2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
12 #include <linux/config.h>
14 #include <linux/cpu.h>
16 #include <linux/elf.h>
17 #include <linux/errno.h>
18 #include <linux/kallsyms.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/notifier.h>
23 #include <linux/personality.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
36 #include <asm/delay.h>
40 #include <asm/kdebug.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
44 #include <asm/tlbflush.h>
45 #include <asm/uaccess.h>
46 #include <asm/unwind.h>
52 # include <asm/perfmon.h>
57 void (*ia64_mark_idle)(int);
58 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
60 unsigned long boot_option_idle_override = 0;
61 EXPORT_SYMBOL(boot_option_idle_override);
64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
66 unsigned long ip, sp, bsp;
67 char buf[128]; /* don't make it so big that it overflows the stack! */
69 printk("\nCall Trace:\n");
71 unw_get_ip(info, &ip);
75 unw_get_sp(info, &sp);
76 unw_get_bsp(info, &bsp);
77 snprintf(buf, sizeof(buf),
79 " sp=%016lx bsp=%016lx\n",
81 print_symbol(buf, ip);
82 } while (unw_unwind(info) >= 0);
86 show_stack (struct task_struct *task, unsigned long *sp)
89 unw_init_running(ia64_do_show_stack, NULL);
91 struct unw_frame_info info;
93 unw_init_from_blocked_task(&info, task);
94 ia64_do_show_stack(&info, NULL);
101 show_stack(NULL, NULL);
104 EXPORT_SYMBOL(dump_stack);
107 show_regs (struct pt_regs *regs)
109 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
112 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
113 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
114 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
115 print_symbol("ip is at %s\n", ip);
116 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
117 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
118 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
119 regs->ar_rnat, regs->ar_bspstore, regs->pr);
120 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
121 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
122 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
123 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
124 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
125 regs->f6.u.bits[1], regs->f6.u.bits[0],
126 regs->f7.u.bits[1], regs->f7.u.bits[0]);
127 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
128 regs->f8.u.bits[1], regs->f8.u.bits[0],
129 regs->f9.u.bits[1], regs->f9.u.bits[0]);
130 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
131 regs->f10.u.bits[1], regs->f10.u.bits[0],
132 regs->f11.u.bits[1], regs->f11.u.bits[0]);
134 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
135 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
136 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
137 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
138 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
139 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
140 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
141 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
142 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
144 if (user_mode(regs)) {
145 /* print the stacked registers */
146 unsigned long val, *bsp, ndirty;
147 int i, sof, is_nat = 0;
149 sof = regs->cr_ifs & 0x7f; /* size of frame */
150 ndirty = (regs->loadrs >> 19);
151 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
152 for (i = 0; i < sof; ++i) {
153 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
154 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
155 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
158 show_stack(NULL, NULL);
162 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
164 if (fsys_mode(current, &scr->pt)) {
165 /* defer signal-handling etc. until we return to privilege-level 0. */
166 if (!ia64_psr(&scr->pt)->lp)
167 ia64_psr(&scr->pt)->lp = 1;
171 #ifdef CONFIG_PERFMON
172 if (current->thread.pfm_needs_checking)
176 /* deal with pending signal delivery */
177 if (test_thread_flag(TIF_SIGPENDING))
178 ia64_do_signal(oldset, scr, in_syscall);
181 static int pal_halt = 1;
182 static int can_do_pal_halt = 1;
184 static int __init nohalt_setup(char * str)
186 pal_halt = can_do_pal_halt = 0;
189 __setup("nohalt", nohalt_setup);
192 update_pal_halt_status(int status)
194 can_do_pal_halt = pal_halt && status;
198 * We use this if we don't have any better idle routine..
204 while (!need_resched()) {
212 #ifdef CONFIG_HOTPLUG_CPU
213 /* We don't actually take CPU down, just spin without interrupts. */
214 static inline void play_dead(void)
216 extern void ia64_cpu_local_tick (void);
217 unsigned int this_cpu = smp_processor_id();
220 __get_cpu_var(cpu_state) = CPU_DEAD;
225 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
227 * The above is a point of no-return, the processor is
228 * expected to be in SAL loop now.
233 static inline void play_dead(void)
237 #endif /* CONFIG_HOTPLUG_CPU */
239 void cpu_idle_wait(void)
241 unsigned int cpu, this_cpu = get_cpu();
244 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
248 for_each_online_cpu(cpu) {
249 per_cpu(cpu_idle_state, cpu) = 1;
253 __get_cpu_var(cpu_idle_state) = 0;
258 for_each_online_cpu(cpu) {
259 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
262 cpus_and(map, map, cpu_online_map);
263 } while (!cpus_empty(map));
265 EXPORT_SYMBOL_GPL(cpu_idle_wait);
267 void __attribute__((noreturn))
270 void (*mark_idle)(int) = ia64_mark_idle;
271 int cpu = smp_processor_id();
273 /* endless idle loop with no priority at all */
276 clear_thread_flag(TIF_POLLING_NRFLAG);
278 set_thread_flag(TIF_POLLING_NRFLAG);
280 if (!need_resched()) {
285 if (__get_cpu_var(cpu_idle_state))
286 __get_cpu_var(cpu_idle_state) = 0;
302 preempt_enable_no_resched();
306 if (cpu_is_offline(cpu))
312 ia64_save_extra (struct task_struct *task)
314 #ifdef CONFIG_PERFMON
318 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
319 ia64_save_debug_regs(&task->thread.dbr[0]);
321 #ifdef CONFIG_PERFMON
322 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
325 info = __get_cpu_var(pfm_syst_info);
326 if (info & PFM_CPUINFO_SYST_WIDE)
327 pfm_syst_wide_update_task(task, info, 0);
330 #ifdef CONFIG_IA32_SUPPORT
331 if (IS_IA32_PROCESS(ia64_task_regs(task)))
332 ia32_save_state(task);
337 ia64_load_extra (struct task_struct *task)
339 #ifdef CONFIG_PERFMON
343 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
344 ia64_load_debug_regs(&task->thread.dbr[0]);
346 #ifdef CONFIG_PERFMON
347 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
350 info = __get_cpu_var(pfm_syst_info);
351 if (info & PFM_CPUINFO_SYST_WIDE)
352 pfm_syst_wide_update_task(task, info, 1);
355 #ifdef CONFIG_IA32_SUPPORT
356 if (IS_IA32_PROCESS(ia64_task_regs(task)))
357 ia32_load_state(task);
362 * Copy the state of an ia-64 thread.
364 * We get here through the following call chain:
366 * from user-level: from kernel:
368 * <clone syscall> <some kernel call frames>
371 * copy_thread copy_thread
373 * This means that the stack layout is as follows:
375 * +---------------------+ (highest addr)
377 * +---------------------+
378 * | struct switch_stack |
379 * +---------------------+
382 * | | <-- sp (lowest addr)
383 * +---------------------+
385 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
386 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
387 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
388 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
389 * the stack is page aligned and the page size is at least 4KB, this is always the case,
390 * so there is nothing to worry about.
393 copy_thread (int nr, unsigned long clone_flags,
394 unsigned long user_stack_base, unsigned long user_stack_size,
395 struct task_struct *p, struct pt_regs *regs)
397 extern char ia64_ret_from_clone, ia32_ret_from_clone;
398 struct switch_stack *child_stack, *stack;
399 unsigned long rbs, child_rbs, rbs_size;
400 struct pt_regs *child_ptregs;
405 * For SMP idle threads, fork_by_hand() calls do_fork with
412 stack = ((struct switch_stack *) regs) - 1;
414 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
415 child_stack = (struct switch_stack *) child_ptregs - 1;
417 /* copy parent's switch_stack & pt_regs to child: */
418 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
420 rbs = (unsigned long) current + IA64_RBS_OFFSET;
421 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
422 rbs_size = stack->ar_bspstore - rbs;
424 /* copy the parent's register backing store to the child: */
425 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
427 if (likely(user_mode(child_ptregs))) {
428 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
429 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
430 if (user_stack_base) {
431 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
432 child_ptregs->ar_bspstore = user_stack_base;
433 child_ptregs->ar_rnat = 0;
434 child_ptregs->loadrs = 0;
438 * Note: we simply preserve the relative position of
439 * the stack pointer here. There is no need to
440 * allocate a scratch area here, since that will have
441 * been taken care of by the caller of sys_clone()
444 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
445 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
447 child_stack->ar_bspstore = child_rbs + rbs_size;
448 if (IS_IA32_PROCESS(regs))
449 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
451 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
453 /* copy parts of thread_struct: */
454 p->thread.ksp = (unsigned long) child_stack - 16;
456 /* stop some PSR bits from being inherited.
457 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
458 * therefore we must specify them explicitly here and not include them in
459 * IA64_PSR_BITS_TO_CLEAR.
461 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
462 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
465 * NOTE: The calling convention considers all floating point
466 * registers in the high partition (fph) to be scratch. Since
467 * the only way to get to this point is through a system call,
468 * we know that the values in fph are all dead. Hence, there
469 * is no need to inherit the fph state from the parent to the
470 * child and all we have to do is to make sure that
471 * IA64_THREAD_FPH_VALID is cleared in the child.
473 * XXX We could push this optimization a bit further by
474 * clearing IA64_THREAD_FPH_VALID on ANY system call.
475 * However, it's not clear this is worth doing. Also, it
476 * would be a slight deviation from the normal Linux system
477 * call behavior where scratch registers are preserved across
478 * system calls (unless used by the system call itself).
480 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
481 | IA64_THREAD_PM_VALID)
482 # define THREAD_FLAGS_TO_SET 0
483 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
484 | THREAD_FLAGS_TO_SET);
485 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
486 #ifdef CONFIG_IA32_SUPPORT
488 * If we're cloning an IA32 task then save the IA32 extra
489 * state from the current task to the new task
491 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
493 if (clone_flags & CLONE_SETTLS)
494 retval = ia32_clone_tls(p, child_ptregs);
496 /* Copy partially mapped page list */
498 retval = ia32_copy_partial_page_list(p, clone_flags);
502 #ifdef CONFIG_PERFMON
503 if (current->thread.pfm_context)
504 pfm_inherit(p, child_ptregs);
510 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
512 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
513 elf_greg_t *dst = arg;
518 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
520 if (unw_unwind_to_user(info) < 0)
523 unw_get_sp(info, &sp);
524 pt = (struct pt_regs *) (sp + 16);
526 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
528 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
531 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
537 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
538 * predicate registers (p0-p63)
541 * ar.rsc ar.bsp ar.bspstore ar.rnat
542 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
546 for (i = 1, mask = (1UL << i); i < 32; ++i) {
547 unw_get_gr(info, i, &dst[i], &nat);
553 unw_get_pr(info, &dst[33]);
555 for (i = 0; i < 8; ++i)
556 unw_get_br(info, i, &dst[34 + i]);
558 unw_get_rp(info, &ip);
559 dst[42] = ip + ia64_psr(pt)->ri;
561 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
563 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
565 * For bsp and bspstore, unw_get_ar() would return the kernel
566 * addresses, but we need the user-level addresses instead:
568 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
569 dst[47] = pt->ar_bspstore;
571 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
572 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
573 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
574 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
575 unw_get_ar(info, UNW_AR_LC, &dst[53]);
576 unw_get_ar(info, UNW_AR_EC, &dst[54]);
577 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
578 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
582 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
584 elf_fpreg_t *dst = arg;
587 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
589 if (unw_unwind_to_user(info) < 0)
592 /* f0 is 0.0, f1 is 1.0 */
594 for (i = 2; i < 32; ++i)
595 unw_get_fr(info, i, dst + i);
597 ia64_flush_fph(task);
598 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
599 memcpy(dst + 32, task->thread.fph, 96*16);
603 do_copy_regs (struct unw_frame_info *info, void *arg)
605 do_copy_task_regs(current, info, arg);
609 do_dump_fpu (struct unw_frame_info *info, void *arg)
611 do_dump_task_fpu(current, info, arg);
615 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
617 struct unw_frame_info tcore_info;
619 if (current == task) {
620 unw_init_running(do_copy_regs, regs);
622 memset(&tcore_info, 0, sizeof(tcore_info));
623 unw_init_from_blocked_task(&tcore_info, task);
624 do_copy_task_regs(task, &tcore_info, regs);
630 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
632 unw_init_running(do_copy_regs, dst);
636 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
638 struct unw_frame_info tcore_info;
640 if (current == task) {
641 unw_init_running(do_dump_fpu, dst);
643 memset(&tcore_info, 0, sizeof(tcore_info));
644 unw_init_from_blocked_task(&tcore_info, task);
645 do_dump_task_fpu(task, &tcore_info, dst);
651 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
653 unw_init_running(do_dump_fpu, dst);
654 return 1; /* f0-f31 are always valid so we always return 1 */
658 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
659 struct pt_regs *regs)
664 fname = getname(filename);
665 error = PTR_ERR(fname);
668 error = do_execve(fname, argv, envp, regs);
675 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
677 extern void start_kernel_thread (void);
678 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
680 struct switch_stack sw;
684 memset(®s, 0, sizeof(regs));
685 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
686 regs.pt.r1 = helper_fptr[1]; /* set GP */
687 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
688 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
689 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
690 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
691 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
692 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
693 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
694 regs.sw.pr = (1 << PRED_KERNEL_STACK);
695 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
697 EXPORT_SYMBOL(kernel_thread);
699 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
701 kernel_thread_helper (int (*fn)(void *), void *arg)
703 #ifdef CONFIG_IA32_SUPPORT
704 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
705 /* A kernel thread is always a 64-bit process. */
706 current->thread.map_base = DEFAULT_MAP_BASE;
707 current->thread.task_size = DEFAULT_TASK_SIZE;
708 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
709 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
716 * Flush thread state. This is called when a thread does an execve().
722 * Remove function-return probe instances associated with this task
723 * and put them back on the free list. Do not insert an exit probe for
724 * this function, it will be disabled by kprobe_flush_task if you do.
726 kprobe_flush_task(current);
728 /* drop floating-point and debug-register state if it exists: */
729 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
730 ia64_drop_fpu(current);
731 if (IS_IA32_PROCESS(ia64_task_regs(current)))
732 ia32_drop_partial_page_list(current);
736 * Clean up state associated with current thread. This is called when
737 * the thread calls exit().
744 * Remove function-return probe instances associated with this task
745 * and put them back on the free list. Do not insert an exit probe for
746 * this function, it will be disabled by kprobe_flush_task if you do.
748 kprobe_flush_task(current);
750 ia64_drop_fpu(current);
751 #ifdef CONFIG_PERFMON
752 /* if needed, stop monitoring and flush state to perfmon context */
753 if (current->thread.pfm_context)
754 pfm_exit_thread(current);
756 /* free debug register resources */
757 if (current->thread.flags & IA64_THREAD_DBG_VALID)
758 pfm_release_debug_registers(current);
760 if (IS_IA32_PROCESS(ia64_task_regs(current)))
761 ia32_drop_partial_page_list(current);
765 get_wchan (struct task_struct *p)
767 struct unw_frame_info info;
772 * Note: p may not be a blocked task (it could be current or
773 * another process running on some other CPU. Rather than
774 * trying to determine if p is really blocked, we just assume
775 * it's blocked and rely on the unwind routines to fail
776 * gracefully if the process wasn't really blocked after all.
779 unw_init_from_blocked_task(&info, p);
781 if (unw_unwind(&info) < 0)
783 unw_get_ip(&info, &ip);
784 if (!in_sched_functions(ip))
786 } while (count++ < 16);
793 pal_power_mgmt_info_u_t power_info[8];
794 unsigned long min_power;
795 int i, min_power_state;
797 if (ia64_pal_halt_info(power_info) != 0)
801 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
802 for (i = 1; i < 8; ++i)
803 if (power_info[i].pal_power_mgmt_info_s.im
804 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
805 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
810 ia64_pal_halt(min_power_state);
814 machine_restart (char *restart_cmd)
816 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
817 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
823 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
828 machine_power_off (void)