1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_82574] = &e1000_82574_info,
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
62 [board_ich10lan] = &e1000_ich10_info,
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
72 return hw->adapter->netdev->name;
77 * e1000_desc_unused - calculate if we have unused descriptors
79 static int e1000_desc_unused(struct e1000_ring *ring)
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
88 * e1000_receive_skb - helper function to handle Rx indications
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
97 u8 status, __le16 vlan)
99 skb->protocol = eth_type_trans(skb, netdev);
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
105 netif_receive_skb(skb);
107 netdev->last_rx = jiffies;
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
117 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
146 * and then put the value in host order for further stack use.
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
150 skb->ip_summed = CHECKSUM_COMPLETE;
152 adapter->hw_csum_good++;
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
181 skb = netdev_alloc_skb(netdev, bufsz);
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
189 * Make buffer alignment 2 beyond a 16 byte boundary
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
193 skb_reserve(skb, NET_IP_ALIGN);
195 buffer_info->skb = skb;
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
210 if (i == rx_ring->count)
212 buffer_info = &rx_ring->buffer_info[i];
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
218 i = (rx_ring->count - 1);
221 * Force memory writes to complete before letting h/w
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
262 if (!ps_page->page) {
263 adapter->alloc_rx_buff_failed++;
266 ps_page->dma = pci_map_page(pdev,
270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
290 adapter->alloc_rx_buff_failed++;
295 * Make buffer alignment 2 beyond a 16 byte boundary
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
299 skb_reserve(skb, NET_IP_ALIGN);
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
317 if (i == rx_ring->count)
319 buffer_info = &rx_ring->buffer_info[i];
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
327 i = (rx_ring->count - 1);
330 * Force memory writes to complete before letting h/w
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
337 * Hardware increments by 16 bytes, but packet split
338 * descriptors are 32 bytes...so we increment tail
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
348 * @rx_ring: pointer to receive ring structure
349 * @cleaned_count: number of buffers to allocate this pass
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
355 struct net_device *netdev = adapter->netdev;
356 struct pci_dev *pdev = adapter->pdev;
357 struct e1000_rx_desc *rx_desc;
358 struct e1000_ring *rx_ring = adapter->rx_ring;
359 struct e1000_buffer *buffer_info;
362 unsigned int bufsz = 256 -
363 16 /* for skb_reserve */ -
366 i = rx_ring->next_to_use;
367 buffer_info = &rx_ring->buffer_info[i];
369 while (cleaned_count--) {
370 skb = buffer_info->skb;
376 skb = netdev_alloc_skb(netdev, bufsz);
377 if (unlikely(!skb)) {
378 /* Better luck next round */
379 adapter->alloc_rx_buff_failed++;
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
387 skb_reserve(skb, NET_IP_ALIGN);
389 buffer_info->skb = skb;
391 /* allocate a new page if necessary */
392 if (!buffer_info->page) {
393 buffer_info->page = alloc_page(GFP_ATOMIC);
394 if (unlikely(!buffer_info->page)) {
395 adapter->alloc_rx_buff_failed++;
400 if (!buffer_info->dma)
401 buffer_info->dma = pci_map_page(pdev,
402 buffer_info->page, 0,
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
409 if (unlikely(++i == rx_ring->count))
411 buffer_info = &rx_ring->buffer_info[i];
414 if (likely(rx_ring->next_to_use != i)) {
415 rx_ring->next_to_use = i;
416 if (unlikely(i-- == 0))
417 i = (rx_ring->count - 1);
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
424 writel(i, adapter->hw.hw_addr + rx_ring->tail);
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
435 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
436 int *work_done, int work_to_do)
438 struct net_device *netdev = adapter->netdev;
439 struct pci_dev *pdev = adapter->pdev;
440 struct e1000_ring *rx_ring = adapter->rx_ring;
441 struct e1000_rx_desc *rx_desc, *next_rxd;
442 struct e1000_buffer *buffer_info, *next_buffer;
445 int cleaned_count = 0;
447 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
449 i = rx_ring->next_to_clean;
450 rx_desc = E1000_RX_DESC(*rx_ring, i);
451 buffer_info = &rx_ring->buffer_info[i];
453 while (rx_desc->status & E1000_RXD_STAT_DD) {
457 if (*work_done >= work_to_do)
461 status = rx_desc->status;
462 skb = buffer_info->skb;
463 buffer_info->skb = NULL;
465 prefetch(skb->data - NET_IP_ALIGN);
468 if (i == rx_ring->count)
470 next_rxd = E1000_RX_DESC(*rx_ring, i);
473 next_buffer = &rx_ring->buffer_info[i];
477 pci_unmap_single(pdev,
479 adapter->rx_buffer_len,
481 buffer_info->dma = 0;
483 length = le16_to_cpu(rx_desc->length);
485 /* !EOP means multiple descriptors were used to store a single
486 * packet, also make sure the frame isn't just CRC only */
487 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
488 /* All receives must fit into a single buffer */
489 e_dbg("%s: Receive packet consumed multiple buffers\n",
492 buffer_info->skb = skb;
496 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
498 buffer_info->skb = skb;
502 total_rx_bytes += length;
506 * code added for copybreak, this should improve
507 * performance for small packets with large amounts
508 * of reassembly being done in the stack
510 if (length < copybreak) {
511 struct sk_buff *new_skb =
512 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
514 skb_reserve(new_skb, NET_IP_ALIGN);
515 skb_copy_to_linear_data_offset(new_skb,
521 /* save the skb in buffer_info as good */
522 buffer_info->skb = skb;
525 /* else just continue with the old one */
527 /* end copybreak code */
528 skb_put(skb, length);
530 /* Receive Checksum Offload */
531 e1000_rx_checksum(adapter,
533 ((u32)(rx_desc->errors) << 24),
534 le16_to_cpu(rx_desc->csum), skb);
536 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
541 /* return some buffers to hardware, one at a time is too slow */
542 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
543 adapter->alloc_rx_buf(adapter, cleaned_count);
547 /* use prefetched values */
549 buffer_info = next_buffer;
551 rx_ring->next_to_clean = i;
553 cleaned_count = e1000_desc_unused(rx_ring);
555 adapter->alloc_rx_buf(adapter, cleaned_count);
557 adapter->total_rx_bytes += total_rx_bytes;
558 adapter->total_rx_packets += total_rx_packets;
559 adapter->net_stats.rx_bytes += total_rx_bytes;
560 adapter->net_stats.rx_packets += total_rx_packets;
564 static void e1000_put_txbuf(struct e1000_adapter *adapter,
565 struct e1000_buffer *buffer_info)
567 if (buffer_info->dma) {
568 pci_unmap_page(adapter->pdev, buffer_info->dma,
569 buffer_info->length, PCI_DMA_TODEVICE);
570 buffer_info->dma = 0;
572 if (buffer_info->skb) {
573 dev_kfree_skb_any(buffer_info->skb);
574 buffer_info->skb = NULL;
578 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
580 struct e1000_ring *tx_ring = adapter->tx_ring;
581 unsigned int i = tx_ring->next_to_clean;
582 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
583 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
585 /* detected Tx unit hang */
586 e_err("Detected Tx Unit Hang:\n"
589 " next_to_use <%x>\n"
590 " next_to_clean <%x>\n"
591 "buffer_info[next_to_clean]:\n"
592 " time_stamp <%lx>\n"
593 " next_to_watch <%x>\n"
595 " next_to_watch.status <%x>\n",
596 readl(adapter->hw.hw_addr + tx_ring->head),
597 readl(adapter->hw.hw_addr + tx_ring->tail),
598 tx_ring->next_to_use,
599 tx_ring->next_to_clean,
600 tx_ring->buffer_info[eop].time_stamp,
603 eop_desc->upper.fields.status);
607 * e1000_clean_tx_irq - Reclaim resources after transmit completes
608 * @adapter: board private structure
610 * the return value indicates whether actual cleaning was done, there
611 * is no guarantee that everything was cleaned
613 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
615 struct net_device *netdev = adapter->netdev;
616 struct e1000_hw *hw = &adapter->hw;
617 struct e1000_ring *tx_ring = adapter->tx_ring;
618 struct e1000_tx_desc *tx_desc, *eop_desc;
619 struct e1000_buffer *buffer_info;
621 unsigned int count = 0;
623 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
625 i = tx_ring->next_to_clean;
626 eop = tx_ring->buffer_info[i].next_to_watch;
627 eop_desc = E1000_TX_DESC(*tx_ring, eop);
629 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
630 for (cleaned = 0; !cleaned; ) {
631 tx_desc = E1000_TX_DESC(*tx_ring, i);
632 buffer_info = &tx_ring->buffer_info[i];
633 cleaned = (i == eop);
636 struct sk_buff *skb = buffer_info->skb;
637 unsigned int segs, bytecount;
638 segs = skb_shinfo(skb)->gso_segs ?: 1;
639 /* multiply data chunks by size of headers */
640 bytecount = ((segs - 1) * skb_headlen(skb)) +
642 total_tx_packets += segs;
643 total_tx_bytes += bytecount;
646 e1000_put_txbuf(adapter, buffer_info);
647 tx_desc->upper.data = 0;
650 if (i == tx_ring->count)
654 eop = tx_ring->buffer_info[i].next_to_watch;
655 eop_desc = E1000_TX_DESC(*tx_ring, eop);
656 #define E1000_TX_WEIGHT 64
657 /* weight of a sort for tx, to avoid endless transmit cleanup */
658 if (count++ == E1000_TX_WEIGHT)
662 tx_ring->next_to_clean = i;
664 #define TX_WAKE_THRESHOLD 32
665 if (cleaned && netif_carrier_ok(netdev) &&
666 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
667 /* Make sure that anybody stopping the queue after this
668 * sees the new next_to_clean.
672 if (netif_queue_stopped(netdev) &&
673 !(test_bit(__E1000_DOWN, &adapter->state))) {
674 netif_wake_queue(netdev);
675 ++adapter->restart_queue;
679 if (adapter->detect_tx_hung) {
681 * Detect a transmit hang in hardware, this serializes the
682 * check with the clearing of time_stamp and movement of i
684 adapter->detect_tx_hung = 0;
685 if (tx_ring->buffer_info[eop].dma &&
686 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
687 + (adapter->tx_timeout_factor * HZ))
688 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
689 e1000_print_tx_hang(adapter);
690 netif_stop_queue(netdev);
693 adapter->total_tx_bytes += total_tx_bytes;
694 adapter->total_tx_packets += total_tx_packets;
695 adapter->net_stats.tx_bytes += total_tx_bytes;
696 adapter->net_stats.tx_packets += total_tx_packets;
701 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
702 * @adapter: board private structure
704 * the return value indicates whether actual cleaning was done, there
705 * is no guarantee that everything was cleaned
707 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
708 int *work_done, int work_to_do)
710 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
711 struct net_device *netdev = adapter->netdev;
712 struct pci_dev *pdev = adapter->pdev;
713 struct e1000_ring *rx_ring = adapter->rx_ring;
714 struct e1000_buffer *buffer_info, *next_buffer;
715 struct e1000_ps_page *ps_page;
719 int cleaned_count = 0;
721 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
723 i = rx_ring->next_to_clean;
724 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
725 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
726 buffer_info = &rx_ring->buffer_info[i];
728 while (staterr & E1000_RXD_STAT_DD) {
729 if (*work_done >= work_to_do)
732 skb = buffer_info->skb;
734 /* in the packet split case this is header only */
735 prefetch(skb->data - NET_IP_ALIGN);
738 if (i == rx_ring->count)
740 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
743 next_buffer = &rx_ring->buffer_info[i];
747 pci_unmap_single(pdev, buffer_info->dma,
748 adapter->rx_ps_bsize0,
750 buffer_info->dma = 0;
752 if (!(staterr & E1000_RXD_STAT_EOP)) {
753 e_dbg("%s: Packet Split buffers didn't pick up the "
754 "full packet\n", netdev->name);
755 dev_kfree_skb_irq(skb);
759 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
760 dev_kfree_skb_irq(skb);
764 length = le16_to_cpu(rx_desc->wb.middle.length0);
767 e_dbg("%s: Last part of the packet spanning multiple "
768 "descriptors\n", netdev->name);
769 dev_kfree_skb_irq(skb);
774 skb_put(skb, length);
778 * this looks ugly, but it seems compiler issues make it
779 * more efficient than reusing j
781 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
784 * page alloc/put takes too long and effects small packet
785 * throughput, so unsplit small packets and save the alloc/put
786 * only valid in softirq (napi) context to call kmap_*
788 if (l1 && (l1 <= copybreak) &&
789 ((length + l1) <= adapter->rx_ps_bsize0)) {
792 ps_page = &buffer_info->ps_pages[0];
795 * there is no documentation about how to call
796 * kmap_atomic, so we can't hold the mapping
799 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
801 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
802 memcpy(skb_tail_pointer(skb), vaddr, l1);
803 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
804 pci_dma_sync_single_for_device(pdev, ps_page->dma,
805 PAGE_SIZE, PCI_DMA_FROMDEVICE);
812 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
813 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
817 ps_page = &buffer_info->ps_pages[j];
818 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
821 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
822 ps_page->page = NULL;
824 skb->data_len += length;
825 skb->truesize += length;
829 total_rx_bytes += skb->len;
832 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
833 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
835 if (rx_desc->wb.upper.header_status &
836 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
837 adapter->rx_hdr_split++;
839 e1000_receive_skb(adapter, netdev, skb,
840 staterr, rx_desc->wb.middle.vlan);
843 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
844 buffer_info->skb = NULL;
846 /* return some buffers to hardware, one at a time is too slow */
847 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
848 adapter->alloc_rx_buf(adapter, cleaned_count);
852 /* use prefetched values */
854 buffer_info = next_buffer;
856 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
858 rx_ring->next_to_clean = i;
860 cleaned_count = e1000_desc_unused(rx_ring);
862 adapter->alloc_rx_buf(adapter, cleaned_count);
864 adapter->total_rx_bytes += total_rx_bytes;
865 adapter->total_rx_packets += total_rx_packets;
866 adapter->net_stats.rx_bytes += total_rx_bytes;
867 adapter->net_stats.rx_packets += total_rx_packets;
872 * e1000_consume_page - helper function
874 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
879 skb->data_len += length;
880 skb->truesize += length;
884 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
885 * @adapter: board private structure
887 * the return value indicates whether actual cleaning was done, there
888 * is no guarantee that everything was cleaned
891 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
892 int *work_done, int work_to_do)
894 struct net_device *netdev = adapter->netdev;
895 struct pci_dev *pdev = adapter->pdev;
896 struct e1000_ring *rx_ring = adapter->rx_ring;
897 struct e1000_rx_desc *rx_desc, *next_rxd;
898 struct e1000_buffer *buffer_info, *next_buffer;
901 int cleaned_count = 0;
902 bool cleaned = false;
903 unsigned int total_rx_bytes=0, total_rx_packets=0;
905 i = rx_ring->next_to_clean;
906 rx_desc = E1000_RX_DESC(*rx_ring, i);
907 buffer_info = &rx_ring->buffer_info[i];
909 while (rx_desc->status & E1000_RXD_STAT_DD) {
913 if (*work_done >= work_to_do)
917 status = rx_desc->status;
918 skb = buffer_info->skb;
919 buffer_info->skb = NULL;
922 if (i == rx_ring->count)
924 next_rxd = E1000_RX_DESC(*rx_ring, i);
927 next_buffer = &rx_ring->buffer_info[i];
931 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
933 buffer_info->dma = 0;
935 length = le16_to_cpu(rx_desc->length);
937 /* errors is only valid for DD + EOP descriptors */
938 if (unlikely((status & E1000_RXD_STAT_EOP) &&
939 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
940 /* recycle both page and skb */
941 buffer_info->skb = skb;
942 /* an error means any chain goes out the window
944 if (rx_ring->rx_skb_top)
945 dev_kfree_skb(rx_ring->rx_skb_top);
946 rx_ring->rx_skb_top = NULL;
950 #define rxtop rx_ring->rx_skb_top
951 if (!(status & E1000_RXD_STAT_EOP)) {
952 /* this descriptor is only the beginning (or middle) */
954 /* this is the beginning of a chain */
956 skb_fill_page_desc(rxtop, 0, buffer_info->page,
959 /* this is the middle of a chain */
960 skb_fill_page_desc(rxtop,
961 skb_shinfo(rxtop)->nr_frags,
962 buffer_info->page, 0, length);
963 /* re-use the skb, only consumed the page */
964 buffer_info->skb = skb;
966 e1000_consume_page(buffer_info, rxtop, length);
970 /* end of the chain */
971 skb_fill_page_desc(rxtop,
972 skb_shinfo(rxtop)->nr_frags,
973 buffer_info->page, 0, length);
974 /* re-use the current skb, we only consumed the
976 buffer_info->skb = skb;
979 e1000_consume_page(buffer_info, skb, length);
981 /* no chain, got EOP, this buf is the packet
982 * copybreak to save the put_page/alloc_page */
983 if (length <= copybreak &&
984 skb_tailroom(skb) >= length) {
986 vaddr = kmap_atomic(buffer_info->page,
987 KM_SKB_DATA_SOFTIRQ);
988 memcpy(skb_tail_pointer(skb), vaddr,
991 KM_SKB_DATA_SOFTIRQ);
992 /* re-use the page, so don't erase
993 * buffer_info->page */
994 skb_put(skb, length);
996 skb_fill_page_desc(skb, 0,
997 buffer_info->page, 0,
999 e1000_consume_page(buffer_info, skb,
1005 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1006 e1000_rx_checksum(adapter,
1008 ((u32)(rx_desc->errors) << 24),
1009 le16_to_cpu(rx_desc->csum), skb);
1011 /* probably a little skewed due to removing CRC */
1012 total_rx_bytes += skb->len;
1015 /* eth type trans needs skb->data to point to something */
1016 if (!pskb_may_pull(skb, ETH_HLEN)) {
1017 e_err("pskb_may_pull failed.\n");
1022 e1000_receive_skb(adapter, netdev, skb, status,
1026 rx_desc->status = 0;
1028 /* return some buffers to hardware, one at a time is too slow */
1029 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1030 adapter->alloc_rx_buf(adapter, cleaned_count);
1034 /* use prefetched values */
1036 buffer_info = next_buffer;
1038 rx_ring->next_to_clean = i;
1040 cleaned_count = e1000_desc_unused(rx_ring);
1042 adapter->alloc_rx_buf(adapter, cleaned_count);
1044 adapter->total_rx_bytes += total_rx_bytes;
1045 adapter->total_rx_packets += total_rx_packets;
1046 adapter->net_stats.rx_bytes += total_rx_bytes;
1047 adapter->net_stats.rx_packets += total_rx_packets;
1052 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1053 * @adapter: board private structure
1055 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1057 struct e1000_ring *rx_ring = adapter->rx_ring;
1058 struct e1000_buffer *buffer_info;
1059 struct e1000_ps_page *ps_page;
1060 struct pci_dev *pdev = adapter->pdev;
1063 /* Free all the Rx ring sk_buffs */
1064 for (i = 0; i < rx_ring->count; i++) {
1065 buffer_info = &rx_ring->buffer_info[i];
1066 if (buffer_info->dma) {
1067 if (adapter->clean_rx == e1000_clean_rx_irq)
1068 pci_unmap_single(pdev, buffer_info->dma,
1069 adapter->rx_buffer_len,
1070 PCI_DMA_FROMDEVICE);
1071 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1072 pci_unmap_page(pdev, buffer_info->dma,
1074 PCI_DMA_FROMDEVICE);
1075 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1076 pci_unmap_single(pdev, buffer_info->dma,
1077 adapter->rx_ps_bsize0,
1078 PCI_DMA_FROMDEVICE);
1079 buffer_info->dma = 0;
1082 if (buffer_info->page) {
1083 put_page(buffer_info->page);
1084 buffer_info->page = NULL;
1087 if (buffer_info->skb) {
1088 dev_kfree_skb(buffer_info->skb);
1089 buffer_info->skb = NULL;
1092 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1093 ps_page = &buffer_info->ps_pages[j];
1096 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1097 PCI_DMA_FROMDEVICE);
1099 put_page(ps_page->page);
1100 ps_page->page = NULL;
1104 /* there also may be some cached data from a chained receive */
1105 if (rx_ring->rx_skb_top) {
1106 dev_kfree_skb(rx_ring->rx_skb_top);
1107 rx_ring->rx_skb_top = NULL;
1110 /* Zero out the descriptor ring */
1111 memset(rx_ring->desc, 0, rx_ring->size);
1113 rx_ring->next_to_clean = 0;
1114 rx_ring->next_to_use = 0;
1116 writel(0, adapter->hw.hw_addr + rx_ring->head);
1117 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1121 * e1000_intr_msi - Interrupt Handler
1122 * @irq: interrupt number
1123 * @data: pointer to a network interface device structure
1125 static irqreturn_t e1000_intr_msi(int irq, void *data)
1127 struct net_device *netdev = data;
1128 struct e1000_adapter *adapter = netdev_priv(netdev);
1129 struct e1000_hw *hw = &adapter->hw;
1130 u32 icr = er32(ICR);
1133 * read ICR disables interrupts using IAM
1136 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1137 hw->mac.get_link_status = 1;
1139 * ICH8 workaround-- Call gig speed drop workaround on cable
1140 * disconnect (LSC) before accessing any PHY registers
1142 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1143 (!(er32(STATUS) & E1000_STATUS_LU)))
1144 e1000e_gig_downshift_workaround_ich8lan(hw);
1147 * 80003ES2LAN workaround-- For packet buffer work-around on
1148 * link down event; disable receives here in the ISR and reset
1149 * adapter in watchdog
1151 if (netif_carrier_ok(netdev) &&
1152 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1153 /* disable receives */
1154 u32 rctl = er32(RCTL);
1155 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1156 adapter->flags |= FLAG_RX_RESTART_NOW;
1158 /* guard against interrupt when we're going down */
1159 if (!test_bit(__E1000_DOWN, &adapter->state))
1160 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1163 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1164 adapter->total_tx_bytes = 0;
1165 adapter->total_tx_packets = 0;
1166 adapter->total_rx_bytes = 0;
1167 adapter->total_rx_packets = 0;
1168 __netif_rx_schedule(netdev, &adapter->napi);
1175 * e1000_intr - Interrupt Handler
1176 * @irq: interrupt number
1177 * @data: pointer to a network interface device structure
1179 static irqreturn_t e1000_intr(int irq, void *data)
1181 struct net_device *netdev = data;
1182 struct e1000_adapter *adapter = netdev_priv(netdev);
1183 struct e1000_hw *hw = &adapter->hw;
1184 u32 rctl, icr = er32(ICR);
1187 return IRQ_NONE; /* Not our interrupt */
1190 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1191 * not set, then the adapter didn't send an interrupt
1193 if (!(icr & E1000_ICR_INT_ASSERTED))
1197 * Interrupt Auto-Mask...upon reading ICR,
1198 * interrupts are masked. No need for the
1202 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1203 hw->mac.get_link_status = 1;
1205 * ICH8 workaround-- Call gig speed drop workaround on cable
1206 * disconnect (LSC) before accessing any PHY registers
1208 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1209 (!(er32(STATUS) & E1000_STATUS_LU)))
1210 e1000e_gig_downshift_workaround_ich8lan(hw);
1213 * 80003ES2LAN workaround--
1214 * For packet buffer work-around on link down event;
1215 * disable receives here in the ISR and
1216 * reset adapter in watchdog
1218 if (netif_carrier_ok(netdev) &&
1219 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1220 /* disable receives */
1222 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1223 adapter->flags |= FLAG_RX_RESTART_NOW;
1225 /* guard against interrupt when we're going down */
1226 if (!test_bit(__E1000_DOWN, &adapter->state))
1227 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1230 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1231 adapter->total_tx_bytes = 0;
1232 adapter->total_tx_packets = 0;
1233 adapter->total_rx_bytes = 0;
1234 adapter->total_rx_packets = 0;
1235 __netif_rx_schedule(netdev, &adapter->napi);
1241 static irqreturn_t e1000_msix_other(int irq, void *data)
1243 struct net_device *netdev = data;
1244 struct e1000_adapter *adapter = netdev_priv(netdev);
1245 struct e1000_hw *hw = &adapter->hw;
1246 u32 icr = er32(ICR);
1248 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1249 ew32(IMS, E1000_IMS_OTHER);
1253 if (icr & adapter->eiac_mask)
1254 ew32(ICS, (icr & adapter->eiac_mask));
1256 if (icr & E1000_ICR_OTHER) {
1257 if (!(icr & E1000_ICR_LSC))
1258 goto no_link_interrupt;
1259 hw->mac.get_link_status = 1;
1260 /* guard against interrupt when we're going down */
1261 if (!test_bit(__E1000_DOWN, &adapter->state))
1262 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1266 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1272 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1274 struct net_device *netdev = data;
1275 struct e1000_adapter *adapter = netdev_priv(netdev);
1276 struct e1000_hw *hw = &adapter->hw;
1277 struct e1000_ring *tx_ring = adapter->tx_ring;
1280 adapter->total_tx_bytes = 0;
1281 adapter->total_tx_packets = 0;
1283 if (!e1000_clean_tx_irq(adapter))
1284 /* Ring was not completely cleaned, so fire another interrupt */
1285 ew32(ICS, tx_ring->ims_val);
1290 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1292 struct net_device *netdev = data;
1293 struct e1000_adapter *adapter = netdev_priv(netdev);
1295 /* Write the ITR value calculated at the end of the
1296 * previous interrupt.
1298 if (adapter->rx_ring->set_itr) {
1299 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1300 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1301 adapter->rx_ring->set_itr = 0;
1304 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1305 adapter->total_rx_bytes = 0;
1306 adapter->total_rx_packets = 0;
1307 __netif_rx_schedule(netdev, &adapter->napi);
1313 * e1000_configure_msix - Configure MSI-X hardware
1315 * e1000_configure_msix sets up the hardware to properly
1316 * generate MSI-X interrupts.
1318 static void e1000_configure_msix(struct e1000_adapter *adapter)
1320 struct e1000_hw *hw = &adapter->hw;
1321 struct e1000_ring *rx_ring = adapter->rx_ring;
1322 struct e1000_ring *tx_ring = adapter->tx_ring;
1324 u32 ctrl_ext, ivar = 0;
1326 adapter->eiac_mask = 0;
1328 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1329 if (hw->mac.type == e1000_82574) {
1330 u32 rfctl = er32(RFCTL);
1331 rfctl |= E1000_RFCTL_ACK_DIS;
1335 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1336 /* Configure Rx vector */
1337 rx_ring->ims_val = E1000_IMS_RXQ0;
1338 adapter->eiac_mask |= rx_ring->ims_val;
1339 if (rx_ring->itr_val)
1340 writel(1000000000 / (rx_ring->itr_val * 256),
1341 hw->hw_addr + rx_ring->itr_register);
1343 writel(1, hw->hw_addr + rx_ring->itr_register);
1344 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1346 /* Configure Tx vector */
1347 tx_ring->ims_val = E1000_IMS_TXQ0;
1349 if (tx_ring->itr_val)
1350 writel(1000000000 / (tx_ring->itr_val * 256),
1351 hw->hw_addr + tx_ring->itr_register);
1353 writel(1, hw->hw_addr + tx_ring->itr_register);
1354 adapter->eiac_mask |= tx_ring->ims_val;
1355 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1357 /* set vector for Other Causes, e.g. link changes */
1359 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1360 if (rx_ring->itr_val)
1361 writel(1000000000 / (rx_ring->itr_val * 256),
1362 hw->hw_addr + E1000_EITR_82574(vector));
1364 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1366 /* Cause Tx interrupts on every write back */
1371 /* enable MSI-X PBA support */
1372 ctrl_ext = er32(CTRL_EXT);
1373 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1375 /* Auto-Mask Other interrupts upon ICR read */
1376 #define E1000_EIAC_MASK_82574 0x01F00000
1377 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1378 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1379 ew32(CTRL_EXT, ctrl_ext);
1383 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1385 if (adapter->msix_entries) {
1386 pci_disable_msix(adapter->pdev);
1387 kfree(adapter->msix_entries);
1388 adapter->msix_entries = NULL;
1389 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1390 pci_disable_msi(adapter->pdev);
1391 adapter->flags &= ~FLAG_MSI_ENABLED;
1398 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1400 * Attempt to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
1403 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1409 switch (adapter->int_mode) {
1410 case E1000E_INT_MODE_MSIX:
1411 if (adapter->flags & FLAG_HAS_MSIX) {
1412 numvecs = 3; /* RxQ0, TxQ0 and other */
1413 adapter->msix_entries = kcalloc(numvecs,
1414 sizeof(struct msix_entry),
1416 if (adapter->msix_entries) {
1417 for (i = 0; i < numvecs; i++)
1418 adapter->msix_entries[i].entry = i;
1420 err = pci_enable_msix(adapter->pdev,
1421 adapter->msix_entries,
1426 /* MSI-X failed, so fall through and try MSI */
1427 e_err("Failed to initialize MSI-X interrupts. "
1428 "Falling back to MSI interrupts.\n");
1429 e1000e_reset_interrupt_capability(adapter);
1431 adapter->int_mode = E1000E_INT_MODE_MSI;
1433 case E1000E_INT_MODE_MSI:
1434 if (!pci_enable_msi(adapter->pdev)) {
1435 adapter->flags |= FLAG_MSI_ENABLED;
1437 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1438 e_err("Failed to initialize MSI interrupts. Falling "
1439 "back to legacy interrupts.\n");
1442 case E1000E_INT_MODE_LEGACY:
1443 /* Don't do anything; this is the system default */
1451 * e1000_request_msix - Initialize MSI-X interrupts
1453 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1456 static int e1000_request_msix(struct e1000_adapter *adapter)
1458 struct net_device *netdev = adapter->netdev;
1459 int err = 0, vector = 0;
1461 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1462 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1464 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1465 err = request_irq(adapter->msix_entries[vector].vector,
1466 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1470 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1471 adapter->rx_ring->itr_val = adapter->itr;
1474 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1475 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1477 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1478 err = request_irq(adapter->msix_entries[vector].vector,
1479 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1483 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1484 adapter->tx_ring->itr_val = adapter->itr;
1487 err = request_irq(adapter->msix_entries[vector].vector,
1488 &e1000_msix_other, 0, netdev->name, netdev);
1492 e1000_configure_msix(adapter);
1499 * e1000_request_irq - initialize interrupts
1501 * Attempts to configure interrupts using the best available
1502 * capabilities of the hardware and kernel.
1504 static int e1000_request_irq(struct e1000_adapter *adapter)
1506 struct net_device *netdev = adapter->netdev;
1509 if (adapter->msix_entries) {
1510 err = e1000_request_msix(adapter);
1513 /* fall back to MSI */
1514 e1000e_reset_interrupt_capability(adapter);
1515 adapter->int_mode = E1000E_INT_MODE_MSI;
1516 e1000e_set_interrupt_capability(adapter);
1518 if (adapter->flags & FLAG_MSI_ENABLED) {
1519 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1520 netdev->name, netdev);
1524 /* fall back to legacy interrupt */
1525 e1000e_reset_interrupt_capability(adapter);
1526 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1529 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1530 netdev->name, netdev);
1532 e_err("Unable to allocate interrupt, Error: %d\n", err);
1537 static void e1000_free_irq(struct e1000_adapter *adapter)
1539 struct net_device *netdev = adapter->netdev;
1541 if (adapter->msix_entries) {
1544 free_irq(adapter->msix_entries[vector].vector, netdev);
1547 free_irq(adapter->msix_entries[vector].vector, netdev);
1550 /* Other Causes interrupt vector */
1551 free_irq(adapter->msix_entries[vector].vector, netdev);
1555 free_irq(adapter->pdev->irq, netdev);
1559 * e1000_irq_disable - Mask off interrupt generation on the NIC
1561 static void e1000_irq_disable(struct e1000_adapter *adapter)
1563 struct e1000_hw *hw = &adapter->hw;
1566 if (adapter->msix_entries)
1567 ew32(EIAC_82574, 0);
1569 synchronize_irq(adapter->pdev->irq);
1573 * e1000_irq_enable - Enable default interrupt generation settings
1575 static void e1000_irq_enable(struct e1000_adapter *adapter)
1577 struct e1000_hw *hw = &adapter->hw;
1579 if (adapter->msix_entries) {
1580 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1581 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1583 ew32(IMS, IMS_ENABLE_MASK);
1589 * e1000_get_hw_control - get control of the h/w from f/w
1590 * @adapter: address of board private structure
1592 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1593 * For ASF and Pass Through versions of f/w this means that
1594 * the driver is loaded. For AMT version (only with 82573)
1595 * of the f/w this means that the network i/f is open.
1597 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1599 struct e1000_hw *hw = &adapter->hw;
1603 /* Let firmware know the driver has taken over */
1604 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1606 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1607 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1608 ctrl_ext = er32(CTRL_EXT);
1609 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1614 * e1000_release_hw_control - release control of the h/w to f/w
1615 * @adapter: address of board private structure
1617 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1618 * For ASF and Pass Through versions of f/w this means that the
1619 * driver is no longer loaded. For AMT version (only with 82573) i
1620 * of the f/w this means that the network i/f is closed.
1623 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1625 struct e1000_hw *hw = &adapter->hw;
1629 /* Let firmware taken over control of h/w */
1630 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1632 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1633 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1634 ctrl_ext = er32(CTRL_EXT);
1635 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1640 * @e1000_alloc_ring - allocate memory for a ring structure
1642 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1643 struct e1000_ring *ring)
1645 struct pci_dev *pdev = adapter->pdev;
1647 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1656 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1657 * @adapter: board private structure
1659 * Return 0 on success, negative on failure
1661 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1663 struct e1000_ring *tx_ring = adapter->tx_ring;
1664 int err = -ENOMEM, size;
1666 size = sizeof(struct e1000_buffer) * tx_ring->count;
1667 tx_ring->buffer_info = vmalloc(size);
1668 if (!tx_ring->buffer_info)
1670 memset(tx_ring->buffer_info, 0, size);
1672 /* round up to nearest 4K */
1673 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1674 tx_ring->size = ALIGN(tx_ring->size, 4096);
1676 err = e1000_alloc_ring_dma(adapter, tx_ring);
1680 tx_ring->next_to_use = 0;
1681 tx_ring->next_to_clean = 0;
1682 spin_lock_init(&adapter->tx_queue_lock);
1686 vfree(tx_ring->buffer_info);
1687 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1692 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1693 * @adapter: board private structure
1695 * Returns 0 on success, negative on failure
1697 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1699 struct e1000_ring *rx_ring = adapter->rx_ring;
1700 struct e1000_buffer *buffer_info;
1701 int i, size, desc_len, err = -ENOMEM;
1703 size = sizeof(struct e1000_buffer) * rx_ring->count;
1704 rx_ring->buffer_info = vmalloc(size);
1705 if (!rx_ring->buffer_info)
1707 memset(rx_ring->buffer_info, 0, size);
1709 for (i = 0; i < rx_ring->count; i++) {
1710 buffer_info = &rx_ring->buffer_info[i];
1711 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1712 sizeof(struct e1000_ps_page),
1714 if (!buffer_info->ps_pages)
1718 desc_len = sizeof(union e1000_rx_desc_packet_split);
1720 /* Round up to nearest 4K */
1721 rx_ring->size = rx_ring->count * desc_len;
1722 rx_ring->size = ALIGN(rx_ring->size, 4096);
1724 err = e1000_alloc_ring_dma(adapter, rx_ring);
1728 rx_ring->next_to_clean = 0;
1729 rx_ring->next_to_use = 0;
1730 rx_ring->rx_skb_top = NULL;
1735 for (i = 0; i < rx_ring->count; i++) {
1736 buffer_info = &rx_ring->buffer_info[i];
1737 kfree(buffer_info->ps_pages);
1740 vfree(rx_ring->buffer_info);
1741 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1746 * e1000_clean_tx_ring - Free Tx Buffers
1747 * @adapter: board private structure
1749 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1751 struct e1000_ring *tx_ring = adapter->tx_ring;
1752 struct e1000_buffer *buffer_info;
1756 for (i = 0; i < tx_ring->count; i++) {
1757 buffer_info = &tx_ring->buffer_info[i];
1758 e1000_put_txbuf(adapter, buffer_info);
1761 size = sizeof(struct e1000_buffer) * tx_ring->count;
1762 memset(tx_ring->buffer_info, 0, size);
1764 memset(tx_ring->desc, 0, tx_ring->size);
1766 tx_ring->next_to_use = 0;
1767 tx_ring->next_to_clean = 0;
1769 writel(0, adapter->hw.hw_addr + tx_ring->head);
1770 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1774 * e1000e_free_tx_resources - Free Tx Resources per Queue
1775 * @adapter: board private structure
1777 * Free all transmit software resources
1779 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1781 struct pci_dev *pdev = adapter->pdev;
1782 struct e1000_ring *tx_ring = adapter->tx_ring;
1784 e1000_clean_tx_ring(adapter);
1786 vfree(tx_ring->buffer_info);
1787 tx_ring->buffer_info = NULL;
1789 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1791 tx_ring->desc = NULL;
1795 * e1000e_free_rx_resources - Free Rx Resources
1796 * @adapter: board private structure
1798 * Free all receive software resources
1801 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1803 struct pci_dev *pdev = adapter->pdev;
1804 struct e1000_ring *rx_ring = adapter->rx_ring;
1807 e1000_clean_rx_ring(adapter);
1809 for (i = 0; i < rx_ring->count; i++) {
1810 kfree(rx_ring->buffer_info[i].ps_pages);
1813 vfree(rx_ring->buffer_info);
1814 rx_ring->buffer_info = NULL;
1816 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1818 rx_ring->desc = NULL;
1822 * e1000_update_itr - update the dynamic ITR value based on statistics
1823 * @adapter: pointer to adapter
1824 * @itr_setting: current adapter->itr
1825 * @packets: the number of packets during this measurement interval
1826 * @bytes: the number of bytes during this measurement interval
1828 * Stores a new ITR value based on packets and byte
1829 * counts during the last interrupt. The advantage of per interrupt
1830 * computation is faster updates and more accurate ITR for the current
1831 * traffic pattern. Constants in this function were computed
1832 * based on theoretical maximum wire speed and thresholds were set based
1833 * on testing data as well as attempting to minimize response time
1834 * while increasing bulk throughput. This functionality is controlled
1835 * by the InterruptThrottleRate module parameter.
1837 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1838 u16 itr_setting, int packets,
1841 unsigned int retval = itr_setting;
1844 goto update_itr_done;
1846 switch (itr_setting) {
1847 case lowest_latency:
1848 /* handle TSO and jumbo frames */
1849 if (bytes/packets > 8000)
1850 retval = bulk_latency;
1851 else if ((packets < 5) && (bytes > 512)) {
1852 retval = low_latency;
1855 case low_latency: /* 50 usec aka 20000 ints/s */
1856 if (bytes > 10000) {
1857 /* this if handles the TSO accounting */
1858 if (bytes/packets > 8000) {
1859 retval = bulk_latency;
1860 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1861 retval = bulk_latency;
1862 } else if ((packets > 35)) {
1863 retval = lowest_latency;
1865 } else if (bytes/packets > 2000) {
1866 retval = bulk_latency;
1867 } else if (packets <= 2 && bytes < 512) {
1868 retval = lowest_latency;
1871 case bulk_latency: /* 250 usec aka 4000 ints/s */
1872 if (bytes > 25000) {
1874 retval = low_latency;
1876 } else if (bytes < 6000) {
1877 retval = low_latency;
1886 static void e1000_set_itr(struct e1000_adapter *adapter)
1888 struct e1000_hw *hw = &adapter->hw;
1890 u32 new_itr = adapter->itr;
1892 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1893 if (adapter->link_speed != SPEED_1000) {
1899 adapter->tx_itr = e1000_update_itr(adapter,
1901 adapter->total_tx_packets,
1902 adapter->total_tx_bytes);
1903 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1904 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1905 adapter->tx_itr = low_latency;
1907 adapter->rx_itr = e1000_update_itr(adapter,
1909 adapter->total_rx_packets,
1910 adapter->total_rx_bytes);
1911 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1912 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1913 adapter->rx_itr = low_latency;
1915 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1917 switch (current_itr) {
1918 /* counts and packets in update_itr are dependent on these numbers */
1919 case lowest_latency:
1923 new_itr = 20000; /* aka hwitr = ~200 */
1933 if (new_itr != adapter->itr) {
1935 * this attempts to bias the interrupt rate towards Bulk
1936 * by adding intermediate steps when interrupt rate is
1939 new_itr = new_itr > adapter->itr ?
1940 min(adapter->itr + (new_itr >> 2), new_itr) :
1942 adapter->itr = new_itr;
1943 adapter->rx_ring->itr_val = new_itr;
1944 if (adapter->msix_entries)
1945 adapter->rx_ring->set_itr = 1;
1947 ew32(ITR, 1000000000 / (new_itr * 256));
1952 * e1000_alloc_queues - Allocate memory for all rings
1953 * @adapter: board private structure to initialize
1955 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1957 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1958 if (!adapter->tx_ring)
1961 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1962 if (!adapter->rx_ring)
1967 e_err("Unable to allocate memory for queues\n");
1968 kfree(adapter->rx_ring);
1969 kfree(adapter->tx_ring);
1974 * e1000_clean - NAPI Rx polling callback
1975 * @napi: struct associated with this polling callback
1976 * @budget: amount of packets driver is allowed to process this poll
1978 static int e1000_clean(struct napi_struct *napi, int budget)
1980 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1981 struct e1000_hw *hw = &adapter->hw;
1982 struct net_device *poll_dev = adapter->netdev;
1983 int tx_cleaned = 0, work_done = 0;
1985 /* Must NOT use netdev_priv macro here. */
1986 adapter = poll_dev->priv;
1988 if (adapter->msix_entries &&
1989 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1993 * e1000_clean is called per-cpu. This lock protects
1994 * tx_ring from being cleaned by multiple cpus
1995 * simultaneously. A failure obtaining the lock means
1996 * tx_ring is currently being cleaned anyway.
1998 if (spin_trylock(&adapter->tx_queue_lock)) {
1999 tx_cleaned = e1000_clean_tx_irq(adapter);
2000 spin_unlock(&adapter->tx_queue_lock);
2004 adapter->clean_rx(adapter, &work_done, budget);
2009 /* If budget not fully consumed, exit the polling mode */
2010 if (work_done < budget) {
2011 if (adapter->itr_setting & 3)
2012 e1000_set_itr(adapter);
2013 netif_rx_complete(poll_dev, napi);
2014 if (adapter->msix_entries)
2015 ew32(IMS, adapter->rx_ring->ims_val);
2017 e1000_irq_enable(adapter);
2023 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2025 struct e1000_adapter *adapter = netdev_priv(netdev);
2026 struct e1000_hw *hw = &adapter->hw;
2029 /* don't update vlan cookie if already programmed */
2030 if ((adapter->hw.mng_cookie.status &
2031 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2032 (vid == adapter->mng_vlan_id))
2034 /* add VID to filter table */
2035 index = (vid >> 5) & 0x7F;
2036 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2037 vfta |= (1 << (vid & 0x1F));
2038 e1000e_write_vfta(hw, index, vfta);
2041 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2043 struct e1000_adapter *adapter = netdev_priv(netdev);
2044 struct e1000_hw *hw = &adapter->hw;
2047 if (!test_bit(__E1000_DOWN, &adapter->state))
2048 e1000_irq_disable(adapter);
2049 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2051 if (!test_bit(__E1000_DOWN, &adapter->state))
2052 e1000_irq_enable(adapter);
2054 if ((adapter->hw.mng_cookie.status &
2055 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2056 (vid == adapter->mng_vlan_id)) {
2057 /* release control to f/w */
2058 e1000_release_hw_control(adapter);
2062 /* remove VID from filter table */
2063 index = (vid >> 5) & 0x7F;
2064 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2065 vfta &= ~(1 << (vid & 0x1F));
2066 e1000e_write_vfta(hw, index, vfta);
2069 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2071 struct net_device *netdev = adapter->netdev;
2072 u16 vid = adapter->hw.mng_cookie.vlan_id;
2073 u16 old_vid = adapter->mng_vlan_id;
2075 if (!adapter->vlgrp)
2078 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2079 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2080 if (adapter->hw.mng_cookie.status &
2081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2082 e1000_vlan_rx_add_vid(netdev, vid);
2083 adapter->mng_vlan_id = vid;
2086 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2088 !vlan_group_get_device(adapter->vlgrp, old_vid))
2089 e1000_vlan_rx_kill_vid(netdev, old_vid);
2091 adapter->mng_vlan_id = vid;
2096 static void e1000_vlan_rx_register(struct net_device *netdev,
2097 struct vlan_group *grp)
2099 struct e1000_adapter *adapter = netdev_priv(netdev);
2100 struct e1000_hw *hw = &adapter->hw;
2103 if (!test_bit(__E1000_DOWN, &adapter->state))
2104 e1000_irq_disable(adapter);
2105 adapter->vlgrp = grp;
2108 /* enable VLAN tag insert/strip */
2110 ctrl |= E1000_CTRL_VME;
2113 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2114 /* enable VLAN receive filtering */
2116 rctl &= ~E1000_RCTL_CFIEN;
2118 e1000_update_mng_vlan(adapter);
2121 /* disable VLAN tag insert/strip */
2123 ctrl &= ~E1000_CTRL_VME;
2126 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2127 if (adapter->mng_vlan_id !=
2128 (u16)E1000_MNG_VLAN_NONE) {
2129 e1000_vlan_rx_kill_vid(netdev,
2130 adapter->mng_vlan_id);
2131 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2136 if (!test_bit(__E1000_DOWN, &adapter->state))
2137 e1000_irq_enable(adapter);
2140 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2144 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2146 if (!adapter->vlgrp)
2149 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2150 if (!vlan_group_get_device(adapter->vlgrp, vid))
2152 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2156 static void e1000_init_manageability(struct e1000_adapter *adapter)
2158 struct e1000_hw *hw = &adapter->hw;
2161 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2167 * enable receiving management packets to the host. this will probably
2168 * generate destination unreachable messages from the host OS, but
2169 * the packets will be handled on SMBUS
2171 manc |= E1000_MANC_EN_MNG2HOST;
2172 manc2h = er32(MANC2H);
2173 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2174 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2175 manc2h |= E1000_MNG2HOST_PORT_623;
2176 manc2h |= E1000_MNG2HOST_PORT_664;
2177 ew32(MANC2H, manc2h);
2182 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2183 * @adapter: board private structure
2185 * Configure the Tx unit of the MAC after a reset.
2187 static void e1000_configure_tx(struct e1000_adapter *adapter)
2189 struct e1000_hw *hw = &adapter->hw;
2190 struct e1000_ring *tx_ring = adapter->tx_ring;
2192 u32 tdlen, tctl, tipg, tarc;
2195 /* Setup the HW Tx Head and Tail descriptor pointers */
2196 tdba = tx_ring->dma;
2197 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2198 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2199 ew32(TDBAH, (tdba >> 32));
2203 tx_ring->head = E1000_TDH;
2204 tx_ring->tail = E1000_TDT;
2206 /* Set the default values for the Tx Inter Packet Gap timer */
2207 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2208 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2209 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2211 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2212 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2214 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2215 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2218 /* Set the Tx Interrupt Delay register */
2219 ew32(TIDV, adapter->tx_int_delay);
2220 /* Tx irq moderation */
2221 ew32(TADV, adapter->tx_abs_int_delay);
2223 /* Program the Transmit Control Register */
2225 tctl &= ~E1000_TCTL_CT;
2226 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2227 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2229 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2230 tarc = er32(TARC(0));
2232 * set the speed mode bit, we'll clear it if we're not at
2233 * gigabit link later
2235 #define SPEED_MODE_BIT (1 << 21)
2236 tarc |= SPEED_MODE_BIT;
2237 ew32(TARC(0), tarc);
2240 /* errata: program both queues to unweighted RR */
2241 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2242 tarc = er32(TARC(0));
2244 ew32(TARC(0), tarc);
2245 tarc = er32(TARC(1));
2247 ew32(TARC(1), tarc);
2250 e1000e_config_collision_dist(hw);
2252 /* Setup Transmit Descriptor Settings for eop descriptor */
2253 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2255 /* only set IDE if we are delaying interrupts using the timers */
2256 if (adapter->tx_int_delay)
2257 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2259 /* enable Report Status bit */
2260 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2264 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2268 * e1000_setup_rctl - configure the receive control registers
2269 * @adapter: Board private structure
2271 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2272 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2273 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2275 struct e1000_hw *hw = &adapter->hw;
2280 /* Program MC offset vector base */
2282 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2283 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2284 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2285 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2287 /* Do not Store bad packets */
2288 rctl &= ~E1000_RCTL_SBP;
2290 /* Enable Long Packet receive */
2291 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2292 rctl &= ~E1000_RCTL_LPE;
2294 rctl |= E1000_RCTL_LPE;
2296 /* Enable hardware CRC frame stripping */
2297 rctl |= E1000_RCTL_SECRC;
2299 /* Setup buffer sizes */
2300 rctl &= ~E1000_RCTL_SZ_4096;
2301 rctl |= E1000_RCTL_BSEX;
2302 switch (adapter->rx_buffer_len) {
2304 rctl |= E1000_RCTL_SZ_256;
2305 rctl &= ~E1000_RCTL_BSEX;
2308 rctl |= E1000_RCTL_SZ_512;
2309 rctl &= ~E1000_RCTL_BSEX;
2312 rctl |= E1000_RCTL_SZ_1024;
2313 rctl &= ~E1000_RCTL_BSEX;
2317 rctl |= E1000_RCTL_SZ_2048;
2318 rctl &= ~E1000_RCTL_BSEX;
2321 rctl |= E1000_RCTL_SZ_4096;
2324 rctl |= E1000_RCTL_SZ_8192;
2327 rctl |= E1000_RCTL_SZ_16384;
2332 * 82571 and greater support packet-split where the protocol
2333 * header is placed in skb->data and the packet data is
2334 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2335 * In the case of a non-split, skb->data is linearly filled,
2336 * followed by the page buffers. Therefore, skb->data is
2337 * sized to hold the largest protocol header.
2339 * allocations using alloc_page take too long for regular MTU
2340 * so only enable packet split for jumbo frames
2342 * Using pages when the page size is greater than 16k wastes
2343 * a lot of memory, since we allocate 3 pages at all times
2346 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2347 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2348 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2349 adapter->rx_ps_pages = pages;
2351 adapter->rx_ps_pages = 0;
2353 if (adapter->rx_ps_pages) {
2354 /* Configure extra packet-split registers */
2355 rfctl = er32(RFCTL);
2356 rfctl |= E1000_RFCTL_EXTEN;
2358 * disable packet split support for IPv6 extension headers,
2359 * because some malformed IPv6 headers can hang the Rx
2361 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2362 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2366 /* Enable Packet split descriptors */
2367 rctl |= E1000_RCTL_DTYP_PS;
2369 psrctl |= adapter->rx_ps_bsize0 >>
2370 E1000_PSRCTL_BSIZE0_SHIFT;
2372 switch (adapter->rx_ps_pages) {
2374 psrctl |= PAGE_SIZE <<
2375 E1000_PSRCTL_BSIZE3_SHIFT;
2377 psrctl |= PAGE_SIZE <<
2378 E1000_PSRCTL_BSIZE2_SHIFT;
2380 psrctl |= PAGE_SIZE >>
2381 E1000_PSRCTL_BSIZE1_SHIFT;
2385 ew32(PSRCTL, psrctl);
2389 /* just started the receive unit, no need to restart */
2390 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2394 * e1000_configure_rx - Configure Receive Unit after Reset
2395 * @adapter: board private structure
2397 * Configure the Rx unit of the MAC after a reset.
2399 static void e1000_configure_rx(struct e1000_adapter *adapter)
2401 struct e1000_hw *hw = &adapter->hw;
2402 struct e1000_ring *rx_ring = adapter->rx_ring;
2404 u32 rdlen, rctl, rxcsum, ctrl_ext;
2406 if (adapter->rx_ps_pages) {
2407 /* this is a 32 byte descriptor */
2408 rdlen = rx_ring->count *
2409 sizeof(union e1000_rx_desc_packet_split);
2410 adapter->clean_rx = e1000_clean_rx_irq_ps;
2411 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2412 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2413 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2414 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2415 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2417 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2418 adapter->clean_rx = e1000_clean_rx_irq;
2419 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2422 /* disable receives while setting up the descriptors */
2424 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2428 /* set the Receive Delay Timer Register */
2429 ew32(RDTR, adapter->rx_int_delay);
2431 /* irq moderation */
2432 ew32(RADV, adapter->rx_abs_int_delay);
2433 if (adapter->itr_setting != 0)
2434 ew32(ITR, 1000000000 / (adapter->itr * 256));
2436 ctrl_ext = er32(CTRL_EXT);
2437 /* Reset delay timers after every interrupt */
2438 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2439 /* Auto-Mask interrupts upon ICR access */
2440 ctrl_ext |= E1000_CTRL_EXT_IAME;
2441 ew32(IAM, 0xffffffff);
2442 ew32(CTRL_EXT, ctrl_ext);
2446 * Setup the HW Rx Head and Tail Descriptor Pointers and
2447 * the Base and Length of the Rx Descriptor Ring
2449 rdba = rx_ring->dma;
2450 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2451 ew32(RDBAH, (rdba >> 32));
2455 rx_ring->head = E1000_RDH;
2456 rx_ring->tail = E1000_RDT;
2458 /* Enable Receive Checksum Offload for TCP and UDP */
2459 rxcsum = er32(RXCSUM);
2460 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2461 rxcsum |= E1000_RXCSUM_TUOFL;
2464 * IPv4 payload checksum for UDP fragments must be
2465 * used in conjunction with packet-split.
2467 if (adapter->rx_ps_pages)
2468 rxcsum |= E1000_RXCSUM_IPPCSE;
2470 rxcsum &= ~E1000_RXCSUM_TUOFL;
2471 /* no need to clear IPPCSE as it defaults to 0 */
2473 ew32(RXCSUM, rxcsum);
2476 * Enable early receives on supported devices, only takes effect when
2477 * packet size is equal or larger than the specified value (in 8 byte
2478 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2480 if ((adapter->flags & FLAG_HAS_ERT) &&
2481 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2482 u32 rxdctl = er32(RXDCTL(0));
2483 ew32(RXDCTL(0), rxdctl | 0x3);
2484 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2486 * With jumbo frames and early-receive enabled, excessive
2487 * C4->C2 latencies result in dropped transactions.
2489 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2490 e1000e_driver_name, 55);
2492 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2494 PM_QOS_DEFAULT_VALUE);
2497 /* Enable Receives */
2502 * e1000_update_mc_addr_list - Update Multicast addresses
2503 * @hw: pointer to the HW structure
2504 * @mc_addr_list: array of multicast addresses to program
2505 * @mc_addr_count: number of multicast addresses to program
2506 * @rar_used_count: the first RAR register free to program
2507 * @rar_count: total number of supported Receive Address Registers
2509 * Updates the Receive Address Registers and Multicast Table Array.
2510 * The caller must have a packed mc_addr_list of multicast addresses.
2511 * The parameter rar_count will usually be hw->mac.rar_entry_count
2512 * unless there are workarounds that change this. Currently no func pointer
2513 * exists and all implementations are handled in the generic version of this
2516 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2517 u32 mc_addr_count, u32 rar_used_count,
2520 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2521 rar_used_count, rar_count);
2525 * e1000_set_multi - Multicast and Promiscuous mode set
2526 * @netdev: network interface device structure
2528 * The set_multi entry point is called whenever the multicast address
2529 * list or the network interface flags are updated. This routine is
2530 * responsible for configuring the hardware for proper multicast,
2531 * promiscuous mode, and all-multi behavior.
2533 static void e1000_set_multi(struct net_device *netdev)
2535 struct e1000_adapter *adapter = netdev_priv(netdev);
2536 struct e1000_hw *hw = &adapter->hw;
2537 struct e1000_mac_info *mac = &hw->mac;
2538 struct dev_mc_list *mc_ptr;
2543 /* Check for Promiscuous and All Multicast modes */
2547 if (netdev->flags & IFF_PROMISC) {
2548 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2549 rctl &= ~E1000_RCTL_VFE;
2551 if (netdev->flags & IFF_ALLMULTI) {
2552 rctl |= E1000_RCTL_MPE;
2553 rctl &= ~E1000_RCTL_UPE;
2555 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2557 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2558 rctl |= E1000_RCTL_VFE;
2563 if (netdev->mc_count) {
2564 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2568 /* prepare a packed array of only addresses. */
2569 mc_ptr = netdev->mc_list;
2571 for (i = 0; i < netdev->mc_count; i++) {
2574 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2576 mc_ptr = mc_ptr->next;
2579 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2580 mac->rar_entry_count);
2584 * if we're called from probe, we might not have
2585 * anything to do here, so clear out the list
2587 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2592 * e1000_configure - configure the hardware for Rx and Tx
2593 * @adapter: private board structure
2595 static void e1000_configure(struct e1000_adapter *adapter)
2597 e1000_set_multi(adapter->netdev);
2599 e1000_restore_vlan(adapter);
2600 e1000_init_manageability(adapter);
2602 e1000_configure_tx(adapter);
2603 e1000_setup_rctl(adapter);
2604 e1000_configure_rx(adapter);
2605 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2609 * e1000e_power_up_phy - restore link in case the phy was powered down
2610 * @adapter: address of board private structure
2612 * The phy may be powered down to save power and turn off link when the
2613 * driver is unloaded and wake on lan is not enabled (among others)
2614 * *** this routine MUST be followed by a call to e1000e_reset ***
2616 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2620 /* Just clear the power down bit to wake the phy back up */
2621 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2623 * According to the manual, the phy will retain its
2624 * settings across a power-down/up cycle
2626 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2627 mii_reg &= ~MII_CR_POWER_DOWN;
2628 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2631 adapter->hw.mac.ops.setup_link(&adapter->hw);
2635 * e1000_power_down_phy - Power down the PHY
2637 * Power down the PHY so no link is implied when interface is down
2638 * The PHY cannot be powered down is management or WoL is active
2640 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2642 struct e1000_hw *hw = &adapter->hw;
2645 /* WoL is enabled */
2649 /* non-copper PHY? */
2650 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2653 /* reset is blocked because of a SoL/IDER session */
2654 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2657 /* manageability (AMT) is enabled */
2658 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2661 /* power down the PHY */
2662 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2663 mii_reg |= MII_CR_POWER_DOWN;
2664 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2669 * e1000e_reset - bring the hardware into a known good state
2671 * This function boots the hardware and enables some settings that
2672 * require a configuration cycle of the hardware - those cannot be
2673 * set/changed during runtime. After reset the device needs to be
2674 * properly configured for Rx, Tx etc.
2676 void e1000e_reset(struct e1000_adapter *adapter)
2678 struct e1000_mac_info *mac = &adapter->hw.mac;
2679 struct e1000_fc_info *fc = &adapter->hw.fc;
2680 struct e1000_hw *hw = &adapter->hw;
2681 u32 tx_space, min_tx_space, min_rx_space;
2682 u32 pba = adapter->pba;
2685 /* reset Packet Buffer Allocation to default */
2688 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2690 * To maintain wire speed transmits, the Tx FIFO should be
2691 * large enough to accommodate two full transmit packets,
2692 * rounded up to the next 1KB and expressed in KB. Likewise,
2693 * the Rx FIFO should be large enough to accommodate at least
2694 * one full receive packet and is similarly rounded up and
2698 /* upper 16 bits has Tx packet buffer allocation size in KB */
2699 tx_space = pba >> 16;
2700 /* lower 16 bits has Rx packet buffer allocation size in KB */
2703 * the Tx fifo also stores 16 bytes of information about the tx
2704 * but don't include ethernet FCS because hardware appends it
2706 min_tx_space = (adapter->max_frame_size +
2707 sizeof(struct e1000_tx_desc) -
2709 min_tx_space = ALIGN(min_tx_space, 1024);
2710 min_tx_space >>= 10;
2711 /* software strips receive CRC, so leave room for it */
2712 min_rx_space = adapter->max_frame_size;
2713 min_rx_space = ALIGN(min_rx_space, 1024);
2714 min_rx_space >>= 10;
2717 * If current Tx allocation is less than the min Tx FIFO size,
2718 * and the min Tx FIFO size is less than the current Rx FIFO
2719 * allocation, take space away from current Rx allocation
2721 if ((tx_space < min_tx_space) &&
2722 ((min_tx_space - tx_space) < pba)) {
2723 pba -= min_tx_space - tx_space;
2726 * if short on Rx space, Rx wins and must trump tx
2727 * adjustment or use Early Receive if available
2729 if ((pba < min_rx_space) &&
2730 (!(adapter->flags & FLAG_HAS_ERT)))
2731 /* ERT enabled in e1000_configure_rx */
2740 * flow control settings
2742 * The high water mark must be low enough to fit one full frame
2743 * (or the size used for early receive) above it in the Rx FIFO.
2744 * Set it to the lower of:
2745 * - 90% of the Rx FIFO size, and
2746 * - the full Rx FIFO size minus the early receive size (for parts
2747 * with ERT support assuming ERT set to E1000_ERT_2048), or
2748 * - the full Rx FIFO size minus one full frame
2750 if (adapter->flags & FLAG_HAS_ERT)
2751 hwm = min(((pba << 10) * 9 / 10),
2752 ((pba << 10) - (E1000_ERT_2048 << 3)));
2754 hwm = min(((pba << 10) * 9 / 10),
2755 ((pba << 10) - adapter->max_frame_size));
2757 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2758 fc->low_water = fc->high_water - 8;
2760 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2761 fc->pause_time = 0xFFFF;
2763 fc->pause_time = E1000_FC_PAUSE_TIME;
2765 fc->type = fc->original_type;
2767 /* Allow time for pending master requests to run */
2768 mac->ops.reset_hw(hw);
2771 * For parts with AMT enabled, let the firmware know
2772 * that the network interface is in control
2774 if (adapter->flags & FLAG_HAS_AMT)
2775 e1000_get_hw_control(adapter);
2779 if (mac->ops.init_hw(hw))
2780 e_err("Hardware Error\n");
2782 e1000_update_mng_vlan(adapter);
2784 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2785 ew32(VET, ETH_P_8021Q);
2787 e1000e_reset_adaptive(hw);
2788 e1000_get_phy_info(hw);
2790 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2793 * speed up time to link by disabling smart power down, ignore
2794 * the return value of this function because there is nothing
2795 * different we would do if it failed
2797 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2798 phy_data &= ~IGP02E1000_PM_SPD;
2799 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2803 int e1000e_up(struct e1000_adapter *adapter)
2805 struct e1000_hw *hw = &adapter->hw;
2807 /* hardware has been reset, we need to reload some things */
2808 e1000_configure(adapter);
2810 clear_bit(__E1000_DOWN, &adapter->state);
2812 napi_enable(&adapter->napi);
2813 if (adapter->msix_entries)
2814 e1000_configure_msix(adapter);
2815 e1000_irq_enable(adapter);
2817 /* fire a link change interrupt to start the watchdog */
2818 ew32(ICS, E1000_ICS_LSC);
2822 void e1000e_down(struct e1000_adapter *adapter)
2824 struct net_device *netdev = adapter->netdev;
2825 struct e1000_hw *hw = &adapter->hw;
2829 * signal that we're down so the interrupt handler does not
2830 * reschedule our watchdog timer
2832 set_bit(__E1000_DOWN, &adapter->state);
2834 /* disable receives in the hardware */
2836 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2837 /* flush and sleep below */
2839 netif_tx_stop_all_queues(netdev);
2841 /* disable transmits in the hardware */
2843 tctl &= ~E1000_TCTL_EN;
2845 /* flush both disables and wait for them to finish */
2849 napi_disable(&adapter->napi);
2850 e1000_irq_disable(adapter);
2852 del_timer_sync(&adapter->watchdog_timer);
2853 del_timer_sync(&adapter->phy_info_timer);
2855 netdev->tx_queue_len = adapter->tx_queue_len;
2856 netif_carrier_off(netdev);
2857 adapter->link_speed = 0;
2858 adapter->link_duplex = 0;
2860 if (!pci_channel_offline(adapter->pdev))
2861 e1000e_reset(adapter);
2862 e1000_clean_tx_ring(adapter);
2863 e1000_clean_rx_ring(adapter);
2866 * TODO: for power management, we could drop the link and
2867 * pci_disable_device here.
2871 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2874 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2876 e1000e_down(adapter);
2878 clear_bit(__E1000_RESETTING, &adapter->state);
2882 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2883 * @adapter: board private structure to initialize
2885 * e1000_sw_init initializes the Adapter private data structure.
2886 * Fields are initialized based on PCI device information and
2887 * OS network device settings (MTU size).
2889 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2891 struct net_device *netdev = adapter->netdev;
2893 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2894 adapter->rx_ps_bsize0 = 128;
2895 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2896 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2898 e1000e_set_interrupt_capability(adapter);
2900 if (e1000_alloc_queues(adapter))
2903 spin_lock_init(&adapter->tx_queue_lock);
2905 /* Explicitly disable IRQ since the NIC can be in any state. */
2906 e1000_irq_disable(adapter);
2908 spin_lock_init(&adapter->stats_lock);
2910 set_bit(__E1000_DOWN, &adapter->state);
2915 * e1000_intr_msi_test - Interrupt Handler
2916 * @irq: interrupt number
2917 * @data: pointer to a network interface device structure
2919 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2921 struct net_device *netdev = data;
2922 struct e1000_adapter *adapter = netdev_priv(netdev);
2923 struct e1000_hw *hw = &adapter->hw;
2924 u32 icr = er32(ICR);
2926 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2927 if (icr & E1000_ICR_RXSEQ) {
2928 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2936 * e1000_test_msi_interrupt - Returns 0 for successful test
2937 * @adapter: board private struct
2939 * code flow taken from tg3.c
2941 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2943 struct net_device *netdev = adapter->netdev;
2944 struct e1000_hw *hw = &adapter->hw;
2947 /* poll_enable hasn't been called yet, so don't need disable */
2948 /* clear any pending events */
2951 /* free the real vector and request a test handler */
2952 e1000_free_irq(adapter);
2953 e1000e_reset_interrupt_capability(adapter);
2955 /* Assume that the test fails, if it succeeds then the test
2956 * MSI irq handler will unset this flag */
2957 adapter->flags |= FLAG_MSI_TEST_FAILED;
2959 err = pci_enable_msi(adapter->pdev);
2961 goto msi_test_failed;
2963 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2964 netdev->name, netdev);
2966 pci_disable_msi(adapter->pdev);
2967 goto msi_test_failed;
2972 e1000_irq_enable(adapter);
2974 /* fire an unusual interrupt on the test handler */
2975 ew32(ICS, E1000_ICS_RXSEQ);
2979 e1000_irq_disable(adapter);
2983 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2984 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2986 e_info("MSI interrupt test failed!\n");
2989 free_irq(adapter->pdev->irq, netdev);
2990 pci_disable_msi(adapter->pdev);
2993 goto msi_test_failed;
2995 /* okay so the test worked, restore settings */
2996 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
2998 e1000e_set_interrupt_capability(adapter);
2999 e1000_request_irq(adapter);
3004 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3005 * @adapter: board private struct
3007 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3009 static int e1000_test_msi(struct e1000_adapter *adapter)
3014 if (!(adapter->flags & FLAG_MSI_ENABLED))
3017 /* disable SERR in case the MSI write causes a master abort */
3018 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3019 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3020 pci_cmd & ~PCI_COMMAND_SERR);
3022 err = e1000_test_msi_interrupt(adapter);
3024 /* restore previous setting of command word */
3025 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3031 /* EIO means MSI test failed */
3035 /* back to INTx mode */
3036 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3038 e1000_free_irq(adapter);
3040 err = e1000_request_irq(adapter);
3046 * e1000_open - Called when a network interface is made active
3047 * @netdev: network interface device structure
3049 * Returns 0 on success, negative value on failure
3051 * The open entry point is called when a network interface is made
3052 * active by the system (IFF_UP). At this point all resources needed
3053 * for transmit and receive operations are allocated, the interrupt
3054 * handler is registered with the OS, the watchdog timer is started,
3055 * and the stack is notified that the interface is ready.
3057 static int e1000_open(struct net_device *netdev)
3059 struct e1000_adapter *adapter = netdev_priv(netdev);
3060 struct e1000_hw *hw = &adapter->hw;
3063 /* disallow open during test */
3064 if (test_bit(__E1000_TESTING, &adapter->state))
3067 /* allocate transmit descriptors */
3068 err = e1000e_setup_tx_resources(adapter);
3072 /* allocate receive descriptors */
3073 err = e1000e_setup_rx_resources(adapter);
3077 e1000e_power_up_phy(adapter);
3079 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3080 if ((adapter->hw.mng_cookie.status &
3081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3082 e1000_update_mng_vlan(adapter);
3085 * If AMT is enabled, let the firmware know that the network
3086 * interface is now open
3088 if (adapter->flags & FLAG_HAS_AMT)
3089 e1000_get_hw_control(adapter);
3092 * before we allocate an interrupt, we must be ready to handle it.
3093 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3094 * as soon as we call pci_request_irq, so we have to setup our
3095 * clean_rx handler before we do so.
3097 e1000_configure(adapter);
3099 err = e1000_request_irq(adapter);
3104 * Work around PCIe errata with MSI interrupts causing some chipsets to
3105 * ignore e1000e MSI messages, which means we need to test our MSI
3108 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3109 err = e1000_test_msi(adapter);
3111 e_err("Interrupt allocation failed\n");
3116 /* From here on the code is the same as e1000e_up() */
3117 clear_bit(__E1000_DOWN, &adapter->state);
3119 napi_enable(&adapter->napi);
3121 e1000_irq_enable(adapter);
3123 netif_tx_start_all_queues(netdev);
3125 /* fire a link status change interrupt to start the watchdog */
3126 ew32(ICS, E1000_ICS_LSC);
3131 e1000_release_hw_control(adapter);
3132 e1000_power_down_phy(adapter);
3133 e1000e_free_rx_resources(adapter);
3135 e1000e_free_tx_resources(adapter);
3137 e1000e_reset(adapter);
3143 * e1000_close - Disables a network interface
3144 * @netdev: network interface device structure
3146 * Returns 0, this is not allowed to fail
3148 * The close entry point is called when an interface is de-activated
3149 * by the OS. The hardware is still under the drivers control, but
3150 * needs to be disabled. A global MAC reset is issued to stop the
3151 * hardware, and all transmit and receive resources are freed.
3153 static int e1000_close(struct net_device *netdev)
3155 struct e1000_adapter *adapter = netdev_priv(netdev);
3157 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3158 e1000e_down(adapter);
3159 e1000_power_down_phy(adapter);
3160 e1000_free_irq(adapter);
3162 e1000e_free_tx_resources(adapter);
3163 e1000e_free_rx_resources(adapter);
3166 * kill manageability vlan ID if supported, but not if a vlan with
3167 * the same ID is registered on the host OS (let 8021q kill it)
3169 if ((adapter->hw.mng_cookie.status &
3170 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3172 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3173 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3176 * If AMT is enabled, let the firmware know that the network
3177 * interface is now closed
3179 if (adapter->flags & FLAG_HAS_AMT)
3180 e1000_release_hw_control(adapter);
3185 * e1000_set_mac - Change the Ethernet Address of the NIC
3186 * @netdev: network interface device structure
3187 * @p: pointer to an address structure
3189 * Returns 0 on success, negative on failure
3191 static int e1000_set_mac(struct net_device *netdev, void *p)
3193 struct e1000_adapter *adapter = netdev_priv(netdev);
3194 struct sockaddr *addr = p;
3196 if (!is_valid_ether_addr(addr->sa_data))
3197 return -EADDRNOTAVAIL;
3199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3200 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3202 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3204 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3205 /* activate the work around */
3206 e1000e_set_laa_state_82571(&adapter->hw, 1);
3209 * Hold a copy of the LAA in RAR[14] This is done so that
3210 * between the time RAR[0] gets clobbered and the time it
3211 * gets fixed (in e1000_watchdog), the actual LAA is in one
3212 * of the RARs and no incoming packets directed to this port
3213 * are dropped. Eventually the LAA will be in RAR[0] and
3216 e1000e_rar_set(&adapter->hw,
3217 adapter->hw.mac.addr,
3218 adapter->hw.mac.rar_entry_count - 1);
3225 * Need to wait a few seconds after link up to get diagnostic information from
3228 static void e1000_update_phy_info(unsigned long data)
3230 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3231 e1000_get_phy_info(&adapter->hw);
3235 * e1000e_update_stats - Update the board statistics counters
3236 * @adapter: board private structure
3238 void e1000e_update_stats(struct e1000_adapter *adapter)
3240 struct e1000_hw *hw = &adapter->hw;
3241 struct pci_dev *pdev = adapter->pdev;
3242 unsigned long irq_flags;
3245 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3248 * Prevent stats update while adapter is being reset, or if the pci
3249 * connection is down.
3251 if (adapter->link_speed == 0)
3253 if (pci_channel_offline(pdev))
3256 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3259 * these counters are modified from e1000_adjust_tbi_stats,
3260 * called from the interrupt context, so they must only
3261 * be written while holding adapter->stats_lock
3264 adapter->stats.crcerrs += er32(CRCERRS);
3265 adapter->stats.gprc += er32(GPRC);
3266 adapter->stats.gorc += er32(GORCL);
3267 er32(GORCH); /* Clear gorc */
3268 adapter->stats.bprc += er32(BPRC);
3269 adapter->stats.mprc += er32(MPRC);
3270 adapter->stats.roc += er32(ROC);
3272 adapter->stats.mpc += er32(MPC);
3273 adapter->stats.scc += er32(SCC);
3274 adapter->stats.ecol += er32(ECOL);
3275 adapter->stats.mcc += er32(MCC);
3276 adapter->stats.latecol += er32(LATECOL);
3277 adapter->stats.dc += er32(DC);
3278 adapter->stats.xonrxc += er32(XONRXC);
3279 adapter->stats.xontxc += er32(XONTXC);
3280 adapter->stats.xoffrxc += er32(XOFFRXC);
3281 adapter->stats.xofftxc += er32(XOFFTXC);
3282 adapter->stats.gptc += er32(GPTC);
3283 adapter->stats.gotc += er32(GOTCL);
3284 er32(GOTCH); /* Clear gotc */
3285 adapter->stats.rnbc += er32(RNBC);
3286 adapter->stats.ruc += er32(RUC);
3288 adapter->stats.mptc += er32(MPTC);
3289 adapter->stats.bptc += er32(BPTC);
3291 /* used for adaptive IFS */
3293 hw->mac.tx_packet_delta = er32(TPT);
3294 adapter->stats.tpt += hw->mac.tx_packet_delta;
3295 hw->mac.collision_delta = er32(COLC);
3296 adapter->stats.colc += hw->mac.collision_delta;
3298 adapter->stats.algnerrc += er32(ALGNERRC);
3299 adapter->stats.rxerrc += er32(RXERRC);
3300 if (hw->mac.type != e1000_82574)
3301 adapter->stats.tncrs += er32(TNCRS);
3302 adapter->stats.cexterr += er32(CEXTERR);
3303 adapter->stats.tsctc += er32(TSCTC);
3304 adapter->stats.tsctfc += er32(TSCTFC);
3306 /* Fill out the OS statistics structure */
3307 adapter->net_stats.multicast = adapter->stats.mprc;
3308 adapter->net_stats.collisions = adapter->stats.colc;
3313 * RLEC on some newer hardware can be incorrect so build
3314 * our own version based on RUC and ROC
3316 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3317 adapter->stats.crcerrs + adapter->stats.algnerrc +
3318 adapter->stats.ruc + adapter->stats.roc +
3319 adapter->stats.cexterr;
3320 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3322 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3323 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3324 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3327 adapter->net_stats.tx_errors = adapter->stats.ecol +
3328 adapter->stats.latecol;
3329 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3330 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3331 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3333 /* Tx Dropped needs to be maintained elsewhere */
3336 if (hw->phy.media_type == e1000_media_type_copper) {
3337 if ((adapter->link_speed == SPEED_1000) &&
3338 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
3339 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3340 adapter->phy_stats.idle_errors += phy_tmp;
3344 /* Management Stats */
3345 adapter->stats.mgptc += er32(MGTPTC);
3346 adapter->stats.mgprc += er32(MGTPRC);
3347 adapter->stats.mgpdc += er32(MGTPDC);
3349 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3353 * e1000_phy_read_status - Update the PHY register status snapshot
3354 * @adapter: board private structure
3356 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3358 struct e1000_hw *hw = &adapter->hw;
3359 struct e1000_phy_regs *phy = &adapter->phy_regs;
3361 unsigned long irq_flags;
3364 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3366 if ((er32(STATUS) & E1000_STATUS_LU) &&
3367 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3368 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3369 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3370 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3371 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3372 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3373 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3374 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3375 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3377 e_warn("Error reading PHY register\n");
3380 * Do not read PHY registers if link is not up
3381 * Set values to typical power-on defaults
3383 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3384 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3385 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3387 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3388 ADVERTISE_ALL | ADVERTISE_CSMA);
3390 phy->expansion = EXPANSION_ENABLENPAGE;
3391 phy->ctrl1000 = ADVERTISE_1000FULL;
3393 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3396 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3399 static void e1000_print_link_info(struct e1000_adapter *adapter)
3401 struct e1000_hw *hw = &adapter->hw;
3402 u32 ctrl = er32(CTRL);
3404 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3405 adapter->link_speed,
3406 (adapter->link_duplex == FULL_DUPLEX) ?
3407 "Full Duplex" : "Half Duplex",
3408 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3410 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3411 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3414 static bool e1000_has_link(struct e1000_adapter *adapter)
3416 struct e1000_hw *hw = &adapter->hw;
3417 bool link_active = 0;
3421 * get_link_status is set on LSC (link status) interrupt or
3422 * Rx sequence error interrupt. get_link_status will stay
3423 * false until the check_for_link establishes link
3424 * for copper adapters ONLY
3426 switch (hw->phy.media_type) {
3427 case e1000_media_type_copper:
3428 if (hw->mac.get_link_status) {
3429 ret_val = hw->mac.ops.check_for_link(hw);
3430 link_active = !hw->mac.get_link_status;
3435 case e1000_media_type_fiber:
3436 ret_val = hw->mac.ops.check_for_link(hw);
3437 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3439 case e1000_media_type_internal_serdes:
3440 ret_val = hw->mac.ops.check_for_link(hw);
3441 link_active = adapter->hw.mac.serdes_has_link;
3444 case e1000_media_type_unknown:
3448 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3449 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3450 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3451 e_info("Gigabit has been disabled, downgrading speed\n");
3457 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3459 /* make sure the receive unit is started */
3460 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3461 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3462 struct e1000_hw *hw = &adapter->hw;
3463 u32 rctl = er32(RCTL);
3464 ew32(RCTL, rctl | E1000_RCTL_EN);
3465 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3470 * e1000_watchdog - Timer Call-back
3471 * @data: pointer to adapter cast into an unsigned long
3473 static void e1000_watchdog(unsigned long data)
3475 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3477 /* Do the rest outside of interrupt context */
3478 schedule_work(&adapter->watchdog_task);
3480 /* TODO: make this use queue_delayed_work() */
3483 static void e1000_watchdog_task(struct work_struct *work)
3485 struct e1000_adapter *adapter = container_of(work,
3486 struct e1000_adapter, watchdog_task);
3487 struct net_device *netdev = adapter->netdev;
3488 struct e1000_mac_info *mac = &adapter->hw.mac;
3489 struct e1000_ring *tx_ring = adapter->tx_ring;
3490 struct e1000_hw *hw = &adapter->hw;
3494 link = e1000_has_link(adapter);
3495 if ((netif_carrier_ok(netdev)) && link) {
3496 e1000e_enable_receives(adapter);
3500 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3501 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3502 e1000_update_mng_vlan(adapter);
3505 if (!netif_carrier_ok(netdev)) {
3507 /* update snapshot of PHY registers on LSC */
3508 e1000_phy_read_status(adapter);
3509 mac->ops.get_link_up_info(&adapter->hw,
3510 &adapter->link_speed,
3511 &adapter->link_duplex);
3512 e1000_print_link_info(adapter);
3514 * On supported PHYs, check for duplex mismatch only
3515 * if link has autonegotiated at 10/100 half
3517 if ((hw->phy.type == e1000_phy_igp_3 ||
3518 hw->phy.type == e1000_phy_bm) &&
3519 (hw->mac.autoneg == true) &&
3520 (adapter->link_speed == SPEED_10 ||
3521 adapter->link_speed == SPEED_100) &&
3522 (adapter->link_duplex == HALF_DUPLEX)) {
3525 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3527 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3528 e_info("Autonegotiated half duplex but"
3529 " link partner cannot autoneg. "
3530 " Try forcing full duplex if "
3531 "link gets many collisions.\n");
3535 * tweak tx_queue_len according to speed/duplex
3536 * and adjust the timeout factor
3538 netdev->tx_queue_len = adapter->tx_queue_len;
3539 adapter->tx_timeout_factor = 1;
3540 switch (adapter->link_speed) {
3543 netdev->tx_queue_len = 10;
3544 adapter->tx_timeout_factor = 16;
3548 netdev->tx_queue_len = 100;
3549 /* maybe add some timeout factor ? */
3554 * workaround: re-program speed mode bit after
3557 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3560 tarc0 = er32(TARC(0));
3561 tarc0 &= ~SPEED_MODE_BIT;
3562 ew32(TARC(0), tarc0);
3566 * disable TSO for pcie and 10/100 speeds, to avoid
3567 * some hardware issues
3569 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3570 switch (adapter->link_speed) {
3573 e_info("10/100 speed: disabling TSO\n");
3574 netdev->features &= ~NETIF_F_TSO;
3575 netdev->features &= ~NETIF_F_TSO6;
3578 netdev->features |= NETIF_F_TSO;
3579 netdev->features |= NETIF_F_TSO6;
3588 * enable transmits in the hardware, need to do this
3589 * after setting TARC(0)
3592 tctl |= E1000_TCTL_EN;
3595 netif_carrier_on(netdev);
3596 netif_tx_wake_all_queues(netdev);
3598 if (!test_bit(__E1000_DOWN, &adapter->state))
3599 mod_timer(&adapter->phy_info_timer,
3600 round_jiffies(jiffies + 2 * HZ));
3603 if (netif_carrier_ok(netdev)) {
3604 adapter->link_speed = 0;
3605 adapter->link_duplex = 0;
3606 e_info("Link is Down\n");
3607 netif_carrier_off(netdev);
3608 netif_tx_stop_all_queues(netdev);
3609 if (!test_bit(__E1000_DOWN, &adapter->state))
3610 mod_timer(&adapter->phy_info_timer,
3611 round_jiffies(jiffies + 2 * HZ));
3613 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3614 schedule_work(&adapter->reset_task);
3619 e1000e_update_stats(adapter);
3621 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3622 adapter->tpt_old = adapter->stats.tpt;
3623 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3624 adapter->colc_old = adapter->stats.colc;
3626 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3627 adapter->gorc_old = adapter->stats.gorc;
3628 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3629 adapter->gotc_old = adapter->stats.gotc;
3631 e1000e_update_adaptive(&adapter->hw);
3633 if (!netif_carrier_ok(netdev)) {
3634 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3638 * We've lost link, so the controller stops DMA,
3639 * but we've got queued Tx work that's never going
3640 * to get done, so reset controller to flush Tx.
3641 * (Do the reset outside of interrupt context).
3643 adapter->tx_timeout_count++;
3644 schedule_work(&adapter->reset_task);
3648 /* Cause software interrupt to ensure Rx ring is cleaned */
3649 if (adapter->msix_entries)
3650 ew32(ICS, adapter->rx_ring->ims_val);
3652 ew32(ICS, E1000_ICS_RXDMT0);
3654 /* Force detection of hung controller every watchdog period */
3655 adapter->detect_tx_hung = 1;
3658 * With 82571 controllers, LAA may be overwritten due to controller
3659 * reset from the other port. Set the appropriate LAA in RAR[0]
3661 if (e1000e_get_laa_state_82571(hw))
3662 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3664 /* Reset the timer */
3665 if (!test_bit(__E1000_DOWN, &adapter->state))
3666 mod_timer(&adapter->watchdog_timer,
3667 round_jiffies(jiffies + 2 * HZ));
3670 #define E1000_TX_FLAGS_CSUM 0x00000001
3671 #define E1000_TX_FLAGS_VLAN 0x00000002
3672 #define E1000_TX_FLAGS_TSO 0x00000004
3673 #define E1000_TX_FLAGS_IPV4 0x00000008
3674 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3675 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3677 static int e1000_tso(struct e1000_adapter *adapter,
3678 struct sk_buff *skb)
3680 struct e1000_ring *tx_ring = adapter->tx_ring;
3681 struct e1000_context_desc *context_desc;
3682 struct e1000_buffer *buffer_info;
3685 u16 ipcse = 0, tucse, mss;
3686 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3689 if (skb_is_gso(skb)) {
3690 if (skb_header_cloned(skb)) {
3691 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3696 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3697 mss = skb_shinfo(skb)->gso_size;
3698 if (skb->protocol == htons(ETH_P_IP)) {
3699 struct iphdr *iph = ip_hdr(skb);
3702 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3706 cmd_length = E1000_TXD_CMD_IP;
3707 ipcse = skb_transport_offset(skb) - 1;
3708 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3709 ipv6_hdr(skb)->payload_len = 0;
3710 tcp_hdr(skb)->check =
3711 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3712 &ipv6_hdr(skb)->daddr,
3716 ipcss = skb_network_offset(skb);
3717 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3718 tucss = skb_transport_offset(skb);
3719 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3722 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3723 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3725 i = tx_ring->next_to_use;
3726 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3727 buffer_info = &tx_ring->buffer_info[i];
3729 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3730 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3731 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3732 context_desc->upper_setup.tcp_fields.tucss = tucss;
3733 context_desc->upper_setup.tcp_fields.tucso = tucso;
3734 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3735 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3736 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3737 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3739 buffer_info->time_stamp = jiffies;
3740 buffer_info->next_to_watch = i;
3743 if (i == tx_ring->count)
3745 tx_ring->next_to_use = i;
3753 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3755 struct e1000_ring *tx_ring = adapter->tx_ring;
3756 struct e1000_context_desc *context_desc;
3757 struct e1000_buffer *buffer_info;
3761 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3762 css = skb_transport_offset(skb);
3764 i = tx_ring->next_to_use;
3765 buffer_info = &tx_ring->buffer_info[i];
3766 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3768 context_desc->lower_setup.ip_config = 0;
3769 context_desc->upper_setup.tcp_fields.tucss = css;
3770 context_desc->upper_setup.tcp_fields.tucso =
3771 css + skb->csum_offset;
3772 context_desc->upper_setup.tcp_fields.tucse = 0;
3773 context_desc->tcp_seg_setup.data = 0;
3774 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3776 buffer_info->time_stamp = jiffies;
3777 buffer_info->next_to_watch = i;
3780 if (i == tx_ring->count)
3782 tx_ring->next_to_use = i;
3790 #define E1000_MAX_PER_TXD 8192
3791 #define E1000_MAX_TXD_PWR 12
3793 static int e1000_tx_map(struct e1000_adapter *adapter,
3794 struct sk_buff *skb, unsigned int first,
3795 unsigned int max_per_txd, unsigned int nr_frags,
3798 struct e1000_ring *tx_ring = adapter->tx_ring;
3799 struct e1000_buffer *buffer_info;
3800 unsigned int len = skb->len - skb->data_len;
3801 unsigned int offset = 0, size, count = 0, i;
3804 i = tx_ring->next_to_use;
3807 buffer_info = &tx_ring->buffer_info[i];
3808 size = min(len, max_per_txd);
3810 /* Workaround for premature desc write-backs
3811 * in TSO mode. Append 4-byte sentinel desc */
3812 if (mss && !nr_frags && size == len && size > 8)
3815 buffer_info->length = size;
3816 /* set time_stamp *before* dma to help avoid a possible race */
3817 buffer_info->time_stamp = jiffies;
3819 pci_map_single(adapter->pdev,
3823 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3824 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3825 adapter->tx_dma_failed++;
3828 buffer_info->next_to_watch = i;
3834 if (i == tx_ring->count)
3838 for (f = 0; f < nr_frags; f++) {
3839 struct skb_frag_struct *frag;
3841 frag = &skb_shinfo(skb)->frags[f];
3843 offset = frag->page_offset;
3846 buffer_info = &tx_ring->buffer_info[i];
3847 size = min(len, max_per_txd);
3848 /* Workaround for premature desc write-backs
3849 * in TSO mode. Append 4-byte sentinel desc */
3850 if (mss && f == (nr_frags-1) && size == len && size > 8)
3853 buffer_info->length = size;
3854 buffer_info->time_stamp = jiffies;
3856 pci_map_page(adapter->pdev,
3861 if (pci_dma_mapping_error(adapter->pdev,
3862 buffer_info->dma)) {
3863 dev_err(&adapter->pdev->dev,
3864 "TX DMA page map failed\n");
3865 adapter->tx_dma_failed++;
3869 buffer_info->next_to_watch = i;
3876 if (i == tx_ring->count)
3882 i = tx_ring->count - 1;
3886 tx_ring->buffer_info[i].skb = skb;
3887 tx_ring->buffer_info[first].next_to_watch = i;
3892 static void e1000_tx_queue(struct e1000_adapter *adapter,
3893 int tx_flags, int count)
3895 struct e1000_ring *tx_ring = adapter->tx_ring;
3896 struct e1000_tx_desc *tx_desc = NULL;
3897 struct e1000_buffer *buffer_info;
3898 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3901 if (tx_flags & E1000_TX_FLAGS_TSO) {
3902 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3904 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3906 if (tx_flags & E1000_TX_FLAGS_IPV4)
3907 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3910 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3911 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3912 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3915 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3916 txd_lower |= E1000_TXD_CMD_VLE;
3917 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3920 i = tx_ring->next_to_use;
3923 buffer_info = &tx_ring->buffer_info[i];
3924 tx_desc = E1000_TX_DESC(*tx_ring, i);
3925 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3926 tx_desc->lower.data =
3927 cpu_to_le32(txd_lower | buffer_info->length);
3928 tx_desc->upper.data = cpu_to_le32(txd_upper);
3931 if (i == tx_ring->count)
3935 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3938 * Force memory writes to complete before letting h/w
3939 * know there are new descriptors to fetch. (Only
3940 * applicable for weak-ordered memory model archs,
3945 tx_ring->next_to_use = i;
3946 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3948 * we need this if more than one processor can write to our tail
3949 * at a time, it synchronizes IO on IA64/Altix systems
3954 #define MINIMUM_DHCP_PACKET_SIZE 282
3955 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3956 struct sk_buff *skb)
3958 struct e1000_hw *hw = &adapter->hw;
3961 if (vlan_tx_tag_present(skb)) {
3962 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3963 && (adapter->hw.mng_cookie.status &
3964 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3968 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3971 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3975 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3978 if (ip->protocol != IPPROTO_UDP)
3981 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3982 if (ntohs(udp->dest) != 67)
3985 offset = (u8 *)udp + 8 - skb->data;
3986 length = skb->len - offset;
3987 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3993 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3995 struct e1000_adapter *adapter = netdev_priv(netdev);
3997 netif_stop_queue(netdev);
3999 * Herbert's original patch had:
4000 * smp_mb__after_netif_stop_queue();
4001 * but since that doesn't exist yet, just open code it.
4006 * We need to check again in a case another CPU has just
4007 * made room available.
4009 if (e1000_desc_unused(adapter->tx_ring) < size)
4013 netif_start_queue(netdev);
4014 ++adapter->restart_queue;
4018 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4020 struct e1000_adapter *adapter = netdev_priv(netdev);
4022 if (e1000_desc_unused(adapter->tx_ring) >= size)
4024 return __e1000_maybe_stop_tx(netdev, size);
4027 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4028 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4030 struct e1000_adapter *adapter = netdev_priv(netdev);
4031 struct e1000_ring *tx_ring = adapter->tx_ring;
4033 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4034 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4035 unsigned int tx_flags = 0;
4036 unsigned int len = skb->len - skb->data_len;
4037 unsigned long irq_flags;
4038 unsigned int nr_frags;
4044 if (test_bit(__E1000_DOWN, &adapter->state)) {
4045 dev_kfree_skb_any(skb);
4046 return NETDEV_TX_OK;
4049 if (skb->len <= 0) {
4050 dev_kfree_skb_any(skb);
4051 return NETDEV_TX_OK;
4054 mss = skb_shinfo(skb)->gso_size;
4056 * The controller does a simple calculation to
4057 * make sure there is enough room in the FIFO before
4058 * initiating the DMA for each buffer. The calc is:
4059 * 4 = ceil(buffer len/mss). To make sure we don't
4060 * overrun the FIFO, adjust the max buffer len if mss
4065 max_per_txd = min(mss << 2, max_per_txd);
4066 max_txd_pwr = fls(max_per_txd) - 1;
4069 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4070 * points to just header, pull a few bytes of payload from
4071 * frags into skb->data
4073 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4075 * we do this workaround for ES2LAN, but it is un-necessary,
4076 * avoiding it could save a lot of cycles
4078 if (skb->data_len && (hdr_len == len)) {
4079 unsigned int pull_size;
4081 pull_size = min((unsigned int)4, skb->data_len);
4082 if (!__pskb_pull_tail(skb, pull_size)) {
4083 e_err("__pskb_pull_tail failed.\n");
4084 dev_kfree_skb_any(skb);
4085 return NETDEV_TX_OK;
4087 len = skb->len - skb->data_len;
4091 /* reserve a descriptor for the offload context */
4092 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4096 count += TXD_USE_COUNT(len, max_txd_pwr);
4098 nr_frags = skb_shinfo(skb)->nr_frags;
4099 for (f = 0; f < nr_frags; f++)
4100 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4103 if (adapter->hw.mac.tx_pkt_filtering)
4104 e1000_transfer_dhcp_info(adapter, skb);
4106 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4107 /* Collision - tell upper layer to requeue */
4108 return NETDEV_TX_LOCKED;
4111 * need: count + 2 desc gap to keep tail from touching
4112 * head, otherwise try next time
4114 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4115 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4116 return NETDEV_TX_BUSY;
4119 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4120 tx_flags |= E1000_TX_FLAGS_VLAN;
4121 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4124 first = tx_ring->next_to_use;
4126 tso = e1000_tso(adapter, skb);
4128 dev_kfree_skb_any(skb);
4129 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4130 return NETDEV_TX_OK;
4134 tx_flags |= E1000_TX_FLAGS_TSO;
4135 else if (e1000_tx_csum(adapter, skb))
4136 tx_flags |= E1000_TX_FLAGS_CSUM;
4139 * Old method was to assume IPv4 packet by default if TSO was enabled.
4140 * 82571 hardware supports TSO capabilities for IPv6 as well...
4141 * no longer assume, we must.
4143 if (skb->protocol == htons(ETH_P_IP))
4144 tx_flags |= E1000_TX_FLAGS_IPV4;
4146 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4148 /* handle pci_map_single() error in e1000_tx_map */
4149 dev_kfree_skb_any(skb);
4150 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4151 return NETDEV_TX_OK;
4154 e1000_tx_queue(adapter, tx_flags, count);
4156 netdev->trans_start = jiffies;
4158 /* Make sure there is space in the ring for the next send. */
4159 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4161 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4162 return NETDEV_TX_OK;
4166 * e1000_tx_timeout - Respond to a Tx Hang
4167 * @netdev: network interface device structure
4169 static void e1000_tx_timeout(struct net_device *netdev)
4171 struct e1000_adapter *adapter = netdev_priv(netdev);
4173 /* Do the reset outside of interrupt context */
4174 adapter->tx_timeout_count++;
4175 schedule_work(&adapter->reset_task);
4178 static void e1000_reset_task(struct work_struct *work)
4180 struct e1000_adapter *adapter;
4181 adapter = container_of(work, struct e1000_adapter, reset_task);
4183 e1000e_reinit_locked(adapter);
4187 * e1000_get_stats - Get System Network Statistics
4188 * @netdev: network interface device structure
4190 * Returns the address of the device statistics structure.
4191 * The statistics are actually updated from the timer callback.
4193 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4197 /* only return the current stats */
4198 return &adapter->net_stats;
4202 * e1000_change_mtu - Change the Maximum Transfer Unit
4203 * @netdev: network interface device structure
4204 * @new_mtu: new value for maximum frame size
4206 * Returns 0 on success, negative on failure
4208 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4210 struct e1000_adapter *adapter = netdev_priv(netdev);
4211 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4213 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4214 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4215 e_err("Invalid MTU setting\n");
4219 /* Jumbo frame size limits */
4220 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4221 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4222 e_err("Jumbo Frames not supported.\n");
4225 if (adapter->hw.phy.type == e1000_phy_ife) {
4226 e_err("Jumbo Frames not supported.\n");
4231 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4232 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4233 e_err("MTU > 9216 not supported.\n");
4237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4239 /* e1000e_down has a dependency on max_frame_size */
4240 adapter->max_frame_size = max_frame;
4241 if (netif_running(netdev))
4242 e1000e_down(adapter);
4245 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4246 * means we reserve 2 more, this pushes us to allocate from the next
4248 * i.e. RXBUFFER_2048 --> size-4096 slab
4249 * However with the new *_jumbo_rx* routines, jumbo receives will use
4253 if (max_frame <= 256)
4254 adapter->rx_buffer_len = 256;
4255 else if (max_frame <= 512)
4256 adapter->rx_buffer_len = 512;
4257 else if (max_frame <= 1024)
4258 adapter->rx_buffer_len = 1024;
4259 else if (max_frame <= 2048)
4260 adapter->rx_buffer_len = 2048;
4262 adapter->rx_buffer_len = 4096;
4264 /* adjust allocation if LPE protects us, and we aren't using SBP */
4265 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4266 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4267 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4270 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4271 netdev->mtu = new_mtu;
4273 if (netif_running(netdev))
4276 e1000e_reset(adapter);
4278 clear_bit(__E1000_RESETTING, &adapter->state);
4283 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4286 struct e1000_adapter *adapter = netdev_priv(netdev);
4287 struct mii_ioctl_data *data = if_mii(ifr);
4289 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4294 data->phy_id = adapter->hw.phy.addr;
4297 if (!capable(CAP_NET_ADMIN))
4299 switch (data->reg_num & 0x1F) {
4301 data->val_out = adapter->phy_regs.bmcr;
4304 data->val_out = adapter->phy_regs.bmsr;
4307 data->val_out = (adapter->hw.phy.id >> 16);
4310 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4313 data->val_out = adapter->phy_regs.advertise;
4316 data->val_out = adapter->phy_regs.lpa;
4319 data->val_out = adapter->phy_regs.expansion;
4322 data->val_out = adapter->phy_regs.ctrl1000;
4325 data->val_out = adapter->phy_regs.stat1000;
4328 data->val_out = adapter->phy_regs.estatus;
4341 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4347 return e1000_mii_ioctl(netdev, ifr, cmd);
4353 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4355 struct net_device *netdev = pci_get_drvdata(pdev);
4356 struct e1000_adapter *adapter = netdev_priv(netdev);
4357 struct e1000_hw *hw = &adapter->hw;
4358 u32 ctrl, ctrl_ext, rctl, status;
4359 u32 wufc = adapter->wol;
4362 netif_device_detach(netdev);
4364 if (netif_running(netdev)) {
4365 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4366 e1000e_down(adapter);
4367 e1000_free_irq(adapter);
4369 e1000e_reset_interrupt_capability(adapter);
4371 retval = pci_save_state(pdev);
4375 status = er32(STATUS);
4376 if (status & E1000_STATUS_LU)
4377 wufc &= ~E1000_WUFC_LNKC;
4380 e1000_setup_rctl(adapter);
4381 e1000_set_multi(netdev);
4383 /* turn on all-multi mode if wake on multicast is enabled */
4384 if (wufc & E1000_WUFC_MC) {
4386 rctl |= E1000_RCTL_MPE;
4391 /* advertise wake from D3Cold */
4392 #define E1000_CTRL_ADVD3WUC 0x00100000
4393 /* phy power management enable */
4394 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4395 ctrl |= E1000_CTRL_ADVD3WUC |
4396 E1000_CTRL_EN_PHY_PWR_MGMT;
4399 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4400 adapter->hw.phy.media_type ==
4401 e1000_media_type_internal_serdes) {
4402 /* keep the laser running in D3 */
4403 ctrl_ext = er32(CTRL_EXT);
4404 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4405 ew32(CTRL_EXT, ctrl_ext);
4408 if (adapter->flags & FLAG_IS_ICH)
4409 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4411 /* Allow time for pending master requests to run */
4412 e1000e_disable_pcie_master(&adapter->hw);
4414 ew32(WUC, E1000_WUC_PME_EN);
4416 pci_enable_wake(pdev, PCI_D3hot, 1);
4417 pci_enable_wake(pdev, PCI_D3cold, 1);
4421 pci_enable_wake(pdev, PCI_D3hot, 0);
4422 pci_enable_wake(pdev, PCI_D3cold, 0);
4425 /* make sure adapter isn't asleep if manageability is enabled */
4426 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4427 pci_enable_wake(pdev, PCI_D3hot, 1);
4428 pci_enable_wake(pdev, PCI_D3cold, 1);
4431 if (adapter->hw.phy.type == e1000_phy_igp_3)
4432 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4435 * Release control of h/w to f/w. If f/w is AMT enabled, this
4436 * would have already happened in close and is redundant.
4438 e1000_release_hw_control(adapter);
4440 pci_disable_device(pdev);
4442 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4447 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4453 * 82573 workaround - disable L1 ASPM on mobile chipsets
4455 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4456 * resulting in lost data or garbage information on the pci-e link
4457 * level. This could result in (false) bad EEPROM checksum errors,
4458 * long ping times (up to 2s) or even a system freeze/hang.
4460 * Unfortunately this feature saves about 1W power consumption when
4463 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4464 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4466 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4468 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4473 static int e1000_resume(struct pci_dev *pdev)
4475 struct net_device *netdev = pci_get_drvdata(pdev);
4476 struct e1000_adapter *adapter = netdev_priv(netdev);
4477 struct e1000_hw *hw = &adapter->hw;
4480 pci_set_power_state(pdev, PCI_D0);
4481 pci_restore_state(pdev);
4482 e1000e_disable_l1aspm(pdev);
4484 err = pci_enable_device_mem(pdev);
4487 "Cannot enable PCI device from suspend\n");
4491 pci_set_master(pdev);
4493 pci_enable_wake(pdev, PCI_D3hot, 0);
4494 pci_enable_wake(pdev, PCI_D3cold, 0);
4496 e1000e_set_interrupt_capability(adapter);
4497 if (netif_running(netdev)) {
4498 err = e1000_request_irq(adapter);
4503 e1000e_power_up_phy(adapter);
4504 e1000e_reset(adapter);
4507 e1000_init_manageability(adapter);
4509 if (netif_running(netdev))
4512 netif_device_attach(netdev);
4515 * If the controller has AMT, do not set DRV_LOAD until the interface
4516 * is up. For all other cases, let the f/w know that the h/w is now
4517 * under the control of the driver.
4519 if (!(adapter->flags & FLAG_HAS_AMT))
4520 e1000_get_hw_control(adapter);
4526 static void e1000_shutdown(struct pci_dev *pdev)
4528 e1000_suspend(pdev, PMSG_SUSPEND);
4531 #ifdef CONFIG_NET_POLL_CONTROLLER
4533 * Polling 'interrupt' - used by things like netconsole to send skbs
4534 * without having to re-enable interrupts. It's not called while
4535 * the interrupt routine is executing.
4537 static void e1000_netpoll(struct net_device *netdev)
4539 struct e1000_adapter *adapter = netdev_priv(netdev);
4541 disable_irq(adapter->pdev->irq);
4542 e1000_intr(adapter->pdev->irq, netdev);
4544 enable_irq(adapter->pdev->irq);
4549 * e1000_io_error_detected - called when PCI error is detected
4550 * @pdev: Pointer to PCI device
4551 * @state: The current pci connection state
4553 * This function is called after a PCI bus error affecting
4554 * this device has been detected.
4556 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4557 pci_channel_state_t state)
4559 struct net_device *netdev = pci_get_drvdata(pdev);
4560 struct e1000_adapter *adapter = netdev_priv(netdev);
4562 netif_device_detach(netdev);
4564 if (netif_running(netdev))
4565 e1000e_down(adapter);
4566 pci_disable_device(pdev);
4568 /* Request a slot slot reset. */
4569 return PCI_ERS_RESULT_NEED_RESET;
4573 * e1000_io_slot_reset - called after the pci bus has been reset.
4574 * @pdev: Pointer to PCI device
4576 * Restart the card from scratch, as if from a cold-boot. Implementation
4577 * resembles the first-half of the e1000_resume routine.
4579 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4581 struct net_device *netdev = pci_get_drvdata(pdev);
4582 struct e1000_adapter *adapter = netdev_priv(netdev);
4583 struct e1000_hw *hw = &adapter->hw;
4586 e1000e_disable_l1aspm(pdev);
4587 err = pci_enable_device_mem(pdev);
4590 "Cannot re-enable PCI device after reset.\n");
4591 return PCI_ERS_RESULT_DISCONNECT;
4593 pci_set_master(pdev);
4594 pci_restore_state(pdev);
4596 pci_enable_wake(pdev, PCI_D3hot, 0);
4597 pci_enable_wake(pdev, PCI_D3cold, 0);
4599 e1000e_reset(adapter);
4602 return PCI_ERS_RESULT_RECOVERED;
4606 * e1000_io_resume - called when traffic can start flowing again.
4607 * @pdev: Pointer to PCI device
4609 * This callback is called when the error recovery driver tells us that
4610 * its OK to resume normal operation. Implementation resembles the
4611 * second-half of the e1000_resume routine.
4613 static void e1000_io_resume(struct pci_dev *pdev)
4615 struct net_device *netdev = pci_get_drvdata(pdev);
4616 struct e1000_adapter *adapter = netdev_priv(netdev);
4618 e1000_init_manageability(adapter);
4620 if (netif_running(netdev)) {
4621 if (e1000e_up(adapter)) {
4623 "can't bring device back up after reset\n");
4628 netif_device_attach(netdev);
4631 * If the controller has AMT, do not set DRV_LOAD until the interface
4632 * is up. For all other cases, let the f/w know that the h/w is now
4633 * under the control of the driver.
4635 if (!(adapter->flags & FLAG_HAS_AMT))
4636 e1000_get_hw_control(adapter);
4640 static void e1000_print_device_info(struct e1000_adapter *adapter)
4642 struct e1000_hw *hw = &adapter->hw;
4643 struct net_device *netdev = adapter->netdev;
4646 /* print bus type/speed/width info */
4647 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4649 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4652 netdev->dev_addr[0], netdev->dev_addr[1],
4653 netdev->dev_addr[2], netdev->dev_addr[3],
4654 netdev->dev_addr[4], netdev->dev_addr[5]);
4655 e_info("Intel(R) PRO/%s Network Connection\n",
4656 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4657 e1000e_read_pba_num(hw, &pba_num);
4658 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4659 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4662 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4664 struct e1000_hw *hw = &adapter->hw;
4668 if (hw->mac.type != e1000_82573)
4671 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4672 if (!(le16_to_cpu(buf) & (1 << 0))) {
4673 /* Deep Smart Power Down (DSPD) */
4674 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4677 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4678 if (le16_to_cpu(buf) & (3 << 2)) {
4680 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4685 * e1000_probe - Device Initialization Routine
4686 * @pdev: PCI device information struct
4687 * @ent: entry in e1000_pci_tbl
4689 * Returns 0 on success, negative on failure
4691 * e1000_probe initializes an adapter identified by a pci_dev structure.
4692 * The OS initialization, configuring of the adapter private structure,
4693 * and a hardware reset occur.
4695 static int __devinit e1000_probe(struct pci_dev *pdev,
4696 const struct pci_device_id *ent)
4698 struct net_device *netdev;
4699 struct e1000_adapter *adapter;
4700 struct e1000_hw *hw;
4701 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4702 resource_size_t mmio_start, mmio_len;
4703 resource_size_t flash_start, flash_len;
4705 static int cards_found;
4706 int i, err, pci_using_dac;
4707 u16 eeprom_data = 0;
4708 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4710 e1000e_disable_l1aspm(pdev);
4712 err = pci_enable_device_mem(pdev);
4717 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4719 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4723 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4725 err = pci_set_consistent_dma_mask(pdev,
4728 dev_err(&pdev->dev, "No usable DMA "
4729 "configuration, aborting\n");
4735 err = pci_request_selected_regions(pdev,
4736 pci_select_bars(pdev, IORESOURCE_MEM),
4737 e1000e_driver_name);
4741 pci_set_master(pdev);
4742 pci_save_state(pdev);
4745 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4747 goto err_alloc_etherdev;
4749 SET_NETDEV_DEV(netdev, &pdev->dev);
4751 pci_set_drvdata(pdev, netdev);
4752 adapter = netdev_priv(netdev);
4754 adapter->netdev = netdev;
4755 adapter->pdev = pdev;
4757 adapter->pba = ei->pba;
4758 adapter->flags = ei->flags;
4759 adapter->hw.adapter = adapter;
4760 adapter->hw.mac.type = ei->mac;
4761 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4763 mmio_start = pci_resource_start(pdev, 0);
4764 mmio_len = pci_resource_len(pdev, 0);
4767 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4768 if (!adapter->hw.hw_addr)
4771 if ((adapter->flags & FLAG_HAS_FLASH) &&
4772 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4773 flash_start = pci_resource_start(pdev, 1);
4774 flash_len = pci_resource_len(pdev, 1);
4775 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4776 if (!adapter->hw.flash_address)
4780 /* construct the net_device struct */
4781 netdev->open = &e1000_open;
4782 netdev->stop = &e1000_close;
4783 netdev->hard_start_xmit = &e1000_xmit_frame;
4784 netdev->get_stats = &e1000_get_stats;
4785 netdev->set_multicast_list = &e1000_set_multi;
4786 netdev->set_mac_address = &e1000_set_mac;
4787 netdev->change_mtu = &e1000_change_mtu;
4788 netdev->do_ioctl = &e1000_ioctl;
4789 e1000e_set_ethtool_ops(netdev);
4790 netdev->tx_timeout = &e1000_tx_timeout;
4791 netdev->watchdog_timeo = 5 * HZ;
4792 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4793 netdev->vlan_rx_register = e1000_vlan_rx_register;
4794 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4795 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4796 #ifdef CONFIG_NET_POLL_CONTROLLER
4797 netdev->poll_controller = e1000_netpoll;
4799 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4801 netdev->mem_start = mmio_start;
4802 netdev->mem_end = mmio_start + mmio_len;
4804 adapter->bd_number = cards_found++;
4806 e1000e_check_options(adapter);
4808 /* setup adapter struct */
4809 err = e1000_sw_init(adapter);
4815 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4816 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4817 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4819 err = ei->get_variants(adapter);
4823 hw->mac.ops.get_bus_info(&adapter->hw);
4825 adapter->hw.phy.autoneg_wait_to_complete = 0;
4827 /* Copper options */
4828 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4829 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4830 adapter->hw.phy.disable_polarity_correction = 0;
4831 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4834 if (e1000_check_reset_block(&adapter->hw))
4835 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4837 netdev->features = NETIF_F_SG |
4839 NETIF_F_HW_VLAN_TX |
4842 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4843 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4845 netdev->features |= NETIF_F_TSO;
4846 netdev->features |= NETIF_F_TSO6;
4848 netdev->vlan_features |= NETIF_F_TSO;
4849 netdev->vlan_features |= NETIF_F_TSO6;
4850 netdev->vlan_features |= NETIF_F_HW_CSUM;
4851 netdev->vlan_features |= NETIF_F_SG;
4854 netdev->features |= NETIF_F_HIGHDMA;
4857 * We should not be using LLTX anymore, but we are still Tx faster with
4860 netdev->features |= NETIF_F_LLTX;
4862 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4863 adapter->flags |= FLAG_MNG_PT_ENABLED;
4866 * before reading the NVM, reset the controller to
4867 * put the device in a known good starting state
4869 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4872 * systems with ASPM and others may see the checksum fail on the first
4873 * attempt. Let's give it a few tries
4876 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4879 e_err("The NVM Checksum Is Not Valid\n");
4885 e1000_eeprom_checks(adapter);
4887 /* copy the MAC address out of the NVM */
4888 if (e1000e_read_mac_addr(&adapter->hw))
4889 e_err("NVM Read Error while reading MAC address\n");
4891 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4892 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4894 if (!is_valid_ether_addr(netdev->perm_addr)) {
4895 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4896 netdev->perm_addr[0], netdev->perm_addr[1],
4897 netdev->perm_addr[2], netdev->perm_addr[3],
4898 netdev->perm_addr[4], netdev->perm_addr[5]);
4903 init_timer(&adapter->watchdog_timer);
4904 adapter->watchdog_timer.function = &e1000_watchdog;
4905 adapter->watchdog_timer.data = (unsigned long) adapter;
4907 init_timer(&adapter->phy_info_timer);
4908 adapter->phy_info_timer.function = &e1000_update_phy_info;
4909 adapter->phy_info_timer.data = (unsigned long) adapter;
4911 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4912 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4914 /* Initialize link parameters. User can change them with ethtool */
4915 adapter->hw.mac.autoneg = 1;
4916 adapter->fc_autoneg = 1;
4917 adapter->hw.fc.original_type = e1000_fc_default;
4918 adapter->hw.fc.type = e1000_fc_default;
4919 adapter->hw.phy.autoneg_advertised = 0x2f;
4921 /* ring size defaults */
4922 adapter->rx_ring->count = 256;
4923 adapter->tx_ring->count = 256;
4926 * Initial Wake on LAN setting - If APM wake is enabled in
4927 * the EEPROM, enable the ACPI Magic Packet filter
4929 if (adapter->flags & FLAG_APME_IN_WUC) {
4930 /* APME bit in EEPROM is mapped to WUC.APME */
4931 eeprom_data = er32(WUC);
4932 eeprom_apme_mask = E1000_WUC_APME;
4933 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4934 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4935 (adapter->hw.bus.func == 1))
4936 e1000_read_nvm(&adapter->hw,
4937 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4939 e1000_read_nvm(&adapter->hw,
4940 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4943 /* fetch WoL from EEPROM */
4944 if (eeprom_data & eeprom_apme_mask)
4945 adapter->eeprom_wol |= E1000_WUFC_MAG;
4948 * now that we have the eeprom settings, apply the special cases
4949 * where the eeprom may be wrong or the board simply won't support
4950 * wake on lan on a particular port
4952 if (!(adapter->flags & FLAG_HAS_WOL))
4953 adapter->eeprom_wol = 0;
4955 /* initialize the wol settings based on the eeprom settings */
4956 adapter->wol = adapter->eeprom_wol;
4958 /* reset the hardware with the new settings */
4959 e1000e_reset(adapter);
4962 * If the controller has AMT, do not set DRV_LOAD until the interface
4963 * is up. For all other cases, let the f/w know that the h/w is now
4964 * under the control of the driver.
4966 if (!(adapter->flags & FLAG_HAS_AMT))
4967 e1000_get_hw_control(adapter);
4969 /* tell the stack to leave us alone until e1000_open() is called */
4970 netif_carrier_off(netdev);
4971 netif_tx_stop_all_queues(netdev);
4973 strcpy(netdev->name, "eth%d");
4974 err = register_netdev(netdev);
4978 e1000_print_device_info(adapter);
4983 if (!(adapter->flags & FLAG_HAS_AMT))
4984 e1000_release_hw_control(adapter);
4986 if (!e1000_check_reset_block(&adapter->hw))
4987 e1000_phy_hw_reset(&adapter->hw);
4990 kfree(adapter->tx_ring);
4991 kfree(adapter->rx_ring);
4993 if (adapter->hw.flash_address)
4994 iounmap(adapter->hw.flash_address);
4996 iounmap(adapter->hw.hw_addr);
4998 free_netdev(netdev);
5000 pci_release_selected_regions(pdev,
5001 pci_select_bars(pdev, IORESOURCE_MEM));
5004 pci_disable_device(pdev);
5009 * e1000_remove - Device Removal Routine
5010 * @pdev: PCI device information struct
5012 * e1000_remove is called by the PCI subsystem to alert the driver
5013 * that it should release a PCI device. The could be caused by a
5014 * Hot-Plug event, or because the driver is going to be removed from
5017 static void __devexit e1000_remove(struct pci_dev *pdev)
5019 struct net_device *netdev = pci_get_drvdata(pdev);
5020 struct e1000_adapter *adapter = netdev_priv(netdev);
5023 * flush_scheduled work may reschedule our watchdog task, so
5024 * explicitly disable watchdog tasks from being rescheduled
5026 set_bit(__E1000_DOWN, &adapter->state);
5027 del_timer_sync(&adapter->watchdog_timer);
5028 del_timer_sync(&adapter->phy_info_timer);
5030 flush_scheduled_work();
5033 * Release control of h/w to f/w. If f/w is AMT enabled, this
5034 * would have already happened in close and is redundant.
5036 e1000_release_hw_control(adapter);
5038 unregister_netdev(netdev);
5040 if (!e1000_check_reset_block(&adapter->hw))
5041 e1000_phy_hw_reset(&adapter->hw);
5043 e1000e_reset_interrupt_capability(adapter);
5044 kfree(adapter->tx_ring);
5045 kfree(adapter->rx_ring);
5047 iounmap(adapter->hw.hw_addr);
5048 if (adapter->hw.flash_address)
5049 iounmap(adapter->hw.flash_address);
5050 pci_release_selected_regions(pdev,
5051 pci_select_bars(pdev, IORESOURCE_MEM));
5053 free_netdev(netdev);
5055 pci_disable_device(pdev);
5058 /* PCI Error Recovery (ERS) */
5059 static struct pci_error_handlers e1000_err_handler = {
5060 .error_detected = e1000_io_error_detected,
5061 .slot_reset = e1000_io_slot_reset,
5062 .resume = e1000_io_resume,
5065 static struct pci_device_id e1000_pci_tbl[] = {
5066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5073 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5077 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5079 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5088 board_80003es2lan },
5089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5090 board_80003es2lan },
5091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5092 board_80003es2lan },
5093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5094 board_80003es2lan },
5096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5121 { } /* terminate list */
5123 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5125 /* PCI Device API Driver */
5126 static struct pci_driver e1000_driver = {
5127 .name = e1000e_driver_name,
5128 .id_table = e1000_pci_tbl,
5129 .probe = e1000_probe,
5130 .remove = __devexit_p(e1000_remove),
5132 /* Power Management Hooks */
5133 .suspend = e1000_suspend,
5134 .resume = e1000_resume,
5136 .shutdown = e1000_shutdown,
5137 .err_handler = &e1000_err_handler
5141 * e1000_init_module - Driver Registration Routine
5143 * e1000_init_module is the first routine called when the driver is
5144 * loaded. All it does is register with the PCI subsystem.
5146 static int __init e1000_init_module(void)
5149 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5150 e1000e_driver_name, e1000e_driver_version);
5151 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5152 e1000e_driver_name);
5153 ret = pci_register_driver(&e1000_driver);
5154 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5155 PM_QOS_DEFAULT_VALUE);
5159 module_init(e1000_init_module);
5162 * e1000_exit_module - Driver Exit Cleanup Routine
5164 * e1000_exit_module is called just before the driver is removed
5167 static void __exit e1000_exit_module(void)
5169 pci_unregister_driver(&e1000_driver);
5170 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5172 module_exit(e1000_exit_module);
5175 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5176 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5177 MODULE_LICENSE("GPL");
5178 MODULE_VERSION(DRV_VERSION);