2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
38 #define PREFIX "DMAR:"
40 /* No locks are needed as DMA remapping hardware unit
41 * list is constructed at boot time and hotplug of
42 * these units are not supported by the architecture.
44 LIST_HEAD(dmar_drhd_units);
46 static struct acpi_table_header * __initdata dmar_tbl;
47 static acpi_size dmar_tbl_size;
49 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
52 * add INCLUDE_ALL at the tail, so scan the list will find it at
55 if (drhd->include_all)
56 list_add_tail(&drhd->list, &dmar_drhd_units);
58 list_add(&drhd->list, &dmar_drhd_units);
61 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62 struct pci_dev **dev, u16 segment)
65 struct pci_dev *pdev = NULL;
66 struct acpi_dmar_pci_path *path;
69 bus = pci_find_bus(segment, scope->bus);
70 path = (struct acpi_dmar_pci_path *)(scope + 1);
71 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72 / sizeof(struct acpi_dmar_pci_path);
78 * Some BIOSes list non-exist devices in DMAR table, just
83 PREFIX "Device scope bus [%d] not found\n",
87 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 printk(KERN_WARNING PREFIX
90 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91 segment, bus->number, path->dev, path->fn);
96 bus = pdev->subordinate;
99 printk(KERN_WARNING PREFIX
100 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101 segment, scope->bus, path->dev, path->fn);
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 printk(KERN_WARNING PREFIX
110 "Device scope type does not match for %s\n",
118 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
121 struct acpi_dmar_device_scope *scope;
127 while (start < end) {
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
133 printk(KERN_WARNING PREFIX
134 "Unsupported device scope\n");
135 start += scope->length;
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
146 while (start < end) {
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
158 start += scope->length;
165 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166 * structure which uniquely represent one DMA remapping hardware unit
167 * present in the platform
170 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 struct acpi_dmar_hardware_unit *drhd;
173 struct dmar_drhd_unit *dmaru;
176 drhd = (struct acpi_dmar_hardware_unit *)header;
177 if (!drhd->address) {
178 /* Promote an attitude of violence to a BIOS engineer today */
179 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
180 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
181 dmi_get_system_info(DMI_BIOS_VENDOR),
182 dmi_get_system_info(DMI_BIOS_VERSION),
183 dmi_get_system_info(DMI_PRODUCT_VERSION));
186 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
191 dmaru->reg_base_addr = drhd->address;
192 dmaru->segment = drhd->segment;
193 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
195 ret = alloc_iommu(dmaru);
200 dmar_register_drhd_unit(dmaru);
204 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 struct acpi_dmar_hardware_unit *drhd;
209 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
211 if (dmaru->include_all)
214 ret = dmar_parse_dev_scope((void *)(drhd + 1),
215 ((void *)drhd) + drhd->header.length,
216 &dmaru->devices_cnt, &dmaru->devices,
219 list_del(&dmaru->list);
226 LIST_HEAD(dmar_rmrr_units);
228 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
230 list_add(&rmrr->list, &dmar_rmrr_units);
235 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
237 struct acpi_dmar_reserved_memory *rmrr;
238 struct dmar_rmrr_unit *rmrru;
240 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
245 rmrr = (struct acpi_dmar_reserved_memory *)header;
246 rmrru->base_address = rmrr->base_address;
247 rmrru->end_address = rmrr->end_address;
249 dmar_register_rmrr_unit(rmrru);
254 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
256 struct acpi_dmar_reserved_memory *rmrr;
259 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
260 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
261 ((void *)rmrr) + rmrr->header.length,
262 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
264 if (ret || (rmrru->devices_cnt == 0)) {
265 list_del(&rmrru->list);
273 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
275 struct acpi_dmar_hardware_unit *drhd;
276 struct acpi_dmar_reserved_memory *rmrr;
278 switch (header->type) {
279 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
280 drhd = (struct acpi_dmar_hardware_unit *)header;
281 printk (KERN_INFO PREFIX
282 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
283 drhd->flags, (unsigned long long)drhd->address);
285 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
286 rmrr = (struct acpi_dmar_reserved_memory *)header;
288 printk (KERN_INFO PREFIX
289 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
290 (unsigned long long)rmrr->base_address,
291 (unsigned long long)rmrr->end_address);
297 * dmar_table_detect - checks to see if the platform supports DMAR devices
299 static int __init dmar_table_detect(void)
301 acpi_status status = AE_OK;
303 /* if we could find DMAR table, then there are DMAR devices */
304 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
305 (struct acpi_table_header **)&dmar_tbl,
308 if (ACPI_SUCCESS(status) && !dmar_tbl) {
309 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
310 status = AE_NOT_FOUND;
313 return (ACPI_SUCCESS(status) ? 1 : 0);
317 * parse_dmar_table - parses the DMA reporting table
320 parse_dmar_table(void)
322 struct acpi_table_dmar *dmar;
323 struct acpi_dmar_header *entry_header;
327 * Do it again, earlier dmar_tbl mapping could be mapped with
332 dmar = (struct acpi_table_dmar *)dmar_tbl;
336 if (dmar->width < PAGE_SHIFT - 1) {
337 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
341 printk (KERN_INFO PREFIX "Host address width %d\n",
344 entry_header = (struct acpi_dmar_header *)(dmar + 1);
345 while (((unsigned long)entry_header) <
346 (((unsigned long)dmar) + dmar_tbl->length)) {
347 /* Avoid looping forever on bad ACPI tables */
348 if (entry_header->length == 0) {
349 printk(KERN_WARNING PREFIX
350 "Invalid 0-length structure\n");
355 dmar_table_print_dmar_entry(entry_header);
357 switch (entry_header->type) {
358 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
359 ret = dmar_parse_one_drhd(entry_header);
361 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
363 ret = dmar_parse_one_rmrr(entry_header);
367 printk(KERN_WARNING PREFIX
368 "Unknown DMAR structure type\n");
369 ret = 0; /* for forward compatibility */
375 entry_header = ((void *)entry_header + entry_header->length);
380 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
386 for (index = 0; index < cnt; index++)
387 if (dev == devices[index])
390 /* Check our parent */
391 dev = dev->bus->self;
397 struct dmar_drhd_unit *
398 dmar_find_matched_drhd_unit(struct pci_dev *dev)
400 struct dmar_drhd_unit *dmaru = NULL;
401 struct acpi_dmar_hardware_unit *drhd;
403 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
404 drhd = container_of(dmaru->hdr,
405 struct acpi_dmar_hardware_unit,
408 if (dmaru->include_all &&
409 drhd->segment == pci_domain_nr(dev->bus))
412 if (dmar_pci_device_match(dmaru->devices,
413 dmaru->devices_cnt, dev))
420 int __init dmar_dev_scope_init(void)
422 struct dmar_drhd_unit *drhd, *drhd_n;
425 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
426 ret = dmar_parse_dev(drhd);
433 struct dmar_rmrr_unit *rmrr, *rmrr_n;
434 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
435 ret = rmrr_parse_dev(rmrr);
446 int __init dmar_table_init(void)
448 static int dmar_table_initialized;
451 if (dmar_table_initialized)
454 dmar_table_initialized = 1;
456 ret = parse_dmar_table();
459 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
463 if (list_empty(&dmar_drhd_units)) {
464 printk(KERN_INFO PREFIX "No DMAR devices found\n");
469 if (list_empty(&dmar_rmrr_units))
470 printk(KERN_INFO PREFIX "No RMRR found\n");
473 #ifdef CONFIG_INTR_REMAP
474 parse_ioapics_under_ir();
479 void __init detect_intel_iommu(void)
483 ret = dmar_table_detect();
486 #ifdef CONFIG_INTR_REMAP
487 struct acpi_table_dmar *dmar;
489 * for now we will disable dma-remapping when interrupt
490 * remapping is enabled.
491 * When support for queued invalidation for IOTLB invalidation
492 * is added, we will not need this any more.
494 dmar = (struct acpi_table_dmar *) dmar_tbl;
495 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
497 "Queued invalidation will be enabled to support "
498 "x2apic and Intr-remapping.\n");
501 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
506 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
511 int alloc_iommu(struct dmar_drhd_unit *drhd)
513 struct intel_iommu *iommu;
516 static int iommu_allocated = 0;
520 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
524 iommu->seq_id = iommu_allocated++;
525 sprintf (iommu->name, "dmar%d", iommu->seq_id);
527 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
529 printk(KERN_ERR "IOMMU: can't map the region\n");
532 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
533 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
536 agaw = iommu_calculate_agaw(iommu);
539 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
543 msagaw = iommu_calculate_max_sagaw(iommu);
546 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
552 iommu->msagaw = msagaw;
554 /* the registers might be more than one page */
555 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
556 cap_max_fault_reg_offset(iommu->cap));
557 map_size = VTD_PAGE_ALIGN(map_size);
558 if (map_size > VTD_PAGE_SIZE) {
560 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
562 printk(KERN_ERR "IOMMU: can't map the region\n");
567 ver = readl(iommu->reg + DMAR_VER_REG);
568 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
569 (unsigned long long)drhd->reg_base_addr,
570 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
571 (unsigned long long)iommu->cap,
572 (unsigned long long)iommu->ecap);
574 spin_lock_init(&iommu->register_lock);
583 void free_iommu(struct intel_iommu *iommu)
589 free_dmar_iommu(iommu);
598 * Reclaim all the submitted descriptors which have completed its work.
600 static inline void reclaim_free_desc(struct q_inval *qi)
602 while (qi->desc_status[qi->free_tail] == QI_DONE) {
603 qi->desc_status[qi->free_tail] = QI_FREE;
604 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
609 static int qi_check_fault(struct intel_iommu *iommu, int index)
613 struct q_inval *qi = iommu->qi;
614 int wait_index = (index + 1) % QI_LENGTH;
616 fault = readl(iommu->reg + DMAR_FSTS_REG);
619 * If IQE happens, the head points to the descriptor associated
620 * with the error. No new descriptors are fetched until the IQE
623 if (fault & DMA_FSTS_IQE) {
624 head = readl(iommu->reg + DMAR_IQH_REG);
625 if ((head >> 4) == index) {
626 memcpy(&qi->desc[index], &qi->desc[wait_index],
627 sizeof(struct qi_desc));
628 __iommu_flush_cache(iommu, &qi->desc[index],
629 sizeof(struct qi_desc));
630 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
639 * Submit the queued invalidation descriptor to the remapping
640 * hardware unit and wait for its completion.
642 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
645 struct q_inval *qi = iommu->qi;
646 struct qi_desc *hw, wait_desc;
647 int wait_index, index;
655 spin_lock_irqsave(&qi->q_lock, flags);
656 while (qi->free_cnt < 3) {
657 spin_unlock_irqrestore(&qi->q_lock, flags);
659 spin_lock_irqsave(&qi->q_lock, flags);
662 index = qi->free_head;
663 wait_index = (index + 1) % QI_LENGTH;
665 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
669 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
670 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
671 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
673 hw[wait_index] = wait_desc;
675 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
676 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
678 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
682 * update the HW tail register indicating the presence of
685 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
687 while (qi->desc_status[wait_index] != QI_DONE) {
689 * We will leave the interrupts disabled, to prevent interrupt
690 * context to queue another cmd while a cmd is already submitted
691 * and waiting for completion on this cpu. This is to avoid
692 * a deadlock where the interrupt context can wait indefinitely
693 * for free slots in the queue.
695 rc = qi_check_fault(iommu, index);
699 spin_unlock(&qi->q_lock);
701 spin_lock(&qi->q_lock);
704 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
706 reclaim_free_desc(qi);
707 spin_unlock_irqrestore(&qi->q_lock, flags);
713 * Flush the global interrupt entry cache.
715 void qi_global_iec(struct intel_iommu *iommu)
719 desc.low = QI_IEC_TYPE;
722 /* should never fail */
723 qi_submit_sync(&desc, iommu);
726 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
731 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
732 | QI_CC_GRAN(type) | QI_CC_TYPE;
735 qi_submit_sync(&desc, iommu);
738 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
739 unsigned int size_order, u64 type)
746 if (cap_write_drain(iommu->cap))
749 if (cap_read_drain(iommu->cap))
752 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
753 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
754 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
755 | QI_IOTLB_AM(size_order);
757 qi_submit_sync(&desc, iommu);
761 * Disable Queued Invalidation interface.
763 void dmar_disable_qi(struct intel_iommu *iommu)
767 cycles_t start_time = get_cycles();
769 if (!ecap_qis(iommu->ecap))
772 spin_lock_irqsave(&iommu->register_lock, flags);
774 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
775 if (!(sts & DMA_GSTS_QIES))
779 * Give a chance to HW to complete the pending invalidation requests.
781 while ((readl(iommu->reg + DMAR_IQT_REG) !=
782 readl(iommu->reg + DMAR_IQH_REG)) &&
783 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
786 iommu->gcmd &= ~DMA_GCMD_QIE;
788 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
790 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
791 !(sts & DMA_GSTS_QIES), sts);
793 spin_unlock_irqrestore(&iommu->register_lock, flags);
797 * Enable queued invalidation.
799 static void __dmar_enable_qi(struct intel_iommu *iommu)
803 struct q_inval *qi = iommu->qi;
805 qi->free_head = qi->free_tail = 0;
806 qi->free_cnt = QI_LENGTH;
808 spin_lock_irqsave(&iommu->register_lock, flags);
810 /* write zero to the tail reg */
811 writel(0, iommu->reg + DMAR_IQT_REG);
813 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
815 cmd = iommu->gcmd | DMA_GCMD_QIE;
816 iommu->gcmd |= DMA_GCMD_QIE;
817 writel(cmd, iommu->reg + DMAR_GCMD_REG);
819 /* Make sure hardware complete it */
820 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
822 spin_unlock_irqrestore(&iommu->register_lock, flags);
826 * Enable Queued Invalidation interface. This is a must to support
827 * interrupt-remapping. Also used by DMA-remapping, which replaces
828 * register based IOTLB invalidation.
830 int dmar_enable_qi(struct intel_iommu *iommu)
834 if (!ecap_qis(iommu->ecap))
838 * queued invalidation is already setup and enabled.
843 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
849 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
856 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
857 if (!qi->desc_status) {
858 free_page((unsigned long) qi->desc);
864 qi->free_head = qi->free_tail = 0;
865 qi->free_cnt = QI_LENGTH;
867 spin_lock_init(&qi->q_lock);
869 __dmar_enable_qi(iommu);
874 /* iommu interrupt handling. Most stuff are MSI-like. */
882 static const char *dma_remap_fault_reasons[] =
885 "Present bit in root entry is clear",
886 "Present bit in context entry is clear",
887 "Invalid context entry",
888 "Access beyond MGAW",
889 "PTE Write access is not set",
890 "PTE Read access is not set",
891 "Next page table ptr is invalid",
892 "Root table address invalid",
893 "Context table ptr is invalid",
894 "non-zero reserved fields in RTP",
895 "non-zero reserved fields in CTP",
896 "non-zero reserved fields in PTE",
899 static const char *intr_remap_fault_reasons[] =
901 "Detected reserved fields in the decoded interrupt-remapped request",
902 "Interrupt index exceeded the interrupt-remapping table size",
903 "Present field in the IRTE entry is clear",
904 "Error accessing interrupt-remapping table pointed by IRTA_REG",
905 "Detected reserved fields in the IRTE entry",
906 "Blocked a compatibility format interrupt request",
907 "Blocked an interrupt request due to source-id verification failure",
910 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
912 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
914 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
915 ARRAY_SIZE(intr_remap_fault_reasons))) {
916 *fault_type = INTR_REMAP;
917 return intr_remap_fault_reasons[fault_reason - 0x20];
918 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
919 *fault_type = DMA_REMAP;
920 return dma_remap_fault_reasons[fault_reason];
922 *fault_type = UNKNOWN;
927 void dmar_msi_unmask(unsigned int irq)
929 struct intel_iommu *iommu = get_irq_data(irq);
933 spin_lock_irqsave(&iommu->register_lock, flag);
934 writel(0, iommu->reg + DMAR_FECTL_REG);
935 /* Read a reg to force flush the post write */
936 readl(iommu->reg + DMAR_FECTL_REG);
937 spin_unlock_irqrestore(&iommu->register_lock, flag);
940 void dmar_msi_mask(unsigned int irq)
943 struct intel_iommu *iommu = get_irq_data(irq);
946 spin_lock_irqsave(&iommu->register_lock, flag);
947 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
948 /* Read a reg to force flush the post write */
949 readl(iommu->reg + DMAR_FECTL_REG);
950 spin_unlock_irqrestore(&iommu->register_lock, flag);
953 void dmar_msi_write(int irq, struct msi_msg *msg)
955 struct intel_iommu *iommu = get_irq_data(irq);
958 spin_lock_irqsave(&iommu->register_lock, flag);
959 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
960 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
961 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
962 spin_unlock_irqrestore(&iommu->register_lock, flag);
965 void dmar_msi_read(int irq, struct msi_msg *msg)
967 struct intel_iommu *iommu = get_irq_data(irq);
970 spin_lock_irqsave(&iommu->register_lock, flag);
971 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
972 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
973 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
974 spin_unlock_irqrestore(&iommu->register_lock, flag);
977 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
978 u8 fault_reason, u16 source_id, unsigned long long addr)
983 reason = dmar_get_fault_reason(fault_reason, &fault_type);
985 if (fault_type == INTR_REMAP)
986 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
988 "INTR-REMAP:[fault reason %02d] %s\n",
989 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
990 PCI_FUNC(source_id & 0xFF), addr >> 48,
991 fault_reason, reason);
994 "DMAR:[%s] Request device [%02x:%02x.%d] "
996 "DMAR:[fault reason %02d] %s\n",
997 (type ? "DMA Read" : "DMA Write"),
998 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
999 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1003 #define PRIMARY_FAULT_REG_LEN (16)
1004 irqreturn_t dmar_fault(int irq, void *dev_id)
1006 struct intel_iommu *iommu = dev_id;
1007 int reg, fault_index;
1011 spin_lock_irqsave(&iommu->register_lock, flag);
1012 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1014 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1017 /* TBD: ignore advanced fault log currently */
1018 if (!(fault_status & DMA_FSTS_PPF))
1021 fault_index = dma_fsts_fault_record_index(fault_status);
1022 reg = cap_fault_reg_offset(iommu->cap);
1030 /* highest 32 bits */
1031 data = readl(iommu->reg + reg +
1032 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1033 if (!(data & DMA_FRCD_F))
1036 fault_reason = dma_frcd_fault_reason(data);
1037 type = dma_frcd_type(data);
1039 data = readl(iommu->reg + reg +
1040 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1041 source_id = dma_frcd_source_id(data);
1043 guest_addr = dmar_readq(iommu->reg + reg +
1044 fault_index * PRIMARY_FAULT_REG_LEN);
1045 guest_addr = dma_frcd_page_addr(guest_addr);
1046 /* clear the fault */
1047 writel(DMA_FRCD_F, iommu->reg + reg +
1048 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1050 spin_unlock_irqrestore(&iommu->register_lock, flag);
1052 dmar_fault_do_one(iommu, type, fault_reason,
1053 source_id, guest_addr);
1056 if (fault_index > cap_num_fault_regs(iommu->cap))
1058 spin_lock_irqsave(&iommu->register_lock, flag);
1061 /* clear all the other faults */
1062 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1063 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1065 spin_unlock_irqrestore(&iommu->register_lock, flag);
1069 int dmar_set_interrupt(struct intel_iommu *iommu)
1074 * Check if the fault interrupt is already initialized.
1081 printk(KERN_ERR "IOMMU: no free vectors\n");
1085 set_irq_data(irq, iommu);
1088 ret = arch_setup_dmar_msi(irq);
1090 set_irq_data(irq, NULL);
1096 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1098 printk(KERN_ERR "IOMMU: can't request irq\n");
1102 int __init enable_drhd_fault_handling(void)
1104 struct dmar_drhd_unit *drhd;
1107 * Enable fault control interrupt.
1109 for_each_drhd_unit(drhd) {
1111 struct intel_iommu *iommu = drhd->iommu;
1112 ret = dmar_set_interrupt(iommu);
1115 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1116 " interrupt, ret %d\n",
1117 (unsigned long long)drhd->reg_base_addr, ret);
1126 * Re-enable Queued Invalidation interface.
1128 int dmar_reenable_qi(struct intel_iommu *iommu)
1130 if (!ecap_qis(iommu->ecap))
1137 * First disable queued invalidation.
1139 dmar_disable_qi(iommu);
1141 * Then enable queued invalidation again. Since there is no pending
1142 * invalidation requests now, it's safe to re-enable queued
1145 __dmar_enable_qi(iommu);