3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
36 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
48 #include <asm/sections.h>
55 #ifndef CPU_FTR_COHERENT_ICACHE
56 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
57 #define CPU_FTR_NOEXECUTE 0
60 int init_bootmem_done;
62 unsigned long memory_limit;
65 * This is called by /dev/mem to know if a given address has to
66 * be mapped non-cacheable or not
68 int page_is_ram(unsigned long pfn)
70 unsigned long paddr = (pfn << PAGE_SHIFT);
72 #ifndef CONFIG_PPC64 /* XXX for now */
73 return paddr < __pa(high_memory);
76 for (i=0; i < lmb.memory.cnt; i++) {
79 base = lmb.memory.region[i].base;
81 if ((paddr >= base) &&
82 (paddr < (base + lmb.memory.region[i].size))) {
90 EXPORT_SYMBOL(page_is_ram);
92 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
93 unsigned long size, pgprot_t vma_prot)
95 if (ppc_md.phys_mem_access_prot)
96 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 if (!page_is_ram(pfn))
99 vma_prot = __pgprot(pgprot_val(vma_prot)
100 | _PAGE_GUARDED | _PAGE_NO_CACHE);
103 EXPORT_SYMBOL(phys_mem_access_prot);
105 #ifdef CONFIG_MEMORY_HOTPLUG
107 void online_page(struct page *page)
109 ClearPageReserved(page);
110 free_cold_page(page);
116 * This works only for the non-NUMA case. Later, we'll need a lookup
117 * to convert from real physical addresses to nid, that doesn't use
120 int __devinit add_memory(u64 start, u64 size)
122 struct pglist_data *pgdata = NODE_DATA(0);
124 unsigned long start_pfn = start >> PAGE_SHIFT;
125 unsigned long nr_pages = size >> PAGE_SHIFT;
127 /* this should work for most non-highmem platforms */
128 zone = pgdata->node_zones;
130 return __add_pages(zone, start_pfn, nr_pages);
136 * First pass at this code will check to determine if the remove
137 * request is within the RMO. Do not allow removal within the RMO.
139 int __devinit remove_memory(u64 start, u64 size)
142 unsigned long start_pfn, end_pfn, nr_pages;
144 start_pfn = start >> PAGE_SHIFT;
145 nr_pages = size >> PAGE_SHIFT;
146 end_pfn = start_pfn + nr_pages;
148 printk("%s(): Attempting to remove memoy in range "
149 "%lx to %lx\n", __func__, start, start+size);
151 * check for range within RMO
153 zone = page_zone(pfn_to_page(start_pfn));
155 printk("%s(): memory will be removed from "
156 "the %s zone\n", __func__, zone->name);
159 * not handling removing memory ranges that
160 * overlap multiple zones yet
162 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
165 /* make sure it is NOT in RMO */
166 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
167 printk("%s(): range to be removed must NOT be in RMO!\n",
172 return __remove_pages(zone, start_pfn, nr_pages);
175 printk("%s(): memory range to be removed overlaps "
176 "multiple zones!!!\n", __func__);
180 #endif /* CONFIG_MEMORY_HOTPLUG */
184 unsigned long total = 0, reserved = 0;
185 unsigned long shared = 0, cached = 0;
186 unsigned long highmem = 0;
191 printk("Mem-info:\n");
193 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
194 for_each_pgdat(pgdat) {
196 pgdat_resize_lock(pgdat, &flags);
197 for (i = 0; i < pgdat->node_spanned_pages; i++) {
198 page = pgdat_page_nr(pgdat, i);
200 if (PageHighMem(page))
202 if (PageReserved(page))
204 else if (PageSwapCache(page))
206 else if (page_count(page))
207 shared += page_count(page) - 1;
209 pgdat_resize_unlock(pgdat, &flags);
211 printk("%ld pages of RAM\n", total);
212 #ifdef CONFIG_HIGHMEM
213 printk("%ld pages of HIGHMEM\n", highmem);
215 printk("%ld reserved pages\n", reserved);
216 printk("%ld pages shared\n", shared);
217 printk("%ld pages swap cached\n", cached);
221 * Initialize the bootmem system and give it all the memory we
222 * have available. If we are using highmem, we only put the
223 * lowmem into the bootmem system.
225 #ifndef CONFIG_NEED_MULTIPLE_NODES
226 void __init do_init_bootmem(void)
229 unsigned long start, bootmap_pages;
230 unsigned long total_pages;
233 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
234 #ifdef CONFIG_HIGHMEM
235 total_pages = total_lowmem >> PAGE_SHIFT;
239 * Find an area to use for the bootmem bitmap. Calculate the size of
240 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
241 * Add 1 additional page in case the address isn't page-aligned.
243 bootmap_pages = bootmem_bootmap_pages(total_pages);
245 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
248 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
250 /* Add all physical memory to the bootmem map, mark each area
253 for (i = 0; i < lmb.memory.cnt; i++) {
254 unsigned long base = lmb.memory.region[i].base;
255 unsigned long size = lmb_size_bytes(&lmb.memory, i);
256 #ifdef CONFIG_HIGHMEM
257 if (base >= total_lowmem)
259 if (base + size > total_lowmem)
260 size = total_lowmem - base;
262 free_bootmem(base, size);
265 /* reserve the sections we're already using */
266 for (i = 0; i < lmb.reserved.cnt; i++)
267 reserve_bootmem(lmb.reserved.region[i].base,
268 lmb_size_bytes(&lmb.reserved, i));
270 /* XXX need to clip this if using highmem? */
271 for (i = 0; i < lmb.memory.cnt; i++)
272 memory_present(0, lmb_start_pfn(&lmb.memory, i),
273 lmb_end_pfn(&lmb.memory, i));
274 init_bootmem_done = 1;
278 * paging_init() sets up the page tables - in fact we've already done this.
280 void __init paging_init(void)
282 unsigned long zones_size[MAX_NR_ZONES];
283 unsigned long zholes_size[MAX_NR_ZONES];
284 unsigned long total_ram = lmb_phys_mem_size();
285 unsigned long top_of_ram = lmb_end_of_DRAM();
287 #ifdef CONFIG_HIGHMEM
288 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
289 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
290 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
291 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
292 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
293 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
294 kmap_prot = PAGE_KERNEL;
295 #endif /* CONFIG_HIGHMEM */
297 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
298 top_of_ram, total_ram);
299 printk(KERN_INFO "Memory hole size: %ldMB\n",
300 (top_of_ram - total_ram) >> 20);
302 * All pages are DMA-able so we put them all in the DMA zone.
304 memset(zones_size, 0, sizeof(zones_size));
305 memset(zholes_size, 0, sizeof(zholes_size));
307 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
308 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
310 #ifdef CONFIG_HIGHMEM
311 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
312 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
313 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
315 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
316 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
317 #endif /* CONFIG_HIGHMEM */
319 free_area_init_node(0, NODE_DATA(0), zones_size,
320 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
322 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
324 void __init mem_init(void)
326 #ifdef CONFIG_NEED_MULTIPLE_NODES
332 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
334 num_physpages = max_pfn; /* RAM is assumed contiguous */
335 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
337 #ifdef CONFIG_NEED_MULTIPLE_NODES
338 for_each_online_node(nid) {
339 if (NODE_DATA(nid)->node_spanned_pages != 0) {
340 printk("freeing bootmem node %x\n", nid);
342 free_all_bootmem_node(NODE_DATA(nid));
346 max_mapnr = num_physpages;
347 totalram_pages += free_all_bootmem();
349 for_each_pgdat(pgdat) {
350 for (i = 0; i < pgdat->node_spanned_pages; i++) {
351 page = pgdat_page_nr(pgdat, i);
352 if (PageReserved(page))
357 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
358 datasize = (unsigned long)&__init_begin - (unsigned long)&_sdata;
359 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
360 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
362 #ifdef CONFIG_HIGHMEM
364 unsigned long pfn, highmem_mapnr;
366 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
367 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
368 struct page *page = pfn_to_page(pfn);
370 ClearPageReserved(page);
371 set_page_count(page, 1);
375 totalram_pages += totalhigh_pages;
376 printk(KERN_INFO "High memory: %luk\n",
377 totalhigh_pages << (PAGE_SHIFT-10));
379 #endif /* CONFIG_HIGHMEM */
381 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
382 "%luk reserved, %luk data, %luk bss, %luk init)\n",
383 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
384 num_physpages << (PAGE_SHIFT-10),
386 reservedpages << (PAGE_SHIFT-10),
394 /* Initialize the vDSO */
400 * This is called when a page has been modified by the kernel.
401 * It just marks the page as not i-cache clean. We do the i-cache
402 * flush later when the page is given to a user process, if necessary.
404 void flush_dcache_page(struct page *page)
406 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
408 /* avoid an atomic op if possible */
409 if (test_bit(PG_arch_1, &page->flags))
410 clear_bit(PG_arch_1, &page->flags);
412 EXPORT_SYMBOL(flush_dcache_page);
414 void flush_dcache_icache_page(struct page *page)
417 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
418 __flush_dcache_icache(start);
419 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
420 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
421 /* On 8xx there is no need to kmap since highmem is not supported */
422 __flush_dcache_icache(page_address(page));
424 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
428 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
432 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
435 * We shouldnt have to do this, but some versions of glibc
436 * require it (ld.so assumes zero filled pages are icache clean)
440 /* avoid an atomic op if possible */
441 if (test_bit(PG_arch_1, &pg->flags))
442 clear_bit(PG_arch_1, &pg->flags);
444 EXPORT_SYMBOL(clear_user_page);
446 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
449 copy_page(vto, vfrom);
452 * We should be able to use the following optimisation, however
453 * there are two problems.
454 * Firstly a bug in some versions of binutils meant PLT sections
455 * were not marked executable.
456 * Secondly the first word in the GOT section is blrl, used
457 * to establish the GOT address. Until recently the GOT was
458 * not marked executable.
462 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
466 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
469 /* avoid an atomic op if possible */
470 if (test_bit(PG_arch_1, &pg->flags))
471 clear_bit(PG_arch_1, &pg->flags);
474 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
475 unsigned long addr, int len)
479 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
480 flush_icache_range(maddr, maddr + len);
483 EXPORT_SYMBOL(flush_icache_user_range);
486 * This is called at the end of handling a user page fault, when the
487 * fault has been handled by updating a PTE in the linux page tables.
488 * We use it to preload an HPTE into the hash table corresponding to
489 * the updated linux PTE.
491 * This must always be called with the mm->page_table_lock held
493 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
496 /* handle i-cache coherency */
497 unsigned long pfn = pte_pfn(pte);
509 /* handle i-cache coherency */
510 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
511 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
513 struct page *page = pfn_to_page(pfn);
514 if (!PageReserved(page)
515 && !test_bit(PG_arch_1, &page->flags)) {
516 if (vma->vm_mm == current->active_mm) {
518 /* On 8xx, cache control instructions (particularly
519 * "dcbst" from flush_dcache_icache) fault as write
520 * operation if there is an unpopulated TLB entry
521 * for the address in question. To workaround that,
522 * we invalidate the TLB here, thus avoiding dcbst
527 __flush_dcache_icache((void *) address);
529 flush_dcache_icache_page(page);
530 set_bit(PG_arch_1, &page->flags);
534 #ifdef CONFIG_PPC_STD_MMU
535 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
536 if (!pte_young(pte) || address >= TASK_SIZE)
541 pmd = pmd_offset(pgd_offset(vma->vm_mm, address), address);
543 add_hash_page(vma->vm_mm->context, address, pmd_val(*pmd));
545 pgdir = vma->vm_mm->pgd;
549 ptep = find_linux_pte(pgdir, address);
553 vsid = get_vsid(vma->vm_mm->context.id, address);
555 local_irq_save(flags);
556 tmp = cpumask_of_cpu(smp_processor_id());
557 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
560 __hash_page(address, 0, vsid, ptep, 0x300, local);
561 local_irq_restore(flags);