Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU) ? 1 : 0;
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 e_err("Unsupported Speed/Duplex configuration\n");
193                 return -EINVAL;
194         }
195
196         switch (spddplx) {
197         case SPEED_10 + DUPLEX_HALF:
198                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
199                 break;
200         case SPEED_10 + DUPLEX_FULL:
201                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
202                 break;
203         case SPEED_100 + DUPLEX_HALF:
204                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
205                 break;
206         case SPEED_100 + DUPLEX_FULL:
207                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
208                 break;
209         case SPEED_1000 + DUPLEX_FULL:
210                 mac->autoneg = 1;
211                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
212                 break;
213         case SPEED_1000 + DUPLEX_HALF: /* not supported */
214         default:
215                 e_err("Unsupported Speed/Duplex configuration\n");
216                 return -EINVAL;
217         }
218         return 0;
219 }
220
221 static int e1000_set_settings(struct net_device *netdev,
222                               struct ethtool_cmd *ecmd)
223 {
224         struct e1000_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         /*
228          * When SoL/IDER sessions are active, autoneg/speed/duplex
229          * cannot be changed
230          */
231         if (e1000_check_reset_block(hw)) {
232                 e_err("Cannot change link characteristics when SoL/IDER is "
233                       "active.\n");
234                 return -EINVAL;
235         }
236
237         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238                 msleep(1);
239
240         if (ecmd->autoneg == AUTONEG_ENABLE) {
241                 hw->mac.autoneg = 1;
242                 if (hw->phy.media_type == e1000_media_type_fiber)
243                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244                                                      ADVERTISED_FIBRE |
245                                                      ADVERTISED_Autoneg;
246                 else
247                         hw->phy.autoneg_advertised = ecmd->advertising |
248                                                      ADVERTISED_TP |
249                                                      ADVERTISED_Autoneg;
250                 ecmd->advertising = hw->phy.autoneg_advertised;
251                 if (adapter->fc_autoneg)
252                         hw->fc.original_type = e1000_fc_default;
253         } else {
254                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
255                         clear_bit(__E1000_RESETTING, &adapter->state);
256                         return -EINVAL;
257                 }
258         }
259
260         /* reset the link */
261
262         if (netif_running(adapter->netdev)) {
263                 e1000e_down(adapter);
264                 e1000e_up(adapter);
265         } else {
266                 e1000e_reset(adapter);
267         }
268
269         clear_bit(__E1000_RESETTING, &adapter->state);
270         return 0;
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274                                  struct ethtool_pauseparam *pause)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         struct e1000_hw *hw = &adapter->hw;
278
279         pause->autoneg =
280                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282         if (hw->fc.type == e1000_fc_rx_pause) {
283                 pause->rx_pause = 1;
284         } else if (hw->fc.type == e1000_fc_tx_pause) {
285                 pause->tx_pause = 1;
286         } else if (hw->fc.type == e1000_fc_full) {
287                 pause->rx_pause = 1;
288                 pause->tx_pause = 1;
289         }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293                                 struct ethtool_pauseparam *pause)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         struct e1000_hw *hw = &adapter->hw;
297         int retval = 0;
298
299         adapter->fc_autoneg = pause->autoneg;
300
301         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302                 msleep(1);
303
304         if (pause->rx_pause && pause->tx_pause)
305                 hw->fc.type = e1000_fc_full;
306         else if (pause->rx_pause && !pause->tx_pause)
307                 hw->fc.type = e1000_fc_rx_pause;
308         else if (!pause->rx_pause && pause->tx_pause)
309                 hw->fc.type = e1000_fc_tx_pause;
310         else if (!pause->rx_pause && !pause->tx_pause)
311                 hw->fc.type = e1000_fc_none;
312
313         hw->fc.original_type = hw->fc.type;
314
315         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316                 hw->fc.type = e1000_fc_default;
317                 if (netif_running(adapter->netdev)) {
318                         e1000e_down(adapter);
319                         e1000e_up(adapter);
320                 } else {
321                         e1000e_reset(adapter);
322                 }
323         } else {
324                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
325                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
326         }
327
328         clear_bit(__E1000_RESETTING, &adapter->state);
329         return retval;
330 }
331
332 static u32 e1000_get_rx_csum(struct net_device *netdev)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
336 }
337
338 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341
342         if (data)
343                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
344         else
345                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
346
347         if (netif_running(netdev))
348                 e1000e_reinit_locked(adapter);
349         else
350                 e1000e_reset(adapter);
351         return 0;
352 }
353
354 static u32 e1000_get_tx_csum(struct net_device *netdev)
355 {
356         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
357 }
358
359 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
360 {
361         if (data)
362                 netdev->features |= NETIF_F_HW_CSUM;
363         else
364                 netdev->features &= ~NETIF_F_HW_CSUM;
365
366         return 0;
367 }
368
369 static int e1000_set_tso(struct net_device *netdev, u32 data)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372
373         if (data) {
374                 netdev->features |= NETIF_F_TSO;
375                 netdev->features |= NETIF_F_TSO6;
376         } else {
377                 netdev->features &= ~NETIF_F_TSO;
378                 netdev->features &= ~NETIF_F_TSO6;
379         }
380
381         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
382         adapter->flags |= FLAG_TSO_FORCE;
383         return 0;
384 }
385
386 static u32 e1000_get_msglevel(struct net_device *netdev)
387 {
388         struct e1000_adapter *adapter = netdev_priv(netdev);
389         return adapter->msg_enable;
390 }
391
392 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
393 {
394         struct e1000_adapter *adapter = netdev_priv(netdev);
395         adapter->msg_enable = data;
396 }
397
398 static int e1000_get_regs_len(struct net_device *netdev)
399 {
400 #define E1000_REGS_LEN 32 /* overestimate */
401         return E1000_REGS_LEN * sizeof(u32);
402 }
403
404 static void e1000_get_regs(struct net_device *netdev,
405                            struct ethtool_regs *regs, void *p)
406 {
407         struct e1000_adapter *adapter = netdev_priv(netdev);
408         struct e1000_hw *hw = &adapter->hw;
409         u32 *regs_buff = p;
410         u16 phy_data;
411         u8 revision_id;
412
413         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
414
415         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
416
417         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
418
419         regs_buff[0]  = er32(CTRL);
420         regs_buff[1]  = er32(STATUS);
421
422         regs_buff[2]  = er32(RCTL);
423         regs_buff[3]  = er32(RDLEN);
424         regs_buff[4]  = er32(RDH);
425         regs_buff[5]  = er32(RDT);
426         regs_buff[6]  = er32(RDTR);
427
428         regs_buff[7]  = er32(TCTL);
429         regs_buff[8]  = er32(TDLEN);
430         regs_buff[9]  = er32(TDH);
431         regs_buff[10] = er32(TDT);
432         regs_buff[11] = er32(TIDV);
433
434         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
435         if (hw->phy.type == e1000_phy_m88) {
436                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437                 regs_buff[13] = (u32)phy_data; /* cable length */
438                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443                 regs_buff[18] = regs_buff[13]; /* cable polarity */
444                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 regs_buff[20] = regs_buff[17]; /* polarity correction */
446                 /* phy receive errors */
447                 regs_buff[22] = adapter->phy_stats.receive_errors;
448                 regs_buff[23] = regs_buff[13]; /* mdix mode */
449         }
450         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
451         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
452         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
453         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
454 }
455
456 static int e1000_get_eeprom_len(struct net_device *netdev)
457 {
458         struct e1000_adapter *adapter = netdev_priv(netdev);
459         return adapter->hw.nvm.word_size * 2;
460 }
461
462 static int e1000_get_eeprom(struct net_device *netdev,
463                             struct ethtool_eeprom *eeprom, u8 *bytes)
464 {
465         struct e1000_adapter *adapter = netdev_priv(netdev);
466         struct e1000_hw *hw = &adapter->hw;
467         u16 *eeprom_buff;
468         int first_word;
469         int last_word;
470         int ret_val = 0;
471         u16 i;
472
473         if (eeprom->len == 0)
474                 return -EINVAL;
475
476         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
477
478         first_word = eeprom->offset >> 1;
479         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
480
481         eeprom_buff = kmalloc(sizeof(u16) *
482                         (last_word - first_word + 1), GFP_KERNEL);
483         if (!eeprom_buff)
484                 return -ENOMEM;
485
486         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
487                 ret_val = e1000_read_nvm(hw, first_word,
488                                          last_word - first_word + 1,
489                                          eeprom_buff);
490         } else {
491                 for (i = 0; i < last_word - first_word + 1; i++) {
492                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
493                                                       &eeprom_buff[i]);
494                         if (ret_val) {
495                                 /* a read error occurred, throw away the
496                                  * result */
497                                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
498                                 break;
499                         }
500                 }
501         }
502
503         /* Device's eeprom is always little-endian, word addressable */
504         for (i = 0; i < last_word - first_word + 1; i++)
505                 le16_to_cpus(&eeprom_buff[i]);
506
507         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
508         kfree(eeprom_buff);
509
510         return ret_val;
511 }
512
513 static int e1000_set_eeprom(struct net_device *netdev,
514                             struct ethtool_eeprom *eeprom, u8 *bytes)
515 {
516         struct e1000_adapter *adapter = netdev_priv(netdev);
517         struct e1000_hw *hw = &adapter->hw;
518         u16 *eeprom_buff;
519         void *ptr;
520         int max_len;
521         int first_word;
522         int last_word;
523         int ret_val = 0;
524         u16 i;
525
526         if (eeprom->len == 0)
527                 return -EOPNOTSUPP;
528
529         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
530                 return -EFAULT;
531
532         max_len = hw->nvm.word_size * 2;
533
534         first_word = eeprom->offset >> 1;
535         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
536         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
537         if (!eeprom_buff)
538                 return -ENOMEM;
539
540         ptr = (void *)eeprom_buff;
541
542         if (eeprom->offset & 1) {
543                 /* need read/modify/write of first changed EEPROM word */
544                 /* only the second byte of the word is being modified */
545                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
546                 ptr++;
547         }
548         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
549                 /* need read/modify/write of last changed EEPROM word */
550                 /* only the first byte of the word is being modified */
551                 ret_val = e1000_read_nvm(hw, last_word, 1,
552                                   &eeprom_buff[last_word - first_word]);
553
554         /* Device's eeprom is always little-endian, word addressable */
555         for (i = 0; i < last_word - first_word + 1; i++)
556                 le16_to_cpus(&eeprom_buff[i]);
557
558         memcpy(ptr, bytes, eeprom->len);
559
560         for (i = 0; i < last_word - first_word + 1; i++)
561                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
562
563         ret_val = e1000_write_nvm(hw, first_word,
564                                   last_word - first_word + 1, eeprom_buff);
565
566         /*
567          * Update the checksum over the first part of the EEPROM if needed
568          * and flush shadow RAM for 82573 controllers
569          */
570         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
571                                (hw->mac.type == e1000_82574) ||
572                                (hw->mac.type == e1000_82573)))
573                 e1000e_update_nvm_checksum(hw);
574
575         kfree(eeprom_buff);
576         return ret_val;
577 }
578
579 static void e1000_get_drvinfo(struct net_device *netdev,
580                               struct ethtool_drvinfo *drvinfo)
581 {
582         struct e1000_adapter *adapter = netdev_priv(netdev);
583         char firmware_version[32];
584         u16 eeprom_data;
585
586         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
587         strncpy(drvinfo->version, e1000e_driver_version, 32);
588
589         /*
590          * EEPROM image version # is reported as firmware version # for
591          * PCI-E controllers
592          */
593         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
594         sprintf(firmware_version, "%d.%d-%d",
595                 (eeprom_data & 0xF000) >> 12,
596                 (eeprom_data & 0x0FF0) >> 4,
597                 eeprom_data & 0x000F);
598
599         strncpy(drvinfo->fw_version, firmware_version, 32);
600         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
601         drvinfo->regdump_len = e1000_get_regs_len(netdev);
602         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603 }
604
605 static void e1000_get_ringparam(struct net_device *netdev,
606                                 struct ethtool_ringparam *ring)
607 {
608         struct e1000_adapter *adapter = netdev_priv(netdev);
609         struct e1000_ring *tx_ring = adapter->tx_ring;
610         struct e1000_ring *rx_ring = adapter->rx_ring;
611
612         ring->rx_max_pending = E1000_MAX_RXD;
613         ring->tx_max_pending = E1000_MAX_TXD;
614         ring->rx_mini_max_pending = 0;
615         ring->rx_jumbo_max_pending = 0;
616         ring->rx_pending = rx_ring->count;
617         ring->tx_pending = tx_ring->count;
618         ring->rx_mini_pending = 0;
619         ring->rx_jumbo_pending = 0;
620 }
621
622 static int e1000_set_ringparam(struct net_device *netdev,
623                                struct ethtool_ringparam *ring)
624 {
625         struct e1000_adapter *adapter = netdev_priv(netdev);
626         struct e1000_ring *tx_ring, *tx_old;
627         struct e1000_ring *rx_ring, *rx_old;
628         int err;
629
630         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
631                 return -EINVAL;
632
633         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
634                 msleep(1);
635
636         if (netif_running(adapter->netdev))
637                 e1000e_down(adapter);
638
639         tx_old = adapter->tx_ring;
640         rx_old = adapter->rx_ring;
641
642         err = -ENOMEM;
643         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
644         if (!tx_ring)
645                 goto err_alloc_tx;
646         /*
647          * use a memcpy to save any previously configured
648          * items like napi structs from having to be
649          * reinitialized
650          */
651         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
652
653         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
654         if (!rx_ring)
655                 goto err_alloc_rx;
656         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
657
658         adapter->tx_ring = tx_ring;
659         adapter->rx_ring = rx_ring;
660
661         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
662         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
663         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
664
665         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
666         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
667         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
668
669         if (netif_running(adapter->netdev)) {
670                 /* Try to get new resources before deleting old */
671                 err = e1000e_setup_rx_resources(adapter);
672                 if (err)
673                         goto err_setup_rx;
674                 err = e1000e_setup_tx_resources(adapter);
675                 if (err)
676                         goto err_setup_tx;
677
678                 /*
679                  * restore the old in order to free it,
680                  * then add in the new
681                  */
682                 adapter->rx_ring = rx_old;
683                 adapter->tx_ring = tx_old;
684                 e1000e_free_rx_resources(adapter);
685                 e1000e_free_tx_resources(adapter);
686                 kfree(tx_old);
687                 kfree(rx_old);
688                 adapter->rx_ring = rx_ring;
689                 adapter->tx_ring = tx_ring;
690                 err = e1000e_up(adapter);
691                 if (err)
692                         goto err_setup;
693         }
694
695         clear_bit(__E1000_RESETTING, &adapter->state);
696         return 0;
697 err_setup_tx:
698         e1000e_free_rx_resources(adapter);
699 err_setup_rx:
700         adapter->rx_ring = rx_old;
701         adapter->tx_ring = tx_old;
702         kfree(rx_ring);
703 err_alloc_rx:
704         kfree(tx_ring);
705 err_alloc_tx:
706         e1000e_up(adapter);
707 err_setup:
708         clear_bit(__E1000_RESETTING, &adapter->state);
709         return err;
710 }
711
712 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
713                              int reg, int offset, u32 mask, u32 write)
714 {
715         u32 pat, val;
716         static const u32 test[] =
717                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
718         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
719                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
720                                       (test[pat] & write));
721                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
722                 if (val != (test[pat] & write & mask)) {
723                         e_err("pattern test reg %04X failed: got 0x%08X "
724                               "expected 0x%08X\n", reg + offset, val,
725                               (test[pat] & write & mask));
726                         *data = reg;
727                         return 1;
728                 }
729         }
730         return 0;
731 }
732
733 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
734                               int reg, u32 mask, u32 write)
735 {
736         u32 val;
737         __ew32(&adapter->hw, reg, write & mask);
738         val = __er32(&adapter->hw, reg);
739         if ((write & mask) != (val & mask)) {
740                 e_err("set/check reg %04X test failed: got 0x%08X "
741                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
742                 *data = reg;
743                 return 1;
744         }
745         return 0;
746 }
747 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
748         do {                                                                   \
749                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
750                         return 1;                                              \
751         } while (0)
752 #define REG_PATTERN_TEST(reg, mask, write)                                     \
753         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
754
755 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
756         do {                                                                   \
757                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
758                         return 1;                                              \
759         } while (0)
760
761 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         struct e1000_mac_info *mac = &adapter->hw.mac;
765         u32 value;
766         u32 before;
767         u32 after;
768         u32 i;
769         u32 toggle;
770
771         /*
772          * The status register is Read Only, so a write should fail.
773          * Some bits that get toggled are ignored.
774          */
775         switch (mac->type) {
776         /* there are several bits on newer hardware that are r/w */
777         case e1000_82571:
778         case e1000_82572:
779         case e1000_80003es2lan:
780                 toggle = 0x7FFFF3FF;
781                 break;
782         case e1000_82573:
783         case e1000_82574:
784         case e1000_ich8lan:
785         case e1000_ich9lan:
786         case e1000_ich10lan:
787                 toggle = 0x7FFFF033;
788                 break;
789         default:
790                 toggle = 0xFFFFF833;
791                 break;
792         }
793
794         before = er32(STATUS);
795         value = (er32(STATUS) & toggle);
796         ew32(STATUS, toggle);
797         after = er32(STATUS) & toggle;
798         if (value != after) {
799                 e_err("failed STATUS register test got: 0x%08X expected: "
800                       "0x%08X\n", after, value);
801                 *data = 1;
802                 return 1;
803         }
804         /* restore previous status */
805         ew32(STATUS, before);
806
807         if (!(adapter->flags & FLAG_IS_ICH)) {
808                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
812         }
813
814         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
815         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
817         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
820         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
822         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
823         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
824
825         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826
827         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
828         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
829         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
830
831         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
832         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
833         if (!(adapter->flags & FLAG_IS_ICH))
834                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
835         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
836         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
837         for (i = 0; i < mac->rar_entry_count; i++)
838                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
839                                        ((mac->type == e1000_ich10lan) ?
840                                            0x8007FFFF : 0x8003FFFF),
841                                        0xFFFFFFFF);
842
843         for (i = 0; i < mac->mta_reg_count; i++)
844                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
845
846         *data = 0;
847         return 0;
848 }
849
850 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
851 {
852         u16 temp;
853         u16 checksum = 0;
854         u16 i;
855
856         *data = 0;
857         /* Read and add up the contents of the EEPROM */
858         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
859                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
860                         *data = 1;
861                         break;
862                 }
863                 checksum += temp;
864         }
865
866         /* If Checksum is not Correct return error else test passed */
867         if ((checksum != (u16) NVM_SUM) && !(*data))
868                 *data = 2;
869
870         return *data;
871 }
872
873 static irqreturn_t e1000_test_intr(int irq, void *data)
874 {
875         struct net_device *netdev = (struct net_device *) data;
876         struct e1000_adapter *adapter = netdev_priv(netdev);
877         struct e1000_hw *hw = &adapter->hw;
878
879         adapter->test_icr |= er32(ICR);
880
881         return IRQ_HANDLED;
882 }
883
884 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
885 {
886         struct net_device *netdev = adapter->netdev;
887         struct e1000_hw *hw = &adapter->hw;
888         u32 mask;
889         u32 shared_int = 1;
890         u32 irq = adapter->pdev->irq;
891         int i;
892         int ret_val = 0;
893         int int_mode = E1000E_INT_MODE_LEGACY;
894
895         *data = 0;
896
897         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
898         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
899                 int_mode = adapter->int_mode;
900                 e1000e_reset_interrupt_capability(adapter);
901                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
902                 e1000e_set_interrupt_capability(adapter);
903         }
904         /* Hook up test interrupt handler just for this test */
905         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
906                          netdev)) {
907                 shared_int = 0;
908         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
909                  netdev->name, netdev)) {
910                 *data = 1;
911                 ret_val = -1;
912                 goto out;
913         }
914         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
915
916         /* Disable all the interrupts */
917         ew32(IMC, 0xFFFFFFFF);
918         msleep(10);
919
920         /* Test each interrupt */
921         for (i = 0; i < 10; i++) {
922                 /* Interrupt to test */
923                 mask = 1 << i;
924
925                 if (adapter->flags & FLAG_IS_ICH) {
926                         switch (mask) {
927                         case E1000_ICR_RXSEQ:
928                                 continue;
929                         case 0x00000100:
930                                 if (adapter->hw.mac.type == e1000_ich8lan ||
931                                     adapter->hw.mac.type == e1000_ich9lan)
932                                         continue;
933                                 break;
934                         default:
935                                 break;
936                         }
937                 }
938
939                 if (!shared_int) {
940                         /*
941                          * Disable the interrupt to be reported in
942                          * the cause register and then force the same
943                          * interrupt and see if one gets posted.  If
944                          * an interrupt was posted to the bus, the
945                          * test failed.
946                          */
947                         adapter->test_icr = 0;
948                         ew32(IMC, mask);
949                         ew32(ICS, mask);
950                         msleep(10);
951
952                         if (adapter->test_icr & mask) {
953                                 *data = 3;
954                                 break;
955                         }
956                 }
957
958                 /*
959                  * Enable the interrupt to be reported in
960                  * the cause register and then force the same
961                  * interrupt and see if one gets posted.  If
962                  * an interrupt was not posted to the bus, the
963                  * test failed.
964                  */
965                 adapter->test_icr = 0;
966                 ew32(IMS, mask);
967                 ew32(ICS, mask);
968                 msleep(10);
969
970                 if (!(adapter->test_icr & mask)) {
971                         *data = 4;
972                         break;
973                 }
974
975                 if (!shared_int) {
976                         /*
977                          * Disable the other interrupts to be reported in
978                          * the cause register and then force the other
979                          * interrupts and see if any get posted.  If
980                          * an interrupt was posted to the bus, the
981                          * test failed.
982                          */
983                         adapter->test_icr = 0;
984                         ew32(IMC, ~mask & 0x00007FFF);
985                         ew32(ICS, ~mask & 0x00007FFF);
986                         msleep(10);
987
988                         if (adapter->test_icr) {
989                                 *data = 5;
990                                 break;
991                         }
992                 }
993         }
994
995         /* Disable all the interrupts */
996         ew32(IMC, 0xFFFFFFFF);
997         msleep(10);
998
999         /* Unhook test interrupt handler */
1000         free_irq(irq, netdev);
1001
1002 out:
1003         if (int_mode == E1000E_INT_MODE_MSIX) {
1004                 e1000e_reset_interrupt_capability(adapter);
1005                 adapter->int_mode = int_mode;
1006                 e1000e_set_interrupt_capability(adapter);
1007         }
1008
1009         return ret_val;
1010 }
1011
1012 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1013 {
1014         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1015         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1016         struct pci_dev *pdev = adapter->pdev;
1017         int i;
1018
1019         if (tx_ring->desc && tx_ring->buffer_info) {
1020                 for (i = 0; i < tx_ring->count; i++) {
1021                         if (tx_ring->buffer_info[i].dma)
1022                                 pci_unmap_single(pdev,
1023                                         tx_ring->buffer_info[i].dma,
1024                                         tx_ring->buffer_info[i].length,
1025                                         PCI_DMA_TODEVICE);
1026                         if (tx_ring->buffer_info[i].skb)
1027                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1028                 }
1029         }
1030
1031         if (rx_ring->desc && rx_ring->buffer_info) {
1032                 for (i = 0; i < rx_ring->count; i++) {
1033                         if (rx_ring->buffer_info[i].dma)
1034                                 pci_unmap_single(pdev,
1035                                         rx_ring->buffer_info[i].dma,
1036                                         2048, PCI_DMA_FROMDEVICE);
1037                         if (rx_ring->buffer_info[i].skb)
1038                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1039                 }
1040         }
1041
1042         if (tx_ring->desc) {
1043                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1044                                   tx_ring->dma);
1045                 tx_ring->desc = NULL;
1046         }
1047         if (rx_ring->desc) {
1048                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1049                                   rx_ring->dma);
1050                 rx_ring->desc = NULL;
1051         }
1052
1053         kfree(tx_ring->buffer_info);
1054         tx_ring->buffer_info = NULL;
1055         kfree(rx_ring->buffer_info);
1056         rx_ring->buffer_info = NULL;
1057 }
1058
1059 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1060 {
1061         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1062         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1063         struct pci_dev *pdev = adapter->pdev;
1064         struct e1000_hw *hw = &adapter->hw;
1065         u32 rctl;
1066         int i;
1067         int ret_val;
1068
1069         /* Setup Tx descriptor ring and Tx buffers */
1070
1071         if (!tx_ring->count)
1072                 tx_ring->count = E1000_DEFAULT_TXD;
1073
1074         tx_ring->buffer_info = kcalloc(tx_ring->count,
1075                                        sizeof(struct e1000_buffer),
1076                                        GFP_KERNEL);
1077         if (!(tx_ring->buffer_info)) {
1078                 ret_val = 1;
1079                 goto err_nomem;
1080         }
1081
1082         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1083         tx_ring->size = ALIGN(tx_ring->size, 4096);
1084         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1085                                            &tx_ring->dma, GFP_KERNEL);
1086         if (!tx_ring->desc) {
1087                 ret_val = 2;
1088                 goto err_nomem;
1089         }
1090         tx_ring->next_to_use = 0;
1091         tx_ring->next_to_clean = 0;
1092
1093         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1094         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1095         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1096         ew32(TDH, 0);
1097         ew32(TDT, 0);
1098         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1099              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1100              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1101
1102         for (i = 0; i < tx_ring->count; i++) {
1103                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1104                 struct sk_buff *skb;
1105                 unsigned int skb_size = 1024;
1106
1107                 skb = alloc_skb(skb_size, GFP_KERNEL);
1108                 if (!skb) {
1109                         ret_val = 3;
1110                         goto err_nomem;
1111                 }
1112                 skb_put(skb, skb_size);
1113                 tx_ring->buffer_info[i].skb = skb;
1114                 tx_ring->buffer_info[i].length = skb->len;
1115                 tx_ring->buffer_info[i].dma =
1116                         pci_map_single(pdev, skb->data, skb->len,
1117                                        PCI_DMA_TODEVICE);
1118                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1119                         ret_val = 4;
1120                         goto err_nomem;
1121                 }
1122                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1123                 tx_desc->lower.data = cpu_to_le32(skb->len);
1124                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1125                                                    E1000_TXD_CMD_IFCS |
1126                                                    E1000_TXD_CMD_RS);
1127                 tx_desc->upper.data = 0;
1128         }
1129
1130         /* Setup Rx descriptor ring and Rx buffers */
1131
1132         if (!rx_ring->count)
1133                 rx_ring->count = E1000_DEFAULT_RXD;
1134
1135         rx_ring->buffer_info = kcalloc(rx_ring->count,
1136                                        sizeof(struct e1000_buffer),
1137                                        GFP_KERNEL);
1138         if (!(rx_ring->buffer_info)) {
1139                 ret_val = 5;
1140                 goto err_nomem;
1141         }
1142
1143         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1144         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1145                                            &rx_ring->dma, GFP_KERNEL);
1146         if (!rx_ring->desc) {
1147                 ret_val = 6;
1148                 goto err_nomem;
1149         }
1150         rx_ring->next_to_use = 0;
1151         rx_ring->next_to_clean = 0;
1152
1153         rctl = er32(RCTL);
1154         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1155         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1156         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1157         ew32(RDLEN, rx_ring->size);
1158         ew32(RDH, 0);
1159         ew32(RDT, 0);
1160         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1161                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1162                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1163                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1164                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1165         ew32(RCTL, rctl);
1166
1167         for (i = 0; i < rx_ring->count; i++) {
1168                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1169                 struct sk_buff *skb;
1170
1171                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1172                 if (!skb) {
1173                         ret_val = 7;
1174                         goto err_nomem;
1175                 }
1176                 skb_reserve(skb, NET_IP_ALIGN);
1177                 rx_ring->buffer_info[i].skb = skb;
1178                 rx_ring->buffer_info[i].dma =
1179                         pci_map_single(pdev, skb->data, 2048,
1180                                        PCI_DMA_FROMDEVICE);
1181                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1182                         ret_val = 8;
1183                         goto err_nomem;
1184                 }
1185                 rx_desc->buffer_addr =
1186                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1187                 memset(skb->data, 0x00, skb->len);
1188         }
1189
1190         return 0;
1191
1192 err_nomem:
1193         e1000_free_desc_rings(adapter);
1194         return ret_val;
1195 }
1196
1197 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1198 {
1199         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200         e1e_wphy(&adapter->hw, 29, 0x001F);
1201         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1202         e1e_wphy(&adapter->hw, 29, 0x001A);
1203         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1204 }
1205
1206 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1207 {
1208         struct e1000_hw *hw = &adapter->hw;
1209         u32 ctrl_reg = 0;
1210         u32 stat_reg = 0;
1211         u16 phy_reg = 0;
1212
1213         hw->mac.autoneg = 0;
1214
1215         if (hw->phy.type == e1000_phy_m88) {
1216                 /* Auto-MDI/MDIX Off */
1217                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1218                 /* reset to update Auto-MDI/MDIX */
1219                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1220                 /* autoneg off */
1221                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1222         } else if (hw->phy.type == e1000_phy_gg82563)
1223                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1224
1225         ctrl_reg = er32(CTRL);
1226
1227         switch (hw->phy.type) {
1228         case e1000_phy_ife:
1229                 /* force 100, set loopback */
1230                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1231
1232                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1233                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1234                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1235                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1236                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1237                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1238                 break;
1239         case e1000_phy_bm:
1240                 /* Set Default MAC Interface speed to 1GB */
1241                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1242                 phy_reg &= ~0x0007;
1243                 phy_reg |= 0x006;
1244                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1245                 /* Assert SW reset for above settings to take effect */
1246                 e1000e_commit_phy(hw);
1247                 mdelay(1);
1248                 /* Force Full Duplex */
1249                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1250                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1251                 /* Set Link Up (in force link) */
1252                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1253                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1254                 /* Force Link */
1255                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1256                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1257                 /* Set Early Link Enable */
1258                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1259                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1260                 /* fall through */
1261         default:
1262                 /* force 1000, set loopback */
1263                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1264                 mdelay(250);
1265
1266                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1267                 ctrl_reg = er32(CTRL);
1268                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1269                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1270                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1271                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1272                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1273
1274                 if (adapter->flags & FLAG_IS_ICH)
1275                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1276         }
1277
1278         if (hw->phy.media_type == e1000_media_type_copper &&
1279             hw->phy.type == e1000_phy_m88) {
1280                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1281         } else {
1282                 /*
1283                  * Set the ILOS bit on the fiber Nic if half duplex link is
1284                  * detected.
1285                  */
1286                 stat_reg = er32(STATUS);
1287                 if ((stat_reg & E1000_STATUS_FD) == 0)
1288                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1289         }
1290
1291         ew32(CTRL, ctrl_reg);
1292
1293         /*
1294          * Disable the receiver on the PHY so when a cable is plugged in, the
1295          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1296          */
1297         if (hw->phy.type == e1000_phy_m88)
1298                 e1000_phy_disable_receiver(adapter);
1299
1300         udelay(500);
1301
1302         return 0;
1303 }
1304
1305 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1306 {
1307         struct e1000_hw *hw = &adapter->hw;
1308         u32 ctrl = er32(CTRL);
1309         int link = 0;
1310
1311         /* special requirements for 82571/82572 fiber adapters */
1312
1313         /*
1314          * jump through hoops to make sure link is up because serdes
1315          * link is hardwired up
1316          */
1317         ctrl |= E1000_CTRL_SLU;
1318         ew32(CTRL, ctrl);
1319
1320         /* disable autoneg */
1321         ctrl = er32(TXCW);
1322         ctrl &= ~(1 << 31);
1323         ew32(TXCW, ctrl);
1324
1325         link = (er32(STATUS) & E1000_STATUS_LU);
1326
1327         if (!link) {
1328                 /* set invert loss of signal */
1329                 ctrl = er32(CTRL);
1330                 ctrl |= E1000_CTRL_ILOS;
1331                 ew32(CTRL, ctrl);
1332         }
1333
1334         /*
1335          * special write to serdes control register to enable SerDes analog
1336          * loopback
1337          */
1338 #define E1000_SERDES_LB_ON 0x410
1339         ew32(SCTL, E1000_SERDES_LB_ON);
1340         msleep(10);
1341
1342         return 0;
1343 }
1344
1345 /* only call this for fiber/serdes connections to es2lan */
1346 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1347 {
1348         struct e1000_hw *hw = &adapter->hw;
1349         u32 ctrlext = er32(CTRL_EXT);
1350         u32 ctrl = er32(CTRL);
1351
1352         /*
1353          * save CTRL_EXT to restore later, reuse an empty variable (unused
1354          * on mac_type 80003es2lan)
1355          */
1356         adapter->tx_fifo_head = ctrlext;
1357
1358         /* clear the serdes mode bits, putting the device into mac loopback */
1359         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1360         ew32(CTRL_EXT, ctrlext);
1361
1362         /* force speed to 1000/FD, link up */
1363         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1364         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1365                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1366         ew32(CTRL, ctrl);
1367
1368         /* set mac loopback */
1369         ctrl = er32(RCTL);
1370         ctrl |= E1000_RCTL_LBM_MAC;
1371         ew32(RCTL, ctrl);
1372
1373         /* set testing mode parameters (no need to reset later) */
1374 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1375 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1376         ew32(KMRNCTRLSTA,
1377              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1378
1379         return 0;
1380 }
1381
1382 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385         u32 rctl;
1386
1387         if (hw->phy.media_type == e1000_media_type_fiber ||
1388             hw->phy.media_type == e1000_media_type_internal_serdes) {
1389                 switch (hw->mac.type) {
1390                 case e1000_80003es2lan:
1391                         return e1000_set_es2lan_mac_loopback(adapter);
1392                         break;
1393                 case e1000_82571:
1394                 case e1000_82572:
1395                         return e1000_set_82571_fiber_loopback(adapter);
1396                         break;
1397                 default:
1398                         rctl = er32(RCTL);
1399                         rctl |= E1000_RCTL_LBM_TCVR;
1400                         ew32(RCTL, rctl);
1401                         return 0;
1402                 }
1403         } else if (hw->phy.media_type == e1000_media_type_copper) {
1404                 return e1000_integrated_phy_loopback(adapter);
1405         }
1406
1407         return 7;
1408 }
1409
1410 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1411 {
1412         struct e1000_hw *hw = &adapter->hw;
1413         u32 rctl;
1414         u16 phy_reg;
1415
1416         rctl = er32(RCTL);
1417         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1418         ew32(RCTL, rctl);
1419
1420         switch (hw->mac.type) {
1421         case e1000_80003es2lan:
1422                 if (hw->phy.media_type == e1000_media_type_fiber ||
1423                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1424                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1425                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1426                         adapter->tx_fifo_head = 0;
1427                 }
1428                 /* fall through */
1429         case e1000_82571:
1430         case e1000_82572:
1431                 if (hw->phy.media_type == e1000_media_type_fiber ||
1432                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1433 #define E1000_SERDES_LB_OFF 0x400
1434                         ew32(SCTL, E1000_SERDES_LB_OFF);
1435                         msleep(10);
1436                         break;
1437                 }
1438                 /* Fall Through */
1439         default:
1440                 hw->mac.autoneg = 1;
1441                 if (hw->phy.type == e1000_phy_gg82563)
1442                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1443                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1444                 if (phy_reg & MII_CR_LOOPBACK) {
1445                         phy_reg &= ~MII_CR_LOOPBACK;
1446                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1447                         e1000e_commit_phy(hw);
1448                 }
1449                 break;
1450         }
1451 }
1452
1453 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1454                                       unsigned int frame_size)
1455 {
1456         memset(skb->data, 0xFF, frame_size);
1457         frame_size &= ~1;
1458         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1459         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1460         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1461 }
1462
1463 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1464                                     unsigned int frame_size)
1465 {
1466         frame_size &= ~1;
1467         if (*(skb->data + 3) == 0xFF)
1468                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1469                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1470                         return 0;
1471         return 13;
1472 }
1473
1474 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1475 {
1476         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1477         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1478         struct pci_dev *pdev = adapter->pdev;
1479         struct e1000_hw *hw = &adapter->hw;
1480         int i, j, k, l;
1481         int lc;
1482         int good_cnt;
1483         int ret_val = 0;
1484         unsigned long time;
1485
1486         ew32(RDT, rx_ring->count - 1);
1487
1488         /*
1489          * Calculate the loop count based on the largest descriptor ring
1490          * The idea is to wrap the largest ring a number of times using 64
1491          * send/receive pairs during each loop
1492          */
1493
1494         if (rx_ring->count <= tx_ring->count)
1495                 lc = ((tx_ring->count / 64) * 2) + 1;
1496         else
1497                 lc = ((rx_ring->count / 64) * 2) + 1;
1498
1499         k = 0;
1500         l = 0;
1501         for (j = 0; j <= lc; j++) { /* loop count loop */
1502                 for (i = 0; i < 64; i++) { /* send the packets */
1503                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1504                                                   1024);
1505                         pci_dma_sync_single_for_device(pdev,
1506                                         tx_ring->buffer_info[k].dma,
1507                                         tx_ring->buffer_info[k].length,
1508                                         PCI_DMA_TODEVICE);
1509                         k++;
1510                         if (k == tx_ring->count)
1511                                 k = 0;
1512                 }
1513                 ew32(TDT, k);
1514                 msleep(200);
1515                 time = jiffies; /* set the start time for the receive */
1516                 good_cnt = 0;
1517                 do { /* receive the sent packets */
1518                         pci_dma_sync_single_for_cpu(pdev,
1519                                         rx_ring->buffer_info[l].dma, 2048,
1520                                         PCI_DMA_FROMDEVICE);
1521
1522                         ret_val = e1000_check_lbtest_frame(
1523                                         rx_ring->buffer_info[l].skb, 1024);
1524                         if (!ret_val)
1525                                 good_cnt++;
1526                         l++;
1527                         if (l == rx_ring->count)
1528                                 l = 0;
1529                         /*
1530                          * time + 20 msecs (200 msecs on 2.4) is more than
1531                          * enough time to complete the receives, if it's
1532                          * exceeded, break and error off
1533                          */
1534                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1535                 if (good_cnt != 64) {
1536                         ret_val = 13; /* ret_val is the same as mis-compare */
1537                         break;
1538                 }
1539                 if (jiffies >= (time + 20)) {
1540                         ret_val = 14; /* error code for time out error */
1541                         break;
1542                 }
1543         } /* end loop count loop */
1544         return ret_val;
1545 }
1546
1547 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1548 {
1549         /*
1550          * PHY loopback cannot be performed if SoL/IDER
1551          * sessions are active
1552          */
1553         if (e1000_check_reset_block(&adapter->hw)) {
1554                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1555                 *data = 0;
1556                 goto out;
1557         }
1558
1559         *data = e1000_setup_desc_rings(adapter);
1560         if (*data)
1561                 goto out;
1562
1563         *data = e1000_setup_loopback_test(adapter);
1564         if (*data)
1565                 goto err_loopback;
1566
1567         *data = e1000_run_loopback_test(adapter);
1568         e1000_loopback_cleanup(adapter);
1569
1570 err_loopback:
1571         e1000_free_desc_rings(adapter);
1572 out:
1573         return *data;
1574 }
1575
1576 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1577 {
1578         struct e1000_hw *hw = &adapter->hw;
1579
1580         *data = 0;
1581         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1582                 int i = 0;
1583                 hw->mac.serdes_has_link = 0;
1584
1585                 /*
1586                  * On some blade server designs, link establishment
1587                  * could take as long as 2-3 minutes
1588                  */
1589                 do {
1590                         hw->mac.ops.check_for_link(hw);
1591                         if (hw->mac.serdes_has_link)
1592                                 return *data;
1593                         msleep(20);
1594                 } while (i++ < 3750);
1595
1596                 *data = 1;
1597         } else {
1598                 hw->mac.ops.check_for_link(hw);
1599                 if (hw->mac.autoneg)
1600                         msleep(4000);
1601
1602                 if (!(er32(STATUS) &
1603                       E1000_STATUS_LU))
1604                         *data = 1;
1605         }
1606         return *data;
1607 }
1608
1609 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1610 {
1611         switch (sset) {
1612         case ETH_SS_TEST:
1613                 return E1000_TEST_LEN;
1614         case ETH_SS_STATS:
1615                 return E1000_STATS_LEN;
1616         default:
1617                 return -EOPNOTSUPP;
1618         }
1619 }
1620
1621 static void e1000_diag_test(struct net_device *netdev,
1622                             struct ethtool_test *eth_test, u64 *data)
1623 {
1624         struct e1000_adapter *adapter = netdev_priv(netdev);
1625         u16 autoneg_advertised;
1626         u8 forced_speed_duplex;
1627         u8 autoneg;
1628         bool if_running = netif_running(netdev);
1629
1630         set_bit(__E1000_TESTING, &adapter->state);
1631         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1632                 /* Offline tests */
1633
1634                 /* save speed, duplex, autoneg settings */
1635                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1636                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1637                 autoneg = adapter->hw.mac.autoneg;
1638
1639                 e_info("offline testing starting\n");
1640
1641                 /*
1642                  * Link test performed before hardware reset so autoneg doesn't
1643                  * interfere with test result
1644                  */
1645                 if (e1000_link_test(adapter, &data[4]))
1646                         eth_test->flags |= ETH_TEST_FL_FAILED;
1647
1648                 if (if_running)
1649                         /* indicate we're in test mode */
1650                         dev_close(netdev);
1651                 else
1652                         e1000e_reset(adapter);
1653
1654                 if (e1000_reg_test(adapter, &data[0]))
1655                         eth_test->flags |= ETH_TEST_FL_FAILED;
1656
1657                 e1000e_reset(adapter);
1658                 if (e1000_eeprom_test(adapter, &data[1]))
1659                         eth_test->flags |= ETH_TEST_FL_FAILED;
1660
1661                 e1000e_reset(adapter);
1662                 if (e1000_intr_test(adapter, &data[2]))
1663                         eth_test->flags |= ETH_TEST_FL_FAILED;
1664
1665                 e1000e_reset(adapter);
1666                 /* make sure the phy is powered up */
1667                 e1000e_power_up_phy(adapter);
1668                 if (e1000_loopback_test(adapter, &data[3]))
1669                         eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671                 /* restore speed, duplex, autoneg settings */
1672                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1673                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1674                 adapter->hw.mac.autoneg = autoneg;
1675
1676                 /* force this routine to wait until autoneg complete/timeout */
1677                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1678                 e1000e_reset(adapter);
1679                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1680
1681                 clear_bit(__E1000_TESTING, &adapter->state);
1682                 if (if_running)
1683                         dev_open(netdev);
1684         } else {
1685                 e_info("online testing starting\n");
1686                 /* Online tests */
1687                 if (e1000_link_test(adapter, &data[4]))
1688                         eth_test->flags |= ETH_TEST_FL_FAILED;
1689
1690                 /* Online tests aren't run; pass by default */
1691                 data[0] = 0;
1692                 data[1] = 0;
1693                 data[2] = 0;
1694                 data[3] = 0;
1695
1696                 clear_bit(__E1000_TESTING, &adapter->state);
1697         }
1698         msleep_interruptible(4 * 1000);
1699 }
1700
1701 static void e1000_get_wol(struct net_device *netdev,
1702                           struct ethtool_wolinfo *wol)
1703 {
1704         struct e1000_adapter *adapter = netdev_priv(netdev);
1705
1706         wol->supported = 0;
1707         wol->wolopts = 0;
1708
1709         if (!(adapter->flags & FLAG_HAS_WOL))
1710                 return;
1711
1712         wol->supported = WAKE_UCAST | WAKE_MCAST |
1713                          WAKE_BCAST | WAKE_MAGIC |
1714                          WAKE_PHY | WAKE_ARP;
1715
1716         /* apply any specific unsupported masks here */
1717         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1718                 wol->supported &= ~WAKE_UCAST;
1719
1720                 if (adapter->wol & E1000_WUFC_EX)
1721                         e_err("Interface does not support directed (unicast) "
1722                               "frame wake-up packets\n");
1723         }
1724
1725         if (adapter->wol & E1000_WUFC_EX)
1726                 wol->wolopts |= WAKE_UCAST;
1727         if (adapter->wol & E1000_WUFC_MC)
1728                 wol->wolopts |= WAKE_MCAST;
1729         if (adapter->wol & E1000_WUFC_BC)
1730                 wol->wolopts |= WAKE_BCAST;
1731         if (adapter->wol & E1000_WUFC_MAG)
1732                 wol->wolopts |= WAKE_MAGIC;
1733         if (adapter->wol & E1000_WUFC_LNKC)
1734                 wol->wolopts |= WAKE_PHY;
1735         if (adapter->wol & E1000_WUFC_ARP)
1736                 wol->wolopts |= WAKE_ARP;
1737 }
1738
1739 static int e1000_set_wol(struct net_device *netdev,
1740                          struct ethtool_wolinfo *wol)
1741 {
1742         struct e1000_adapter *adapter = netdev_priv(netdev);
1743
1744         if (wol->wolopts & WAKE_MAGICSECURE)
1745                 return -EOPNOTSUPP;
1746
1747         if (!(adapter->flags & FLAG_HAS_WOL))
1748                 return wol->wolopts ? -EOPNOTSUPP : 0;
1749
1750         /* these settings will always override what we currently have */
1751         adapter->wol = 0;
1752
1753         if (wol->wolopts & WAKE_UCAST)
1754                 adapter->wol |= E1000_WUFC_EX;
1755         if (wol->wolopts & WAKE_MCAST)
1756                 adapter->wol |= E1000_WUFC_MC;
1757         if (wol->wolopts & WAKE_BCAST)
1758                 adapter->wol |= E1000_WUFC_BC;
1759         if (wol->wolopts & WAKE_MAGIC)
1760                 adapter->wol |= E1000_WUFC_MAG;
1761         if (wol->wolopts & WAKE_PHY)
1762                 adapter->wol |= E1000_WUFC_LNKC;
1763         if (wol->wolopts & WAKE_ARP)
1764                 adapter->wol |= E1000_WUFC_ARP;
1765
1766         return 0;
1767 }
1768
1769 /* toggle LED 4 times per second = 2 "blinks" per second */
1770 #define E1000_ID_INTERVAL       (HZ/4)
1771
1772 /* bit defines for adapter->led_status */
1773 #define E1000_LED_ON            0
1774
1775 static void e1000_led_blink_callback(unsigned long data)
1776 {
1777         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1778
1779         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1780                 adapter->hw.mac.ops.led_off(&adapter->hw);
1781         else
1782                 adapter->hw.mac.ops.led_on(&adapter->hw);
1783
1784         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1785 }
1786
1787 static int e1000_phys_id(struct net_device *netdev, u32 data)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790         struct e1000_hw *hw = &adapter->hw;
1791
1792         if (!data)
1793                 data = INT_MAX;
1794
1795         if ((hw->phy.type == e1000_phy_ife) ||
1796             (hw->mac.type == e1000_82574)) {
1797                 if (!adapter->blink_timer.function) {
1798                         init_timer(&adapter->blink_timer);
1799                         adapter->blink_timer.function =
1800                                 e1000_led_blink_callback;
1801                         adapter->blink_timer.data = (unsigned long) adapter;
1802                 }
1803                 mod_timer(&adapter->blink_timer, jiffies);
1804                 msleep_interruptible(data * 1000);
1805                 del_timer_sync(&adapter->blink_timer);
1806                 if (hw->phy.type == e1000_phy_ife)
1807                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1808         } else {
1809                 e1000e_blink_led(hw);
1810                 msleep_interruptible(data * 1000);
1811         }
1812
1813         hw->mac.ops.led_off(hw);
1814         clear_bit(E1000_LED_ON, &adapter->led_status);
1815         hw->mac.ops.cleanup_led(hw);
1816
1817         return 0;
1818 }
1819
1820 static int e1000_get_coalesce(struct net_device *netdev,
1821                               struct ethtool_coalesce *ec)
1822 {
1823         struct e1000_adapter *adapter = netdev_priv(netdev);
1824
1825         if (adapter->itr_setting <= 3)
1826                 ec->rx_coalesce_usecs = adapter->itr_setting;
1827         else
1828                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1829
1830         return 0;
1831 }
1832
1833 static int e1000_set_coalesce(struct net_device *netdev,
1834                               struct ethtool_coalesce *ec)
1835 {
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         struct e1000_hw *hw = &adapter->hw;
1838
1839         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1840             ((ec->rx_coalesce_usecs > 3) &&
1841              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1842             (ec->rx_coalesce_usecs == 2))
1843                 return -EINVAL;
1844
1845         if (ec->rx_coalesce_usecs <= 3) {
1846                 adapter->itr = 20000;
1847                 adapter->itr_setting = ec->rx_coalesce_usecs;
1848         } else {
1849                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1850                 adapter->itr_setting = adapter->itr & ~3;
1851         }
1852
1853         if (adapter->itr_setting != 0)
1854                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1855         else
1856                 ew32(ITR, 0);
1857
1858         return 0;
1859 }
1860
1861 static int e1000_nway_reset(struct net_device *netdev)
1862 {
1863         struct e1000_adapter *adapter = netdev_priv(netdev);
1864         if (netif_running(netdev))
1865                 e1000e_reinit_locked(adapter);
1866         return 0;
1867 }
1868
1869 static void e1000_get_ethtool_stats(struct net_device *netdev,
1870                                     struct ethtool_stats *stats,
1871                                     u64 *data)
1872 {
1873         struct e1000_adapter *adapter = netdev_priv(netdev);
1874         int i;
1875
1876         e1000e_update_stats(adapter);
1877         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1878                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1879                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1880                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1881         }
1882 }
1883
1884 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1885                               u8 *data)
1886 {
1887         u8 *p = data;
1888         int i;
1889
1890         switch (stringset) {
1891         case ETH_SS_TEST:
1892                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1893                 break;
1894         case ETH_SS_STATS:
1895                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1896                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1897                                ETH_GSTRING_LEN);
1898                         p += ETH_GSTRING_LEN;
1899                 }
1900                 break;
1901         }
1902 }
1903
1904 static const struct ethtool_ops e1000_ethtool_ops = {
1905         .get_settings           = e1000_get_settings,
1906         .set_settings           = e1000_set_settings,
1907         .get_drvinfo            = e1000_get_drvinfo,
1908         .get_regs_len           = e1000_get_regs_len,
1909         .get_regs               = e1000_get_regs,
1910         .get_wol                = e1000_get_wol,
1911         .set_wol                = e1000_set_wol,
1912         .get_msglevel           = e1000_get_msglevel,
1913         .set_msglevel           = e1000_set_msglevel,
1914         .nway_reset             = e1000_nway_reset,
1915         .get_link               = e1000_get_link,
1916         .get_eeprom_len         = e1000_get_eeprom_len,
1917         .get_eeprom             = e1000_get_eeprom,
1918         .set_eeprom             = e1000_set_eeprom,
1919         .get_ringparam          = e1000_get_ringparam,
1920         .set_ringparam          = e1000_set_ringparam,
1921         .get_pauseparam         = e1000_get_pauseparam,
1922         .set_pauseparam         = e1000_set_pauseparam,
1923         .get_rx_csum            = e1000_get_rx_csum,
1924         .set_rx_csum            = e1000_set_rx_csum,
1925         .get_tx_csum            = e1000_get_tx_csum,
1926         .set_tx_csum            = e1000_set_tx_csum,
1927         .get_sg                 = ethtool_op_get_sg,
1928         .set_sg                 = ethtool_op_set_sg,
1929         .get_tso                = ethtool_op_get_tso,
1930         .set_tso                = e1000_set_tso,
1931         .self_test              = e1000_diag_test,
1932         .get_strings            = e1000_get_strings,
1933         .phys_id                = e1000_phys_id,
1934         .get_ethtool_stats      = e1000_get_ethtool_stats,
1935         .get_sset_count         = e1000e_get_sset_count,
1936         .get_coalesce           = e1000_get_coalesce,
1937         .set_coalesce           = e1000_set_coalesce,
1938 };
1939
1940 void e1000e_set_ethtool_ops(struct net_device *netdev)
1941 {
1942         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1943 }