->start_stack &&
3037                            vma->vm_end >= vma->vm_mm->start_stack) {
3038                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3039                 } else if (vma->vm_file && vma->anon_vma) {
3040                         /*
3041                          * We are making executable a file mapping that has
3042                          * had some COW done. Since pages might have been
3043                          * written, check ability to execute the possibly
3044                          * modified content.  This typically should only
3045                          * occur for text relocations.
3046                          */
3047                         rc = file_has_perm(current, vma->vm_file,
3048                                            FILE__EXECMOD);
3049                 }
3050                 if (rc)
3051                         return rc;
3052         }
3053 #endif
3054
3055         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3056 }
3057
3058 static int selinux_file_lock(struct file *file, unsigned int cmd)
3059 {
3060         return file_has_perm(current, file, FILE__LOCK);
3061 }
3062
3063 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3064                               unsigned long arg)
3065 {
3066         int err = 0;
3067
3068         switch (cmd) {
3069         case F_SETFL:
3070                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3071                         err = -EINVAL;
3072                         break;
3073                 }
3074
3075                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3076                         err = file_has_perm(current, file, FILE__WRITE);
3077                         break;
3078                 }
3079                 /* fall through */
3080         case F_SETOWN:
3081         case F_SETSIG:
3082         case F_GETFL:
3083         case F_GETOWN:
3084         case F_GETSIG:
3085                 /* Just check FD__USE permission */
3086                 err = file_has_perm(current, file, 0);
3087                 break;
3088         case F_GETLK:
3089         case F_SETLK:
3090         case F_SETLKW:
3091 #if BITS_PER_LONG == 32
3092         case F_GETLK64:
3093         case F_SETLK64:
3094         case F_SETLKW64:
3095 #endif
3096                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3097                         err = -EINVAL;
3098                         break;
3099                 }
3100                 err = file_has_perm(current, file, FILE__LOCK);
3101                 break;
3102         }
3103
3104         return err;
3105 }
3106
3107 static int selinux_file_set_fowner(struct file *file)
3108 {
3109         struct task_security_struct *tsec;
3110         struct file_security_struct *fsec;
3111
3112         tsec = current->security;
3113         fsec = file->f_security;
3114         fsec->fown_sid = tsec->sid;
3115
3116         return 0;
3117 }
3118
3119 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3120                                        struct fown_struct *fown, int signum)
3121 {
3122         struct file *file;
3123         u32 perm;
3124         struct task_security_struct *tsec;
3125         struct file_security_struct *fsec;
3126
3127         /* struct fown_struct is never outside the context of a struct file */
3128         file = container_of(fown, struct file, f_owner);
3129
3130         tsec = tsk->security;
3131         fsec = file->f_security;
3132
3133         if (!signum)
3134                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3135         else
3136                 perm = signal_to_av(signum);
3137
3138         return avc_has_perm(fsec->fown_sid, tsec->sid,
3139                             SECCLASS_PROCESS, perm, NULL);
3140 }
3141
3142 static int selinux_file_receive(struct file *file)
3143 {
3144         return file_has_perm(current, file, file_to_av(file));
3145 }
3146
3147 static int selinux_dentry_open(struct file *file)
3148 {
3149         struct file_security_struct *fsec;
3150         struct inode *inode;
3151         struct inode_security_struct *isec;
3152         inode = file->f_path.dentry->d_inode;
3153         fsec = file->f_security;
3154         isec = inode->i_security;
3155         /*
3156          * Save inode label and policy sequence number
3157          * at open-time so that selinux_file_permission
3158          * can determine whether revalidation is necessary.
3159          * Task label is already saved in the file security
3160          * struct as its SID.
3161          */
3162         fsec->isid = isec->sid;
3163         fsec->pseqno = avc_policy_seqno();
3164         /*
3165          * Since the inode label or policy seqno may have changed
3166          * between the selinux_inode_permission check and the saving
3167          * of state above, recheck that access is still permitted.
3168          * Otherwise, access might never be revalidated against the
3169          * new inode label or new policy.
3170          * This check is not redundant - do not remove.
3171          */
3172         return inode_has_perm(current, inode, file_to_av(file), NULL);
3173 }
3174
3175 /* task security operations */
3176
3177 static int selinux_task_create(unsigned long clone_flags)
3178 {
3179         int rc;
3180
3181         rc = secondary_ops->task_create(clone_flags);
3182         if (rc)
3183                 return rc;
3184
3185         return task_has_perm(current, current, PROCESS__FORK);
3186 }
3187
3188 static int selinux_task_alloc_security(struct task_struct *tsk)
3189 {
3190         struct task_security_struct *tsec1, *tsec2;
3191         int rc;
3192
3193         tsec1 = current->security;
3194
3195         rc = task_alloc_security(tsk);
3196         if (rc)
3197                 return rc;
3198         tsec2 = tsk->security;
3199
3200         tsec2->osid = tsec1->osid;
3201         tsec2->sid = tsec1->sid;
3202
3203         /* Retain the exec, fs, key, and sock SIDs across fork */
3204         tsec2->exec_sid = tsec1->exec_sid;
3205         tsec2->create_sid = tsec1->create_sid;
3206         tsec2->keycreate_sid = tsec1->keycreate_sid;
3207         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3208
3209         return 0;
3210 }
3211
3212 static void selinux_task_free_security(struct task_struct *tsk)
3213 {
3214         task_free_security(tsk);
3215 }
3216
3217 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3218 {
3219         /* Since setuid only affects the current process, and
3220            since the SELinux controls are not based on the Linux
3221            identity attributes, SELinux does not need to control
3222            this operation.  However, SELinux does control the use
3223            of the CAP_SETUID and CAP_SETGID capabilities using the
3224            capable hook. */
3225         return 0;
3226 }
3227
3228 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3229 {
3230         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3231 }
3232
3233 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3234 {
3235         /* See the comment for setuid above. */
3236         return 0;
3237 }
3238
3239 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3240 {
3241         return task_has_perm(current, p, PROCESS__SETPGID);
3242 }
3243
3244 static int selinux_task_getpgid(struct task_struct *p)
3245 {
3246         return task_has_perm(current, p, PROCESS__GETPGID);
3247 }
3248
3249 static int selinux_task_getsid(struct task_struct *p)
3250 {
3251         return task_has_perm(current, p, PROCESS__GETSESSION);
3252 }
3253
3254 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3255 {
3256         struct task_security_struct *tsec = p->security;
3257         *secid = tsec->sid;
3258 }
3259
3260 static int selinux_task_setgroups(struct group_info *group_info)
3261 {
3262         /* See the comment for setuid above. */
3263         return 0;
3264 }
3265
3266 static int selinux_task_setnice(struct task_struct *p, int nice)
3267 {
3268         int rc;
3269
3270         rc = secondary_ops->task_setnice(p, nice);
3271         if (rc)
3272                 return rc;
3273
3274         return task_has_perm(current, p, PROCESS__SETSCHED);
3275 }
3276
3277 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3278 {
3279         int rc;
3280
3281         rc = secondary_ops->task_setioprio(p, ioprio);
3282         if (rc)
3283                 return rc;
3284
3285         return task_has_perm(current, p, PROCESS__SETSCHED);
3286 }
3287
3288 static int selinux_task_getioprio(struct task_struct *p)
3289 {
3290         return task_has_perm(current, p, PROCESS__GETSCHED);
3291 }
3292
3293 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3294 {
3295         struct rlimit *old_rlim = current->signal->rlim + resource;
3296         int rc;
3297
3298         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3299         if (rc)
3300                 return rc;
3301
3302         /* Control the ability to change the hard limit (whether
3303            lowering or raising it), so that the hard limit can
3304            later be used as a safe reset point for the soft limit
3305            upon context transitions. See selinux_bprm_apply_creds. */
3306         if (old_rlim->rlim_max != new_rlim->rlim_max)
3307                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3308
3309         return 0;
3310 }
3311
3312 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3313 {
3314         int rc;
3315
3316         rc = secondary_ops->task_setscheduler(p, policy, lp);
3317         if (rc)
3318                 return rc;
3319
3320         return task_has_perm(current, p, PROCESS__SETSCHED);
3321 }
3322
3323 static int selinux_task_getscheduler(struct task_struct *p)
3324 {
3325         return task_has_perm(current, p, PROCESS__GETSCHED);
3326 }
3327
3328 static int selinux_task_movememory(struct task_struct *p)
3329 {
3330         return task_has_perm(current, p, PROCESS__SETSCHED);
3331 }
3332
3333 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3334                                 int sig, u32 secid)
3335 {
3336         u32 perm;
3337         int rc;
3338         struct task_security_struct *tsec;
3339
3340         rc = secondary_ops->task_kill(p, info, sig, secid);
3341         if (rc)
3342                 return rc;
3343
3344         if (!sig)
3345                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3346         else
3347                 perm = signal_to_av(sig);
3348         tsec = p->security;
3349         if (secid)
3350                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3351         else
3352                 rc = task_has_perm(current, p, perm);
3353         return rc;
3354 }
3355
3356 static int selinux_task_prctl(int option,
3357                               unsigned long arg2,
3358                               unsigned long arg3,
3359                               unsigned long arg4,
3360                               unsigned long arg5,
3361                               long *rc_p)
3362 {
3363         /* The current prctl operations do not appear to require
3364            any SELinux controls since they merely observe or modify
3365            the state of the current process. */
3366         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3367 }
3368
3369 static int selinux_task_wait(struct task_struct *p)
3370 {
3371         return task_has_perm(p, current, PROCESS__SIGCHLD);
3372 }
3373
3374 static void selinux_task_reparent_to_init(struct task_struct *p)
3375 {
3376         struct task_security_struct *tsec;
3377
3378         secondary_ops->task_reparent_to_init(p);
3379
3380         tsec = p->security;
3381         tsec->osid = tsec->sid;
3382         tsec->sid = SECINITSID_KERNEL;
3383         return;
3384 }
3385
3386 static void selinux_task_to_inode(struct task_struct *p,
3387                                   struct inode *inode)
3388 {
3389         struct task_security_struct *tsec = p->security;
3390         struct inode_security_struct *isec = inode->i_security;
3391
3392         isec->sid = tsec->sid;
3393         isec->initialized = 1;
3394         return;
3395 }
3396
3397 /* Returns error only if unable to parse addresses */
3398 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3399                         struct avc_audit_data *ad, u8 *proto)
3400 {
3401         int offset, ihlen, ret = -EINVAL;
3402         struct iphdr _iph, *ih;
3403
3404         offset = skb_network_offset(skb);
3405         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3406         if (ih == NULL)
3407                 goto out;
3408
3409         ihlen = ih->ihl * 4;
3410         if (ihlen < sizeof(_iph))
3411                 goto out;
3412
3413         ad->u.net.v4info.saddr = ih->saddr;
3414         ad->u.net.v4info.daddr = ih->daddr;
3415         ret = 0;
3416
3417         if (proto)
3418                 *proto = ih->protocol;
3419
3420         switch (ih->protocol) {
3421         case IPPROTO_TCP: {
3422                 struct tcphdr _tcph, *th;
3423
3424                 if (ntohs(ih->frag_off) & IP_OFFSET)
3425                         break;
3426
3427                 offset += ihlen;
3428                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3429                 if (th == NULL)
3430                         break;
3431
3432                 ad->u.net.sport = th->source;
3433                 ad->u.net.dport = th->dest;
3434                 break;
3435         }
3436
3437         case IPPROTO_UDP: {
3438                 struct udphdr _udph, *uh;
3439
3440                 if (ntohs(ih->frag_off) & IP_OFFSET)
3441                         break;
3442
3443                 offset += ihlen;
3444                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3445                 if (uh == NULL)
3446                         break;
3447
3448                 ad->u.net.sport = uh->source;
3449                 ad->u.net.dport = uh->dest;
3450                 break;
3451         }
3452
3453         case IPPROTO_DCCP: {
3454                 struct dccp_hdr _dccph, *dh;
3455
3456                 if (ntohs(ih->frag_off) & IP_OFFSET)
3457                         break;
3458
3459                 offset += ihlen;
3460                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3461                 if (dh == NULL)
3462                         break;
3463
3464                 ad->u.net.sport = dh->dccph_sport;
3465                 ad->u.net.dport = dh->dccph_dport;
3466                 break;
3467         }
3468
3469         default:
3470                 break;
3471         }
3472 out:
3473         return ret;
3474 }
3475
3476 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3477
3478 /* Returns error only if unable to parse addresses */
3479 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3480                         struct avc_audit_data *ad, u8 *proto)
3481 {
3482         u8 nexthdr;
3483         int ret = -EINVAL, offset;
3484         struct ipv6hdr _ipv6h, *ip6;
3485
3486         offset = skb_network_offset(skb);
3487         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3488         if (ip6 == NULL)
3489                 goto out;
3490
3491         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3492         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3493         ret = 0;
3494
3495         nexthdr = ip6->nexthdr;
3496         offset += sizeof(_ipv6h);
3497         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3498         if (offset < 0)
3499                 goto out;
3500
3501         if (proto)
3502                 *proto = nexthdr;
3503
3504         switch (nexthdr) {
3505         case IPPROTO_TCP: {
3506                 struct tcphdr _tcph, *th;
3507
3508                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3509                 if (th == NULL)
3510                         break;
3511
3512                 ad->u.net.sport = th->source;
3513                 ad->u.net.dport = th->dest;
3514                 break;
3515         }
3516
3517         case IPPROTO_UDP: {
3518                 struct udphdr _udph, *uh;
3519
3520                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3521                 if (uh == NULL)
3522                         break;
3523
3524                 ad->u.net.sport = uh->source;
3525                 ad->u.net.dport = uh->dest;
3526                 break;
3527         }
3528
3529         case IPPROTO_DCCP: {
3530                 struct dccp_hdr _dccph, *dh;
3531
3532                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3533                 if (dh == NULL)
3534                         break;
3535
3536                 ad->u.net.sport = dh->dccph_sport;
3537                 ad->u.net.dport = dh->dccph_dport;
3538                 break;
3539         }
3540
3541         /* includes fragments */
3542         default:
3543                 break;
3544         }
3545 out:
3546         return ret;
3547 }
3548
3549 #endif /* IPV6 */
3550
3551 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3552                              char **_addrp, int src, u8 *proto)
3553 {
3554         char *addrp;
3555         int ret;
3556
3557         switch (ad->u.net.family) {
3558         case PF_INET:
3559                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3560                 if (ret)
3561                         goto parse_error;
3562                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3563                                        &ad->u.net.v4info.daddr);
3564                 goto okay;
3565
3566 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3567         case PF_INET6:
3568                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3569                 if (ret)
3570                         goto parse_error;
3571                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3572                                        &ad->u.net.v6info.daddr);
3573                 goto okay;
3574 #endif  /* IPV6 */
3575         default:
3576                 addrp = NULL;
3577                 goto okay;
3578         }
3579
3580 parse_error:
3581         printk(KERN_WARNING
3582                "SELinux: failure in selinux_parse_skb(),"
3583                " unable to parse packet\n");
3584         return ret;
3585
3586 okay:
3587         if (_addrp)
3588                 *_addrp = addrp;
3589         return 0;
3590 }
3591
3592 /**
3593  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3594  * @skb: the packet
3595  * @family: protocol family
3596  * @sid: the packet's peer label SID
3597  *
3598  * Description:
3599  * Check the various different forms of network peer labeling and determine
3600  * the peer label/SID for the packet; most of the magic actually occurs in
3601  * the security server function security_net_peersid_cmp().  The function
3602  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3603  * or -EACCES if @sid is invalid due to inconsistencies with the different
3604  * peer labels.
3605  *
3606  */
3607 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3608 {
3609         int err;
3610         u32 xfrm_sid;
3611         u32 nlbl_sid;
3612         u32 nlbl_type;
3613
3614         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3615         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3616
3617         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3618         if (unlikely(err)) {
3619                 printk(KERN_WARNING
3620                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3621                        " unable to determine packet's peer label\n");
3622                 return -EACCES;
3623         }
3624
3625         return 0;
3626 }
3627
3628 /* socket security operations */
3629 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3630                            u32 perms)
3631 {
3632         struct inode_security_struct *isec;
3633         struct task_security_struct *tsec;
3634         struct avc_audit_data ad;
3635         int err = 0;
3636
3637         tsec = task->security;
3638         isec = SOCK_INODE(sock)->i_security;
3639
3640         if (isec->sid == SECINITSID_KERNEL)
3641                 goto out;
3642
3643         AVC_AUDIT_DATA_INIT(&ad, NET);
3644         ad.u.net.sk = sock->sk;
3645         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3646
3647 out:
3648         return err;
3649 }
3650
3651 static int selinux_socket_create(int family, int type,
3652                                  int protocol, int kern)
3653 {
3654         int err = 0;
3655         struct task_security_struct *tsec;
3656         u32 newsid;
3657
3658         if (kern)
3659                 goto out;
3660
3661         tsec = current->security;
3662         newsid = tsec->sockcreate_sid ? : tsec->sid;
3663         err = avc_has_perm(tsec->sid, newsid,
3664                            socket_type_to_security_class(family, type,
3665                            protocol), SOCKET__CREATE, NULL);
3666
3667 out:
3668         return err;
3669 }
3670
3671 static int selinux_socket_post_create(struct socket *sock, int family,
3672                                       int type, int protocol, int kern)
3673 {
3674         int err = 0;
3675         struct inode_security_struct *isec;
3676         struct task_security_struct *tsec;
3677         struct sk_security_struct *sksec;
3678         u32 newsid;
3679
3680         isec = SOCK_INODE(sock)->i_security;
3681
3682         tsec = current->security;
3683         newsid = tsec->sockcreate_sid ? : tsec->sid;
3684         isec->sclass = socket_type_to_security_class(family, type, protocol);
3685         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3686         isec->initialized = 1;
3687
3688         if (sock->sk) {
3689                 sksec = sock->sk->sk_security;
3690                 sksec->sid = isec->sid;
3691                 sksec->sclass = isec->sclass;
3692                 err = selinux_netlbl_socket_post_create(sock);
3693         }
3694
3695         return err;
3696 }
3697
3698 /* Range of port numbers used to automatically bind.
3699    Need to determine whether we should perform a name_bind
3700    permission check between the socket and the port number. */
3701
3702 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3703 {
3704         u16 family;
3705         int err;
3706
3707         err = socket_has_perm(current, sock, SOCKET__BIND);
3708         if (err)
3709                 goto out;
3710
3711         /*
3712          * If PF_INET or PF_INET6, check name_bind permission for the port.
3713          * Multiple address binding for SCTP is not supported yet: we just
3714          * check the first address now.
3715          */
3716         family = sock->sk->sk_family;
3717         if (family == PF_INET || family == PF_INET6) {
3718                 char *addrp;
3719                 struct inode_security_struct *isec;
3720                 struct task_security_struct *tsec;
3721                 struct avc_audit_data ad;
3722                 struct sockaddr_in *addr4 = NULL;
3723                 struct sockaddr_in6 *addr6 = NULL;
3724                 unsigned short snum;
3725                 struct sock *sk = sock->sk;
3726                 u32 sid, node_perm;
3727
3728                 tsec = current->security;
3729                 isec = SOCK_INODE(sock)->i_security;
3730
3731                 if (family == PF_INET) {
3732                         addr4 = (struct sockaddr_in *)address;
3733                         snum = ntohs(addr4->sin_port);
3734                         addrp = (char *)&addr4->sin_addr.s_addr;
3735                 } else {
3736                         addr6 = (struct sockaddr_in6 *)address;
3737                         snum = ntohs(addr6->sin6_port);
3738                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3739                 }
3740
3741                 if (snum) {
3742                         int low, high;
3743
3744                         inet_get_local_port_range(&low, &high);
3745
3746                         if (snum < max(PROT_SOCK, low) || snum > high) {
3747                                 err = sel_netport_sid(sk->sk_protocol,
3748                                                       snum, &sid);
3749                                 if (err)
3750                                         goto out;
3751                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3752                                 ad.u.net.sport = htons(snum);
3753                                 ad.u.net.family = family;
3754                                 err = avc_has_perm(isec->sid, sid,
3755                                                    isec->sclass,
3756                                                    SOCKET__NAME_BIND, &ad);
3757                                 if (err)
3758                                         goto out;
3759                         }
3760                 }
3761
3762                 switch (isec->sclass) {
3763                 case SECCLASS_TCP_SOCKET:
3764                         node_perm = TCP_SOCKET__NODE_BIND;
3765                         break;
3766
3767                 case SECCLASS_UDP_SOCKET:
3768                         node_perm = UDP_SOCKET__NODE_BIND;
3769                         break;
3770
3771                 case SECCLASS_DCCP_SOCKET:
3772                         node_perm = DCCP_SOCKET__NODE_BIND;
3773                         break;
3774
3775                 default:
3776                         node_perm = RAWIP_SOCKET__NODE_BIND;
3777                         break;
3778                 }
3779
3780                 err = sel_netnode_sid(addrp, family, &sid);
3781                 if (err)
3782                         goto out;
3783
3784                 AVC_AUDIT_DATA_INIT(&ad, NET);
3785                 ad.u.net.sport = htons(snum);
3786                 ad.u.net.family = family;
3787
3788                 if (family == PF_INET)
3789                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3790                 else
3791                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3792
3793                 err = avc_has_perm(isec->sid, sid,
3794                                    isec->sclass, node_perm, &ad);
3795                 if (err)
3796                         goto out;
3797         }
3798 out:
3799         return err;
3800 }
3801
3802 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3803 {
3804         struct sock *sk = sock->sk;
3805         struct inode_security_struct *isec;
3806         int err;
3807
3808         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3809         if (err)
3810                 return err;
3811
3812         /*
3813          * If a TCP or DCCP socket, check name_connect permission for the port.
3814          */
3815         isec = SOCK_INODE(sock)->i_security;
3816         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3817             isec->sclass == SECCLASS_DCCP_SOCKET) {
3818                 struct avc_audit_data ad;
3819                 struct sockaddr_in *addr4 = NULL;
3820                 struct sockaddr_in6 *addr6 = NULL;
3821                 unsigned short snum;
3822                 u32 sid, perm;
3823
3824                 if (sk->sk_family == PF_INET) {
3825                         addr4 = (struct sockaddr_in *)address;
3826                         if (addrlen < sizeof(struct sockaddr_in))
3827                                 return -EINVAL;
3828                         snum = ntohs(addr4->sin_port);
3829                 } else {
3830                         addr6 = (struct sockaddr_in6 *)address;
3831                         if (addrlen < SIN6_LEN_RFC2133)
3832                                 return -EINVAL;
3833                         snum = ntohs(addr6->sin6_port);
3834                 }
3835
3836                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3837                 if (err)
3838                         goto out;
3839
3840                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3841                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3842
3843                 AVC_AUDIT_DATA_INIT(&ad, NET);
3844                 ad.u.net.dport = htons(snum);
3845                 ad.u.net.family = sk->sk_family;
3846                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3847                 if (err)
3848                         goto out;
3849         }
3850
3851         err = selinux_netlbl_socket_connect(sk, address);
3852
3853 out:
3854         return err;
3855 }
3856
3857 static int selinux_socket_listen(struct socket *sock, int backlog)
3858 {
3859         return socket_has_perm(current, sock, SOCKET__LISTEN);
3860 }
3861
3862 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3863 {
3864         int err;
3865         struct inode_security_struct *isec;
3866         struct inode_security_struct *newisec;
3867
3868         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3869         if (err)
3870                 return err;
3871
3872         newisec = SOCK_INODE(newsock)->i_security;
3873
3874         isec = SOCK_INODE(sock)->i_security;
3875         newisec->sclass = isec->sclass;
3876         newisec->sid = isec->sid;
3877         newisec->initialized = 1;
3878
3879         return 0;
3880 }
3881
3882 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3883                                   int size)
3884 {
3885         int rc;
3886
3887         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3888         if (rc)
3889                 return rc;
3890
3891         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3892 }
3893
3894 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3895                                   int size, int flags)
3896 {
3897         return socket_has_perm(current, sock, SOCKET__READ);
3898 }
3899
3900 static int selinux_socket_getsockname(struct socket *sock)
3901 {
3902         return socket_has_perm(current, sock, SOCKET__GETATTR);
3903 }
3904
3905 static int selinux_socket_getpeername(struct socket *sock)
3906 {
3907         return socket_has_perm(current, sock, SOCKET__GETATTR);
3908 }
3909
3910 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3911 {
3912         int err;
3913
3914         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3915         if (err)
3916                 return err;
3917
3918         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3919 }
3920
3921 static int selinux_socket_getsockopt(struct socket *sock, int level,
3922                                      int optname)
3923 {
3924         return socket_has_perm(current, sock, SOCKET__GETOPT);
3925 }
3926
3927 static int selinux_socket_shutdown(struct socket *sock, int how)
3928 {
3929         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3930 }
3931
3932 static int selinux_socket_unix_stream_connect(struct socket *sock,
3933                                               struct socket *other,
3934                                               struct sock *newsk)
3935 {
3936         struct sk_security_struct *ssec;
3937         struct inode_security_struct *isec;
3938         struct inode_security_struct *other_isec;
3939         struct avc_audit_data ad;
3940         int err;
3941
3942         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3943         if (err)
3944                 return err;
3945
3946         isec = SOCK_INODE(sock)->i_security;
3947         other_isec = SOCK_INODE(other)->i_security;
3948
3949         AVC_AUDIT_DATA_INIT(&ad, NET);
3950         ad.u.net.sk = other->sk;
3951
3952         err = avc_has_perm(isec->sid, other_isec->sid,
3953                            isec->sclass,
3954                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3955         if (err)
3956                 return err;
3957
3958         /* connecting socket */
3959         ssec = sock->sk->sk_security;
3960         ssec->peer_sid = other_isec->sid;
3961
3962         /* server child socket */
3963         ssec = newsk->sk_security;
3964         ssec->peer_sid = isec->sid;
3965         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3966
3967         return err;
3968 }
3969
3970 static int selinux_socket_unix_may_send(struct socket *sock,
3971                                         struct socket *other)
3972 {
3973         struct inode_security_struct *isec;
3974         struct inode_security_struct *other_isec;
3975         struct avc_audit_data ad;
3976         int err;
3977
3978         isec = SOCK_INODE(sock)->i_security;
3979         other_isec = SOCK_INODE(other)->i_security;
3980
3981         AVC_AUDIT_DATA_INIT(&ad, NET);
3982         ad.u.net.sk = other->sk;
3983
3984         err = avc_has_perm(isec->sid, other_isec->sid,
3985                            isec->sclass, SOCKET__SENDTO, &ad);
3986         if (err)
3987                 return err;
3988
3989         return 0;
3990 }
3991
3992 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3993                                     u32 peer_sid,
3994                                     struct avc_audit_data *ad)
3995 {
3996         int err;
3997         u32 if_sid;
3998         u32 node_sid;
3999
4000         err = sel_netif_sid(ifindex, &if_sid);
4001         if (err)
4002                 return err;
4003         err = avc_has_perm(peer_sid, if_sid,
4004                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4005         if (err)
4006                 return err;
4007
4008         err = sel_netnode_sid(addrp, family, &node_sid);
4009         if (err)
4010                 return err;
4011         return avc_has_perm(peer_sid, node_sid,
4012                             SECCLASS_NODE, NODE__RECVFROM, ad);
4013 }
4014
4015 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4016                                                 struct sk_buff *skb,
4017                                                 struct avc_audit_data *ad,
4018                                                 u16 family,
4019                                                 char *addrp)
4020 {
4021         int err;
4022         struct sk_security_struct *sksec = sk->sk_security;
4023         u16 sk_class;
4024         u32 netif_perm, node_perm, recv_perm;
4025         u32 port_sid, node_sid, if_sid, sk_sid;
4026
4027         sk_sid = sksec->sid;
4028         sk_class = sksec->sclass;
4029
4030         switch (sk_class) {
4031         case SECCLASS_UDP_SOCKET:
4032                 netif_perm = NETIF__UDP_RECV;
4033                 node_perm = NODE__UDP_RECV;
4034                 recv_perm = UDP_SOCKET__RECV_MSG;
4035                 break;
4036         case SECCLASS_TCP_SOCKET:
4037                 netif_perm = NETIF__TCP_RECV;
4038                 node_perm = NODE__TCP_RECV;
4039                 recv_perm = TCP_SOCKET__RECV_MSG;
4040                 break;
4041         case SECCLASS_DCCP_SOCKET:
4042                 netif_perm = NETIF__DCCP_RECV;
4043                 node_perm = NODE__DCCP_RECV;
4044                 recv_perm = DCCP_SOCKET__RECV_MSG;
4045                 break;
4046         default:
4047                 netif_perm = NETIF__RAWIP_RECV;
4048                 node_perm = NODE__RAWIP_RECV;
4049                 recv_perm = 0;
4050                 break;
4051         }
4052
4053         err = sel_netif_sid(skb->iif, &if_sid);
4054         if (err)
4055                 return err;
4056         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4057         if (err)
4058                 return err;
4059
4060         err = sel_netnode_sid(addrp, family, &node_sid);
4061         if (err)
4062                 return err;
4063         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4064         if (err)
4065                 return err;
4066
4067         if (!recv_perm)
4068                 return 0;
4069         err = sel_netport_sid(sk->sk_protocol,
4070                               ntohs(ad->u.net.sport), &port_sid);
4071         if (unlikely(err)) {
4072                 printk(KERN_WARNING
4073                        "SELinux: failure in"
4074                        " selinux_sock_rcv_skb_iptables_compat(),"
4075                        " network port label not found\n");
4076                 return err;
4077         }
4078         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4079 }
4080
4081 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4082                                        u16 family)
4083 {
4084         int err;
4085         struct sk_security_struct *sksec = sk->sk_security;
4086         u32 peer_sid;
4087         u32 sk_sid = sksec->sid;
4088         struct avc_audit_data ad;
4089         char *addrp;
4090
4091         AVC_AUDIT_DATA_INIT(&ad, NET);
4092         ad.u.net.netif = skb->iif;
4093         ad.u.net.family = family;
4094         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4095         if (err)
4096                 return err;
4097
4098         if (selinux_compat_net)
4099                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4100                                                            family, addrp);
4101         else
4102                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4103                                    PACKET__RECV, &ad);
4104         if (err)
4105                 return err;
4106
4107         if (selinux_policycap_netpeer) {
4108                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4109                 if (err)
4110                         return err;
4111                 err = avc_has_perm(sk_sid, peer_sid,
4112                                    SECCLASS_PEER, PEER__RECV, &ad);
4113                 if (err)
4114                         selinux_netlbl_err(skb, err, 0);
4115         } else {
4116                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4117                 if (err)
4118                         return err;
4119                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4120         }
4121
4122         return err;
4123 }
4124
4125 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4126 {
4127         int err;
4128         struct sk_security_struct *sksec = sk->sk_security;
4129         u16 family = sk->sk_family;
4130         u32 sk_sid = sksec->sid;
4131         struct avc_audit_data ad;
4132         char *addrp;
4133         u8 secmark_active;
4134         u8 peerlbl_active;
4135
4136         if (family != PF_INET && family != PF_INET6)
4137                 return 0;
4138
4139         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4140         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4141                 family = PF_INET;
4142
4143         /* If any sort of compatibility mode is enabled then handoff processing
4144          * to the selinux_sock_rcv_skb_compat() function to deal with the
4145          * special handling.  We do this in an attempt to keep this function
4146          * as fast and as clean as possible. */
4147         if (selinux_compat_net || !selinux_policycap_netpeer)
4148                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4149
4150         secmark_active = selinux_secmark_enabled();
4151         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4152         if (!secmark_active && !peerlbl_active)
4153                 return 0;
4154
4155         AVC_AUDIT_DATA_INIT(&ad, NET);
4156         ad.u.net.netif = skb->iif;
4157         ad.u.net.family = family;
4158         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4159         if (err)
4160                 return err;
4161
4162         if (peerlbl_active) {
4163                 u32 peer_sid;
4164
4165                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4166                 if (err)
4167                         return err;
4168                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4169                                                peer_sid, &ad);
4170                 if (err) {
4171                         selinux_netlbl_err(skb, err, 0);
4172                         return err;
4173                 }
4174                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4175                                    PEER__RECV, &ad);
4176                 if (err)
4177                         selinux_netlbl_err(skb, err, 0);
4178         }
4179
4180         if (secmark_active) {
4181                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4182                                    PACKET__RECV, &ad);
4183                 if (err)
4184                         return err;
4185         }
4186
4187         return err;
4188 }
4189
4190 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4191                                             int __user *optlen, unsigned len)
4192 {
4193         int err = 0;
4194         char *scontext;
4195         u32 scontext_len;
4196         struct sk_security_struct *ssec;
4197         struct inode_security_struct *isec;
4198         u32 peer_sid = SECSID_NULL;
4199
4200         isec = SOCK_INODE(sock)->i_security;
4201
4202         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4203             isec->sclass == SECCLASS_TCP_SOCKET) {
4204                 ssec = sock->sk->sk_security;
4205                 peer_sid = ssec->peer_sid;
4206         }
4207         if (peer_sid == SECSID_NULL) {
4208                 err = -ENOPROTOOPT;
4209                 goto out;
4210         }
4211
4212         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4213
4214         if (err)
4215                 goto out;
4216
4217         if (scontext_len > len) {
4218                 err = -ERANGE;
4219                 goto out_len;
4220         }
4221
4222         if (copy_to_user(optval, scontext, scontext_len))
4223                 err = -EFAULT;
4224
4225 out_len:
4226         if (put_user(scontext_len, optlen))
4227                 err = -EFAULT;
4228
4229         kfree(scontext);
4230 out:
4231         return err;
4232 }
4233
4234 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4235 {
4236         u32 peer_secid = SECSID_NULL;
4237         u16 family;
4238
4239         if (skb && skb->protocol == htons(ETH_P_IP))
4240                 family = PF_INET;
4241         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4242                 family = PF_INET6;
4243         else if (sock)
4244                 family = sock->sk->sk_family;
4245         else
4246                 goto out;
4247
4248         if (sock && family == PF_UNIX)
4249                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4250         else if (skb)
4251                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4252
4253 out:
4254         *secid = peer_secid;
4255         if (peer_secid == SECSID_NULL)
4256                 return -EINVAL;
4257         return 0;
4258 }
4259
4260 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4261 {
4262         return sk_alloc_security(sk, family, priority);
4263 }
4264
4265 static void selinux_sk_free_security(struct sock *sk)
4266 {
4267         sk_free_security(sk);
4268 }
4269
4270 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4271 {
4272         struct sk_security_struct *ssec = sk->sk_security;
4273         struct sk_security_struct *newssec = newsk->sk_security;
4274
4275         newssec->sid = ssec->sid;
4276         newssec->peer_sid = ssec->peer_sid;
4277         newssec->sclass = ssec->sclass;
4278
4279         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4280 }
4281
4282 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4283 {
4284         if (!sk)
4285                 *secid = SECINITSID_ANY_SOCKET;
4286         else {
4287                 struct sk_security_struct *sksec = sk->sk_security;
4288
4289                 *secid = sksec->sid;
4290         }
4291 }
4292
4293 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4294 {
4295         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4296         struct sk_security_struct *sksec = sk->sk_security;
4297
4298         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4299             sk->sk_family == PF_UNIX)
4300                 isec->sid = sksec->sid;
4301         sksec->sclass = isec->sclass;
4302 }
4303
4304 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4305                                      struct request_sock *req)
4306 {
4307         struct sk_security_struct *sksec = sk->sk_security;
4308         int err;
4309         u16 family = sk->sk_family;
4310         u32 newsid;
4311         u32 peersid;
4312
4313         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4314         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4315                 family = PF_INET;
4316
4317         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4318         if (err)
4319                 return err;
4320         if (peersid == SECSID_NULL) {
4321                 req->secid = sksec->sid;
4322                 req->peer_secid = SECSID_NULL;
4323                 return 0;
4324         }
4325
4326         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4327         if (err)
4328                 return err;
4329
4330         req->secid = newsid;
4331         req->peer_secid = peersid;
4332         return 0;
4333 }
4334
4335 static void selinux_inet_csk_clone(struct sock *newsk,
4336                                    const struct request_sock *req)
4337 {
4338         struct sk_security_struct *newsksec = newsk->sk_security;
4339
4340         newsksec->sid = req->secid;
4341         newsksec->peer_sid = req->peer_secid;
4342         /* NOTE: Ideally, we should also get the isec->sid for the
4343            new socket in sync, but we don't have the isec available yet.
4344            So we will wait until sock_graft to do it, by which
4345            time it will have been created and available. */
4346
4347         /* We don't need to take any sort of lock here as we are the only
4348          * thread with access to newsksec */
4349         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4350 }
4351
4352 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4353 {
4354         u16 family = sk->sk_family;
4355         struct sk_security_struct *sksec = sk->sk_security;
4356
4357         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4358         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4359                 family = PF_INET;
4360
4361         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4362
4363         selinux_netlbl_inet_conn_established(sk, family);
4364 }
4365
4366 static void selinux_req_classify_flow(const struct request_sock *req,
4367                                       struct flowi *fl)
4368 {
4369         fl->secid = req->secid;
4370 }
4371
4372 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4373 {
4374         int err = 0;
4375         u32 perm;
4376         struct nlmsghdr *nlh;
4377         struct socket *sock = sk->sk_socket;
4378         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4379
4380         if (skb->len < NLMSG_SPACE(0)) {
4381                 err = -EINVAL;
4382                 goto out;
4383         }
4384         nlh = nlmsg_hdr(skb);
4385
4386         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4387         if (err) {
4388                 if (err == -EINVAL) {
4389                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4390                                   "SELinux:  unrecognized netlink message"
4391                                   " type=%hu for sclass=%hu\n",
4392                                   nlh->nlmsg_type, isec->sclass);
4393                         if (!selinux_enforcing)
4394                                 err = 0;
4395                 }
4396
4397                 /* Ignore */
4398                 if (err == -ENOENT)
4399                         err = 0;
4400                 goto out;
4401         }
4402
4403         err = socket_has_perm(current, sock, perm);
4404 out:
4405         return err;
4406 }
4407
4408 #ifdef CONFIG_NETFILTER
4409
4410 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4411                                        u16 family)
4412 {
4413         int err;
4414         char *addrp;
4415         u32 peer_sid;
4416         struct avc_audit_data ad;
4417         u8 secmark_active;
4418         u8 netlbl_active;
4419         u8 peerlbl_active;
4420
4421         if (!selinux_policycap_netpeer)
4422                 return NF_ACCEPT;
4423
4424         secmark_active = selinux_secmark_enabled();
4425         netlbl_active = netlbl_enabled();
4426         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4427         if (!secmark_active && !peerlbl_active)
4428                 return NF_ACCEPT;
4429
4430         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4431                 return NF_DROP;
4432
4433         AVC_AUDIT_DATA_INIT(&ad, NET);
4434         ad.u.net.netif = ifindex;
4435         ad.u.net.family = family;
4436         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4437                 return NF_DROP;
4438
4439         if (peerlbl_active) {
4440                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4441                                                peer_sid, &ad);
4442                 if (err) {
4443                         selinux_netlbl_err(skb, err, 1);
4444                         return NF_DROP;
4445                 }
4446         }
4447
4448         if (secmark_active)
4449                 if (avc_has_perm(peer_sid, skb->secmark,
4450                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4451                         return NF_DROP;
4452
4453         if (netlbl_active)
4454                 /* we do this in the FORWARD path and not the POST_ROUTING
4455                  * path because we want to make sure we apply the necessary
4456                  * labeling before IPsec is applied so we can leverage AH
4457                  * protection */
4458                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4459                         return NF_DROP;
4460
4461         return NF_ACCEPT;
4462 }
4463
4464 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4465                                          struct sk_buff *skb,
4466                                          const struct net_device *in,
4467                                          const struct net_device *out,
4468                                          int (*okfn)(struct sk_buff *))
4469 {
4470         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4471 }
4472
4473 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4474 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4475                                          struct sk_buff *skb,
4476                                          const struct net_device *in,
4477                                          const struct net_device *out,
4478                                          int (*okfn)(struct sk_buff *))
4479 {
4480         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4481 }
4482 #endif  /* IPV6 */
4483
4484 static unsigned int selinux_ip_output(struct sk_buff *skb,
4485                                       u16 family)
4486 {
4487         u32 sid;
4488
4489         if (!netlbl_enabled())
4490                 return NF_ACCEPT;
4491
4492         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4493          * because we want to make sure we apply the necessary labeling
4494          * before IPsec is applied so we can leverage AH protection */
4495         if (skb->sk) {
4496                 struct sk_security_struct *sksec = skb->sk->sk_security;
4497                 sid = sksec->sid;
4498         } else
4499                 sid = SECINITSID_KERNEL;
4500         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4501                 return NF_DROP;
4502
4503         return NF_ACCEPT;
4504 }
4505
4506 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4507                                         struct sk_buff *skb,
4508                                         const struct net_device *in,
4509                                         const struct net_device *out,
4510                                         int (*okfn)(struct sk_buff *))
4511 {
4512         return selinux_ip_output(skb, PF_INET);
4513 }
4514
4515 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4516                                                 int ifindex,
4517                                                 struct avc_audit_data *ad,
4518                                                 u16 family, char *addrp)
4519 {
4520         int err;
4521         struct sk_security_struct *sksec = sk->sk_security;
4522         u16 sk_class;
4523         u32 netif_perm, node_perm, send_perm;
4524         u32 port_sid, node_sid, if_sid, sk_sid;
4525
4526         sk_sid = sksec->sid;
4527         sk_class = sksec->sclass;
4528
4529         switch (sk_class) {
4530         case SECCLASS_UDP_SOCKET:
4531                 netif_perm = NETIF__UDP_SEND;
4532                 node_perm = NODE__UDP_SEND;
4533                 send_perm = UDP_SOCKET__SEND_MSG;
4534                 break;
4535         case SECCLASS_TCP_SOCKET:
4536                 netif_perm = NETIF__TCP_SEND;
4537                 node_perm = NODE__TCP_SEND;
4538                 send_perm = TCP_SOCKET__SEND_MSG;
4539                 break;
4540         case SECCLASS_DCCP_SOCKET:
4541                 netif_perm = NETIF__DCCP_SEND;
4542                 node_perm = NODE__DCCP_SEND;
4543                 send_perm = DCCP_SOCKET__SEND_MSG;
4544                 break;
4545         default:
4546                 netif_perm = NETIF__RAWIP_SEND;
4547                 node_perm = NODE__RAWIP_SEND;
4548                 send_perm = 0;
4549                 break;
4550         }
4551
4552         err = sel_netif_sid(ifindex, &if_sid);
4553         if (err)
4554                 return err;
4555         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4556                 return err;
4557
4558         err = sel_netnode_sid(addrp, family, &node_sid);
4559         if (err)
4560                 return err;
4561         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4562         if (err)
4563                 return err;
4564
4565         if (send_perm != 0)
4566                 return 0;
4567
4568         err = sel_netport_sid(sk->sk_protocol,
4569                               ntohs(ad->u.net.dport), &port_sid);
4570         if (unlikely(err)) {
4571                 printk(KERN_WARNING
4572                        "SELinux: failure in"
4573                        " selinux_ip_postroute_iptables_compat(),"
4574                        " network port label not found\n");
4575                 return err;
4576         }
4577         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4578 }
4579
4580 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4581                                                 int ifindex,
4582                                                 u16 family)
4583 {
4584         struct sock *sk = skb->sk;
4585         struct sk_security_struct *sksec;
4586         struct avc_audit_data ad;
4587         char *addrp;
4588         u8 proto;
4589
4590         if (sk == NULL)
4591                 return NF_ACCEPT;
4592         sksec = sk->sk_security;
4593
4594         AVC_AUDIT_DATA_INIT(&ad, NET);
4595         ad.u.net.netif = ifindex;
4596         ad.u.net.family = family;
4597         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4598                 return NF_DROP;
4599
4600         if (selinux_compat_net) {
4601                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4602                                                          &ad, family, addrp))
4603                         return NF_DROP;
4604         } else {
4605                 if (avc_has_perm(sksec->sid, skb->secmark,
4606                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4607                         return NF_DROP;
4608         }
4609
4610         if (selinux_policycap_netpeer)
4611                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4612                         return NF_DROP;
4613
4614         return NF_ACCEPT;
4615 }
4616
4617 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4618                                          u16 family)
4619 {
4620         u32 secmark_perm;
4621         u32 peer_sid;
4622         struct sock *sk;
4623         struct avc_audit_data ad;
4624         char *addrp;
4625         u8 secmark_active;
4626         u8 peerlbl_active;
4627
4628         /* If any sort of compatibility mode is enabled then handoff processing
4629          * to the selinux_ip_postroute_compat() function to deal with the
4630          * special handling.  We do this in an attempt to keep this function
4631          * as fast and as clean as possible. */
4632         if (selinux_compat_net || !selinux_policycap_netpeer)
4633                 return selinux_ip_postroute_compat(skb, ifindex, family);
4634
4635         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4636          * packet transformation so allow the packet to pass without any checks
4637          * since we'll have another chance to perform access control checks
4638          * when the packet is on it's final way out.
4639          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4640          *       is NULL, in this case go ahead and apply access control. */
4641         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4642                 return NF_ACCEPT;
4643
4644         secmark_active = selinux_secmark_enabled();
4645         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4646         if (!secmark_active && !peerlbl_active)
4647                 return NF_ACCEPT;
4648
4649         /* if the packet is being forwarded then get the peer label from the
4650          * packet itself; otherwise check to see if it is from a local
4651          * application or the kernel, if from an application get the peer label
4652          * from the sending socket, otherwise use the kernel's sid */
4653         sk = skb->sk;
4654         if (sk == NULL) {
4655                 switch (family) {
4656                 case PF_INET:
4657                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4658                                 secmark_perm = PACKET__FORWARD_OUT;
4659                         else
4660                                 secmark_perm = PACKET__SEND;
4661                         break;
4662                 case PF_INET6:
4663                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4664                                 secmark_perm = PACKET__FORWARD_OUT;
4665                         else
4666                                 secmark_perm = PACKET__SEND;
4667                         break;
4668                 default:
4669                         return NF_DROP;
4670                 }
4671                 if (secmark_perm == PACKET__FORWARD_OUT) {
4672                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4673                                 return NF_DROP;
4674                 } else
4675                         peer_sid = SECINITSID_KERNEL;
4676         } else {
4677                 struct sk_security_struct *sksec = sk->sk_security;
4678                 peer_sid = sksec->sid;
4679                 secmark_perm = PACKET__SEND;
4680         }
4681
4682         AVC_AUDIT_DATA_INIT(&ad, NET);
4683         ad.u.net.netif = ifindex;
4684         ad.u.net.family = family;
4685         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4686                 return NF_DROP;
4687
4688         if (secmark_active)
4689                 if (avc_has_perm(peer_sid, skb->secmark,
4690                                  SECCLASS_PACKET, secmark_perm, &ad))
4691                         return NF_DROP;
4692
4693         if (peerlbl_active) {
4694                 u32 if_sid;
4695                 u32 node_sid;
4696
4697                 if (sel_netif_sid(ifindex, &if_sid))
4698                         return NF_DROP;
4699                 if (avc_has_perm(peer_sid, if_sid,
4700                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4701                         return NF_DROP;
4702
4703                 if (sel_netnode_sid(addrp, family, &node_sid))
4704                         return NF_DROP;
4705                 if (avc_has_perm(peer_sid, node_sid,
4706                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4707                         return NF_DROP;
4708         }
4709
4710         return NF_ACCEPT;
4711 }
4712
4713 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4714                                            struct sk_buff *skb,
4715                                            const struct net_device *in,
4716                                            const struct net_device *out,
4717                                            int (*okfn)(struct sk_buff *))
4718 {
4719         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4720 }
4721
4722 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4723 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4724                                            struct sk_buff *skb,
4725                                            const struct net_device *in,
4726                                            const struct net_device *out,
4727                                            int (*okfn)(struct sk_buff *))
4728 {
4729         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4730 }
4731 #endif  /* IPV6 */
4732
4733 #endif  /* CONFIG_NETFILTER */
4734
4735 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4736 {
4737         int err;
4738
4739         err = secondary_ops->netlink_send(sk, skb);
4740         if (err)
4741                 return err;
4742
4743         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4744                 err = selinux_nlmsg_perm(sk, skb);
4745
4746         return err;
4747 }
4748
4749 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4750 {
4751         int err;
4752         struct avc_audit_data ad;
4753
4754         err = secondary_ops->netlink_recv(skb, capability);
4755         if (err)
4756                 return err;
4757
4758         AVC_AUDIT_DATA_INIT(&ad, CAP);
4759         ad.u.cap = capability;
4760
4761         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4762                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4763 }
4764
4765 static int ipc_alloc_security(struct task_struct *task,
4766                               struct kern_ipc_perm *perm,
4767                               u16 sclass)
4768 {
4769         struct task_security_struct *tsec = task->security;
4770         struct ipc_security_struct *isec;
4771
4772         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4773         if (!isec)
4774                 return -ENOMEM;
4775
4776         isec->sclass = sclass;
4777         isec->sid = tsec->sid;
4778         perm->security = isec;
4779
4780         return 0;
4781 }
4782
4783 static void ipc_free_security(struct kern_ipc_perm *perm)
4784 {
4785         struct ipc_security_struct *isec = perm->security;
4786         perm->security = NULL;
4787         kfree(isec);
4788 }
4789
4790 static int msg_msg_alloc_security(struct msg_msg *msg)
4791 {
4792         struct msg_security_struct *msec;
4793
4794         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4795         if (!msec)
4796                 return -ENOMEM;
4797
4798         msec->sid = SECINITSID_UNLABELED;
4799         msg->security = msec;
4800
4801         return 0;
4802 }
4803
4804 static void msg_msg_free_security(struct msg_msg *msg)
4805 {
4806         struct msg_security_struct *msec = msg->security;
4807
4808         msg->security = NULL;
4809         kfree(msec);
4810 }
4811
4812 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4813                         u32 perms)
4814 {
4815         struct task_security_struct *tsec;
4816         struct ipc_security_struct *isec;
4817         struct avc_audit_data ad;
4818
4819         tsec = current->security;
4820         isec = ipc_perms->security;
4821
4822         AVC_AUDIT_DATA_INIT(&ad, IPC);
4823         ad.u.ipc_id = ipc_perms->key;
4824
4825         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4826 }
4827
4828 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4829 {
4830         return msg_msg_alloc_security(msg);
4831 }
4832
4833 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4834 {
4835         msg_msg_free_security(msg);
4836 }
4837
4838 /* message queue security operations */
4839 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4840 {
4841         struct task_security_struct *tsec;
4842         struct ipc_security_struct *isec;
4843         struct avc_audit_data ad;
4844         int rc;
4845
4846         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4847         if (rc)
4848                 return rc;
4849
4850         tsec = current->security;
4851         isec = msq->q_perm.security;
4852
4853         AVC_AUDIT_DATA_INIT(&ad, IPC);
4854         ad.u.ipc_id = msq->q_perm.key;
4855
4856         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4857                           MSGQ__CREATE, &ad);
4858         if (rc) {
4859                 ipc_free_security(&msq->q_perm);
4860                 return rc;
4861         }
4862         return 0;
4863 }
4864
4865 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4866 {
4867         ipc_free_security(&msq->q_perm);
4868 }
4869
4870 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4871 {
4872         struct task_security_struct *tsec;
4873         struct ipc_security_struct *isec;
4874         struct avc_audit_data ad;
4875
4876         tsec = current->security;
4877         isec = msq->q_perm.security;
4878
4879         AVC_AUDIT_DATA_INIT(&ad, IPC);
4880         ad.u.ipc_id = msq->q_perm.key;
4881
4882         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4883                             MSGQ__ASSOCIATE, &ad);
4884 }
4885
4886 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4887 {
4888         int err;
4889         int perms;
4890
4891         switch (cmd) {
4892         case IPC_INFO:
4893         case MSG_INFO:
4894                 /* No specific object, just general system-wide information. */
4895                 return task_has_system(current, SYSTEM__IPC_INFO);
4896         case IPC_STAT:
4897         case MSG_STAT:
4898                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4899                 break;
4900         case IPC_SET:
4901                 perms = MSGQ__SETATTR;
4902                 break;
4903         case IPC_RMID:
4904                 perms = MSGQ__DESTROY;
4905                 break;
4906         default:
4907                 return 0;
4908         }
4909
4910         err = ipc_has_perm(&msq->q_perm, perms);
4911         return err;
4912 }
4913
4914 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4915 {
4916         struct task_security_struct *tsec;
4917         struct ipc_security_struct *isec;
4918         struct msg_security_struct *msec;
4919         struct avc_audit_data ad;
4920         int rc;
4921
4922         tsec = current->security;
4923         isec = msq->q_perm.security;
4924         msec = msg->security;
4925
4926         /*
4927          * First time through, need to assign label to the message
4928          */
4929         if (msec->sid == SECINITSID_UNLABELED) {
4930                 /*
4931                  * Compute new sid based on current process and
4932                  * message queue this message will be stored in
4933                  */
4934                 rc = security_transition_sid(tsec->sid,
4935                                              isec->sid,
4936                                              SECCLASS_MSG,
4937                                              &msec->sid);
4938                 if (rc)
4939                         return rc;
4940         }
4941
4942         AVC_AUDIT_DATA_INIT(&ad, IPC);
4943         ad.u.ipc_id = msq->q_perm.key;
4944
4945         /* Can this process write to the queue? */
4946         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4947                           MSGQ__WRITE, &ad);
4948         if (!rc)
4949                 /* Can this process send the message */
4950                 rc = avc_has_perm(tsec->sid, msec->sid,
4951                                   SECCLASS_MSG, MSG__SEND, &ad);
4952         if (!rc)
4953                 /* Can the message be put in the queue? */
4954                 rc = avc_has_perm(msec->sid, isec->sid,
4955                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4956
4957         return rc;
4958 }
4959
4960 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4961                                     struct task_struct *target,
4962                                     long type, int mode)
4963 {
4964         struct task_security_struct *tsec;
4965         struct ipc_security_struct *isec;
4966         struct msg_security_struct *msec;
4967         struct avc_audit_data ad;
4968         int rc;
4969
4970         tsec = target->security;
4971         isec = msq->q_perm.security;
4972         msec = msg->security;
4973
4974         AVC_AUDIT_DATA_INIT(&ad, IPC);
4975         ad.u.ipc_id = msq->q_perm.key;
4976
4977         rc = avc_has_perm(tsec->sid, isec->sid,
4978                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4979         if (!rc)
4980                 rc = avc_has_perm(tsec->sid, msec->sid,
4981                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4982         return rc;
4983 }
4984
4985 /* Shared Memory security operations */
4986 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4987 {
4988         struct task_security_struct *tsec;
4989         struct ipc_security_struct *isec;
4990         struct avc_audit_data ad;
4991         int rc;
4992
4993         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4994         if (rc)
4995                 return rc;
4996
4997         tsec = current->security;
4998         isec = shp->shm_perm.security;
4999
5000         AVC_AUDIT_DATA_INIT(&ad, IPC);
5001         ad.u.ipc_id = shp->shm_perm.key;
5002
5003         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5004                           SHM__CREATE, &ad);
5005         if (rc) {
5006                 ipc_free_security(&shp->shm_perm);
5007                 return rc;
5008         }
5009         return 0;
5010 }
5011
5012 static void selinux_shm_free_security(struct shmid_kernel *shp)
5013 {
5014         ipc_free_security(&shp->shm_perm);
5015 }
5016
5017 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5018 {
5019         struct task_security_struct *tsec;
5020         struct ipc_security_struct *isec;
5021         struct avc_audit_data ad;
5022
5023         tsec = current->security;
5024         isec = shp->shm_perm.security;
5025
5026         AVC_AUDIT_DATA_INIT(&ad, IPC);
5027         ad.u.ipc_id = shp->shm_perm.key;
5028
5029         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5030                             SHM__ASSOCIATE, &ad);
5031 }
5032
5033 /* Note, at this point, shp is locked down */
5034 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5035 {
5036         int perms;
5037         int err;
5038
5039         switch (cmd) {
5040         case IPC_INFO:
5041         case SHM_INFO:
5042                 /* No specific object, just general system-wide information. */
5043                 return task_has_system(current, SYSTEM__IPC_INFO);
5044         case IPC_STAT:
5045         case SHM_STAT:
5046                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5047                 break;
5048         case IPC_SET:
5049                 perms = SHM__SETATTR;
5050                 break;
5051         case SHM_LOCK:
5052         case SHM_UNLOCK:
5053                 perms = SHM__LOCK;
5054                 break;
5055         case IPC_RMID:
5056                 perms = SHM__DESTROY;
5057                 break;
5058         default:
5059                 return 0;
5060         }
5061
5062         err = ipc_has_perm(&shp->shm_perm, perms);
5063         return err;
5064 }
5065
5066 static int selinux_shm_shmat(struct shmid_kernel *shp,
5067                              char __user *shmaddr, int shmflg)
5068 {
5069         u32 perms;
5070         int rc;
5071
5072         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5073         if (rc)
5074                 return rc;
5075
5076         if (shmflg & SHM_RDONLY)
5077                 perms = SHM__READ;
5078         else
5079                 perms = SHM__READ | SHM__WRITE;
5080
5081         return ipc_has_perm(&shp->shm_perm, perms);
5082 }
5083
5084 /* Semaphore security operations */
5085 static int selinux_sem_alloc_security(struct sem_array *sma)
5086 {
5087         struct task_security_struct *tsec;
5088         struct ipc_security_struct *isec;
5089         struct avc_audit_data ad;
5090         int rc;
5091
5092         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5093         if (rc)
5094                 return rc;
5095
5096         tsec = current->security;
5097         isec = sma->sem_perm.security;
5098
5099         AVC_AUDIT_DATA_INIT(&ad, IPC);
5100         ad.u.ipc_id = sma->sem_perm.key;
5101
5102         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5103                           SEM__CREATE, &ad);
5104         if (rc) {
5105                 ipc_free_security(&sma->sem_perm);
5106                 return rc;
5107         }
5108         return 0;
5109 }
5110
5111 static void selinux_sem_free_security(struct sem_array *sma)
5112 {
5113         ipc_free_security(&sma->sem_perm);
5114 }
5115
5116 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5117 {
5118         struct task_security_struct *tsec;
5119         struct ipc_security_struct *isec;
5120         struct avc_audit_data ad;
5121
5122         tsec = current->security;
5123         isec = sma->sem_perm.security;
5124
5125         AVC_AUDIT_DATA_INIT(&ad, IPC);
5126         ad.u.ipc_id = sma->sem_perm.key;
5127
5128         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5129                             SEM__ASSOCIATE, &ad);
5130 }
5131
5132 /* Note, at this point, sma is locked down */
5133 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5134 {
5135         int err;
5136         u32 perms;
5137
5138         switch (cmd) {
5139         case IPC_INFO:
5140         case SEM_INFO:
5141                 /* No specific object, just general system-wide information. */
5142                 return task_has_system(current, SYSTEM__IPC_INFO);
5143         case GETPID:
5144         case GETNCNT:
5145         case GETZCNT:
5146                 perms = SEM__GETATTR;
5147                 break;
5148         case GETVAL:
5149         case GETALL:
5150                 perms = SEM__READ;
5151                 break;
5152         case SETVAL:
5153         case SETALL:
5154                 perms = SEM__WRITE;
5155                 break;
5156         case IPC_RMID:
5157                 perms = SEM__DESTROY;
5158                 break;
5159         case IPC_SET:
5160                 perms = SEM__SETATTR;
5161                 break;
5162         case IPC_STAT:
5163         case SEM_STAT:
5164                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5165                 break;
5166         default:
5167                 return 0;
5168         }
5169
5170         err = ipc_has_perm(&sma->sem_perm, perms);
5171         return err;
5172 }
5173
5174 static int selinux_sem_semop(struct sem_array *sma,
5175                              struct sembuf *sops, unsigned nsops, int alter)
5176 {
5177         u32 perms;
5178
5179         if (alter)
5180                 perms = SEM__READ | SEM__WRITE;
5181         else
5182                 perms = SEM__READ;
5183
5184         return ipc_has_perm(&sma->sem_perm, perms);
5185 }
5186
5187 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5188 {
5189         u32 av = 0;
5190
5191         av = 0;
5192         if (flag & S_IRUGO)
5193                 av |= IPC__UNIX_READ;
5194         if (flag & S_IWUGO)
5195                 av |= IPC__UNIX_WRITE;
5196
5197         if (av == 0)
5198                 return 0;
5199
5200         return ipc_has_perm(ipcp, av);
5201 }
5202
5203 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5204 {
5205         struct ipc_security_struct *isec = ipcp->security;
5206         *secid = isec->sid;
5207 }
5208
5209 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5210 {
5211         if (inode)
5212                 inode_doinit_with_dentry(inode, dentry);
5213 }
5214
5215 static int selinux_getprocattr(struct task_struct *p,
5216                                char *name, char **value)
5217 {
5218         struct task_security_struct *tsec;
5219         u32 sid;
5220         int error;
5221         unsigned len;
5222
5223         if (current != p) {
5224                 error = task_has_perm(current, p, PROCESS__GETATTR);
5225                 if (error)
5226                         return error;
5227         }
5228
5229         tsec = p->security;
5230
5231         if (!strcmp(name, "current"))
5232                 sid = tsec->sid;
5233         else if (!strcmp(name, "prev"))
5234                 sid = tsec->osid;
5235         else if (!strcmp(name, "exec"))
5236                 sid = tsec->exec_sid;
5237         else if (!strcmp(name, "fscreate"))
5238                 sid = tsec->create_sid;
5239         else if (!strcmp(name, "keycreate"))
5240                 sid = tsec->keycreate_sid;
5241         else if (!strcmp(name, "sockcreate"))
5242                 sid = tsec->sockcreate_sid;
5243         else
5244                 return -EINVAL;
5245
5246         if (!sid)
5247                 return 0;
5248
5249         error = security_sid_to_context(sid, value, &len);
5250         if (error)
5251                 return error;
5252         return len;
5253 }
5254
5255 static int selinux_setprocattr(struct task_struct *p,
5256                                char *name, void *value, size_t size)
5257 {
5258         struct task_security_struct *tsec;
5259         struct task_struct *tracer;
5260         u32 sid = 0;
5261         int error;
5262         char *str = value;
5263
5264         if (current != p) {
5265                 /* SELinux only allows a process to change its own
5266                    security attributes. */
5267                 return -EACCES;
5268         }
5269
5270         /*
5271          * Basic control over ability to set these attributes at all.
5272          * current == p, but we'll pass them separately in case the
5273          * above restriction is ever removed.
5274          */
5275         if (!strcmp(name, "exec"))
5276                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5277         else if (!strcmp(name, "fscreate"))
5278                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5279         else if (!strcmp(name, "keycreate"))
5280                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5281         else if (!strcmp(name, "sockcreate"))
5282                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5283         else if (!strcmp(name, "current"))
5284                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5285         else
5286                 error = -EINVAL;
5287         if (error)
5288                 return error;
5289
5290         /* Obtain a SID for the context, if one was specified. */
5291         if (size && str[1] && str[1] != '\n') {
5292                 if (str[size-1] == '\n') {
5293                         str[size-1] = 0;
5294                         size--;
5295                 }
5296                 error = security_context_to_sid(value, size, &sid);
5297                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5298                         if (!capable(CAP_MAC_ADMIN))
5299                                 return error;
5300                         error = security_context_to_sid_force(value, size,
5301                                                               &sid);
5302                 }
5303                 if (error)
5304                         return error;
5305         }
5306
5307         /* Permission checking based on the specified context is
5308            performed during the actual operation (execve,
5309            open/mkdir/...), when we know the full context of the
5310            operation.  See selinux_bprm_set_security for the execve
5311            checks and may_create for the file creation checks. The
5312            operation will then fail if the context is not permitted. */
5313         tsec = p->security;
5314         if (!strcmp(name, "exec"))
5315                 tsec->exec_sid = sid;
5316         else if (!strcmp(name, "fscreate"))
5317                 tsec->create_sid = sid;
5318         else if (!strcmp(name, "keycreate")) {
5319                 error = may_create_key(sid, p);
5320                 if (error)
5321                         return error;
5322                 tsec->keycreate_sid = sid;
5323         } else if (!strcmp(name, "sockcreate"))
5324                 tsec->sockcreate_sid = sid;
5325         else if (!strcmp(name, "current")) {
5326                 struct av_decision avd;
5327
5328                 if (sid == 0)
5329                         return -EINVAL;
5330                 /*
5331                  * SELinux allows to change context in the following case only.
5332                  *  - Single threaded processes.
5333                  *  - Multi threaded processes intend to change its context into
5334                  *    more restricted domain (defined by TYPEBOUNDS statement).
5335                  */
5336                 if (atomic_read(&p->mm->mm_users) != 1) {
5337                         struct task_struct *g, *t;
5338                         struct mm_struct *mm = p->mm;
5339                         read_lock(&tasklist_lock);
5340                         do_each_thread(g, t) {
5341                                 if (t->mm == mm && t != p) {
5342                                         read_unlock(&tasklist_lock);
5343                                         error = security_bounded_transition(tsec->sid, sid);
5344                                         if (!error)
5345                                                 goto boundary_ok;
5346
5347                                         return error;
5348                                 }
5349                         } while_each_thread(g, t);
5350                         read_unlock(&tasklist_lock);
5351                 }
5352 boundary_ok:
5353
5354                 /* Check permissions for the transition. */
5355                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5356                                      PROCESS__DYNTRANSITION, NULL);
5357                 if (error)
5358                         return error;
5359
5360                 /* Check for ptracing, and update the task SID if ok.
5361                    Otherwise, leave SID unchanged and fail. */
5362                 task_lock(p);
5363                 rcu_read_lock();
5364                 tracer = tracehook_tracer_task(p);
5365                 if (tracer != NULL) {
5366                         struct task_security_struct *ptsec = tracer->security;
5367                         u32 ptsid = ptsec->sid;
5368                         rcu_read_unlock();
5369                         error = avc_has_perm_noaudit(ptsid, sid,
5370                                                      SECCLASS_PROCESS,
5371                                                      PROCESS__PTRACE, 0, &avd);
5372                         if (!error)
5373                                 tsec->sid = sid;
5374                         task_unlock(p);
5375                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5376                                   PROCESS__PTRACE, &avd, error, NULL);
5377                         if (error)
5378                                 return error;
5379                 } else {
5380                         rcu_read_unlock();
5381                         tsec->sid = sid;
5382                         task_unlock(p);
5383                 }
5384         } else
5385                 return -EINVAL;
5386
5387         return size;
5388 }
5389
5390 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5391 {
5392         return security_sid_to_context(secid, secdata, seclen);
5393 }
5394
5395 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5396 {
5397         return security_context_to_sid(secdata, seclen, secid);
5398 }
5399
5400 static void selinux_release_secctx(char *secdata, u32 seclen)
5401 {
5402         kfree(secdata);
5403 }
5404
5405 #ifdef CONFIG_KEYS
5406
5407 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5408                              unsigned long flags)
5409 {
5410         struct task_security_struct *tsec = tsk->security;
5411         struct key_security_struct *ksec;
5412
5413         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5414         if (!ksec)
5415                 return -ENOMEM;
5416
5417         if (tsec->keycreate_sid)
5418                 ksec->sid = tsec->keycreate_sid;
5419         else
5420                 ksec->sid = tsec->sid;
5421         k->security = ksec;
5422
5423         return 0;
5424 }
5425
5426 static void selinux_key_free(struct key *k)
5427 {
5428         struct key_security_struct *ksec = k->security;
5429
5430         k->security = NULL;
5431         kfree(ksec);
5432 }
5433
5434 static int selinux_key_permission(key_ref_t key_ref,
5435                             struct task_struct *ctx,
5436                             key_perm_t perm)
5437 {
5438         struct key *key;
5439         struct task_security_struct *tsec;
5440         struct key_security_struct *ksec;
5441
5442         key = key_ref_to_ptr(key_ref);
5443
5444         tsec = ctx->security;
5445         ksec = key->security;
5446
5447         /* if no specific permissions are requested, we skip the
5448            permission check. No serious, additional covert channels
5449            appear to be created. */
5450         if (perm == 0)
5451                 return 0;
5452
5453         return avc_has_perm(tsec->sid, ksec->sid,
5454                             SECCLASS_KEY, perm, NULL);
5455 }
5456
5457 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5458 {
5459         struct key_security_struct *ksec = key->security;
5460         char *context = NULL;
5461         unsigned len;
5462         int rc;
5463
5464         rc = security_sid_to_context(ksec->sid, &context, &len);
5465         if (!rc)
5466                 rc = len;
5467         *_buffer = context;
5468         return rc;
5469 }
5470
5471 #endif
5472
5473 static struct security_operations selinux_ops = {
5474         .name =                         "selinux",
5475
5476         .ptrace_may_access =            selinux_ptrace_may_access,
5477         .ptrace_traceme =               selinux_ptrace_traceme,
5478         .capget =                       selinux_capget,
5479         .capset_check =                 selinux_capset_check,
5480         .capset_set =                   selinux_capset_set,
5481         .sysctl =                       selinux_sysctl,
5482         .capable =                      selinux_capable,
5483         .quotactl =                     selinux_quotactl,
5484         .quota_on =                     selinux_quota_on,
5485         .syslog =                       selinux_syslog,
5486         .vm_enough_memory =             selinux_vm_enough_memory,
5487
5488         .netlink_send =                 selinux_netlink_send,
5489         .netlink_recv =                 selinux_netlink_recv,
5490
5491         .bprm_alloc_security =          selinux_bprm_alloc_security,
5492         .bprm_free_security =           selinux_bprm_free_security,
5493         .bprm_apply_creds =             selinux_bprm_apply_creds,
5494         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5495         .bprm_set_security =            selinux_bprm_set_security,
5496         .bprm_check_security =          selinux_bprm_check_security,
5497         .bprm_secureexec =              selinux_bprm_secureexec,
5498
5499         .sb_alloc_security =            selinux_sb_alloc_security,
5500         .sb_free_security =             selinux_sb_free_security,
5501         .sb_copy_data =                 selinux_sb_copy_data,
5502         .sb_kern_mount =                selinux_sb_kern_mount,
5503         .sb_show_options =              selinux_sb_show_options,
5504         .sb_statfs =                    selinux_sb_statfs,
5505         .sb_mount =                     selinux_mount,
5506         .sb_umount =                    selinux_umount,
5507         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5508         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5509         .sb_parse_opts_str =            selinux_parse_opts_str,
5510
5511
5512         .inode_alloc_security =         selinux_inode_alloc_security,
5513         .inode_free_security =          selinux_inode_free_security,
5514         .inode_init_security =          selinux_inode_init_security,
5515         .inode_create =                 selinux_inode_create,
5516         .inode_link =                   selinux_inode_link,
5517         .inode_unlink =                 selinux_inode_unlink,
5518         .inode_symlink =                selinux_inode_symlink,
5519         .inode_mkdir =                  selinux_inode_mkdir,
5520         .inode_rmdir =                  selinux_inode_rmdir,
5521         .inode_mknod =                  selinux_inode_mknod,
5522         .inode_rename =                 selinux_inode_rename,
5523         .inode_readlink =               selinux_inode_readlink,
5524         .inode_follow_link =            selinux_inode_follow_link,
5525         .inode_permission =             selinux_inode_permission,
5526         .inode_setattr =                selinux_inode_setattr,
5527         .inode_getattr =                selinux_inode_getattr,
5528         .inode_setxattr =               selinux_inode_setxattr,
5529         .inode_post_setxattr =          selinux_inode_post_setxattr,
5530         .inode_getxattr =               selinux_inode_getxattr,
5531         .inode_listxattr =              selinux_inode_listxattr,
5532         .inode_removexattr =            selinux_inode_removexattr,
5533         .inode_getsecurity =            selinux_inode_getsecurity,
5534         .inode_setsecurity =            selinux_inode_setsecurity,
5535         .inode_listsecurity =           selinux_inode_listsecurity,
5536         .inode_need_killpriv =          selinux_inode_need_killpriv,
5537         .inode_killpriv =               selinux_inode_killpriv,
5538         .inode_getsecid =               selinux_inode_getsecid,
5539
5540         .file_permission =              selinux_file_permission,
5541         .file_alloc_security =          selinux_file_alloc_security,
5542         .file_free_security =           selinux_file_free_security,
5543         .file_ioctl =                   selinux_file_ioctl,
5544         .file_mmap =                    selinux_file_mmap,
5545         .file_mprotect =                selinux_file_mprotect,
5546         .file_lock =                    selinux_file_lock,
5547         .file_fcntl =                   selinux_file_fcntl,
5548         .file_set_fowner =              selinux_file_set_fowner,
5549         .file_send_sigiotask =          selinux_file_send_sigiotask,
5550         .file_receive =                 selinux_file_receive,
5551
5552         .dentry_open =                  selinux_dentry_open,
5553
5554         .task_create =                  selinux_task_create,
5555         .task_alloc_security =          selinux_task_alloc_security,
5556         .task_free_security =           selinux_task_free_security,
5557         .task_setuid =                  selinux_task_setuid,
5558         .task_post_setuid =             selinux_task_post_setuid,
5559         .task_setgid =                  selinux_task_setgid,
5560         .task_setpgid =                 selinux_task_setpgid,
5561         .task_getpgid =                 selinux_task_getpgid,
5562         .task_getsid =                  selinux_task_getsid,
5563         .task_getsecid =                selinux_task_getsecid,
5564         .task_setgroups =               selinux_task_setgroups,
5565         .task_setnice =                 selinux_task_setnice,
5566         .task_setioprio =               selinux_task_setioprio,
5567         .task_getioprio =               selinux_task_getioprio,
5568         .task_setrlimit =               selinux_task_setrlimit,
5569         .task_setscheduler =            selinux_task_setscheduler,
5570         .task_getscheduler =            selinux_task_getscheduler,
5571         .task_movememory =              selinux_task_movememory,
5572         .task_kill =                    selinux_task_kill,
5573         .task_wait =                    selinux_task_wait,
5574         .task_prctl =                   selinux_task_prctl,
5575         .task_reparent_to_init =        selinux_task_reparent_to_init,
5576         .task_to_inode =                selinux_task_to_inode,
5577
5578         .ipc_permission =               selinux_ipc_permission,
5579         .ipc_getsecid =                 selinux_ipc_getsecid,
5580
5581         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5582         .msg_msg_free_security =        selinux_msg_msg_free_security,
5583
5584         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5585         .msg_queue_free_security =      selinux_msg_queue_free_security,
5586         .msg_queue_associate =          selinux_msg_queue_associate,
5587         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5588         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5589         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5590
5591         .shm_alloc_security =           selinux_shm_alloc_security,
5592         .shm_free_security =            selinux_shm_free_security,
5593         .shm_associate =                selinux_shm_associate,
5594         .shm_shmctl =                   selinux_shm_shmctl,
5595         .shm_shmat =                    selinux_shm_shmat,
5596
5597         .sem_alloc_security =           selinux_sem_alloc_security,
5598         .sem_free_security =            selinux_sem_free_security,
5599         .sem_associate =                selinux_sem_associate,
5600         .sem_semctl =                   selinux_sem_semctl,
5601         .sem_semop =                    selinux_sem_semop,
5602
5603         .d_instantiate =                selinux_d_instantiate,
5604
5605         .getprocattr =                  selinux_getprocattr,
5606         .setprocattr =                  selinux_setprocattr,
5607
5608         .secid_to_secctx =              selinux_secid_to_secctx,
5609         .secctx_to_secid =              selinux_secctx_to_secid,
5610         .release_secctx =               selinux_release_secctx,
5611
5612         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5613         .unix_may_send =                selinux_socket_unix_may_send,
5614
5615         .socket_create =                selinux_socket_create,
5616         .socket_post_create =           selinux_socket_post_create,
5617         .socket_bind =                  selinux_socket_bind,
5618         .socket_connect =               selinux_socket_connect,
5619         .socket_listen =                selinux_socket_listen,
5620         .socket_accept =                selinux_socket_accept,
5621         .socket_sendmsg =               selinux_socket_sendmsg,
5622         .socket_recvmsg =               selinux_socket_recvmsg,
5623         .socket_getsockname =           selinux_socket_getsockname,
5624         .socket_getpeername =           selinux_socket_getpeername,
5625         .socket_getsockopt =            selinux_socket_getsockopt,
5626         .socket_setsockopt =            selinux_socket_setsockopt,
5627         .socket_shutdown =              selinux_socket_shutdown,
5628         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5629         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5630         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5631         .sk_alloc_security =            selinux_sk_alloc_security,
5632         .sk_free_security =             selinux_sk_free_security,
5633         .sk_clone_security =            selinux_sk_clone_security,
5634         .sk_getsecid =                  selinux_sk_getsecid,
5635         .sock_graft =                   selinux_sock_graft,
5636         .inet_conn_request =            selinux_inet_conn_request,
5637         .inet_csk_clone =               selinux_inet_csk_clone,
5638         .inet_conn_established =        selinux_inet_conn_established,
5639         .req_classify_flow =            selinux_req_classify_flow,
5640
5641 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5642         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5643         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5644         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5645         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5646         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5647         .xfrm_state_free_security =     selinux_xfrm_state_free,
5648         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5649         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5650         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5651         .xfrm_decode_session =          selinux_xfrm_decode_session,
5652 #endif
5653
5654 #ifdef CONFIG_KEYS
5655         .key_alloc =                    selinux_key_alloc,
5656         .key_free =                     selinux_key_free,
5657         .key_permission =               selinux_key_permission,
5658         .key_getsecurity =              selinux_key_getsecurity,
5659 #endif
5660
5661 #ifdef CONFIG_AUDIT
5662         .audit_rule_init =              selinux_audit_rule_init,
5663         .audit_rule_known =             selinux_audit_rule_known,
5664         .audit_rule_match =             selinux_audit_rule_match,
5665         .audit_rule_free =              selinux_audit_rule_free,
5666 #endif
5667 };
5668
5669 static __init int selinux_init(void)
5670 {
5671         struct task_security_struct *tsec;
5672
5673         if (!security_module_enable(&selinux_ops)) {
5674                 selinux_enabled = 0;
5675                 return 0;
5676         }
5677
5678         if (!selinux_enabled) {
5679                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5680                 return 0;
5681         }
5682
5683         printk(KERN_INFO "SELinux:  Initializing.\n");
5684
5685         /* Set the security state for the initial task. */
5686         if (task_alloc_security(current))
5687                 panic("SELinux:  Failed to initialize initial task.\n");
5688         tsec = current->security;
5689         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5690
5691         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5692                                             sizeof(struct inode_security_struct),
5693                                             0, SLAB_PANIC, NULL);
5694         avc_init();
5695
5696         secondary_ops = security_ops;
5697         if (!secondary_ops)
5698                 panic("SELinux: No initial security operations\n");
5699         if (register_security(&selinux_ops))
5700                 panic("SELinux: Unable to register with kernel.\n");
5701
5702         if (selinux_enforcing)
5703                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5704         else
5705                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5706
5707         return 0;
5708 }
5709
5710 void selinux_complete_init(void)
5711 {
5712         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5713
5714         /* Set up any superblocks initialized prior to the policy load. */
5715         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5716         spin_lock(&sb_lock);
5717         spin_lock(&sb_security_lock);
5718 next_sb:
5719         if (!list_empty(&superblock_security_head)) {
5720                 struct superblock_security_struct *sbsec =
5721                                 list_entry(superblock_security_head.next,
5722                                            struct superblock_security_struct,
5723                                            list);
5724                 struct super_block *sb = sbsec->sb;
5725                 sb->s_count++;
5726                 spin_unlock(&sb_security_lock);
5727                 spin_unlock(&sb_lock);
5728                 down_read(&sb->s_umount);
5729                 if (sb->s_root)
5730                         superblock_doinit(sb, NULL);
5731                 drop_super(sb);
5732                 spin_lock(&sb_lock);
5733                 spin_lock(&sb_security_lock);
5734                 list_del_init(&sbsec->list);
5735                 goto next_sb;
5736         }
5737         spin_unlock(&sb_security_lock);
5738         spin_unlock(&sb_lock);
5739 }
5740
5741 /* SELinux requires early initialization in order to label
5742    all processes and objects when they are created. */
5743 security_initcall(selinux_init);
5744
5745 #if defined(CONFIG_NETFILTER)
5746
5747 static struct nf_hook_ops selinux_ipv4_ops[] = {
5748         {
5749                 .hook =         selinux_ipv4_postroute,
5750                 .owner =        THIS_MODULE,
5751                 .pf =           PF_INET,
5752                 .hooknum =      NF_INET_POST_ROUTING,
5753                 .priority =     NF_IP_PRI_SELINUX_LAST,
5754         },
5755         {
5756                 .hook =         selinux_ipv4_forward,
5757                 .owner =        THIS_MODULE,
5758                 .pf =           PF_INET,
5759                 .hooknum =      NF_INET_FORWARD,
5760                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5761         },
5762         {
5763                 .hook =         selinux_ipv4_output,
5764                 .owner =        THIS_MODULE,
5765                 .pf =           PF_INET,
5766                 .hooknum =      NF_INET_LOCAL_OUT,
5767                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5768         }
5769 };
5770
5771 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5772
5773 static struct nf_hook_ops selinux_ipv6_ops[] = {
5774         {
5775                 .hook =         selinux_ipv6_postroute,
5776                 .owner =        THIS_MODULE,
5777                 .pf =           PF_INET6,
5778                 .hooknum =      NF_INET_POST_ROUTING,
5779                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5780         },
5781         {
5782                 .hook =         selinux_ipv6_forward,
5783                 .owner =        THIS_MODULE,
5784                 .pf =           PF_INET6,
5785                 .hooknum =      NF_INET_FORWARD,
5786                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5787         }
5788 };
5789
5790 #endif  /* IPV6 */
5791
5792 static int __init selinux_nf_ip_init(void)
5793 {
5794         int err = 0;
5795
5796         if (!selinux_enabled)
5797                 goto out;
5798
5799         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5800
5801         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5802         if (err)
5803                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5804
5805 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5806         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5807         if (err)
5808                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5809 #endif  /* IPV6 */
5810
5811 out:
5812         return err;
5813 }
5814
5815 __initcall(selinux_nf_ip_init);
5816
5817 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5818 static void selinux_nf_ip_exit(void)
5819 {
5820         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5821
5822         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5823 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5824         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5825 #endif  /* IPV6 */
5826 }
5827 #endif
5828
5829 #else /* CONFIG_NETFILTER */
5830
5831 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5832 #define selinux_nf_ip_exit()
5833 #endif
5834
5835 #endif /* CONFIG_NETFILTER */
5836
5837 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838 static int selinux_disabled;
5839
5840 int selinux_disable(void)
5841 {
5842         extern void exit_sel_fs(void);
5843
5844         if (ss_initialized) {
5845                 /* Not permitted after initial policy load. */
5846                 return -EINVAL;
5847         }
5848
5849         if (selinux_disabled) {
5850                 /* Only do this once. */
5851                 return -EINVAL;
5852         }
5853
5854         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5855
5856         selinux_disabled = 1;
5857         selinux_enabled = 0;
5858
5859         /* Reset security_ops to the secondary module, dummy or capability. */
5860         security_ops = secondary_ops;
5861
5862         /* Unregister netfilter hooks. */
5863         selinux_nf_ip_exit();
5864
5865         /* Unregister selinuxfs. */
5866         exit_sel_fs();
5867
5868         return 0;
5869 }
5870 #endif