Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.23.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135         "Register test\t(offline)",
136         "Eeprom test\t(offline)",
137         "Link test\t(online)",
138         "RLDRAM test\t(offline)",
139         "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143         {"tmac_frms"},
144         {"tmac_data_octets"},
145         {"tmac_drop_frms"},
146         {"tmac_mcst_frms"},
147         {"tmac_bcst_frms"},
148         {"tmac_pause_ctrl_frms"},
149         {"tmac_ttl_octets"},
150         {"tmac_ucst_frms"},
151         {"tmac_nucst_frms"},
152         {"tmac_any_err_frms"},
153         {"tmac_ttl_less_fb_octets"},
154         {"tmac_vld_ip_octets"},
155         {"tmac_vld_ip"},
156         {"tmac_drop_ip"},
157         {"tmac_icmp"},
158         {"tmac_rst_tcp"},
159         {"tmac_tcp"},
160         {"tmac_udp"},
161         {"rmac_vld_frms"},
162         {"rmac_data_octets"},
163         {"rmac_fcs_err_frms"},
164         {"rmac_drop_frms"},
165         {"rmac_vld_mcst_frms"},
166         {"rmac_vld_bcst_frms"},
167         {"rmac_in_rng_len_err_frms"},
168         {"rmac_out_rng_len_err_frms"},
169         {"rmac_long_frms"},
170         {"rmac_pause_ctrl_frms"},
171         {"rmac_unsup_ctrl_frms"},
172         {"rmac_ttl_octets"},
173         {"rmac_accepted_ucst_frms"},
174         {"rmac_accepted_nucst_frms"},
175         {"rmac_discarded_frms"},
176         {"rmac_drop_events"},
177         {"rmac_ttl_less_fb_octets"},
178         {"rmac_ttl_frms"},
179         {"rmac_usized_frms"},
180         {"rmac_osized_frms"},
181         {"rmac_frag_frms"},
182         {"rmac_jabber_frms"},
183         {"rmac_ttl_64_frms"},
184         {"rmac_ttl_65_127_frms"},
185         {"rmac_ttl_128_255_frms"},
186         {"rmac_ttl_256_511_frms"},
187         {"rmac_ttl_512_1023_frms"},
188         {"rmac_ttl_1024_1518_frms"},
189         {"rmac_ip"},
190         {"rmac_ip_octets"},
191         {"rmac_hdr_err_ip"},
192         {"rmac_drop_ip"},
193         {"rmac_icmp"},
194         {"rmac_tcp"},
195         {"rmac_udp"},
196         {"rmac_err_drp_udp"},
197         {"rmac_xgmii_err_sym"},
198         {"rmac_frms_q0"},
199         {"rmac_frms_q1"},
200         {"rmac_frms_q2"},
201         {"rmac_frms_q3"},
202         {"rmac_frms_q4"},
203         {"rmac_frms_q5"},
204         {"rmac_frms_q6"},
205         {"rmac_frms_q7"},
206         {"rmac_full_q0"},
207         {"rmac_full_q1"},
208         {"rmac_full_q2"},
209         {"rmac_full_q3"},
210         {"rmac_full_q4"},
211         {"rmac_full_q5"},
212         {"rmac_full_q6"},
213         {"rmac_full_q7"},
214         {"rmac_pause_cnt"},
215         {"rmac_xgmii_data_err_cnt"},
216         {"rmac_xgmii_ctrl_err_cnt"},
217         {"rmac_accepted_ip"},
218         {"rmac_err_tcp"},
219         {"rd_req_cnt"},
220         {"new_rd_req_cnt"},
221         {"new_rd_req_rtry_cnt"},
222         {"rd_rtry_cnt"},
223         {"wr_rtry_rd_ack_cnt"},
224         {"wr_req_cnt"},
225         {"new_wr_req_cnt"},
226         {"new_wr_req_rtry_cnt"},
227         {"wr_rtry_cnt"},
228         {"wr_disc_cnt"},
229         {"rd_rtry_wr_ack_cnt"},
230         {"txp_wr_cnt"},
231         {"txd_rd_cnt"},
232         {"txd_wr_cnt"},
233         {"rxd_rd_cnt"},
234         {"rxd_wr_cnt"},
235         {"txf_rd_cnt"},
236         {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240         {"rmac_ttl_1519_4095_frms"},
241         {"rmac_ttl_4096_8191_frms"},
242         {"rmac_ttl_8192_max_frms"},
243         {"rmac_ttl_gt_max_frms"},
244         {"rmac_osized_alt_frms"},
245         {"rmac_jabber_alt_frms"},
246         {"rmac_gt_max_alt_frms"},
247         {"rmac_vlan_frms"},
248         {"rmac_len_discard"},
249         {"rmac_fcs_discard"},
250         {"rmac_pf_discard"},
251         {"rmac_da_discard"},
252         {"rmac_red_discard"},
253         {"rmac_rts_discard"},
254         {"rmac_ingm_full_discard"},
255         {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259         {"\n DRIVER STATISTICS"},
260         {"single_bit_ecc_errs"},
261         {"double_bit_ecc_errs"},
262         {"parity_err_cnt"},
263         {"serious_err_cnt"},
264         {"soft_reset_cnt"},
265         {"fifo_full_cnt"},
266         {"ring_full_cnt"},
267         ("alarm_transceiver_temp_high"),
268         ("alarm_transceiver_temp_low"),
269         ("alarm_laser_bias_current_high"),
270         ("alarm_laser_bias_current_low"),
271         ("alarm_laser_output_power_high"),
272         ("alarm_laser_output_power_low"),
273         ("warn_transceiver_temp_high"),
274         ("warn_transceiver_temp_low"),
275         ("warn_laser_bias_current_high"),
276         ("warn_laser_bias_current_low"),
277         ("warn_laser_output_power_high"),
278         ("warn_laser_output_power_low"),
279         ("lro_aggregated_pkts"),
280         ("lro_flush_both_count"),
281         ("lro_out_of_sequence_pkts"),
282         ("lro_flush_due_to_max_pkts"),
283         ("lro_avg_aggr_pkts"),
284         ("mem_alloc_fail_cnt"),
285         ("watchdog_timer_cnt"),
286         ("mem_allocated"),
287         ("mem_freed"),
288         ("link_up_cnt"),
289         ("link_down_cnt"),
290         ("link_up_time"),
291         ("link_down_time"),
292         ("tx_tcode_buf_abort_cnt"),
293         ("tx_tcode_desc_abort_cnt"),
294         ("tx_tcode_parity_err_cnt"),
295         ("tx_tcode_link_loss_cnt"),
296         ("tx_tcode_list_proc_err_cnt"),
297         ("rx_tcode_parity_err_cnt"),
298         ("rx_tcode_abort_cnt"),
299         ("rx_tcode_parity_abort_cnt"),
300         ("rx_tcode_rda_fail_cnt"),
301         ("rx_tcode_unkn_prot_cnt"),
302         ("rx_tcode_fcs_err_cnt"),
303         ("rx_tcode_buf_size_err_cnt"),
304         ("rx_tcode_rxd_corrupt_cnt"),
305         ("rx_tcode_unkn_err_cnt")
306 };
307
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310                                         ETH_GSTRING_LEN
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
312
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
315
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
318
319 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
321
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
323                         init_timer(&timer);                     \
324                         timer.function = handle;                \
325                         timer.data = (unsigned long) arg;       \
326                         mod_timer(&timer, (jiffies + exp))      \
327
328 /* Add the vlan */
329 static void s2io_vlan_rx_register(struct net_device *dev,
330                                         struct vlan_group *grp)
331 {
332         struct s2io_nic *nic = dev->priv;
333         unsigned long flags;
334
335         spin_lock_irqsave(&nic->tx_lock, flags);
336         nic->vlgrp = grp;
337         spin_unlock_irqrestore(&nic->tx_lock, flags);
338 }
339
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
342
343 /*
344  * Constants to be programmed into the Xena's registers, to configure
345  * the XAUI.
346  */
347
348 #define END_SIGN        0x0
349 static const u64 herc_act_dtx_cfg[] = {
350         /* Set address */
351         0x8000051536750000ULL, 0x80000515367500E0ULL,
352         /* Write data */
353         0x8000051536750004ULL, 0x80000515367500E4ULL,
354         /* Set address */
355         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
356         /* Write data */
357         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
358         /* Set address */
359         0x801205150D440000ULL, 0x801205150D4400E0ULL,
360         /* Write data */
361         0x801205150D440004ULL, 0x801205150D4400E4ULL,
362         /* Set address */
363         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
364         /* Write data */
365         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
366         /* Done */
367         END_SIGN
368 };
369
370 static const u64 xena_dtx_cfg[] = {
371         /* Set address */
372         0x8000051500000000ULL, 0x80000515000000E0ULL,
373         /* Write data */
374         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
375         /* Set address */
376         0x8001051500000000ULL, 0x80010515000000E0ULL,
377         /* Write data */
378         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
379         /* Set address */
380         0x8002051500000000ULL, 0x80020515000000E0ULL,
381         /* Write data */
382         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
383         END_SIGN
384 };
385
386 /*
387  * Constants for Fixing the MacAddress problem seen mostly on
388  * Alpha machines.
389  */
390 static const u64 fix_mac[] = {
391         0x0060000000000000ULL, 0x0060600000000000ULL,
392         0x0040600000000000ULL, 0x0000600000000000ULL,
393         0x0020600000000000ULL, 0x0060600000000000ULL,
394         0x0020600000000000ULL, 0x0060600000000000ULL,
395         0x0020600000000000ULL, 0x0060600000000000ULL,
396         0x0020600000000000ULL, 0x0060600000000000ULL,
397         0x0020600000000000ULL, 0x0060600000000000ULL,
398         0x0020600000000000ULL, 0x0060600000000000ULL,
399         0x0020600000000000ULL, 0x0060600000000000ULL,
400         0x0020600000000000ULL, 0x0060600000000000ULL,
401         0x0020600000000000ULL, 0x0060600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0000600000000000ULL,
404         0x0040600000000000ULL, 0x0060600000000000ULL,
405         END_SIGN
406 };
407
408 MODULE_LICENSE("GPL");
409 MODULE_VERSION(DRV_VERSION);
410
411
412 /* Module Loadable parameters. */
413 S2IO_PARM_INT(tx_fifo_num, 1);
414 S2IO_PARM_INT(rx_ring_num, 1);
415
416
417 S2IO_PARM_INT(rx_ring_mode, 1);
418 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419 S2IO_PARM_INT(rmac_pause_time, 0x100);
420 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422 S2IO_PARM_INT(shared_splits, 0);
423 S2IO_PARM_INT(tmac_util_period, 5);
424 S2IO_PARM_INT(rmac_util_period, 5);
425 S2IO_PARM_INT(bimodal, 0);
426 S2IO_PARM_INT(l3l4hdr_size, 128);
427 /* Frequency of Rx desc syncs expressed as power of 2 */
428 S2IO_PARM_INT(rxsync_frequency, 3);
429 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
430 S2IO_PARM_INT(intr_type, 0);
431 /* Large receive offload feature */
432 S2IO_PARM_INT(lro, 0);
433 /* Max pkts to be aggregated by LRO at one time. If not specified,
434  * aggregation happens until we hit max IP pkt size(64K)
435  */
436 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
437 S2IO_PARM_INT(indicate_max_pkts, 0);
438
439 S2IO_PARM_INT(napi, 1);
440 S2IO_PARM_INT(ufo, 0);
441 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
442
443 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447 static unsigned int rts_frm_len[MAX_RX_RINGS] =
448     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
449
450 module_param_array(tx_fifo_len, uint, NULL, 0);
451 module_param_array(rx_ring_sz, uint, NULL, 0);
452 module_param_array(rts_frm_len, uint, NULL, 0);
453
454 /*
455  * S2IO device table.
456  * This table lists all the devices that this driver supports.
457  */
458 static struct pci_device_id s2io_tbl[] __devinitdata = {
459         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460          PCI_ANY_ID, PCI_ANY_ID},
461         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462          PCI_ANY_ID, PCI_ANY_ID},
463         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
464          PCI_ANY_ID, PCI_ANY_ID},
465         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466          PCI_ANY_ID, PCI_ANY_ID},
467         {0,}
468 };
469
470 MODULE_DEVICE_TABLE(pci, s2io_tbl);
471
472 static struct pci_error_handlers s2io_err_handler = {
473         .error_detected = s2io_io_error_detected,
474         .slot_reset = s2io_io_slot_reset,
475         .resume = s2io_io_resume,
476 };
477
478 static struct pci_driver s2io_driver = {
479       .name = "S2IO",
480       .id_table = s2io_tbl,
481       .probe = s2io_init_nic,
482       .remove = __devexit_p(s2io_rem_nic),
483       .err_handler = &s2io_err_handler,
484 };
485
486 /* A simplifier macro used both by init and free shared_mem Fns(). */
487 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
488
489 /**
490  * init_shared_mem - Allocation and Initialization of Memory
491  * @nic: Device private variable.
492  * Description: The function allocates all the memory areas shared
493  * between the NIC and the driver. This includes Tx descriptors,
494  * Rx descriptors and the statistics block.
495  */
496
497 static int init_shared_mem(struct s2io_nic *nic)
498 {
499         u32 size;
500         void *tmp_v_addr, *tmp_v_addr_next;
501         dma_addr_t tmp_p_addr, tmp_p_addr_next;
502         struct RxD_block *pre_rxd_blk = NULL;
503         int i, j, blk_cnt;
504         int lst_size, lst_per_page;
505         struct net_device *dev = nic->dev;
506         unsigned long tmp;
507         struct buffAdd *ba;
508
509         struct mac_info *mac_control;
510         struct config_param *config;
511         unsigned long long mem_allocated = 0;
512
513         mac_control = &nic->mac_control;
514         config = &nic->config;
515
516
517         /* Allocation and initialization of TXDLs in FIOFs */
518         size = 0;
519         for (i = 0; i < config->tx_fifo_num; i++) {
520                 size += config->tx_cfg[i].fifo_len;
521         }
522         if (size > MAX_AVAILABLE_TXDS) {
523                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
524                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
525                 return -EINVAL;
526         }
527
528         lst_size = (sizeof(struct TxD) * config->max_txds);
529         lst_per_page = PAGE_SIZE / lst_size;
530
531         for (i = 0; i < config->tx_fifo_num; i++) {
532                 int fifo_len = config->tx_cfg[i].fifo_len;
533                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
534                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
535                                                           GFP_KERNEL);
536                 if (!mac_control->fifos[i].list_info) {
537                         DBG_PRINT(INFO_DBG,
538                                   "Malloc failed for list_info\n");
539                         return -ENOMEM;
540                 }
541                 mem_allocated += list_holder_size;
542                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
543         }
544         for (i = 0; i < config->tx_fifo_num; i++) {
545                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
546                                                 lst_per_page);
547                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
548                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
549                     config->tx_cfg[i].fifo_len - 1;
550                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
551                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
552                     config->tx_cfg[i].fifo_len - 1;
553                 mac_control->fifos[i].fifo_no = i;
554                 mac_control->fifos[i].nic = nic;
555                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
556
557                 for (j = 0; j < page_num; j++) {
558                         int k = 0;
559                         dma_addr_t tmp_p;
560                         void *tmp_v;
561                         tmp_v = pci_alloc_consistent(nic->pdev,
562                                                      PAGE_SIZE, &tmp_p);
563                         if (!tmp_v) {
564                                 DBG_PRINT(INFO_DBG,
565                                           "pci_alloc_consistent ");
566                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
567                                 return -ENOMEM;
568                         }
569                         /* If we got a zero DMA address(can happen on
570                          * certain platforms like PPC), reallocate.
571                          * Store virtual address of page we don't want,
572                          * to be freed later.
573                          */
574                         if (!tmp_p) {
575                                 mac_control->zerodma_virt_addr = tmp_v;
576                                 DBG_PRINT(INIT_DBG,
577                                 "%s: Zero DMA address for TxDL. ", dev->name);
578                                 DBG_PRINT(INIT_DBG,
579                                 "Virtual address %p\n", tmp_v);
580                                 tmp_v = pci_alloc_consistent(nic->pdev,
581                                                      PAGE_SIZE, &tmp_p);
582                                 if (!tmp_v) {
583                                         DBG_PRINT(INFO_DBG,
584                                           "pci_alloc_consistent ");
585                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
586                                         return -ENOMEM;
587                                 }
588                                 mem_allocated += PAGE_SIZE;
589                         }
590                         while (k < lst_per_page) {
591                                 int l = (j * lst_per_page) + k;
592                                 if (l == config->tx_cfg[i].fifo_len)
593                                         break;
594                                 mac_control->fifos[i].list_info[l].list_virt_addr =
595                                     tmp_v + (k * lst_size);
596                                 mac_control->fifos[i].list_info[l].list_phy_addr =
597                                     tmp_p + (k * lst_size);
598                                 k++;
599                         }
600                 }
601         }
602
603         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
604         if (!nic->ufo_in_band_v)
605                 return -ENOMEM;
606          mem_allocated += (size * sizeof(u64));
607
608         /* Allocation and initialization of RXDs in Rings */
609         size = 0;
610         for (i = 0; i < config->rx_ring_num; i++) {
611                 if (config->rx_cfg[i].num_rxd %
612                     (rxd_count[nic->rxd_mode] + 1)) {
613                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
614                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
615                                   i);
616                         DBG_PRINT(ERR_DBG, "RxDs per Block");
617                         return FAILURE;
618                 }
619                 size += config->rx_cfg[i].num_rxd;
620                 mac_control->rings[i].block_count =
621                         config->rx_cfg[i].num_rxd /
622                         (rxd_count[nic->rxd_mode] + 1 );
623                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
624                         mac_control->rings[i].block_count;
625         }
626         if (nic->rxd_mode == RXD_MODE_1)
627                 size = (size * (sizeof(struct RxD1)));
628         else
629                 size = (size * (sizeof(struct RxD3)));
630
631         for (i = 0; i < config->rx_ring_num; i++) {
632                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
633                 mac_control->rings[i].rx_curr_get_info.offset = 0;
634                 mac_control->rings[i].rx_curr_get_info.ring_len =
635                     config->rx_cfg[i].num_rxd - 1;
636                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
637                 mac_control->rings[i].rx_curr_put_info.offset = 0;
638                 mac_control->rings[i].rx_curr_put_info.ring_len =
639                     config->rx_cfg[i].num_rxd - 1;
640                 mac_control->rings[i].nic = nic;
641                 mac_control->rings[i].ring_no = i;
642
643                 blk_cnt = config->rx_cfg[i].num_rxd /
644                                 (rxd_count[nic->rxd_mode] + 1);
645                 /*  Allocating all the Rx blocks */
646                 for (j = 0; j < blk_cnt; j++) {
647                         struct rx_block_info *rx_blocks;
648                         int l;
649
650                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
651                         size = SIZE_OF_BLOCK; //size is always page size
652                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
653                                                           &tmp_p_addr);
654                         if (tmp_v_addr == NULL) {
655                                 /*
656                                  * In case of failure, free_shared_mem()
657                                  * is called, which should free any
658                                  * memory that was alloced till the
659                                  * failure happened.
660                                  */
661                                 rx_blocks->block_virt_addr = tmp_v_addr;
662                                 return -ENOMEM;
663                         }
664                         mem_allocated += size;
665                         memset(tmp_v_addr, 0, size);
666                         rx_blocks->block_virt_addr = tmp_v_addr;
667                         rx_blocks->block_dma_addr = tmp_p_addr;
668                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
669                                                   rxd_count[nic->rxd_mode],
670                                                   GFP_KERNEL);
671                         if (!rx_blocks->rxds)
672                                 return -ENOMEM;
673                         mem_allocated += 
674                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
675                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
676                                 rx_blocks->rxds[l].virt_addr =
677                                         rx_blocks->block_virt_addr +
678                                         (rxd_size[nic->rxd_mode] * l);
679                                 rx_blocks->rxds[l].dma_addr =
680                                         rx_blocks->block_dma_addr +
681                                         (rxd_size[nic->rxd_mode] * l);
682                         }
683                 }
684                 /* Interlinking all Rx Blocks */
685                 for (j = 0; j < blk_cnt; j++) {
686                         tmp_v_addr =
687                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
688                         tmp_v_addr_next =
689                                 mac_control->rings[i].rx_blocks[(j + 1) %
690                                               blk_cnt].block_virt_addr;
691                         tmp_p_addr =
692                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
693                         tmp_p_addr_next =
694                                 mac_control->rings[i].rx_blocks[(j + 1) %
695                                               blk_cnt].block_dma_addr;
696
697                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
698                         pre_rxd_blk->reserved_2_pNext_RxD_block =
699                             (unsigned long) tmp_v_addr_next;
700                         pre_rxd_blk->pNext_RxD_Blk_physical =
701                             (u64) tmp_p_addr_next;
702                 }
703         }
704         if (nic->rxd_mode >= RXD_MODE_3A) {
705                 /*
706                  * Allocation of Storages for buffer addresses in 2BUFF mode
707                  * and the buffers as well.
708                  */
709                 for (i = 0; i < config->rx_ring_num; i++) {
710                         blk_cnt = config->rx_cfg[i].num_rxd /
711                            (rxd_count[nic->rxd_mode]+ 1);
712                         mac_control->rings[i].ba =
713                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
714                                      GFP_KERNEL);
715                         if (!mac_control->rings[i].ba)
716                                 return -ENOMEM;
717                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
718                         for (j = 0; j < blk_cnt; j++) {
719                                 int k = 0;
720                                 mac_control->rings[i].ba[j] =
721                                         kmalloc((sizeof(struct buffAdd) *
722                                                 (rxd_count[nic->rxd_mode] + 1)),
723                                                 GFP_KERNEL);
724                                 if (!mac_control->rings[i].ba[j])
725                                         return -ENOMEM;
726                                 mem_allocated += (sizeof(struct buffAdd) *  \
727                                         (rxd_count[nic->rxd_mode] + 1));
728                                 while (k != rxd_count[nic->rxd_mode]) {
729                                         ba = &mac_control->rings[i].ba[j][k];
730
731                                         ba->ba_0_org = (void *) kmalloc
732                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
733                                         if (!ba->ba_0_org)
734                                                 return -ENOMEM;
735                                         mem_allocated += 
736                                                 (BUF0_LEN + ALIGN_SIZE);
737                                         tmp = (unsigned long)ba->ba_0_org;
738                                         tmp += ALIGN_SIZE;
739                                         tmp &= ~((unsigned long) ALIGN_SIZE);
740                                         ba->ba_0 = (void *) tmp;
741
742                                         ba->ba_1_org = (void *) kmalloc
743                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
744                                         if (!ba->ba_1_org)
745                                                 return -ENOMEM;
746                                         mem_allocated 
747                                                 += (BUF1_LEN + ALIGN_SIZE);
748                                         tmp = (unsigned long) ba->ba_1_org;
749                                         tmp += ALIGN_SIZE;
750                                         tmp &= ~((unsigned long) ALIGN_SIZE);
751                                         ba->ba_1 = (void *) tmp;
752                                         k++;
753                                 }
754                         }
755                 }
756         }
757
758         /* Allocation and initialization of Statistics block */
759         size = sizeof(struct stat_block);
760         mac_control->stats_mem = pci_alloc_consistent
761             (nic->pdev, size, &mac_control->stats_mem_phy);
762
763         if (!mac_control->stats_mem) {
764                 /*
765                  * In case of failure, free_shared_mem() is called, which
766                  * should free any memory that was alloced till the
767                  * failure happened.
768                  */
769                 return -ENOMEM;
770         }
771         mem_allocated += size;
772         mac_control->stats_mem_sz = size;
773
774         tmp_v_addr = mac_control->stats_mem;
775         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
776         memset(tmp_v_addr, 0, size);
777         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
778                   (unsigned long long) tmp_p_addr);
779         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
780         return SUCCESS;
781 }
782
783 /**
784  * free_shared_mem - Free the allocated Memory
785  * @nic:  Device private variable.
786  * Description: This function is to free all memory locations allocated by
787  * the init_shared_mem() function and return it to the kernel.
788  */
789
790 static void free_shared_mem(struct s2io_nic *nic)
791 {
792         int i, j, blk_cnt, size;
793         u32 ufo_size = 0;
794         void *tmp_v_addr;
795         dma_addr_t tmp_p_addr;
796         struct mac_info *mac_control;
797         struct config_param *config;
798         int lst_size, lst_per_page;
799         struct net_device *dev;
800         int page_num = 0;
801
802         if (!nic)
803                 return;
804
805         dev = nic->dev;
806
807         mac_control = &nic->mac_control;
808         config = &nic->config;
809
810         lst_size = (sizeof(struct TxD) * config->max_txds);
811         lst_per_page = PAGE_SIZE / lst_size;
812
813         for (i = 0; i < config->tx_fifo_num; i++) {
814                 ufo_size += config->tx_cfg[i].fifo_len;
815                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
816                                                         lst_per_page);
817                 for (j = 0; j < page_num; j++) {
818                         int mem_blks = (j * lst_per_page);
819                         if (!mac_control->fifos[i].list_info)
820                                 return;
821                         if (!mac_control->fifos[i].list_info[mem_blks].
822                                  list_virt_addr)
823                                 break;
824                         pci_free_consistent(nic->pdev, PAGE_SIZE,
825                                             mac_control->fifos[i].
826                                             list_info[mem_blks].
827                                             list_virt_addr,
828                                             mac_control->fifos[i].
829                                             list_info[mem_blks].
830                                             list_phy_addr);
831                         nic->mac_control.stats_info->sw_stat.mem_freed 
832                                                 += PAGE_SIZE;
833                 }
834                 /* If we got a zero DMA address during allocation,
835                  * free the page now
836                  */
837                 if (mac_control->zerodma_virt_addr) {
838                         pci_free_consistent(nic->pdev, PAGE_SIZE,
839                                             mac_control->zerodma_virt_addr,
840                                             (dma_addr_t)0);
841                         DBG_PRINT(INIT_DBG,
842                                 "%s: Freeing TxDL with zero DMA addr. ",
843                                 dev->name);
844                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
845                                 mac_control->zerodma_virt_addr);
846                         nic->mac_control.stats_info->sw_stat.mem_freed 
847                                                 += PAGE_SIZE;
848                 }
849                 kfree(mac_control->fifos[i].list_info);
850                 nic->mac_control.stats_info->sw_stat.mem_freed += 
851                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
852         }
853
854         size = SIZE_OF_BLOCK;
855         for (i = 0; i < config->rx_ring_num; i++) {
856                 blk_cnt = mac_control->rings[i].block_count;
857                 for (j = 0; j < blk_cnt; j++) {
858                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
859                                 block_virt_addr;
860                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
861                                 block_dma_addr;
862                         if (tmp_v_addr == NULL)
863                                 break;
864                         pci_free_consistent(nic->pdev, size,
865                                             tmp_v_addr, tmp_p_addr);
866                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
867                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
868                         nic->mac_control.stats_info->sw_stat.mem_freed += 
869                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
870                 }
871         }
872
873         if (nic->rxd_mode >= RXD_MODE_3A) {
874                 /* Freeing buffer storage addresses in 2BUFF mode. */
875                 for (i = 0; i < config->rx_ring_num; i++) {
876                         blk_cnt = config->rx_cfg[i].num_rxd /
877                             (rxd_count[nic->rxd_mode] + 1);
878                         for (j = 0; j < blk_cnt; j++) {
879                                 int k = 0;
880                                 if (!mac_control->rings[i].ba[j])
881                                         continue;
882                                 while (k != rxd_count[nic->rxd_mode]) {
883                                         struct buffAdd *ba =
884                                                 &mac_control->rings[i].ba[j][k];
885                                         kfree(ba->ba_0_org);
886                                         nic->mac_control.stats_info->sw_stat.\
887                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
888                                         kfree(ba->ba_1_org);
889                                         nic->mac_control.stats_info->sw_stat.\
890                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
891                                         k++;
892                                 }
893                                 kfree(mac_control->rings[i].ba[j]);
894                                 nic->mac_control.stats_info->sw_stat.mem_freed                          += (sizeof(struct buffAdd) * 
895                                 (rxd_count[nic->rxd_mode] + 1));
896                         }
897                         kfree(mac_control->rings[i].ba);
898                         nic->mac_control.stats_info->sw_stat.mem_freed += 
899                         (sizeof(struct buffAdd *) * blk_cnt);
900                 }
901         }
902
903         if (mac_control->stats_mem) {
904                 pci_free_consistent(nic->pdev,
905                                     mac_control->stats_mem_sz,
906                                     mac_control->stats_mem,
907                                     mac_control->stats_mem_phy);
908                 nic->mac_control.stats_info->sw_stat.mem_freed += 
909                         mac_control->stats_mem_sz;
910         }
911         if (nic->ufo_in_band_v) {
912                 kfree(nic->ufo_in_band_v);
913                 nic->mac_control.stats_info->sw_stat.mem_freed 
914                         += (ufo_size * sizeof(u64));
915         }
916 }
917
918 /**
919  * s2io_verify_pci_mode -
920  */
921
922 static int s2io_verify_pci_mode(struct s2io_nic *nic)
923 {
924         struct XENA_dev_config __iomem *bar0 = nic->bar0;
925         register u64 val64 = 0;
926         int     mode;
927
928         val64 = readq(&bar0->pci_mode);
929         mode = (u8)GET_PCI_MODE(val64);
930
931         if ( val64 & PCI_MODE_UNKNOWN_MODE)
932                 return -1;      /* Unknown PCI mode */
933         return mode;
934 }
935
936 #define NEC_VENID   0x1033
937 #define NEC_DEVID   0x0125
938 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
939 {
940         struct pci_dev *tdev = NULL;
941         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
942                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
943                         if (tdev->bus == s2io_pdev->bus->parent)
944                                 pci_dev_put(tdev);
945                                 return 1;
946                 }
947         }
948         return 0;
949 }
950
951 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
952 /**
953  * s2io_print_pci_mode -
954  */
955 static int s2io_print_pci_mode(struct s2io_nic *nic)
956 {
957         struct XENA_dev_config __iomem *bar0 = nic->bar0;
958         register u64 val64 = 0;
959         int     mode;
960         struct config_param *config = &nic->config;
961
962         val64 = readq(&bar0->pci_mode);
963         mode = (u8)GET_PCI_MODE(val64);
964
965         if ( val64 & PCI_MODE_UNKNOWN_MODE)
966                 return -1;      /* Unknown PCI mode */
967
968         config->bus_speed = bus_speed[mode];
969
970         if (s2io_on_nec_bridge(nic->pdev)) {
971                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
972                                                         nic->dev->name);
973                 return mode;
974         }
975
976         if (val64 & PCI_MODE_32_BITS) {
977                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
978         } else {
979                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
980         }
981
982         switch(mode) {
983                 case PCI_MODE_PCI_33:
984                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
985                         break;
986                 case PCI_MODE_PCI_66:
987                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
988                         break;
989                 case PCI_MODE_PCIX_M1_66:
990                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
991                         break;
992                 case PCI_MODE_PCIX_M1_100:
993                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
994                         break;
995                 case PCI_MODE_PCIX_M1_133:
996                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
997                         break;
998                 case PCI_MODE_PCIX_M2_66:
999                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1000                         break;
1001                 case PCI_MODE_PCIX_M2_100:
1002                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1003                         break;
1004                 case PCI_MODE_PCIX_M2_133:
1005                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1006                         break;
1007                 default:
1008                         return -1;      /* Unsupported bus speed */
1009         }
1010
1011         return mode;
1012 }
1013
1014 /**
1015  *  init_nic - Initialization of hardware
1016  *  @nic: device peivate variable
1017  *  Description: The function sequentially configures every block
1018  *  of the H/W from their reset values.
1019  *  Return Value:  SUCCESS on success and
1020  *  '-1' on failure (endian settings incorrect).
1021  */
1022
1023 static int init_nic(struct s2io_nic *nic)
1024 {
1025         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1026         struct net_device *dev = nic->dev;
1027         register u64 val64 = 0;
1028         void __iomem *add;
1029         u32 time;
1030         int i, j;
1031         struct mac_info *mac_control;
1032         struct config_param *config;
1033         int dtx_cnt = 0;
1034         unsigned long long mem_share;
1035         int mem_size;
1036
1037         mac_control = &nic->mac_control;
1038         config = &nic->config;
1039
1040         /* to set the swapper controle on the card */
1041         if(s2io_set_swapper(nic)) {
1042                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1043                 return -1;
1044         }
1045
1046         /*
1047          * Herc requires EOI to be removed from reset before XGXS, so..
1048          */
1049         if (nic->device_type & XFRAME_II_DEVICE) {
1050                 val64 = 0xA500000000ULL;
1051                 writeq(val64, &bar0->sw_reset);
1052                 msleep(500);
1053                 val64 = readq(&bar0->sw_reset);
1054         }
1055
1056         /* Remove XGXS from reset state */
1057         val64 = 0;
1058         writeq(val64, &bar0->sw_reset);
1059         msleep(500);
1060         val64 = readq(&bar0->sw_reset);
1061
1062         /*  Enable Receiving broadcasts */
1063         add = &bar0->mac_cfg;
1064         val64 = readq(&bar0->mac_cfg);
1065         val64 |= MAC_RMAC_BCAST_ENABLE;
1066         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1067         writel((u32) val64, add);
1068         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1069         writel((u32) (val64 >> 32), (add + 4));
1070
1071         /* Read registers in all blocks */
1072         val64 = readq(&bar0->mac_int_mask);
1073         val64 = readq(&bar0->mc_int_mask);
1074         val64 = readq(&bar0->xgxs_int_mask);
1075
1076         /*  Set MTU */
1077         val64 = dev->mtu;
1078         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1079
1080         if (nic->device_type & XFRAME_II_DEVICE) {
1081                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1082                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1083                                           &bar0->dtx_control, UF);
1084                         if (dtx_cnt & 0x1)
1085                                 msleep(1); /* Necessary!! */
1086                         dtx_cnt++;
1087                 }
1088         } else {
1089                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1090                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1091                                           &bar0->dtx_control, UF);
1092                         val64 = readq(&bar0->dtx_control);
1093                         dtx_cnt++;
1094                 }
1095         }
1096
1097         /*  Tx DMA Initialization */
1098         val64 = 0;
1099         writeq(val64, &bar0->tx_fifo_partition_0);
1100         writeq(val64, &bar0->tx_fifo_partition_1);
1101         writeq(val64, &bar0->tx_fifo_partition_2);
1102         writeq(val64, &bar0->tx_fifo_partition_3);
1103
1104
1105         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1106                 val64 |=
1107                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1108                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1109                                     ((i * 32) + 5), 3);
1110
1111                 if (i == (config->tx_fifo_num - 1)) {
1112                         if (i % 2 == 0)
1113                                 i++;
1114                 }
1115
1116                 switch (i) {
1117                 case 1:
1118                         writeq(val64, &bar0->tx_fifo_partition_0);
1119                         val64 = 0;
1120                         break;
1121                 case 3:
1122                         writeq(val64, &bar0->tx_fifo_partition_1);
1123                         val64 = 0;
1124                         break;
1125                 case 5:
1126                         writeq(val64, &bar0->tx_fifo_partition_2);
1127                         val64 = 0;
1128                         break;
1129                 case 7:
1130                         writeq(val64, &bar0->tx_fifo_partition_3);
1131                         break;
1132                 }
1133         }
1134
1135         /*
1136          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1137          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1138          */
1139         if ((nic->device_type == XFRAME_I_DEVICE) &&
1140                 (nic->pdev->revision < 4))
1141                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1142
1143         val64 = readq(&bar0->tx_fifo_partition_0);
1144         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1145                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1146
1147         /*
1148          * Initialization of Tx_PA_CONFIG register to ignore packet
1149          * integrity checking.
1150          */
1151         val64 = readq(&bar0->tx_pa_cfg);
1152         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1153             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1154         writeq(val64, &bar0->tx_pa_cfg);
1155
1156         /* Rx DMA intialization. */
1157         val64 = 0;
1158         for (i = 0; i < config->rx_ring_num; i++) {
1159                 val64 |=
1160                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1161                          3);
1162         }
1163         writeq(val64, &bar0->rx_queue_priority);
1164
1165         /*
1166          * Allocating equal share of memory to all the
1167          * configured Rings.
1168          */
1169         val64 = 0;
1170         if (nic->device_type & XFRAME_II_DEVICE)
1171                 mem_size = 32;
1172         else
1173                 mem_size = 64;
1174
1175         for (i = 0; i < config->rx_ring_num; i++) {
1176                 switch (i) {
1177                 case 0:
1178                         mem_share = (mem_size / config->rx_ring_num +
1179                                      mem_size % config->rx_ring_num);
1180                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1181                         continue;
1182                 case 1:
1183                         mem_share = (mem_size / config->rx_ring_num);
1184                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1185                         continue;
1186                 case 2:
1187                         mem_share = (mem_size / config->rx_ring_num);
1188                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1189                         continue;
1190                 case 3:
1191                         mem_share = (mem_size / config->rx_ring_num);
1192                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1193                         continue;
1194                 case 4:
1195                         mem_share = (mem_size / config->rx_ring_num);
1196                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1197                         continue;
1198                 case 5:
1199                         mem_share = (mem_size / config->rx_ring_num);
1200                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1201                         continue;
1202                 case 6:
1203                         mem_share = (mem_size / config->rx_ring_num);
1204                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1205                         continue;
1206                 case 7:
1207                         mem_share = (mem_size / config->rx_ring_num);
1208                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1209                         continue;
1210                 }
1211         }
1212         writeq(val64, &bar0->rx_queue_cfg);
1213
1214         /*
1215          * Filling Tx round robin registers
1216          * as per the number of FIFOs
1217          */
1218         switch (config->tx_fifo_num) {
1219         case 1:
1220                 val64 = 0x0000000000000000ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_0);
1222                 writeq(val64, &bar0->tx_w_round_robin_1);
1223                 writeq(val64, &bar0->tx_w_round_robin_2);
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 writeq(val64, &bar0->tx_w_round_robin_4);
1226                 break;
1227         case 2:
1228                 val64 = 0x0000010000010000ULL;
1229                 writeq(val64, &bar0->tx_w_round_robin_0);
1230                 val64 = 0x0100000100000100ULL;
1231                 writeq(val64, &bar0->tx_w_round_robin_1);
1232                 val64 = 0x0001000001000001ULL;
1233                 writeq(val64, &bar0->tx_w_round_robin_2);
1234                 val64 = 0x0000010000010000ULL;
1235                 writeq(val64, &bar0->tx_w_round_robin_3);
1236                 val64 = 0x0100000000000000ULL;
1237                 writeq(val64, &bar0->tx_w_round_robin_4);
1238                 break;
1239         case 3:
1240                 val64 = 0x0001000102000001ULL;
1241                 writeq(val64, &bar0->tx_w_round_robin_0);
1242                 val64 = 0x0001020000010001ULL;
1243                 writeq(val64, &bar0->tx_w_round_robin_1);
1244                 val64 = 0x0200000100010200ULL;
1245                 writeq(val64, &bar0->tx_w_round_robin_2);
1246                 val64 = 0x0001000102000001ULL;
1247                 writeq(val64, &bar0->tx_w_round_robin_3);
1248                 val64 = 0x0001020000000000ULL;
1249                 writeq(val64, &bar0->tx_w_round_robin_4);
1250                 break;
1251         case 4:
1252                 val64 = 0x0001020300010200ULL;
1253                 writeq(val64, &bar0->tx_w_round_robin_0);
1254                 val64 = 0x0100000102030001ULL;
1255                 writeq(val64, &bar0->tx_w_round_robin_1);
1256                 val64 = 0x0200010000010203ULL;
1257                 writeq(val64, &bar0->tx_w_round_robin_2);
1258                 val64 = 0x0001020001000001ULL;
1259                 writeq(val64, &bar0->tx_w_round_robin_3);
1260                 val64 = 0x0203000100000000ULL;
1261                 writeq(val64, &bar0->tx_w_round_robin_4);
1262                 break;
1263         case 5:
1264                 val64 = 0x0001000203000102ULL;
1265                 writeq(val64, &bar0->tx_w_round_robin_0);
1266                 val64 = 0x0001020001030004ULL;
1267                 writeq(val64, &bar0->tx_w_round_robin_1);
1268                 val64 = 0x0001000203000102ULL;
1269                 writeq(val64, &bar0->tx_w_round_robin_2);
1270                 val64 = 0x0001020001030004ULL;
1271                 writeq(val64, &bar0->tx_w_round_robin_3);
1272                 val64 = 0x0001000000000000ULL;
1273                 writeq(val64, &bar0->tx_w_round_robin_4);
1274                 break;
1275         case 6:
1276                 val64 = 0x0001020304000102ULL;
1277                 writeq(val64, &bar0->tx_w_round_robin_0);
1278                 val64 = 0x0304050001020001ULL;
1279                 writeq(val64, &bar0->tx_w_round_robin_1);
1280                 val64 = 0x0203000100000102ULL;
1281                 writeq(val64, &bar0->tx_w_round_robin_2);
1282                 val64 = 0x0304000102030405ULL;
1283                 writeq(val64, &bar0->tx_w_round_robin_3);
1284                 val64 = 0x0001000200000000ULL;
1285                 writeq(val64, &bar0->tx_w_round_robin_4);
1286                 break;
1287         case 7:
1288                 val64 = 0x0001020001020300ULL;
1289                 writeq(val64, &bar0->tx_w_round_robin_0);
1290                 val64 = 0x0102030400010203ULL;
1291                 writeq(val64, &bar0->tx_w_round_robin_1);
1292                 val64 = 0x0405060001020001ULL;
1293                 writeq(val64, &bar0->tx_w_round_robin_2);
1294                 val64 = 0x0304050000010200ULL;
1295                 writeq(val64, &bar0->tx_w_round_robin_3);
1296                 val64 = 0x0102030000000000ULL;
1297                 writeq(val64, &bar0->tx_w_round_robin_4);
1298                 break;
1299         case 8:
1300                 val64 = 0x0001020300040105ULL;
1301                 writeq(val64, &bar0->tx_w_round_robin_0);
1302                 val64 = 0x0200030106000204ULL;
1303                 writeq(val64, &bar0->tx_w_round_robin_1);
1304                 val64 = 0x0103000502010007ULL;
1305                 writeq(val64, &bar0->tx_w_round_robin_2);
1306                 val64 = 0x0304010002060500ULL;
1307                 writeq(val64, &bar0->tx_w_round_robin_3);
1308                 val64 = 0x0103020400000000ULL;
1309                 writeq(val64, &bar0->tx_w_round_robin_4);
1310                 break;
1311         }
1312
1313         /* Enable all configured Tx FIFO partitions */
1314         val64 = readq(&bar0->tx_fifo_partition_0);
1315         val64 |= (TX_FIFO_PARTITION_EN);
1316         writeq(val64, &bar0->tx_fifo_partition_0);
1317
1318         /* Filling the Rx round robin registers as per the
1319          * number of Rings and steering based on QoS.
1320          */
1321         switch (config->rx_ring_num) {
1322         case 1:
1323                 val64 = 0x8080808080808080ULL;
1324                 writeq(val64, &bar0->rts_qos_steering);
1325                 break;
1326         case 2:
1327                 val64 = 0x0000010000010000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_0);
1329                 val64 = 0x0100000100000100ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_1);
1331                 val64 = 0x0001000001000001ULL;
1332                 writeq(val64, &bar0->rx_w_round_robin_2);
1333                 val64 = 0x0000010000010000ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_3);
1335                 val64 = 0x0100000000000000ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_4);
1337
1338                 val64 = 0x8080808040404040ULL;
1339                 writeq(val64, &bar0->rts_qos_steering);
1340                 break;
1341         case 3:
1342                 val64 = 0x0001000102000001ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_0);
1344                 val64 = 0x0001020000010001ULL;
1345                 writeq(val64, &bar0->rx_w_round_robin_1);
1346                 val64 = 0x0200000100010200ULL;
1347                 writeq(val64, &bar0->rx_w_round_robin_2);
1348                 val64 = 0x0001000102000001ULL;
1349                 writeq(val64, &bar0->rx_w_round_robin_3);
1350                 val64 = 0x0001020000000000ULL;
1351                 writeq(val64, &bar0->rx_w_round_robin_4);
1352
1353                 val64 = 0x8080804040402020ULL;
1354                 writeq(val64, &bar0->rts_qos_steering);
1355                 break;
1356         case 4:
1357                 val64 = 0x0001020300010200ULL;
1358                 writeq(val64, &bar0->rx_w_round_robin_0);
1359                 val64 = 0x0100000102030001ULL;
1360                 writeq(val64, &bar0->rx_w_round_robin_1);
1361                 val64 = 0x0200010000010203ULL;
1362                 writeq(val64, &bar0->rx_w_round_robin_2);
1363                 val64 = 0x0001020001000001ULL;
1364                 writeq(val64, &bar0->rx_w_round_robin_3);
1365                 val64 = 0x0203000100000000ULL;
1366                 writeq(val64, &bar0->rx_w_round_robin_4);
1367
1368                 val64 = 0x8080404020201010ULL;
1369                 writeq(val64, &bar0->rts_qos_steering);
1370                 break;
1371         case 5:
1372                 val64 = 0x0001000203000102ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_0);
1374                 val64 = 0x0001020001030004ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_1);
1376                 val64 = 0x0001000203000102ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_2);
1378                 val64 = 0x0001020001030004ULL;
1379                 writeq(val64, &bar0->rx_w_round_robin_3);
1380                 val64 = 0x0001000000000000ULL;
1381                 writeq(val64, &bar0->rx_w_round_robin_4);
1382
1383                 val64 = 0x8080404020201008ULL;
1384                 writeq(val64, &bar0->rts_qos_steering);
1385                 break;
1386         case 6:
1387                 val64 = 0x0001020304000102ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_0);
1389                 val64 = 0x0304050001020001ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_1);
1391                 val64 = 0x0203000100000102ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_2);
1393                 val64 = 0x0304000102030405ULL;
1394                 writeq(val64, &bar0->rx_w_round_robin_3);
1395                 val64 = 0x0001000200000000ULL;
1396                 writeq(val64, &bar0->rx_w_round_robin_4);
1397
1398                 val64 = 0x8080404020100804ULL;
1399                 writeq(val64, &bar0->rts_qos_steering);
1400                 break;
1401         case 7:
1402                 val64 = 0x0001020001020300ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_0);
1404                 val64 = 0x0102030400010203ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_1);
1406                 val64 = 0x0405060001020001ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_2);
1408                 val64 = 0x0304050000010200ULL;
1409                 writeq(val64, &bar0->rx_w_round_robin_3);
1410                 val64 = 0x0102030000000000ULL;
1411                 writeq(val64, &bar0->rx_w_round_robin_4);
1412
1413                 val64 = 0x8080402010080402ULL;
1414                 writeq(val64, &bar0->rts_qos_steering);
1415                 break;
1416         case 8:
1417                 val64 = 0x0001020300040105ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_0);
1419                 val64 = 0x0200030106000204ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_1);
1421                 val64 = 0x0103000502010007ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_2);
1423                 val64 = 0x0304010002060500ULL;
1424                 writeq(val64, &bar0->rx_w_round_robin_3);
1425                 val64 = 0x0103020400000000ULL;
1426                 writeq(val64, &bar0->rx_w_round_robin_4);
1427
1428                 val64 = 0x8040201008040201ULL;
1429                 writeq(val64, &bar0->rts_qos_steering);
1430                 break;
1431         }
1432
1433         /* UDP Fix */
1434         val64 = 0;
1435         for (i = 0; i < 8; i++)
1436                 writeq(val64, &bar0->rts_frm_len_n[i]);
1437
1438         /* Set the default rts frame length for the rings configured */
1439         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1440         for (i = 0 ; i < config->rx_ring_num ; i++)
1441                 writeq(val64, &bar0->rts_frm_len_n[i]);
1442
1443         /* Set the frame length for the configured rings
1444          * desired by the user
1445          */
1446         for (i = 0; i < config->rx_ring_num; i++) {
1447                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1448                  * specified frame length steering.
1449                  * If the user provides the frame length then program
1450                  * the rts_frm_len register for those values or else
1451                  * leave it as it is.
1452                  */
1453                 if (rts_frm_len[i] != 0) {
1454                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1455                                 &bar0->rts_frm_len_n[i]);
1456                 }
1457         }
1458         
1459         /* Disable differentiated services steering logic */
1460         for (i = 0; i < 64; i++) {
1461                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1462                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1463                                 dev->name);
1464                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1465                         return FAILURE;
1466                 }
1467         }
1468
1469         /* Program statistics memory */
1470         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1471
1472         if (nic->device_type == XFRAME_II_DEVICE) {
1473                 val64 = STAT_BC(0x320);
1474                 writeq(val64, &bar0->stat_byte_cnt);
1475         }
1476
1477         /*
1478          * Initializing the sampling rate for the device to calculate the
1479          * bandwidth utilization.
1480          */
1481         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1482             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1483         writeq(val64, &bar0->mac_link_util);
1484
1485
1486         /*
1487          * Initializing the Transmit and Receive Traffic Interrupt
1488          * Scheme.
1489          */
1490         /*
1491          * TTI Initialization. Default Tx timer gets us about
1492          * 250 interrupts per sec. Continuous interrupts are enabled
1493          * by default.
1494          */
1495         if (nic->device_type == XFRAME_II_DEVICE) {
1496                 int count = (nic->config.bus_speed * 125)/2;
1497                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1498         } else {
1499
1500                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1501         }
1502         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1503             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1504             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1505                 if (use_continuous_tx_intrs)
1506                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1507         writeq(val64, &bar0->tti_data1_mem);
1508
1509         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1510             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1511             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1512         writeq(val64, &bar0->tti_data2_mem);
1513
1514         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1515         writeq(val64, &bar0->tti_command_mem);
1516
1517         /*
1518          * Once the operation completes, the Strobe bit of the command
1519          * register will be reset. We poll for this particular condition
1520          * We wait for a maximum of 500ms for the operation to complete,
1521          * if it's not complete by then we return error.
1522          */
1523         time = 0;
1524         while (TRUE) {
1525                 val64 = readq(&bar0->tti_command_mem);
1526                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1527                         break;
1528                 }
1529                 if (time > 10) {
1530                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1531                                   dev->name);
1532                         return -1;
1533                 }
1534                 msleep(50);
1535                 time++;
1536         }
1537
1538         if (nic->config.bimodal) {
1539                 int k = 0;
1540                 for (k = 0; k < config->rx_ring_num; k++) {
1541                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1542                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1543                         writeq(val64, &bar0->tti_command_mem);
1544
1545                 /*
1546                  * Once the operation completes, the Strobe bit of the command
1547                  * register will be reset. We poll for this particular condition
1548                  * We wait for a maximum of 500ms for the operation to complete,
1549                  * if it's not complete by then we return error.
1550                 */
1551                         time = 0;
1552                         while (TRUE) {
1553                                 val64 = readq(&bar0->tti_command_mem);
1554                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1555                                         break;
1556                                 }
1557                                 if (time > 10) {
1558                                         DBG_PRINT(ERR_DBG,
1559                                                 "%s: TTI init Failed\n",
1560                                         dev->name);
1561                                         return -1;
1562                                 }
1563                                 time++;
1564                                 msleep(50);
1565                         }
1566                 }
1567         } else {
1568
1569                 /* RTI Initialization */
1570                 if (nic->device_type == XFRAME_II_DEVICE) {
1571                         /*
1572                          * Programmed to generate Apprx 500 Intrs per
1573                          * second
1574                          */
1575                         int count = (nic->config.bus_speed * 125)/4;
1576                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1577                 } else {
1578                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1579                 }
1580                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1581                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1582                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1583
1584                 writeq(val64, &bar0->rti_data1_mem);
1585
1586                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1587                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1588                 if (nic->intr_type == MSI_X)
1589                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1590                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1591                 else
1592                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1593                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1594                 writeq(val64, &bar0->rti_data2_mem);
1595
1596                 for (i = 0; i < config->rx_ring_num; i++) {
1597                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1598                                         | RTI_CMD_MEM_OFFSET(i);
1599                         writeq(val64, &bar0->rti_command_mem);
1600
1601                         /*
1602                          * Once the operation completes, the Strobe bit of the
1603                          * command register will be reset. We poll for this
1604                          * particular condition. We wait for a maximum of 500ms
1605                          * for the operation to complete, if it's not complete
1606                          * by then we return error.
1607                          */
1608                         time = 0;
1609                         while (TRUE) {
1610                                 val64 = readq(&bar0->rti_command_mem);
1611                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1612                                         break;
1613                                 }
1614                                 if (time > 10) {
1615                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1616                                                   dev->name);
1617                                         return -1;
1618                                 }
1619                                 time++;
1620                                 msleep(50);
1621                         }
1622                 }
1623         }
1624
1625         /*
1626          * Initializing proper values as Pause threshold into all
1627          * the 8 Queues on Rx side.
1628          */
1629         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1630         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1631
1632         /* Disable RMAC PAD STRIPPING */
1633         add = &bar0->mac_cfg;
1634         val64 = readq(&bar0->mac_cfg);
1635         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1636         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1637         writel((u32) (val64), add);
1638         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1639         writel((u32) (val64 >> 32), (add + 4));
1640         val64 = readq(&bar0->mac_cfg);
1641
1642         /* Enable FCS stripping by adapter */
1643         add = &bar0->mac_cfg;
1644         val64 = readq(&bar0->mac_cfg);
1645         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1646         if (nic->device_type == XFRAME_II_DEVICE)
1647                 writeq(val64, &bar0->mac_cfg);
1648         else {
1649                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1650                 writel((u32) (val64), add);
1651                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1652                 writel((u32) (val64 >> 32), (add + 4));
1653         }
1654
1655         /*
1656          * Set the time value to be inserted in the pause frame
1657          * generated by xena.
1658          */
1659         val64 = readq(&bar0->rmac_pause_cfg);
1660         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1661         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1662         writeq(val64, &bar0->rmac_pause_cfg);
1663
1664         /*
1665          * Set the Threshold Limit for Generating the pause frame
1666          * If the amount of data in any Queue exceeds ratio of
1667          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1668          * pause frame is generated
1669          */
1670         val64 = 0;
1671         for (i = 0; i < 4; i++) {
1672                 val64 |=
1673                     (((u64) 0xFF00 | nic->mac_control.
1674                       mc_pause_threshold_q0q3)
1675                      << (i * 2 * 8));
1676         }
1677         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1678
1679         val64 = 0;
1680         for (i = 0; i < 4; i++) {
1681                 val64 |=
1682                     (((u64) 0xFF00 | nic->mac_control.
1683                       mc_pause_threshold_q4q7)
1684                      << (i * 2 * 8));
1685         }
1686         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1687
1688         /*
1689          * TxDMA will stop Read request if the number of read split has
1690          * exceeded the limit pointed by shared_splits
1691          */
1692         val64 = readq(&bar0->pic_control);
1693         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1694         writeq(val64, &bar0->pic_control);
1695
1696         if (nic->config.bus_speed == 266) {
1697                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1698                 writeq(0x0, &bar0->read_retry_delay);
1699                 writeq(0x0, &bar0->write_retry_delay);
1700         }
1701
1702         /*
1703          * Programming the Herc to split every write transaction
1704          * that does not start on an ADB to reduce disconnects.
1705          */
1706         if (nic->device_type == XFRAME_II_DEVICE) {
1707                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1708                         MISC_LINK_STABILITY_PRD(3);
1709                 writeq(val64, &bar0->misc_control);
1710                 val64 = readq(&bar0->pic_control2);
1711                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1712                 writeq(val64, &bar0->pic_control2);
1713         }
1714         if (strstr(nic->product_name, "CX4")) {
1715                 val64 = TMAC_AVG_IPG(0x17);
1716                 writeq(val64, &bar0->tmac_avg_ipg);
1717         }
1718
1719         return SUCCESS;
1720 }
1721 #define LINK_UP_DOWN_INTERRUPT          1
1722 #define MAC_RMAC_ERR_TIMER              2
1723
1724 static int s2io_link_fault_indication(struct s2io_nic *nic)
1725 {
1726         if (nic->intr_type != INTA)
1727                 return MAC_RMAC_ERR_TIMER;
1728         if (nic->device_type == XFRAME_II_DEVICE)
1729                 return LINK_UP_DOWN_INTERRUPT;
1730         else
1731                 return MAC_RMAC_ERR_TIMER;
1732 }
1733
1734 /**
1735  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1736  *  @nic: device private variable,
1737  *  @mask: A mask indicating which Intr block must be modified and,
1738  *  @flag: A flag indicating whether to enable or disable the Intrs.
1739  *  Description: This function will either disable or enable the interrupts
1740  *  depending on the flag argument. The mask argument can be used to
1741  *  enable/disable any Intr block.
1742  *  Return Value: NONE.
1743  */
1744
1745 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1746 {
1747         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1748         register u64 val64 = 0, temp64 = 0;
1749
1750         /*  Top level interrupt classification */
1751         /*  PIC Interrupts */
1752         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1753                 /*  Enable PIC Intrs in the general intr mask register */
1754                 val64 = TXPIC_INT_M;
1755                 if (flag == ENABLE_INTRS) {
1756                         temp64 = readq(&bar0->general_int_mask);
1757                         temp64 &= ~((u64) val64);
1758                         writeq(temp64, &bar0->general_int_mask);
1759                         /*
1760                          * If Hercules adapter enable GPIO otherwise
1761                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1762                          * interrupts for now.
1763                          * TODO
1764                          */
1765                         if (s2io_link_fault_indication(nic) ==
1766                                         LINK_UP_DOWN_INTERRUPT ) {
1767                                 temp64 = readq(&bar0->pic_int_mask);
1768                                 temp64 &= ~((u64) PIC_INT_GPIO);
1769                                 writeq(temp64, &bar0->pic_int_mask);
1770                                 temp64 = readq(&bar0->gpio_int_mask);
1771                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1772                                 writeq(temp64, &bar0->gpio_int_mask);
1773                         } else {
1774                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1775                         }
1776                         /*
1777                          * No MSI Support is available presently, so TTI and
1778                          * RTI interrupts are also disabled.
1779                          */
1780                 } else if (flag == DISABLE_INTRS) {
1781                         /*
1782                          * Disable PIC Intrs in the general
1783                          * intr mask register
1784                          */
1785                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1786                         temp64 = readq(&bar0->general_int_mask);
1787                         val64 |= temp64;
1788                         writeq(val64, &bar0->general_int_mask);
1789                 }
1790         }
1791
1792         /*  MAC Interrupts */
1793         /*  Enabling/Disabling MAC interrupts */
1794         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1795                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1796                 if (flag == ENABLE_INTRS) {
1797                         temp64 = readq(&bar0->general_int_mask);
1798                         temp64 &= ~((u64) val64);
1799                         writeq(temp64, &bar0->general_int_mask);
1800                         /*
1801                          * All MAC block error interrupts are disabled for now
1802                          * TODO
1803                          */
1804                 } else if (flag == DISABLE_INTRS) {
1805                         /*
1806                          * Disable MAC Intrs in the general intr mask register
1807                          */
1808                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1809                         writeq(DISABLE_ALL_INTRS,
1810                                &bar0->mac_rmac_err_mask);
1811
1812                         temp64 = readq(&bar0->general_int_mask);
1813                         val64 |= temp64;
1814                         writeq(val64, &bar0->general_int_mask);
1815                 }
1816         }
1817
1818         /*  Tx traffic interrupts */
1819         if (mask & TX_TRAFFIC_INTR) {
1820                 val64 = TXTRAFFIC_INT_M;
1821                 if (flag == ENABLE_INTRS) {
1822                         temp64 = readq(&bar0->general_int_mask);
1823                         temp64 &= ~((u64) val64);
1824                         writeq(temp64, &bar0->general_int_mask);
1825                         /*
1826                          * Enable all the Tx side interrupts
1827                          * writing 0 Enables all 64 TX interrupt levels
1828                          */
1829                         writeq(0x0, &bar0->tx_traffic_mask);
1830                 } else if (flag == DISABLE_INTRS) {
1831                         /*
1832                          * Disable Tx Traffic Intrs in the general intr mask
1833                          * register.
1834                          */
1835                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1836                         temp64 = readq(&bar0->general_int_mask);
1837                         val64 |= temp64;
1838                         writeq(val64, &bar0->general_int_mask);
1839                 }
1840         }
1841
1842         /*  Rx traffic interrupts */
1843         if (mask & RX_TRAFFIC_INTR) {
1844                 val64 = RXTRAFFIC_INT_M;
1845                 if (flag == ENABLE_INTRS) {
1846                         temp64 = readq(&bar0->general_int_mask);
1847                         temp64 &= ~((u64) val64);
1848                         writeq(temp64, &bar0->general_int_mask);
1849                         /* writing 0 Enables all 8 RX interrupt levels */
1850                         writeq(0x0, &bar0->rx_traffic_mask);
1851                 } else if (flag == DISABLE_INTRS) {
1852                         /*
1853                          * Disable Rx Traffic Intrs in the general intr mask
1854                          * register.
1855                          */
1856                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1857                         temp64 = readq(&bar0->general_int_mask);
1858                         val64 |= temp64;
1859                         writeq(val64, &bar0->general_int_mask);
1860                 }
1861         }
1862 }
1863
1864 /**
1865  *  verify_pcc_quiescent- Checks for PCC quiescent state
1866  *  Return: 1 If PCC is quiescence
1867  *          0 If PCC is not quiescence
1868  */
1869 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1870 {
1871         int ret = 0, herc;
1872         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1873         u64 val64 = readq(&bar0->adapter_status);
1874         
1875         herc = (sp->device_type == XFRAME_II_DEVICE);
1876
1877         if (flag == FALSE) {
1878                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1879                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1880                                 ret = 1;
1881                 } else {
1882                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1883                                 ret = 1;
1884                 }
1885         } else {
1886                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1887                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1889                                 ret = 1;
1890                 } else {
1891                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1892                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1893                                 ret = 1;
1894                 }
1895         }
1896
1897         return ret;
1898 }
1899 /**
1900  *  verify_xena_quiescence - Checks whether the H/W is ready
1901  *  Description: Returns whether the H/W is ready to go or not. Depending
1902  *  on whether adapter enable bit was written or not the comparison
1903  *  differs and the calling function passes the input argument flag to
1904  *  indicate this.
1905  *  Return: 1 If xena is quiescence
1906  *          0 If Xena is not quiescence
1907  */
1908
1909 static int verify_xena_quiescence(struct s2io_nic *sp)
1910 {
1911         int  mode;
1912         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1913         u64 val64 = readq(&bar0->adapter_status);
1914         mode = s2io_verify_pci_mode(sp);
1915
1916         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1917                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1918                 return 0;
1919         }
1920         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1921         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1922                 return 0;
1923         }
1924         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1925                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1926                 return 0;
1927         }
1928         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1929                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1930                 return 0;
1931         }
1932         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1933                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1934                 return 0;
1935         }
1936         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1937                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1938                 return 0;
1939         }
1940         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1941                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1942                 return 0;
1943         }
1944         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1945                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1946                 return 0;
1947         }
1948
1949         /*
1950          * In PCI 33 mode, the P_PLL is not used, and therefore,
1951          * the the P_PLL_LOCK bit in the adapter_status register will
1952          * not be asserted.
1953          */
1954         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1955                 sp->device_type == XFRAME_II_DEVICE && mode !=
1956                 PCI_MODE_PCI_33) {
1957                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1958                 return 0;
1959         }
1960         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1961                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1962                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1963                 return 0;
1964         }
1965         return 1;
1966 }
1967
1968 /**
1969  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1970  * @sp: Pointer to device specifc structure
1971  * Description :
1972  * New procedure to clear mac address reading  problems on Alpha platforms
1973  *
1974  */
1975
1976 static void fix_mac_address(struct s2io_nic * sp)
1977 {
1978         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1979         u64 val64;
1980         int i = 0;
1981
1982         while (fix_mac[i] != END_SIGN) {
1983                 writeq(fix_mac[i++], &bar0->gpio_control);
1984                 udelay(10);
1985                 val64 = readq(&bar0->gpio_control);
1986         }
1987 }
1988
1989 /**
1990  *  start_nic - Turns the device on
1991  *  @nic : device private variable.
1992  *  Description:
1993  *  This function actually turns the device on. Before this  function is
1994  *  called,all Registers are configured from their reset states
1995  *  and shared memory is allocated but the NIC is still quiescent. On
1996  *  calling this function, the device interrupts are cleared and the NIC is
1997  *  literally switched on by writing into the adapter control register.
1998  *  Return Value:
1999  *  SUCCESS on success and -1 on failure.
2000  */
2001
2002 static int start_nic(struct s2io_nic *nic)
2003 {
2004         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2005         struct net_device *dev = nic->dev;
2006         register u64 val64 = 0;
2007         u16 subid, i;
2008         struct mac_info *mac_control;
2009         struct config_param *config;
2010
2011         mac_control = &nic->mac_control;
2012         config = &nic->config;
2013
2014         /*  PRC Initialization and configuration */
2015         for (i = 0; i < config->rx_ring_num; i++) {
2016                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2017                        &bar0->prc_rxd0_n[i]);
2018
2019                 val64 = readq(&bar0->prc_ctrl_n[i]);
2020                 if (nic->config.bimodal)
2021                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2022                 if (nic->rxd_mode == RXD_MODE_1)
2023                         val64 |= PRC_CTRL_RC_ENABLED;
2024                 else
2025                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2026                 if (nic->device_type == XFRAME_II_DEVICE)
2027                         val64 |= PRC_CTRL_GROUP_READS;
2028                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2029                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2030                 writeq(val64, &bar0->prc_ctrl_n[i]);
2031         }
2032
2033         if (nic->rxd_mode == RXD_MODE_3B) {
2034                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2035                 val64 = readq(&bar0->rx_pa_cfg);
2036                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2037                 writeq(val64, &bar0->rx_pa_cfg);
2038         }
2039
2040         if (vlan_tag_strip == 0) {
2041                 val64 = readq(&bar0->rx_pa_cfg);
2042                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2043                 writeq(val64, &bar0->rx_pa_cfg);
2044                 vlan_strip_flag = 0;
2045         }
2046
2047         /*
2048          * Enabling MC-RLDRAM. After enabling the device, we timeout
2049          * for around 100ms, which is approximately the time required
2050          * for the device to be ready for operation.
2051          */
2052         val64 = readq(&bar0->mc_rldram_mrs);
2053         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2054         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2055         val64 = readq(&bar0->mc_rldram_mrs);
2056
2057         msleep(100);    /* Delay by around 100 ms. */
2058
2059         /* Enabling ECC Protection. */
2060         val64 = readq(&bar0->adapter_control);
2061         val64 &= ~ADAPTER_ECC_EN;
2062         writeq(val64, &bar0->adapter_control);
2063
2064         /*
2065          * Clearing any possible Link state change interrupts that
2066          * could have popped up just before Enabling the card.
2067          */
2068         val64 = readq(&bar0->mac_rmac_err_reg);
2069         if (val64)
2070                 writeq(val64, &bar0->mac_rmac_err_reg);
2071
2072         /*
2073          * Verify if the device is ready to be enabled, if so enable
2074          * it.
2075          */
2076         val64 = readq(&bar0->adapter_status);
2077         if (!verify_xena_quiescence(nic)) {
2078                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2079                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2080                           (unsigned long long) val64);
2081                 return FAILURE;
2082         }
2083
2084         /*
2085          * With some switches, link might be already up at this point.
2086          * Because of this weird behavior, when we enable laser,
2087          * we may not get link. We need to handle this. We cannot
2088          * figure out which switch is misbehaving. So we are forced to
2089          * make a global change.
2090          */
2091
2092         /* Enabling Laser. */
2093         val64 = readq(&bar0->adapter_control);
2094         val64 |= ADAPTER_EOI_TX_ON;
2095         writeq(val64, &bar0->adapter_control);
2096
2097         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2098                 /*
2099                  * Dont see link state interrupts initally on some switches,
2100                  * so directly scheduling the link state task here.
2101                  */
2102                 schedule_work(&nic->set_link_task);
2103         }
2104         /* SXE-002: Initialize link and activity LED */
2105         subid = nic->pdev->subsystem_device;
2106         if (((subid & 0xFF) >= 0x07) &&
2107             (nic->device_type == XFRAME_I_DEVICE)) {
2108                 val64 = readq(&bar0->gpio_control);
2109                 val64 |= 0x0000800000000000ULL;
2110                 writeq(val64, &bar0->gpio_control);
2111                 val64 = 0x0411040400000000ULL;
2112                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2113         }
2114
2115         return SUCCESS;
2116 }
2117 /**
2118  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2119  */
2120 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2121                                         TxD *txdlp, int get_off)
2122 {
2123         struct s2io_nic *nic = fifo_data->nic;
2124         struct sk_buff *skb;
2125         struct TxD *txds;
2126         u16 j, frg_cnt;
2127
2128         txds = txdlp;
2129         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2130                 pci_unmap_single(nic->pdev, (dma_addr_t)
2131                         txds->Buffer_Pointer, sizeof(u64),
2132                         PCI_DMA_TODEVICE);
2133                 txds++;
2134         }
2135
2136         skb = (struct sk_buff *) ((unsigned long)
2137                         txds->Host_Control);
2138         if (!skb) {
2139                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2140                 return NULL;
2141         }
2142         pci_unmap_single(nic->pdev, (dma_addr_t)
2143                          txds->Buffer_Pointer,
2144                          skb->len - skb->data_len,
2145                          PCI_DMA_TODEVICE);
2146         frg_cnt = skb_shinfo(skb)->nr_frags;
2147         if (frg_cnt) {
2148                 txds++;
2149                 for (j = 0; j < frg_cnt; j++, txds++) {
2150                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2151                         if (!txds->Buffer_Pointer)
2152                                 break;
2153                         pci_unmap_page(nic->pdev, (dma_addr_t)
2154                                         txds->Buffer_Pointer,
2155                                        frag->size, PCI_DMA_TODEVICE);
2156                 }
2157         }
2158         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2159         return(skb);
2160 }
2161
2162 /**
2163  *  free_tx_buffers - Free all queued Tx buffers
2164  *  @nic : device private variable.
2165  *  Description:
2166  *  Free all queued Tx buffers.
2167  *  Return Value: void
2168 */
2169
2170 static void free_tx_buffers(struct s2io_nic *nic)
2171 {
2172         struct net_device *dev = nic->dev;
2173         struct sk_buff *skb;
2174         struct TxD *txdp;
2175         int i, j;
2176         struct mac_info *mac_control;
2177         struct config_param *config;
2178         int cnt = 0;
2179
2180         mac_control = &nic->mac_control;
2181         config = &nic->config;
2182
2183         for (i = 0; i < config->tx_fifo_num; i++) {
2184                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2185                         txdp = (struct TxD *) \
2186                         mac_control->fifos[i].list_info[j].list_virt_addr;
2187                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2188                         if (skb) {
2189                                 nic->mac_control.stats_info->sw_stat.mem_freed 
2190                                         += skb->truesize;
2191                                 dev_kfree_skb(skb);
2192                                 cnt++;
2193                         }
2194                 }
2195                 DBG_PRINT(INTR_DBG,
2196                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2197                           dev->name, cnt, i);
2198                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2199                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2200         }
2201 }
2202
2203 /**
2204  *   stop_nic -  To stop the nic
2205  *   @nic ; device private variable.
2206  *   Description:
2207  *   This function does exactly the opposite of what the start_nic()
2208  *   function does. This function is called to stop the device.
2209  *   Return Value:
2210  *   void.
2211  */
2212
2213 static void stop_nic(struct s2io_nic *nic)
2214 {
2215         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2216         register u64 val64 = 0;
2217         u16 interruptible;
2218         struct mac_info *mac_control;
2219         struct config_param *config;
2220
2221         mac_control = &nic->mac_control;
2222         config = &nic->config;
2223
2224         /*  Disable all interrupts */
2225         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2226         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2227         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2228         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2229
2230         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2231         val64 = readq(&bar0->adapter_control);
2232         val64 &= ~(ADAPTER_CNTL_EN);
2233         writeq(val64, &bar0->adapter_control);
2234 }
2235
2236 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2237                                 sk_buff *skb)
2238 {
2239         struct net_device *dev = nic->dev;
2240         struct sk_buff *frag_list;
2241         void *tmp;
2242
2243         /* Buffer-1 receives L3/L4 headers */
2244         ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2245                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2246                         PCI_DMA_FROMDEVICE);
2247
2248         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2249         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2250         if (skb_shinfo(skb)->frag_list == NULL) {
2251                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2252                 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2253                 return -ENOMEM ;
2254         }
2255         frag_list = skb_shinfo(skb)->frag_list;
2256         skb->truesize += frag_list->truesize;
2257         nic->mac_control.stats_info->sw_stat.mem_allocated 
2258                 += frag_list->truesize;
2259         frag_list->next = NULL;
2260         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2261         frag_list->data = tmp;
2262         skb_reset_tail_pointer(frag_list);
2263
2264         /* Buffer-2 receives L4 data payload */
2265         ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2266                                 frag_list->data, dev->mtu,
2267                                 PCI_DMA_FROMDEVICE);
2268         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2269         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2270
2271         return SUCCESS;
2272 }
2273
2274 /**
2275  *  fill_rx_buffers - Allocates the Rx side skbs
2276  *  @nic:  device private variable
2277  *  @ring_no: ring number
2278  *  Description:
2279  *  The function allocates Rx side skbs and puts the physical
2280  *  address of these buffers into the RxD buffer pointers, so that the NIC
2281  *  can DMA the received frame into these locations.
2282  *  The NIC supports 3 receive modes, viz
2283  *  1. single buffer,
2284  *  2. three buffer and
2285  *  3. Five buffer modes.
2286  *  Each mode defines how many fragments the received frame will be split
2287  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2288  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2289  *  is split into 3 fragments. As of now only single buffer mode is
2290  *  supported.
2291  *   Return Value:
2292  *  SUCCESS on success or an appropriate -ve value on failure.
2293  */
2294
2295 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2296 {
2297         struct net_device *dev = nic->dev;
2298         struct sk_buff *skb;
2299         struct RxD_t *rxdp;
2300         int off, off1, size, block_no, block_no1;
2301         u32 alloc_tab = 0;
2302         u32 alloc_cnt;
2303         struct mac_info *mac_control;
2304         struct config_param *config;
2305         u64 tmp;
2306         struct buffAdd *ba;
2307         unsigned long flags;
2308         struct RxD_t *first_rxdp = NULL;
2309         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2310
2311         mac_control = &nic->mac_control;
2312         config = &nic->config;
2313         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2314             atomic_read(&nic->rx_bufs_left[ring_no]);
2315
2316         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2317         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2318         while (alloc_tab < alloc_cnt) {
2319                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2320                     block_index;
2321                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2322
2323                 rxdp = mac_control->rings[ring_no].
2324                                 rx_blocks[block_no].rxds[off].virt_addr;
2325
2326                 if ((block_no == block_no1) && (off == off1) &&
2327                                         (rxdp->Host_Control)) {
2328                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2329                                   dev->name);
2330                         DBG_PRINT(INTR_DBG, " info equated\n");
2331                         goto end;
2332                 }
2333                 if (off && (off == rxd_count[nic->rxd_mode])) {
2334                         mac_control->rings[ring_no].rx_curr_put_info.
2335                             block_index++;
2336                         if (mac_control->rings[ring_no].rx_curr_put_info.
2337                             block_index == mac_control->rings[ring_no].
2338                                         block_count)
2339                                 mac_control->rings[ring_no].rx_curr_put_info.
2340                                         block_index = 0;
2341                         block_no = mac_control->rings[ring_no].
2342                                         rx_curr_put_info.block_index;
2343                         if (off == rxd_count[nic->rxd_mode])
2344                                 off = 0;
2345                         mac_control->rings[ring_no].rx_curr_put_info.
2346                                 offset = off;
2347                         rxdp = mac_control->rings[ring_no].
2348                                 rx_blocks[block_no].block_virt_addr;
2349                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2350                                   dev->name, rxdp);
2351                 }
2352                 if(!napi) {
2353                         spin_lock_irqsave(&nic->put_lock, flags);
2354                         mac_control->rings[ring_no].put_pos =
2355                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2356                         spin_unlock_irqrestore(&nic->put_lock, flags);
2357                 } else {
2358                         mac_control->rings[ring_no].put_pos =
2359                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2360                 }
2361                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2362                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2363                                 (rxdp->Control_2 & BIT(0)))) {
2364                         mac_control->rings[ring_no].rx_curr_put_info.
2365                                         offset = off;
2366                         goto end;
2367                 }
2368                 /* calculate size of skb based on ring mode */
2369                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2370                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2371                 if (nic->rxd_mode == RXD_MODE_1)
2372                         size += NET_IP_ALIGN;
2373                 else if (nic->rxd_mode == RXD_MODE_3B)
2374                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2375                 else
2376                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2377
2378                 /* allocate skb */
2379                 skb = dev_alloc_skb(size);
2380                 if(!skb) {
2381                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2382                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2383                         if (first_rxdp) {
2384                                 wmb();
2385                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2386                         }
2387                         nic->mac_control.stats_info->sw_stat. \
2388                                 mem_alloc_fail_cnt++;
2389                         return -ENOMEM ;
2390                 }
2391                 nic->mac_control.stats_info->sw_stat.mem_allocated 
2392                         += skb->truesize;
2393                 if (nic->rxd_mode == RXD_MODE_1) {
2394                         /* 1 buffer mode - normal operation mode */
2395                         memset(rxdp, 0, sizeof(struct RxD1));
2396                         skb_reserve(skb, NET_IP_ALIGN);
2397                         ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2398                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2399                                 PCI_DMA_FROMDEVICE);
2400                         rxdp->Control_2 = 
2401                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2402
2403                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2404                         /*
2405                          * 2 or 3 buffer mode -
2406                          * Both 2 buffer mode and 3 buffer mode provides 128
2407                          * byte aligned receive buffers.
2408                          *
2409                          * 3 buffer mode provides header separation where in
2410                          * skb->data will have L3/L4 headers where as
2411                          * skb_shinfo(skb)->frag_list will have the L4 data
2412                          * payload
2413                          */
2414
2415                         /* save buffer pointers to avoid frequent dma mapping */
2416                         Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2417                         Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2418                         memset(rxdp, 0, sizeof(struct RxD3));
2419                         /* restore the buffer pointers for dma sync*/
2420                         ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2421                         ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2422
2423                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2424                         skb_reserve(skb, BUF0_LEN);
2425                         tmp = (u64)(unsigned long) skb->data;
2426                         tmp += ALIGN_SIZE;
2427                         tmp &= ~ALIGN_SIZE;
2428                         skb->data = (void *) (unsigned long)tmp;
2429                         skb_reset_tail_pointer(skb);
2430
2431                         if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2432                                 ((struct RxD3*)rxdp)->Buffer0_ptr =
2433                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2434                                            PCI_DMA_FROMDEVICE);
2435                         else
2436                                 pci_dma_sync_single_for_device(nic->pdev,
2437                                 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2438                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2439                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2440                         if (nic->rxd_mode == RXD_MODE_3B) {
2441                                 /* Two buffer mode */
2442
2443                                 /*
2444                                  * Buffer2 will have L3/L4 header plus
2445                                  * L4 payload
2446                                  */
2447                                 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2448                                 (nic->pdev, skb->data, dev->mtu + 4,
2449                                                 PCI_DMA_FROMDEVICE);
2450
2451                                 /* Buffer-1 will be dummy buffer. Not used */
2452                                 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2453                                         ((struct RxD3*)rxdp)->Buffer1_ptr =
2454                                                 pci_map_single(nic->pdev,
2455                                                 ba->ba_1, BUF1_LEN,
2456                                                 PCI_DMA_FROMDEVICE);
2457                                 }
2458                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2459                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2460                                                                 (dev->mtu + 4);
2461                         } else {
2462                                 /* 3 buffer mode */
2463                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2464                                         nic->mac_control.stats_info->sw_stat.\
2465                                         mem_freed += skb->truesize;
2466                                         dev_kfree_skb_irq(skb);
2467                                         if (first_rxdp) {
2468                                                 wmb();
2469                                                 first_rxdp->Control_1 |=
2470                                                         RXD_OWN_XENA;
2471                                         }
2472                                         return -ENOMEM ;
2473                                 }
2474                         }
2475                         rxdp->Control_2 |= BIT(0);
2476                 }
2477                 rxdp->Host_Control = (unsigned long) (skb);
2478                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2479                         rxdp->Control_1 |= RXD_OWN_XENA;
2480                 off++;
2481                 if (off == (rxd_count[nic->rxd_mode] + 1))
2482                         off = 0;
2483                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2484
2485                 rxdp->Control_2 |= SET_RXD_MARKER;
2486                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2487                         if (first_rxdp) {
2488                                 wmb();
2489                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2490                         }
2491                         first_rxdp = rxdp;
2492                 }
2493                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2494                 alloc_tab++;
2495         }
2496
2497       end:
2498         /* Transfer ownership of first descriptor to adapter just before
2499          * exiting. Before that, use memory barrier so that ownership
2500          * and other fields are seen by adapter correctly.
2501          */
2502         if (first_rxdp) {
2503                 wmb();
2504                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2505         }
2506
2507         return SUCCESS;
2508 }
2509
2510 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2511 {
2512         struct net_device *dev = sp->dev;
2513         int j;
2514         struct sk_buff *skb;
2515         struct RxD_t *rxdp;
2516         struct mac_info *mac_control;
2517         struct buffAdd *ba;
2518
2519         mac_control = &sp->mac_control;
2520         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2521                 rxdp = mac_control->rings[ring_no].
2522                                 rx_blocks[blk].rxds[j].virt_addr;
2523                 skb = (struct sk_buff *)
2524                         ((unsigned long) rxdp->Host_Control);
2525                 if (!skb) {
2526                         continue;
2527                 }
2528                 if (sp->rxd_mode == RXD_MODE_1) {
2529                         pci_unmap_single(sp->pdev, (dma_addr_t)
2530                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2531                                  dev->mtu +
2532                                  HEADER_ETHERNET_II_802_3_SIZE
2533                                  + HEADER_802_2_SIZE +
2534                                  HEADER_SNAP_SIZE,
2535                                  PCI_DMA_FROMDEVICE);
2536                         memset(rxdp, 0, sizeof(struct RxD1));
2537                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2538                         ba = &mac_control->rings[ring_no].
2539                                 ba[blk][j];
2540                         pci_unmap_single(sp->pdev, (dma_addr_t)
2541                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2542                                  BUF0_LEN,
2543                                  PCI_DMA_FROMDEVICE);
2544                         pci_unmap_single(sp->pdev, (dma_addr_t)
2545                                  ((struct RxD3*)rxdp)->Buffer1_ptr,
2546                                  BUF1_LEN,
2547                                  PCI_DMA_FROMDEVICE);
2548                         pci_unmap_single(sp->pdev, (dma_addr_t)
2549                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2550                                  dev->mtu + 4,
2551                                  PCI_DMA_FROMDEVICE);
2552                         memset(rxdp, 0, sizeof(struct RxD3));
2553                 } else {
2554                         pci_unmap_single(sp->pdev, (dma_addr_t)
2555                                 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2556                                 PCI_DMA_FROMDEVICE);
2557                         pci_unmap_single(sp->pdev, (dma_addr_t)
2558                                 ((struct RxD3*)rxdp)->Buffer1_ptr,
2559                                 l3l4hdr_size + 4,
2560                                 PCI_DMA_FROMDEVICE);
2561                         pci_unmap_single(sp->pdev, (dma_addr_t)
2562                                 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2563                                 PCI_DMA_FROMDEVICE);
2564                         memset(rxdp, 0, sizeof(struct RxD3));
2565                 }
2566                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2567                 dev_kfree_skb(skb);
2568                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2569         }
2570 }
2571
2572 /**
2573  *  free_rx_buffers - Frees all Rx buffers
2574  *  @sp: device private variable.
2575  *  Description:
2576  *  This function will free all Rx buffers allocated by host.
2577  *  Return Value:
2578  *  NONE.
2579  */
2580
2581 static void free_rx_buffers(struct s2io_nic *sp)
2582 {
2583         struct net_device *dev = sp->dev;
2584         int i, blk = 0, buf_cnt = 0;
2585         struct mac_info *mac_control;
2586         struct config_param *config;
2587
2588         mac_control = &sp->mac_control;
2589         config = &sp->config;
2590
2591         for (i = 0; i < config->rx_ring_num; i++) {
2592                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2593                         free_rxd_blk(sp,i,blk);
2594
2595                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2596                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2597                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2598                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2599                 atomic_set(&sp->rx_bufs_left[i], 0);
2600                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2601                           dev->name, buf_cnt, i);
2602         }
2603 }
2604
2605 /**
2606  * s2io_poll - Rx interrupt handler for NAPI support
2607  * @dev : pointer to the device structure.
2608  * @budget : The number of packets that were budgeted to be processed
2609  * during  one pass through the 'Poll" function.
2610  * Description:
2611  * Comes into picture only if NAPI support has been incorporated. It does
2612  * the same thing that rx_intr_handler does, but not in a interrupt context
2613  * also It will process only a given number of packets.
2614  * Return value:
2615  * 0 on success and 1 if there are No Rx packets to be processed.
2616  */
2617
2618 static int s2io_poll(struct net_device *dev, int *budget)
2619 {
2620         struct s2io_nic *nic = dev->priv;
2621         int pkt_cnt = 0, org_pkts_to_process;
2622         struct mac_info *mac_control;
2623         struct config_param *config;
2624         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2625         int i;
2626
2627         atomic_inc(&nic->isr_cnt);
2628         mac_control = &nic->mac_control;
2629         config = &nic->config;
2630
2631         nic->pkts_to_process = *budget;
2632         if (nic->pkts_to_process > dev->quota)
2633                 nic->pkts_to_process = dev->quota;
2634         org_pkts_to_process = nic->pkts_to_process;
2635
2636         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2637         readl(&bar0->rx_traffic_int);
2638
2639         for (i = 0; i < config->rx_ring_num; i++) {
2640                 rx_intr_handler(&mac_control->rings[i]);
2641                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2642                 if (!nic->pkts_to_process) {
2643                         /* Quota for the current iteration has been met */
2644                         goto no_rx;
2645                 }
2646         }
2647         if (!pkt_cnt)
2648                 pkt_cnt = 1;
2649
2650         dev->quota -= pkt_cnt;
2651         *budget -= pkt_cnt;
2652         netif_rx_complete(dev);
2653
2654         for (i = 0; i < config->rx_ring_num; i++) {
2655                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2656                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2657                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2658                         break;
2659                 }
2660         }
2661         /* Re enable the Rx interrupts. */
2662         writeq(0x0, &bar0->rx_traffic_mask);
2663         readl(&bar0->rx_traffic_mask);
2664         atomic_dec(&nic->isr_cnt);
2665         return 0;
2666
2667 no_rx:
2668         dev->quota -= pkt_cnt;
2669         *budget -= pkt_cnt;
2670
2671         for (i = 0; i < config->rx_ring_num; i++) {
2672                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2673                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2674                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2675                         break;
2676                 }
2677         }
2678         atomic_dec(&nic->isr_cnt);
2679         return 1;
2680 }
2681
2682 #ifdef CONFIG_NET_POLL_CONTROLLER
2683 /**
2684  * s2io_netpoll - netpoll event handler entry point
2685  * @dev : pointer to the device structure.
2686  * Description:
2687  *      This function will be called by upper layer to check for events on the
2688  * interface in situations where interrupts are disabled. It is used for
2689  * specific in-kernel networking tasks, such as remote consoles and kernel
2690  * debugging over the network (example netdump in RedHat).
2691  */
2692 static void s2io_netpoll(struct net_device *dev)
2693 {
2694         struct s2io_nic *nic = dev->priv;
2695         struct mac_info *mac_control;
2696         struct config_param *config;
2697         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2698         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2699         int i;
2700
2701         if (pci_channel_offline(nic->pdev))
2702                 return;
2703
2704         disable_irq(dev->irq);
2705
2706         atomic_inc(&nic->isr_cnt);
2707         mac_control = &nic->mac_control;
2708         config = &nic->config;
2709
2710         writeq(val64, &bar0->rx_traffic_int);
2711         writeq(val64, &bar0->tx_traffic_int);
2712
2713         /* we need to free up the transmitted skbufs or else netpoll will
2714          * run out of skbs and will fail and eventually netpoll application such
2715          * as netdump will fail.
2716          */
2717         for (i = 0; i < config->tx_fifo_num; i++)
2718                 tx_intr_handler(&mac_control->fifos[i]);
2719
2720         /* check for received packet and indicate up to network */
2721         for (i = 0; i < config->rx_ring_num; i++)
2722                 rx_intr_handler(&mac_control->rings[i]);
2723
2724         for (i = 0; i < config->rx_ring_num; i++) {
2725                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2726                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2727                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2728                         break;
2729                 }
2730         }
2731         atomic_dec(&nic->isr_cnt);
2732         enable_irq(dev->irq);
2733         return;
2734 }
2735 #endif
2736
2737 /**
2738  *  rx_intr_handler - Rx interrupt handler
2739  *  @nic: device private variable.
2740  *  Description:
2741  *  If the interrupt is because of a received frame or if the
2742  *  receive ring contains fresh as yet un-processed frames,this function is
2743  *  called. It picks out the RxD at which place the last Rx processing had
2744  *  stopped and sends the skb to the OSM's Rx handler and then increments
2745  *  the offset.
2746  *  Return Value:
2747  *  NONE.
2748  */
2749 static void rx_intr_handler(struct ring_info *ring_data)
2750 {
2751         struct s2io_nic *nic = ring_data->nic;
2752         struct net_device *dev = (struct net_device *) nic->dev;
2753         int get_block, put_block, put_offset;
2754         struct rx_curr_get_info get_info, put_info;
2755         struct RxD_t *rxdp;
2756         struct sk_buff *skb;
2757         int pkt_cnt = 0;
2758         int i;
2759
2760         spin_lock(&nic->rx_lock);
2761         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2762                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2763                           __FUNCTION__, dev->name);
2764                 spin_unlock(&nic->rx_lock);
2765                 return;
2766         }
2767
2768         get_info = ring_data->rx_curr_get_info;
2769         get_block = get_info.block_index;
2770         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2771         put_block = put_info.block_index;
2772         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2773         if (!napi) {
2774                 spin_lock(&nic->put_lock);
2775                 put_offset = ring_data->put_pos;
2776                 spin_unlock(&nic->put_lock);
2777         } else
2778                 put_offset = ring_data->put_pos;
2779
2780         while (RXD_IS_UP2DT(rxdp)) {
2781                 /*
2782                  * If your are next to put index then it's
2783                  * FIFO full condition
2784                  */
2785                 if ((get_block == put_block) &&
2786                     (get_info.offset + 1) == put_info.offset) {
2787                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2788                         break;
2789                 }
2790                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2791                 if (skb == NULL) {
2792                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2793                                   dev->name);
2794                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2795                         spin_unlock(&nic->rx_lock);
2796                         return;
2797                 }
2798                 if (nic->rxd_mode == RXD_MODE_1) {
2799                         pci_unmap_single(nic->pdev, (dma_addr_t)
2800                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2801                                  dev->mtu +
2802                                  HEADER_ETHERNET_II_802_3_SIZE +
2803                                  HEADER_802_2_SIZE +
2804                                  HEADER_SNAP_SIZE,
2805                                  PCI_DMA_FROMDEVICE);
2806                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2807                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2808                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2809                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2810                         pci_unmap_single(nic->pdev, (dma_addr_t)
2811                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2812                                  dev->mtu + 4,
2813                                  PCI_DMA_FROMDEVICE);
2814                 } else {
2815                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2816                                          ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2817                                          PCI_DMA_FROMDEVICE);
2818                         pci_unmap_single(nic->pdev, (dma_addr_t)
2819                                          ((struct RxD3*)rxdp)->Buffer1_ptr,
2820                                          l3l4hdr_size + 4,
2821                                          PCI_DMA_FROMDEVICE);
2822                         pci_unmap_single(nic->pdev, (dma_addr_t)
2823                                          ((struct RxD3*)rxdp)->Buffer2_ptr,
2824                                          dev->mtu, PCI_DMA_FROMDEVICE);
2825                 }
2826                 prefetch(skb->data);
2827                 rx_osm_handler(ring_data, rxdp);
2828                 get_info.offset++;
2829                 ring_data->rx_curr_get_info.offset = get_info.offset;
2830                 rxdp = ring_data->rx_blocks[get_block].
2831                                 rxds[get_info.offset].virt_addr;
2832                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2833                         get_info.offset = 0;
2834                         ring_data->rx_curr_get_info.offset = get_info.offset;
2835                         get_block++;
2836                         if (get_block == ring_data->block_count)
2837                                 get_block = 0;
2838                         ring_data->rx_curr_get_info.block_index = get_block;
2839                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2840                 }
2841
2842                 nic->pkts_to_process -= 1;
2843                 if ((napi) && (!nic->pkts_to_process))
2844                         break;
2845                 pkt_cnt++;
2846                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2847                         break;
2848         }
2849         if (nic->lro) {
2850                 /* Clear all LRO sessions before exiting */
2851                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2852                         struct lro *lro = &nic->lro0_n[i];
2853                         if (lro->in_use) {
2854                                 update_L3L4_header(nic, lro);
2855                                 queue_rx_frame(lro->parent);
2856                                 clear_lro_session(lro);
2857                         }
2858                 }
2859         }
2860
2861         spin_unlock(&nic->rx_lock);
2862 }
2863
2864 /**
2865  *  tx_intr_handler - Transmit interrupt handler
2866  *  @nic : device private variable
2867  *  Description:
2868  *  If an interrupt was raised to indicate DMA complete of the
2869  *  Tx packet, this function is called. It identifies the last TxD
2870  *  whose buffer was freed and frees all skbs whose data have already
2871  *  DMA'ed into the NICs internal memory.
2872  *  Return Value:
2873  *  NONE
2874  */
2875
2876 static void tx_intr_handler(struct fifo_info *fifo_data)
2877 {
2878         struct s2io_nic *nic = fifo_data->nic;
2879         struct net_device *dev = (struct net_device *) nic->dev;
2880         struct tx_curr_get_info get_info, put_info;
2881         struct sk_buff *skb;
2882         struct TxD *txdlp;
2883         u8 err_mask;
2884
2885         get_info = fifo_data->tx_curr_get_info;
2886         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2887         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2888             list_virt_addr;
2889         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2890                (get_info.offset != put_info.offset) &&
2891                (txdlp->Host_Control)) {
2892                 /* Check for TxD errors */
2893                 if (txdlp->Control_1 & TXD_T_CODE) {
2894                         unsigned long long err;
2895                         err = txdlp->Control_1 & TXD_T_CODE;
2896                         if (err & 0x1) {
2897                                 nic->mac_control.stats_info->sw_stat.
2898                                                 parity_err_cnt++;
2899                         }
2900
2901                         /* update t_code statistics */
2902                         err_mask = err >> 48;
2903                         switch(err_mask) {
2904                                 case 2:
2905                                         nic->mac_control.stats_info->sw_stat.
2906                                                         tx_buf_abort_cnt++;
2907                                 break;
2908
2909                                 case 3:
2910                                         nic->mac_control.stats_info->sw_stat.
2911                                                         tx_desc_abort_cnt++;
2912                                 break;
2913
2914                                 case 7:
2915                                         nic->mac_control.stats_info->sw_stat.
2916                                                         tx_parity_err_cnt++;
2917                                 break;
2918
2919                                 case 10:
2920                                         nic->mac_control.stats_info->sw_stat.
2921                                                         tx_link_loss_cnt++;
2922                                 break;
2923
2924                                 case 15:
2925                                         nic->mac_control.stats_info->sw_stat.
2926                                                         tx_list_proc_err_cnt++;
2927                                 break;
2928                         }
2929                 }
2930
2931                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2932                 if (skb == NULL) {
2933                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2934                         __FUNCTION__);
2935                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2936                         return;
2937                 }
2938
2939                 /* Updating the statistics block */
2940                 nic->stats.tx_bytes += skb->len;
2941                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2942                 dev_kfree_skb_irq(skb);
2943
2944                 get_info.offset++;
2945                 if (get_info.offset == get_info.fifo_len + 1)
2946                         get_info.offset = 0;
2947                 txdlp = (struct TxD *) fifo_data->list_info
2948                     [get_info.offset].list_virt_addr;
2949                 fifo_data->tx_curr_get_info.offset =
2950                     get_info.offset;
2951         }
2952
2953         spin_lock(&nic->tx_lock);
2954         if (netif_queue_stopped(dev))
2955                 netif_wake_queue(dev);
2956         spin_unlock(&nic->tx_lock);
2957 }
2958
2959 /**
2960  *  s2io_mdio_write - Function to write in to MDIO registers
2961  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2962  *  @addr     : address value
2963  *  @value    : data value
2964  *  @dev      : pointer to net_device structure
2965  *  Description:
2966  *  This function is used to write values to the MDIO registers
2967  *  NONE
2968  */
2969 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2970 {
2971         u64 val64 = 0x0;
2972         struct s2io_nic *sp = dev->priv;
2973         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2974
2975         //address transaction
2976         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2977                         | MDIO_MMD_DEV_ADDR(mmd_type)
2978                         | MDIO_MMS_PRT_ADDR(0x0);
2979         writeq(val64, &bar0->mdio_control);
2980         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2981         writeq(val64, &bar0->mdio_control);
2982         udelay(100);
2983
2984         //Data transaction
2985         val64 = 0x0;
2986         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2987                         | MDIO_MMD_DEV_ADDR(mmd_type)
2988                         | MDIO_MMS_PRT_ADDR(0x0)
2989                         | MDIO_MDIO_DATA(value)
2990                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2991         writeq(val64, &bar0->mdio_control);
2992         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2993         writeq(val64, &bar0->mdio_control);
2994         udelay(100);
2995
2996         val64 = 0x0;
2997         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2998         | MDIO_MMD_DEV_ADDR(mmd_type)
2999         | MDIO_MMS_PRT_ADDR(0x0)
3000         | MDIO_OP(MDIO_OP_READ_TRANS);
3001         writeq(val64, &bar0->mdio_control);
3002         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3003         writeq(val64, &bar0->mdio_control);
3004         udelay(100);
3005
3006 }
3007
3008 /**
3009  *  s2io_mdio_read - Function to write in to MDIO registers
3010  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3011  *  @addr     : address value
3012  *  @dev      : pointer to net_device structure
3013  *  Description:
3014  *  This function is used to read values to the MDIO registers
3015  *  NONE
3016  */
3017 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3018 {
3019         u64 val64 = 0x0;
3020         u64 rval64 = 0x0;
3021         struct s2io_nic *sp = dev->priv;
3022         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3023
3024         /* address transaction */
3025         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3026                         | MDIO_MMD_DEV_ADDR(mmd_type)
3027                         | MDIO_MMS_PRT_ADDR(0x0);
3028         writeq(val64, &bar0->mdio_control);
3029         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3030         writeq(val64, &bar0->mdio_control);
3031         udelay(100);
3032
3033         /* Data transaction */
3034         val64 = 0x0;
3035         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3036                         | MDIO_MMD_DEV_ADDR(mmd_type)
3037                         | MDIO_MMS_PRT_ADDR(0x0)
3038                         | MDIO_OP(MDIO_OP_READ_TRANS);
3039         writeq(val64, &bar0->mdio_control);
3040         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3041         writeq(val64, &bar0->mdio_control);
3042         udelay(100);
3043
3044         /* Read the value from regs */
3045         rval64 = readq(&bar0->mdio_control);
3046         rval64 = rval64 & 0xFFFF0000;
3047         rval64 = rval64 >> 16;
3048         return rval64;
3049 }
3050 /**
3051  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3052  *  @counter      : couter value to be updated
3053  *  @flag         : flag to indicate the status
3054  *  @type         : counter type
3055  *  Description:
3056  *  This function is to check the status of the xpak counters value
3057  *  NONE
3058  */
3059
3060 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3061 {
3062         u64 mask = 0x3;
3063         u64 val64;
3064         int i;
3065         for(i = 0; i <index; i++)
3066                 mask = mask << 0x2;
3067
3068         if(flag > 0)
3069         {
3070                 *counter = *counter + 1;
3071                 val64 = *regs_stat & mask;
3072                 val64 = val64 >> (index * 0x2);
3073                 val64 = val64 + 1;
3074                 if(val64 == 3)
3075                 {
3076                         switch(type)
3077                         {
3078                         case 1:
3079                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3080                                           "service. Excessive temperatures may "
3081                                           "result in premature transceiver "
3082                                           "failure \n");
3083                         break;
3084                         case 2:
3085                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3086                                           "service Excessive bias currents may "
3087                                           "indicate imminent laser diode "
3088                                           "failure \n");
3089                         break;
3090                         case 3:
3091                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3092                                           "service Excessive laser output "
3093                                           "power may saturate far-end "
3094                                           "receiver\n");
3095                         break;
3096                         default:
3097                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3098                                           "type \n");
3099                         }
3100                         val64 = 0x0;
3101                 }
3102                 val64 = val64 << (index * 0x2);
3103                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3104
3105         } else {
3106                 *regs_stat = *regs_stat & (~mask);
3107         }
3108 }
3109
3110 /**
3111  *  s2io_updt_xpak_counter - Function to update the xpak counters
3112  *  @dev         : pointer to net_device struct
3113  *  Description:
3114  *  This function is to upate the status of the xpak counters value
3115  *  NONE
3116  */
3117 static void s2io_updt_xpak_counter(struct net_device *dev)
3118 {
3119         u16 flag  = 0x0;
3120         u16 type  = 0x0;
3121         u16 val16 = 0x0;
3122         u64 val64 = 0x0;
3123         u64 addr  = 0x0;
3124
3125         struct s2io_nic *sp = dev->priv;
3126         struct stat_block *stat_info = sp->mac_control.stats_info;
3127
3128         /* Check the communication with the MDIO slave */
3129         addr = 0x0000;
3130         val64 = 0x0;
3131         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3132         if((val64 == 0xFFFF) || (val64 == 0x0000))
3133         {
3134                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3135                           "Returned %llx\n", (unsigned long long)val64);
3136                 return;
3137         }
3138
3139         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3140         if(val64 != 0x2040)
3141         {
3142                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3143                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3144                           (unsigned long long)val64);
3145                 return;
3146         }
3147
3148         /* Loading the DOM register to MDIO register */
3149         addr = 0xA100;
3150         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3151         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3152
3153         /* Reading the Alarm flags */
3154         addr = 0xA070;
3155         val64 = 0x0;
3156         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3157
3158         flag = CHECKBIT(val64, 0x7);
3159         type = 1;
3160         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3161                                 &stat_info->xpak_stat.xpak_regs_stat,
3162                                 0x0, flag, type);
3163
3164         if(CHECKBIT(val64, 0x6))
3165                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3166
3167         flag = CHECKBIT(val64, 0x3);
3168         type = 2;
3169         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3170                                 &stat_info->xpak_stat.xpak_regs_stat,
3171                                 0x2, flag, type);
3172
3173         if(CHECKBIT(val64, 0x2))
3174                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3175
3176         flag = CHECKBIT(val64, 0x1);
3177         type = 3;
3178         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3179                                 &stat_info->xpak_stat.xpak_regs_stat,
3180                                 0x4, flag, type);
3181
3182         if(CHECKBIT(val64, 0x0))
3183                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3184
3185         /* Reading the Warning flags */
3186         addr = 0xA074;
3187         val64 = 0x0;
3188         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3189
3190         if(CHECKBIT(val64, 0x7))
3191                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3192
3193         if(CHECKBIT(val64, 0x6))
3194                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3195
3196         if(CHECKBIT(val64, 0x3))
3197                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3198
3199         if(CHECKBIT(val64, 0x2))
3200                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3201
3202         if(CHECKBIT(val64, 0x1))
3203                 stat_info->xpak_stat.warn_laser_output_power_high++;
3204
3205         if(CHECKBIT(val64, 0x0))
3206                 stat_info->xpak_stat.warn_laser_output_power_low++;
3207 }
3208
3209 /**
3210  *  alarm_intr_handler - Alarm Interrrupt handler
3211  *  @nic: device private variable
3212  *  Description: If the interrupt was neither because of Rx packet or Tx
3213  *  complete, this function is called. If the interrupt was to indicate
3214  *  a loss of link, the OSM link status handler is invoked for any other
3215  *  alarm interrupt the block that raised the interrupt is displayed
3216  *  and a H/W reset is issued.
3217  *  Return Value:
3218  *  NONE
3219 */
3220
3221 static void alarm_intr_handler(struct s2io_nic *nic)
3222 {
3223         struct net_device *dev = (struct net_device *) nic->dev;
3224         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3225         register u64 val64 = 0, err_reg = 0;
3226         u64 cnt;
3227         int i;
3228         if (atomic_read(&nic->card_state) == CARD_DOWN)
3229                 return;
3230         if (pci_channel_offline(nic->pdev))
3231                 return;
3232         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3233         /* Handling the XPAK counters update */
3234         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3235                 /* waiting for an hour */
3236                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3237         } else {
3238                 s2io_updt_xpak_counter(dev);
3239                 /* reset the count to zero */
3240                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3241         }
3242
3243         /* Handling link status change error Intr */
3244         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3245                 err_reg = readq(&bar0->mac_rmac_err_reg);
3246                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3247                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3248                         schedule_work(&nic->set_link_task);
3249                 }
3250         }
3251
3252         /* Handling Ecc errors */
3253         val64 = readq(&bar0->mc_err_reg);
3254         writeq(val64, &bar0->mc_err_reg);
3255         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3256                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3257                         nic->mac_control.stats_info->sw_stat.
3258                                 double_ecc_errs++;
3259                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3260                                   dev->name);
3261                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3262                         if (nic->device_type != XFRAME_II_DEVICE) {
3263                                 /* Reset XframeI only if critical error */
3264                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3265                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3266                                         netif_stop_queue(dev);
3267                                         schedule_work(&nic->rst_timer_task);
3268                                         nic->mac_control.stats_info->sw_stat.
3269                                                         soft_reset_cnt++;
3270                                 }
3271                         }
3272                 } else {
3273                         nic->mac_control.stats_info->sw_stat.
3274                                 single_ecc_errs++;
3275                 }
3276         }
3277
3278         /* In case of a serious error, the device will be Reset. */
3279         val64 = readq(&bar0->serr_source);
3280         if (val64 & SERR_SOURCE_ANY) {
3281                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3282                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3283                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3284                           (unsigned long long)val64);
3285                 netif_stop_queue(dev);
3286                 schedule_work(&nic->rst_timer_task);
3287                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3288         }
3289
3290         /*
3291          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3292          * Error occurs, the adapter will be recycled by disabling the
3293          * adapter enable bit and enabling it again after the device
3294          * becomes Quiescent.
3295          */
3296         val64 = readq(&bar0->pcc_err_reg);
3297         writeq(val64, &bar0->pcc_err_reg);
3298         if (val64 & PCC_FB_ECC_DB_ERR) {
3299                 u64 ac = readq(&bar0->adapter_control);
3300                 ac &= ~(ADAPTER_CNTL_EN);
3301                 writeq(ac, &bar0->adapter_control);
3302                 ac = readq(&bar0->adapter_control);
3303                 schedule_work(&nic->set_link_task);
3304         }
3305         /* Check for data parity error */
3306         val64 = readq(&bar0->pic_int_status);
3307         if (val64 & PIC_INT_GPIO) {
3308                 val64 = readq(&bar0->gpio_int_reg);
3309                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3310                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3311                         schedule_work(&nic->rst_timer_task);
3312                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3313                 }
3314         }
3315
3316         /* Check for ring full counter */
3317         if (nic->device_type & XFRAME_II_DEVICE) {
3318                 val64 = readq(&bar0->ring_bump_counter1);
3319                 for (i=0; i<4; i++) {
3320                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3321                         cnt >>= 64 - ((i+1)*16);
3322                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3323                                 += cnt;
3324                 }
3325
3326                 val64 = readq(&bar0->ring_bump_counter2);
3327                 for (i=0; i<4; i++) {
3328                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3329                         cnt >>= 64 - ((i+1)*16);
3330                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3331                                 += cnt;
3332                 }
3333         }
3334
3335         /* Other type of interrupts are not being handled now,  TODO */
3336 }
3337
3338 /**
3339  *  wait_for_cmd_complete - waits for a command to complete.
3340  *  @sp : private member of the device structure, which is a pointer to the
3341  *  s2io_nic structure.
3342  *  Description: Function that waits for a command to Write into RMAC
3343  *  ADDR DATA registers to be completed and returns either success or
3344  *  error depending on whether the command was complete or not.
3345  *  Return value:
3346  *   SUCCESS on success and FAILURE on failure.
3347  */
3348
3349 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3350                                 int bit_state)
3351 {
3352         int ret = FAILURE, cnt = 0, delay = 1;
3353         u64 val64;
3354
3355         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3356                 return FAILURE;
3357
3358         do {
3359                 val64 = readq(addr);
3360                 if (bit_state == S2IO_BIT_RESET) {
3361                         if (!(val64 & busy_bit)) {
3362                                 ret = SUCCESS;
3363                                 break;
3364                         }
3365                 } else {
3366                         if (!(val64 & busy_bit)) {
3367                                 ret = SUCCESS;
3368                                 break;
3369                         }
3370                 }
3371
3372                 if(in_interrupt())
3373                         mdelay(delay);
3374                 else
3375                         msleep(delay);
3376
3377                 if (++cnt >= 10)
3378                         delay = 50;
3379         } while (cnt < 20);
3380         return ret;
3381 }
3382 /*
3383  * check_pci_device_id - Checks if the device id is supported
3384  * @id : device id
3385  * Description: Function to check if the pci device id is supported by driver.
3386  * Return value: Actual device id if supported else PCI_ANY_ID
3387  */
3388 static u16 check_pci_device_id(u16 id)
3389 {
3390         switch (id) {
3391         case PCI_DEVICE_ID_HERC_WIN:
3392         case PCI_DEVICE_ID_HERC_UNI:
3393                 return XFRAME_II_DEVICE;
3394         case PCI_DEVICE_ID_S2IO_UNI:
3395         case PCI_DEVICE_ID_S2IO_WIN:
3396                 return XFRAME_I_DEVICE;
3397         default:
3398                 return PCI_ANY_ID;
3399         }
3400 }
3401
3402 /**
3403  *  s2io_reset - Resets the card.
3404  *  @sp : private member of the device structure.
3405  *  Description: Function to Reset the card. This function then also
3406  *  restores the previously saved PCI configuration space registers as
3407  *  the card reset also resets the configuration space.
3408  *  Return value:
3409  *  void.
3410  */
3411
3412 static void s2io_reset(struct s2io_nic * sp)
3413 {
3414         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3415         u64 val64;
3416         u16 subid, pci_cmd;
3417         int i;
3418         u16 val16;
3419         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3420         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3421
3422         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3423                         __FUNCTION__, sp->dev->name);
3424
3425         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3427
3428         if (sp->device_type == XFRAME_II_DEVICE) {
3429                 int ret;
3430                 ret = pci_set_power_state(sp->pdev, 3);
3431                 if (!ret)
3432                         ret = pci_set_power_state(sp->pdev, 0);
3433                 else {
3434                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3435                                         __FUNCTION__);
3436                         goto old_way;
3437                 }
3438                 msleep(20);
3439                 goto new_way;
3440         }
3441 old_way:
3442         val64 = SW_RESET_ALL;
3443         writeq(val64, &bar0->sw_reset);
3444 new_way:
3445         if (strstr(sp->product_name, "CX4")) {
3446                 msleep(750);
3447         }
3448         msleep(250);
3449         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3450
3451                 /* Restore the PCI state saved during initialization. */
3452                 pci_restore_state(sp->pdev);
3453                 pci_read_config_word(sp->pdev, 0x2, &val16);
3454                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3455                         break;
3456                 msleep(200);
3457         }
3458
3459         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3460                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3461         }
3462
3463         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3464
3465         s2io_init_pci(sp);
3466
3467         /* Set swapper to enable I/O register access */
3468         s2io_set_swapper(sp);
3469
3470         /* Restore the MSIX table entries from local variables */
3471         restore_xmsi_data(sp);
3472
3473         /* Clear certain PCI/PCI-X fields after reset */
3474         if (sp->device_type == XFRAME_II_DEVICE) {
3475                 /* Clear "detected parity error" bit */
3476                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3477
3478                 /* Clearing PCIX Ecc status register */
3479                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3480
3481                 /* Clearing PCI_STATUS error reflected here */
3482                 writeq(BIT(62), &bar0->txpic_int_reg);
3483         }
3484
3485         /* Reset device statistics maintained by OS */
3486         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3487         
3488         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3489         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3490         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3491         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3492         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3493         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3494         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3495         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3496         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3497         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3498         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3499         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3500         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3501         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3502         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3503         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3504         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3505         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3506         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3507
3508         /* SXE-002: Configure link and activity LED to turn it off */
3509         subid = sp->pdev->subsystem_device;
3510         if (((subid & 0xFF) >= 0x07) &&
3511             (sp->device_type == XFRAME_I_DEVICE)) {
3512                 val64 = readq(&bar0->gpio_control);
3513                 val64 |= 0x0000800000000000ULL;
3514                 writeq(val64, &bar0->gpio_control);
3515                 val64 = 0x0411040400000000ULL;
3516                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3517         }
3518
3519         /*
3520          * Clear spurious ECC interrupts that would have occured on
3521          * XFRAME II cards after reset.
3522          */
3523         if (sp->device_type == XFRAME_II_DEVICE) {
3524                 val64 = readq(&bar0->pcc_err_reg);
3525                 writeq(val64, &bar0->pcc_err_reg);
3526         }
3527
3528         /* restore the previously assigned mac address */
3529         s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3530
3531         sp->device_enabled_once = FALSE;
3532 }
3533
3534 /**
3535  *  s2io_set_swapper - to set the swapper controle on the card
3536  *  @sp : private member of the device structure,
3537  *  pointer to the s2io_nic structure.
3538  *  Description: Function to set the swapper control on the card
3539  *  correctly depending on the 'endianness' of the system.
3540  *  Return value:
3541  *  SUCCESS on success and FAILURE on failure.
3542  */
3543
3544 static int s2io_set_swapper(struct s2io_nic * sp)
3545 {
3546         struct net_device *dev = sp->dev;
3547         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3548         u64 val64, valt, valr;
3549
3550         /*
3551          * Set proper endian settings and verify the same by reading
3552          * the PIF Feed-back register.
3553          */
3554
3555         val64 = readq(&bar0->pif_rd_swapper_fb);
3556         if (val64 != 0x0123456789ABCDEFULL) {
3557                 int i = 0;
3558                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3559                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3560                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3561                                 0};                     /* FE=0, SE=0 */
3562
3563                 while(i<4) {
3564                         writeq(value[i], &bar0->swapper_ctrl);
3565                         val64 = readq(&bar0->pif_rd_swapper_fb);
3566                         if (val64 == 0x0123456789ABCDEFULL)
3567                                 break;
3568                         i++;
3569                 }
3570                 if (i == 4) {
3571                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3572                                 dev->name);
3573                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3574                                 (unsigned long long) val64);
3575                         return FAILURE;
3576                 }
3577                 valr = value[i];
3578         } else {
3579                 valr = readq(&bar0->swapper_ctrl);
3580         }
3581
3582         valt = 0x0123456789ABCDEFULL;
3583         writeq(valt, &bar0->xmsi_address);
3584         val64 = readq(&bar0->xmsi_address);
3585
3586         if(val64 != valt) {
3587                 int i = 0;
3588                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3589                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3590                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3591                                 0};                     /* FE=0, SE=0 */
3592
3593                 while(i<4) {
3594                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3595                         writeq(valt, &bar0->xmsi_address);
3596                         val64 = readq(&bar0->xmsi_address);
3597                         if(val64 == valt)
3598                                 break;
3599                         i++;
3600                 }
3601                 if(i == 4) {
3602                         unsigned long long x = val64;
3603                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3604                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3605                         return FAILURE;
3606                 }
3607         }
3608         val64 = readq(&bar0->swapper_ctrl);
3609         val64 &= 0xFFFF000000000000ULL;
3610
3611 #ifdef  __BIG_ENDIAN
3612         /*
3613          * The device by default set to a big endian format, so a
3614          * big endian driver need not set anything.
3615          */
3616         val64 |= (SWAPPER_CTRL_TXP_FE |
3617                  SWAPPER_CTRL_TXP_SE |
3618                  SWAPPER_CTRL_TXD_R_FE |
3619                  SWAPPER_CTRL_TXD_W_FE |
3620                  SWAPPER_CTRL_TXF_R_FE |
3621                  SWAPPER_CTRL_RXD_R_FE |
3622                  SWAPPER_CTRL_RXD_W_FE |
3623                  SWAPPER_CTRL_RXF_W_FE |
3624                  SWAPPER_CTRL_XMSI_FE |
3625                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3626         if (sp->intr_type == INTA)
3627                 val64 |= SWAPPER_CTRL_XMSI_SE;
3628         writeq(val64, &bar0->swapper_ctrl);
3629 #else
3630         /*
3631          * Initially we enable all bits to make it accessible by the
3632          * driver, then we selectively enable only those bits that
3633          * we want to set.
3634          */
3635         val64 |= (SWAPPER_CTRL_TXP_FE |
3636                  SWAPPER_CTRL_TXP_SE |
3637                  SWAPPER_CTRL_TXD_R_FE |
3638                  SWAPPER_CTRL_TXD_R_SE |
3639                  SWAPPER_CTRL_TXD_W_FE |
3640                  SWAPPER_CTRL_TXD_W_SE |
3641                  SWAPPER_CTRL_TXF_R_FE |
3642                  SWAPPER_CTRL_RXD_R_FE |
3643                  SWAPPER_CTRL_RXD_R_SE |
3644                  SWAPPER_CTRL_RXD_W_FE |
3645                  SWAPPER_CTRL_RXD_W_SE |
3646                  SWAPPER_CTRL_RXF_W_FE |
3647                  SWAPPER_CTRL_XMSI_FE |
3648                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3649         if (sp->intr_type == INTA)
3650                 val64 |= SWAPPER_CTRL_XMSI_SE;
3651         writeq(val64, &bar0->swapper_ctrl);
3652 #endif
3653         val64 = readq(&bar0->swapper_ctrl);
3654
3655         /*
3656          * Verifying if endian settings are accurate by reading a
3657          * feedback register.
3658          */
3659         val64 = readq(&bar0->pif_rd_swapper_fb);
3660         if (val64 != 0x0123456789ABCDEFULL) {
3661                 /* Endian settings are incorrect, calls for another dekko. */
3662                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3663                           dev->name);
3664                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3665                           (unsigned long long) val64);
3666                 return FAILURE;
3667         }
3668
3669         return SUCCESS;
3670 }
3671
3672 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3673 {
3674         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3675         u64 val64;
3676         int ret = 0, cnt = 0;
3677
3678         do {
3679                 val64 = readq(&bar0->xmsi_access);
3680                 if (!(val64 & BIT(15)))
3681                         break;
3682                 mdelay(1);
3683                 cnt++;
3684         } while(cnt < 5);
3685         if (cnt == 5) {
3686                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3687                 ret = 1;
3688         }
3689
3690         return ret;
3691 }
3692
3693 static void restore_xmsi_data(struct s2io_nic *nic)
3694 {
3695         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3696         u64 val64;
3697         int i;
3698
3699         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3700                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3701                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3702                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3703                 writeq(val64, &bar0->xmsi_access);
3704                 if (wait_for_msix_trans(nic, i)) {
3705                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3706                         continue;
3707                 }
3708         }
3709 }
3710
3711 static void store_xmsi_data(struct s2io_nic *nic)
3712 {
3713         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3714         u64 val64, addr, data;
3715         int i;
3716
3717         /* Store and display */
3718         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3719                 val64 = (BIT(15) | vBIT(i, 26, 6));
3720                 writeq(val64, &bar0->xmsi_access);
3721                 if (wait_for_msix_trans(nic, i)) {
3722                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3723                         continue;
3724                 }
3725                 addr = readq(&bar0->xmsi_address);
3726                 data = readq(&bar0->xmsi_data);
3727                 if (addr && data) {
3728                         nic->msix_info[i].addr = addr;
3729                         nic->msix_info[i].data = data;
3730                 }
3731         }
3732 }
3733
3734 int s2io_enable_msi(struct s2io_nic *nic)
3735 {
3736         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3737         u16 msi_ctrl, msg_val;
3738         struct config_param *config = &nic->config;
3739         struct net_device *dev = nic->dev;
3740         u64 val64, tx_mat, rx_mat;
3741         int i, err;
3742
3743         val64 = readq(&bar0->pic_control);
3744         val64 &= ~BIT(1);
3745         writeq(val64, &bar0->pic_control);
3746
3747         err = pci_enable_msi(nic->pdev);
3748         if (err) {
3749                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3750                           nic->dev->name);
3751                 return err;
3752         }
3753
3754         /*
3755          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3756          * for interrupt handling.
3757          */
3758         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3759         msg_val ^= 0x1;
3760         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3761         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3762
3763         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3764         msi_ctrl |= 0x10;
3765         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3766
3767         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3768         tx_mat = readq(&bar0->tx_mat0_n[0]);
3769         for (i=0; i<config->tx_fifo_num; i++) {
3770                 tx_mat |= TX_MAT_SET(i, 1);
3771         }
3772         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3773
3774         rx_mat = readq(&bar0->rx_mat);
3775         for (i=0; i<config->rx_ring_num; i++) {
3776                 rx_mat |= RX_MAT_SET(i, 1);
3777         }
3778         writeq(rx_mat, &bar0->rx_mat);
3779
3780         dev->irq = nic->pdev->irq;
3781         return 0;
3782 }
3783
3784 static int s2io_enable_msi_x(struct s2io_nic *nic)
3785 {
3786         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3787         u64 tx_mat, rx_mat;
3788         u16 msi_control; /* Temp variable */
3789         int ret, i, j, msix_indx = 1;
3790
3791         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3792                                GFP_KERNEL);
3793         if (nic->entries == NULL) {
3794                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3795                         __FUNCTION__);
3796                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3797                 return -ENOMEM;
3798         }
3799         nic->mac_control.stats_info->sw_stat.mem_allocated 
3800                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3801         memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3802
3803         nic->s2io_entries =
3804                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3805                                    GFP_KERNEL);
3806         if (nic->s2io_entries == NULL) {
3807                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 
3808                         __FUNCTION__);
3809                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3810                 kfree(nic->entries);
3811                 nic->mac_control.stats_info->sw_stat.mem_freed 
3812                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3813                 return -ENOMEM;
3814         }
3815          nic->mac_control.stats_info->sw_stat.mem_allocated 
3816                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3817         memset(nic->s2io_entries, 0,
3818                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3819
3820         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3821                 nic->entries[i].entry = i;
3822                 nic->s2io_entries[i].entry = i;
3823                 nic->s2io_entries[i].arg = NULL;
3824                 nic->s2io_entries[i].in_use = 0;
3825         }
3826
3827         tx_mat = readq(&bar0->tx_mat0_n[0]);
3828         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3829                 tx_mat |= TX_MAT_SET(i, msix_indx);
3830                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3831                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3832                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3833         }
3834         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3835
3836         if (!nic->config.bimodal) {
3837                 rx_mat = readq(&bar0->rx_mat);
3838                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3839                         rx_mat |= RX_MAT_SET(j, msix_indx);
3840                         nic->s2io_entries[msix_indx].arg 
3841                                 = &nic->mac_control.rings[j];
3842                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3843                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3844                 }
3845                 writeq(rx_mat, &bar0->rx_mat);
3846         } else {
3847                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3848                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3849                         tx_mat |= TX_MAT_SET(i, msix_indx);
3850                         nic->s2io_entries[msix_indx].arg 
3851                                 = &nic->mac_control.rings[j];
3852                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3853                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3854                 }
3855                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3856         }
3857
3858         nic->avail_msix_vectors = 0;
3859         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3860         /* We fail init if error or we get less vectors than min required */
3861         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3862                 nic->avail_msix_vectors = ret;
3863                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3864         }
3865         if (ret) {
3866                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3867                 kfree(nic->entries);
3868                 nic->mac_control.stats_info->sw_stat.mem_freed 
3869                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3870                 kfree(nic->s2io_entries);
3871                 nic->mac_control.stats_info->sw_stat.mem_freed 
3872                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3873                 nic->entries = NULL;
3874                 nic->s2io_entries = NULL;
3875                 nic->avail_msix_vectors = 0;
3876                 return -ENOMEM;
3877         }
3878         if (!nic->avail_msix_vectors)
3879                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3880
3881         /*
3882          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3883          * in the herc NIC. (Temp change, needs to be removed later)
3884          */
3885         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3886         msi_control |= 0x1; /* Enable MSI */
3887         pci_write_config_word(nic->pdev, 0x42, msi_control);
3888
3889         return 0;
3890 }
3891
3892 /* ********************************************************* *
3893  * Functions defined below concern the OS part of the driver *
3894  * ********************************************************* */
3895
3896 /**
3897  *  s2io_open - open entry point of the driver
3898  *  @dev : pointer to the device structure.
3899  *  Description:
3900  *  This function is the open entry point of the driver. It mainly calls a
3901  *  function to allocate Rx buffers and inserts them into the buffer
3902  *  descriptors and then enables the Rx part of the NIC.
3903  *  Return value:
3904  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3905  *   file on failure.
3906  */
3907
3908 static int s2io_open(struct net_device *dev)
3909 {
3910         struct s2io_nic *sp = dev->priv;
3911         int err = 0;
3912
3913         /*
3914          * Make sure you have link off by default every time
3915          * Nic is initialized
3916          */
3917         netif_carrier_off(dev);
3918         sp->last_link_state = 0;
3919
3920         /* Initialize H/W and enable interrupts */
3921         err = s2io_card_up(sp);
3922         if (err) {
3923                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3924                           dev->name);
3925                 goto hw_init_failed;
3926         }
3927
3928         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3929                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3930                 s2io_card_down(sp);
3931                 err = -ENODEV;
3932                 goto hw_init_failed;
3933         }
3934
3935         netif_start_queue(dev);
3936         return 0;
3937
3938 hw_init_failed:
3939         if (sp->intr_type == MSI_X) {
3940                 if (sp->entries) {
3941                         kfree(sp->entries);
3942                         sp->mac_control.stats_info->sw_stat.mem_freed 
3943                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3944                 }
3945                 if (sp->s2io_entries) {
3946                         kfree(sp->s2io_entries);
3947                         sp->mac_control.stats_info->sw_stat.mem_freed 
3948                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3949                 }
3950         }
3951         return err;
3952 }
3953
3954 /**
3955  *  s2io_close -close entry point of the driver
3956  *  @dev : device pointer.
3957  *  Description:
3958  *  This is the stop entry point of the driver. It needs to undo exactly
3959  *  whatever was done by the open entry point,thus it's usually referred to
3960  *  as the close function.Among other things this function mainly stops the
3961  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3962  *  Return value:
3963  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3964  *  file on failure.
3965  */
3966
3967 static int s2io_close(struct net_device *dev)
3968 {
3969         struct s2io_nic *sp = dev->priv;
3970
3971         netif_stop_queue(dev);
3972         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3973         s2io_card_down(sp);
3974
3975         return 0;
3976 }
3977
3978 /**
3979  *  s2io_xmit - Tx entry point of te driver
3980  *  @skb : the socket buffer containing the Tx data.
3981  *  @dev : device pointer.
3982  *  Description :
3983  *  This function is the Tx entry point of the driver. S2IO NIC supports
3984  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3985  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3986  *  not be upadted.
3987  *  Return value:
3988  *  0 on success & 1 on failure.
3989  */
3990
3991 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3992 {
3993         struct s2io_nic *sp = dev->priv;
3994         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3995         register u64 val64;
3996         struct TxD *txdp;
3997         struct TxFIFO_element __iomem *tx_fifo;
3998         unsigned long flags;
3999         u16 vlan_tag = 0;
4000         int vlan_priority = 0;
4001         struct mac_info *mac_control;
4002         struct config_param *config;
4003         int offload_type;
4004
4005         mac_control = &sp->mac_control;
4006         config = &sp->config;
4007
4008         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4009
4010         if (unlikely(skb->len <= 0)) {
4011                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4012                 dev_kfree_skb_any(skb);
4013                 return 0;
4014 }
4015
4016         spin_lock_irqsave(&sp->tx_lock, flags);
4017         if (atomic_read(&sp->card_state) == CARD_DOWN) {
4018                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4019                           dev->name);
4020                 spin_unlock_irqrestore(&sp->tx_lock, flags);
4021                 dev_kfree_skb(skb);
4022                 return 0;
4023         }
4024
4025         queue = 0;
4026         /* Get Fifo number to Transmit based on vlan priority */
4027         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4028                 vlan_tag = vlan_tx_tag_get(skb);
4029                 vlan_priority = vlan_tag >> 13;
4030                 queue = config->fifo_mapping[vlan_priority];
4031         }
4032
4033         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4034         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4035         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4036                 list_virt_addr;
4037
4038         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4039         /* Avoid "put" pointer going beyond "get" pointer */
4040         if (txdp->Host_Control ||
4041                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4042                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4043                 netif_stop_queue(dev);
4044                 dev_kfree_skb(skb);
4045                 spin_unlock_irqrestore(&sp->tx_lock, flags);
4046                 return 0;
4047         }
4048
4049         offload_type = s2io_offload_type(skb);
4050         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4051                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4052                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4053         }
4054         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4055                 txdp->Control_2 |=
4056                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4057                      TXD_TX_CKO_UDP_EN);
4058         }
4059         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4060         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4061         txdp->Control_2 |= config->tx_intr_type;
4062
4063         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4064                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4065                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4066         }
4067
4068         frg_len = skb->len - skb->data_len;
4069         if (offload_type == SKB_GSO_UDP) {
4070                 int ufo_size;
4071
4072                 ufo_size = s2io_udp_mss(skb);
4073                 ufo_size &= ~7;
4074                 txdp->Control_1 |= TXD_UFO_EN;
4075                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4076                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4077 #ifdef __BIG_ENDIAN
4078                 sp->ufo_in_band_v[put_off] =
4079                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4080 #else
4081                 sp->ufo_in_band_v[put_off] =
4082                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4083 #endif
4084                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4085                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4086                                         sp->ufo_in_band_v,
4087                                         sizeof(u64), PCI_DMA_TODEVICE);
4088                 txdp++;
4089         }
4090
4091         txdp->Buffer_Pointer = pci_map_single
4092             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4093         txdp->Host_Control = (unsigned long) skb;
4094         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4095         if (offload_type == SKB_GSO_UDP)
4096                 txdp->Control_1 |= TXD_UFO_EN;
4097
4098         frg_cnt = skb_shinfo(skb)->nr_frags;
4099         /* For fragmented SKB. */
4100         for (i = 0; i < frg_cnt; i++) {
4101                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4102                 /* A '0' length fragment will be ignored */
4103                 if (!frag->size)
4104                         continue;
4105                 txdp++;
4106                 txdp->Buffer_Pointer = (u64) pci_map_page
4107                     (sp->pdev, frag->page, frag->page_offset,
4108                      frag->size, PCI_DMA_TODEVICE);
4109                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4110                 if (offload_type == SKB_GSO_UDP)
4111                         txdp->Control_1 |= TXD_UFO_EN;
4112         }
4113         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4114
4115         if (offload_type == SKB_GSO_UDP)
4116                 frg_cnt++; /* as Txd0 was used for inband header */
4117
4118         tx_fifo = mac_control->tx_FIFO_start[queue];
4119         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4120         writeq(val64, &tx_fifo->TxDL_Pointer);
4121
4122         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4123                  TX_FIFO_LAST_LIST);
4124         if (offload_type)
4125                 val64 |= TX_FIFO_SPECIAL_FUNC;
4126
4127         writeq(val64, &tx_fifo->List_Control);
4128
4129         mmiowb();
4130
4131         put_off++;
4132         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4133                 put_off = 0;
4134         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4135
4136         /* Avoid "put" pointer going beyond "get" pointer */
4137         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4138                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4139                 DBG_PRINT(TX_DBG,
4140                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4141                           put_off, get_off);
4142                 netif_stop_queue(dev);
4143         }
4144         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4145         dev->trans_start = jiffies;
4146         spin_unlock_irqrestore(&sp->tx_lock, flags);
4147
4148         return 0;
4149 }
4150
4151 static void
4152 s2io_alarm_handle(unsigned long data)
4153 {
4154         struct s2io_nic *sp = (struct s2io_nic *)data;
4155
4156         alarm_intr_handler(sp);
4157         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4158 }
4159
4160 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4161 {
4162         int rxb_size, level;
4163
4164         if (!sp->lro) {
4165                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4166                 level = rx_buffer_level(sp, rxb_size, rng_n);
4167
4168                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4169                         int ret;
4170                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4171                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4172                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4173                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4174                                           __FUNCTION__);
4175                                 clear_bit(0, (&sp->tasklet_status));
4176                                 return -1;
4177                         }
4178                         clear_bit(0, (&sp->tasklet_status));
4179                 } else if (level == LOW)
4180                         tasklet_schedule(&sp->task);
4181
4182         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4183                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4184                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4185         }
4186         return 0;
4187 }
4188
4189 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4190 {
4191         struct net_device *dev = (struct net_device *) dev_id;
4192         struct s2io_nic *sp = dev->priv;
4193         int i;
4194         struct mac_info *mac_control;
4195         struct config_param *config;
4196
4197         atomic_inc(&sp->isr_cnt);
4198         mac_control = &sp->mac_control;
4199         config = &sp->config;
4200         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4201
4202         /* If Intr is because of Rx Traffic */
4203         for (i = 0; i < config->rx_ring_num; i++)
4204                 rx_intr_handler(&mac_control->rings[i]);
4205
4206         /* If Intr is because of Tx Traffic */
4207         for (i = 0; i < config->tx_fifo_num; i++)
4208                 tx_intr_handler(&mac_control->fifos[i]);
4209
4210         /*
4211          * If the Rx buffer count is below the panic threshold then
4212          * reallocate the buffers from the interrupt handler itself,
4213          * else schedule a tasklet to reallocate the buffers.
4214          */
4215         for (i = 0; i < config->rx_ring_num; i++)
4216                 s2io_chk_rx_buffers(sp, i);
4217
4218         atomic_dec(&sp->isr_cnt);
4219         return IRQ_HANDLED;
4220 }
4221
4222 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4223 {
4224         struct ring_info *ring = (struct ring_info *)dev_id;
4225         struct s2io_nic *sp = ring->nic;
4226
4227         atomic_inc(&sp->isr_cnt);
4228
4229         rx_intr_handler(ring);
4230         s2io_chk_rx_buffers(sp, ring->ring_no);
4231
4232         atomic_dec(&sp->isr_cnt);
4233         return IRQ_HANDLED;
4234 }
4235
4236 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4237 {
4238         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4239         struct s2io_nic *sp = fifo->nic;
4240
4241         atomic_inc(&sp->isr_cnt);
4242         tx_intr_handler(fifo);
4243         atomic_dec(&sp->isr_cnt);
4244         return IRQ_HANDLED;
4245 }
4246 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4247 {
4248         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4249         u64 val64;
4250
4251         val64 = readq(&bar0->pic_int_status);
4252         if (val64 & PIC_INT_GPIO) {
4253                 val64 = readq(&bar0->gpio_int_reg);
4254                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4255                     (val64 & GPIO_INT_REG_LINK_UP)) {
4256                         /*
4257                          * This is unstable state so clear both up/down
4258                          * interrupt and adapter to re-evaluate the link state.
4259                          */
4260                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4261                         val64 |= GPIO_INT_REG_LINK_UP;
4262                         writeq(val64, &bar0->gpio_int_reg);
4263                         val64 = readq(&bar0->gpio_int_mask);
4264                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4265                                    GPIO_INT_MASK_LINK_DOWN);
4266                         writeq(val64, &bar0->gpio_int_mask);
4267                 }
4268                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4269                         val64 = readq(&bar0->adapter_status);
4270                                 /* Enable Adapter */
4271                         val64 = readq(&bar0->adapter_control);
4272                         val64 |= ADAPTER_CNTL_EN;
4273                         writeq(val64, &bar0->adapter_control);
4274                         val64 |= ADAPTER_LED_ON;
4275                         writeq(val64, &bar0->adapter_control);
4276                         if (!sp->device_enabled_once)
4277                                 sp->device_enabled_once = 1;
4278
4279                         s2io_link(sp, LINK_UP);
4280                         /*
4281                          * unmask link down interrupt and mask link-up
4282                          * intr
4283                          */
4284                         val64 = readq(&bar0->gpio_int_mask);
4285                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4286                         val64 |= GPIO_INT_MASK_LINK_UP;
4287                         writeq(val64, &bar0->gpio_int_mask);
4288
4289                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4290                         val64 = readq(&bar0->adapter_status);
4291                         s2io_link(sp, LINK_DOWN);
4292                         /* Link is down so unmaks link up interrupt */
4293                         val64 = readq(&bar0->gpio_int_mask);
4294                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4295                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4296                         writeq(val64, &bar0->gpio_int_mask);
4297
4298                         /* turn off LED */
4299                         val64 = readq(&bar0->adapter_control);
4300                         val64 = val64 &(~ADAPTER_LED_ON);
4301                         writeq(val64, &bar0->adapter_control);
4302                 }
4303         }
4304         val64 = readq(&bar0->gpio_int_mask);
4305 }
4306
4307 /**
4308  *  s2io_isr - ISR handler of the device .
4309  *  @irq: the irq of the device.
4310  *  @dev_id: a void pointer to the dev structure of the NIC.
4311  *  Description:  This function is the ISR handler of the device. It
4312  *  identifies the reason for the interrupt and calls the relevant
4313  *  service routines. As a contongency measure, this ISR allocates the
4314  *  recv buffers, if their numbers are below the panic value which is
4315  *  presently set to 25% of the original number of rcv buffers allocated.
4316  *  Return value:
4317  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4318  *   IRQ_NONE: will be returned if interrupt is not from our device
4319  */
4320 static irqreturn_t s2io_isr(int irq, void *dev_id)
4321 {
4322         struct net_device *dev = (struct net_device *) dev_id;
4323         struct s2io_nic *sp = dev->priv;
4324         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4325         int i;
4326         u64 reason = 0;
4327         struct mac_info *mac_control;
4328         struct config_param *config;
4329
4330         /* Pretend we handled any irq's from a disconnected card */
4331         if (pci_channel_offline(sp->pdev))
4332                 return IRQ_NONE;
4333
4334         atomic_inc(&sp->isr_cnt);
4335         mac_control = &sp->mac_control;
4336         config = &sp->config;
4337
4338         /*
4339          * Identify the cause for interrupt and call the appropriate
4340          * interrupt handler. Causes for the interrupt could be;
4341          * 1. Rx of packet.
4342          * 2. Tx complete.
4343          * 3. Link down.
4344          * 4. Error in any functional blocks of the NIC.
4345          */
4346         reason = readq(&bar0->general_int_status);
4347
4348         if (!reason) {
4349                 /* The interrupt was not raised by us. */
4350                 atomic_dec(&sp->isr_cnt);
4351                 return IRQ_NONE;
4352         }
4353         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4354                 /* Disable device and get out */
4355                 atomic_dec(&sp->isr_cnt);
4356                 return IRQ_NONE;
4357         }
4358
4359         if (napi) {
4360                 if (reason & GEN_INTR_RXTRAFFIC) {
4361                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4362                                 __netif_rx_schedule(dev);
4363                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4364                         }
4365                         else
4366                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4367                 }
4368         } else {
4369                 /*
4370                  * Rx handler is called by default, without checking for the
4371                  * cause of interrupt.
4372                  * rx_traffic_int reg is an R1 register, writing all 1's
4373                  * will ensure that the actual interrupt causing bit get's
4374                  * cleared and hence a read can be avoided.
4375                  */
4376                 if (reason & GEN_INTR_RXTRAFFIC)
4377                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4378
4379                 for (i = 0; i < config->rx_ring_num; i++) {
4380                         rx_intr_handler(&mac_control->rings[i]);
4381                 }
4382         }
4383
4384         /*
4385          * tx_traffic_int reg is an R1 register, writing all 1's
4386          * will ensure that the actual interrupt causing bit get's
4387          * cleared and hence a read can be avoided.
4388          */
4389         if (reason & GEN_INTR_TXTRAFFIC)
4390                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4391
4392         for (i = 0; i < config->tx_fifo_num; i++)
4393                 tx_intr_handler(&mac_control->fifos[i]);
4394
4395         if (reason & GEN_INTR_TXPIC)
4396                 s2io_txpic_intr_handle(sp);
4397         /*
4398          * If the Rx buffer count is below the panic threshold then
4399          * reallocate the buffers from the interrupt handler itself,
4400          * else schedule a tasklet to reallocate the buffers.
4401          */
4402         if (!napi) {
4403                 for (i = 0; i < config->rx_ring_num; i++)
4404                         s2io_chk_rx_buffers(sp, i);
4405         }
4406
4407         writeq(0, &bar0->general_int_mask);
4408         readl(&bar0->general_int_status);
4409
4410         atomic_dec(&sp->isr_cnt);
4411         return IRQ_HANDLED;
4412 }
4413
4414 /**
4415  * s2io_updt_stats -
4416  */
4417 static void s2io_updt_stats(struct s2io_nic *sp)
4418 {
4419         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4420         u64 val64;
4421         int cnt = 0;
4422
4423         if (atomic_read(&sp->card_state) == CARD_UP) {
4424                 /* Apprx 30us on a 133 MHz bus */
4425                 val64 = SET_UPDT_CLICKS(10) |
4426                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4427                 writeq(val64, &bar0->stat_cfg);
4428                 do {
4429                         udelay(100);
4430                         val64 = readq(&bar0->stat_cfg);
4431                         if (!(val64 & BIT(0)))
4432                                 break;
4433                         cnt++;
4434                         if (cnt == 5)
4435                                 break; /* Updt failed */
4436                 } while(1);
4437         } 
4438 }
4439
4440 /**
4441  *  s2io_get_stats - Updates the device statistics structure.
4442  *  @dev : pointer to the device structure.
4443  *  Description:
4444  *  This function updates the device statistics structure in the s2io_nic
4445  *  structure and returns a pointer to the same.
4446  *  Return value:
4447  *  pointer to the updated net_device_stats structure.
4448  */
4449
4450 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4451 {
4452         struct s2io_nic *sp = dev->priv;
4453         struct mac_info *mac_control;
4454         struct config_param *config;
4455
4456
4457         mac_control = &sp->mac_control;
4458         config = &sp->config;
4459
4460         /* Configure Stats for immediate updt */
4461         s2io_updt_stats(sp);
4462
4463         sp->stats.tx_packets =
4464                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4465         sp->stats.tx_errors =
4466                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4467         sp->stats.rx_errors =
4468                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4469         sp->stats.multicast =
4470                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4471         sp->stats.rx_length_errors =
4472                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4473
4474         return (&sp->stats);
4475 }
4476
4477 /**
4478  *  s2io_set_multicast - entry point for multicast address enable/disable.
4479  *  @dev : pointer to the device structure
4480  *  Description:
4481  *  This function is a driver entry point which gets called by the kernel
4482  *  whenever multicast addresses must be enabled/disabled. This also gets
4483  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4484  *  determine, if multicast address must be enabled or if promiscuous mode
4485  *  is to be disabled etc.
4486  *  Return value:
4487  *  void.
4488  */
4489
4490 static void s2io_set_multicast(struct net_device *dev)
4491 {
4492         int i, j, prev_cnt;
4493         struct dev_mc_list *mclist;
4494         struct s2io_nic *sp = dev->priv;
4495         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4496         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4497             0xfeffffffffffULL;
4498         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4499         void __iomem *add;
4500
4501         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4502                 /*  Enable all Multicast addresses */
4503                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4504                        &bar0->rmac_addr_data0_mem);
4505                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4506                        &bar0->rmac_addr_data1_mem);
4507                 val64 = RMAC_ADDR_CMD_MEM_WE |
4508                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4509                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4510                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4511                 /* Wait till command completes */
4512                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4513                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4514                                         S2IO_BIT_RESET);
4515
4516                 sp->m_cast_flg = 1;
4517                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4518         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4519                 /*  Disable all Multicast addresses */
4520                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4521                        &bar0->rmac_addr_data0_mem);
4522                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4523                        &bar0->rmac_addr_data1_mem);
4524                 val64 = RMAC_ADDR_CMD_MEM_WE |
4525                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4526                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4527                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4528                 /* Wait till command completes */
4529                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4530                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4531                                         S2IO_BIT_RESET);
4532
4533                 sp->m_cast_flg = 0;
4534                 sp->all_multi_pos = 0;
4535         }
4536
4537         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4538                 /*  Put the NIC into promiscuous mode */
4539                 add = &bar0->mac_cfg;
4540                 val64 = readq(&bar0->mac_cfg);
4541                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4542
4543                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4544                 writel((u32) val64, add);
4545                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4546                 writel((u32) (val64 >> 32), (add + 4));
4547
4548                 if (vlan_tag_strip != 1) {
4549                         val64 = readq(&bar0->rx_pa_cfg);
4550                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4551                         writeq(val64, &bar0->rx_pa_cfg);
4552                         vlan_strip_flag = 0;
4553                 }
4554
4555                 val64 = readq(&bar0->mac_cfg);
4556                 sp->promisc_flg = 1;
4557                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4558                           dev->name);
4559         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4560                 /*  Remove the NIC from promiscuous mode */
4561                 add = &bar0->mac_cfg;
4562                 val64 = readq(&bar0->mac_cfg);
4563                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4564
4565                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4566                 writel((u32) val64, add);
4567                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4568                 writel((u32) (val64 >> 32), (add + 4));
4569
4570                 if (vlan_tag_strip != 0) {
4571                         val64 = readq(&bar0->rx_pa_cfg);
4572                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4573                         writeq(val64, &bar0->rx_pa_cfg);
4574                         vlan_strip_flag = 1;
4575                 }
4576
4577                 val64 = readq(&bar0->mac_cfg);
4578                 sp->promisc_flg = 0;
4579                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4580                           dev->name);
4581         }
4582
4583         /*  Update individual M_CAST address list */
4584         if ((!sp->m_cast_flg) && dev->mc_count) {
4585                 if (dev->mc_count >
4586                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4587                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4588                                   dev->name);
4589                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4590                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4591                         return;
4592                 }
4593
4594                 prev_cnt = sp->mc_addr_count;
4595                 sp->mc_addr_count = dev->mc_count;
4596
4597                 /* Clear out the previous list of Mc in the H/W. */
4598                 for (i = 0; i < prev_cnt; i++) {
4599                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4600                                &bar0->rmac_addr_data0_mem);
4601                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4602                                 &bar0->rmac_addr_data1_mem);
4603                         val64 = RMAC_ADDR_CMD_MEM_WE |
4604                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4605                             RMAC_ADDR_CMD_MEM_OFFSET
4606                             (MAC_MC_ADDR_START_OFFSET + i);
4607                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4608
4609                         /* Wait for command completes */
4610                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4611                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4612                                         S2IO_BIT_RESET)) {
4613                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4614                                           dev->name);
4615                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4616                                 return;
4617                         }
4618                 }
4619
4620                 /* Create the new Rx filter list and update the same in H/W. */
4621                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4622                      i++, mclist = mclist->next) {
4623                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4624                                ETH_ALEN);
4625                         mac_addr = 0;
4626                         for (j = 0; j < ETH_ALEN; j++) {
4627                                 mac_addr |= mclist->dmi_addr[j];
4628                                 mac_addr <<= 8;
4629                         }
4630                         mac_addr >>= 8;
4631                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4632                                &bar0->rmac_addr_data0_mem);
4633                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4634                                 &bar0->rmac_addr_data1_mem);
4635                         val64 = RMAC_ADDR_CMD_MEM_WE |
4636                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4637                             RMAC_ADDR_CMD_MEM_OFFSET
4638                             (i + MAC_MC_ADDR_START_OFFSET);
4639                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4640
4641                         /* Wait for command completes */
4642                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4643                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4644                                         S2IO_BIT_RESET)) {
4645                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4646                                           dev->name);
4647                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4648                                 return;
4649                         }
4650                 }
4651         }
4652 }
4653
4654 /**
4655  *  s2io_set_mac_addr - Programs the Xframe mac address
4656  *  @dev : pointer to the device structure.
4657  *  @addr: a uchar pointer to the new mac address which is to be set.
4658  *  Description : This procedure will program the Xframe to receive
4659  *  frames with new Mac Address
4660  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4661  *  as defined in errno.h file on failure.
4662  */
4663
4664 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4665 {
4666         struct s2io_nic *sp = dev->priv;
4667         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4668         register u64 val64, mac_addr = 0;
4669         int i;
4670         u64 old_mac_addr = 0;
4671
4672         /*
4673          * Set the new MAC address as the new unicast filter and reflect this
4674          * change on the device address registered with the OS. It will be
4675          * at offset 0.
4676          */
4677         for (i = 0; i < ETH_ALEN; i++) {
4678                 mac_addr <<= 8;
4679                 mac_addr |= addr[i];
4680                 old_mac_addr <<= 8;
4681                 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4682         }
4683
4684         if(0 == mac_addr)
4685                 return SUCCESS;
4686
4687         /* Update the internal structure with this new mac address */
4688         if(mac_addr != old_mac_addr) {
4689                 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4690                 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4691                 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4692                 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4693                 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4694                 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4695                 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4696         }
4697
4698         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4699                &bar0->rmac_addr_data0_mem);
4700
4701         val64 =
4702             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4703             RMAC_ADDR_CMD_MEM_OFFSET(0);
4704         writeq(val64, &bar0->rmac_addr_cmd_mem);
4705         /* Wait till command completes */
4706         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4707                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4708                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4709                 return FAILURE;
4710         }
4711
4712         return SUCCESS;
4713 }
4714
4715 /**
4716  * s2io_ethtool_sset - Sets different link parameters.
4717  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4718  * @info: pointer to the structure with parameters given by ethtool to set
4719  * link information.
4720  * Description:
4721  * The function sets different link parameters provided by the user onto
4722  * the NIC.
4723  * Return value:
4724  * 0 on success.
4725 */
4726
4727 static int s2io_ethtool_sset(struct net_device *dev,
4728                              struct ethtool_cmd *info)
4729 {
4730         struct s2io_nic *sp = dev->priv;
4731         if ((info->autoneg == AUTONEG_ENABLE) ||
4732             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4733                 return -EINVAL;
4734         else {
4735                 s2io_close(sp->dev);
4736                 s2io_open(sp->dev);
4737         }
4738
4739         return 0;
4740 }
4741
4742 /**
4743  * s2io_ethtol_gset - Return link specific information.
4744  * @sp : private member of the device structure, pointer to the
4745  *      s2io_nic structure.
4746  * @info : pointer to the structure with parameters given by ethtool
4747  * to return link information.
4748  * Description:
4749  * Returns link specific information like speed, duplex etc.. to ethtool.
4750  * Return value :
4751  * return 0 on success.
4752  */
4753
4754 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4755 {
4756         struct s2io_nic *sp = dev->priv;
4757         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4758         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4759         info->port = PORT_FIBRE;
4760         /* info->transceiver?? TODO */
4761
4762         if (netif_carrier_ok(sp->dev)) {
4763                 info->speed = 10000;
4764                 info->duplex = DUPLEX_FULL;
4765         } else {
4766                 info->speed = -1;
4767                 info->duplex = -1;
4768         }
4769
4770         info->autoneg = AUTONEG_DISABLE;
4771         return 0;
4772 }
4773
4774 /**
4775  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4776  * @sp : private member of the device structure, which is a pointer to the
4777  * s2io_nic structure.
4778  * @info : pointer to the structure with parameters given by ethtool to
4779  * return driver information.
4780  * Description:
4781  * Returns driver specefic information like name, version etc.. to ethtool.
4782  * Return value:
4783  *  void
4784  */
4785
4786 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4787                                   struct ethtool_drvinfo *info)
4788 {
4789         struct s2io_nic *sp = dev->priv;
4790
4791         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4792         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4793         strncpy(info->fw_version, "", sizeof(info->fw_version));
4794         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4795         info->regdump_len = XENA_REG_SPACE;
4796         info->eedump_len = XENA_EEPROM_SPACE;
4797         info->testinfo_len = S2IO_TEST_LEN;
4798
4799         if (sp->device_type == XFRAME_I_DEVICE)
4800                 info->n_stats = XFRAME_I_STAT_LEN;
4801         else
4802                 info->n_stats = XFRAME_II_STAT_LEN;
4803 }
4804
4805 /**
4806  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4807  *  @sp: private member of the device structure, which is a pointer to the
4808  *  s2io_nic structure.
4809  *  @regs : pointer to the structure with parameters given by ethtool for
4810  *  dumping the registers.
4811  *  @reg_space: The input argumnet into which all the registers are dumped.
4812  *  Description:
4813  *  Dumps the entire register space of xFrame NIC into the user given
4814  *  buffer area.
4815  * Return value :
4816  * void .
4817 */
4818
4819 static void s2io_ethtool_gregs(struct net_device *dev,
4820                                struct ethtool_regs *regs, void *space)
4821 {
4822         int i;
4823         u64 reg;
4824         u8 *reg_space = (u8 *) space;
4825         struct s2io_nic *sp = dev->priv;
4826
4827         regs->len = XENA_REG_SPACE;
4828         regs->version = sp->pdev->subsystem_device;
4829
4830         for (i = 0; i < regs->len; i += 8) {
4831                 reg = readq(sp->bar0 + i);
4832                 memcpy((reg_space + i), &reg, 8);
4833         }
4834 }
4835
4836 /**
4837  *  s2io_phy_id  - timer function that alternates adapter LED.
4838  *  @data : address of the private member of the device structure, which
4839  *  is a pointer to the s2io_nic structure, provided as an u32.
4840  * Description: This is actually the timer function that alternates the
4841  * adapter LED bit of the adapter control bit to set/reset every time on
4842  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4843  *  once every second.
4844 */
4845 static void s2io_phy_id(unsigned long data)
4846 {
4847         struct s2io_nic *sp = (struct s2io_nic *) data;
4848         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4849         u64 val64 = 0;
4850         u16 subid;
4851
4852         subid = sp->pdev->subsystem_device;
4853         if ((sp->device_type == XFRAME_II_DEVICE) ||
4854                    ((subid & 0xFF) >= 0x07)) {
4855                 val64 = readq(&bar0->gpio_control);
4856                 val64 ^= GPIO_CTRL_GPIO_0;
4857                 writeq(val64, &bar0->gpio_control);
4858         } else {
4859                 val64 = readq(&bar0->adapter_control);
4860                 val64 ^= ADAPTER_LED_ON;
4861                 writeq(val64, &bar0->adapter_control);
4862         }
4863
4864         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4865 }
4866
4867 /**
4868  * s2io_ethtool_idnic - To physically identify the nic on the system.
4869  * @sp : private member of the device structure, which is a pointer to the
4870  * s2io_nic structure.
4871  * @id : pointer to the structure with identification parameters given by
4872  * ethtool.
4873  * Description: Used to physically identify the NIC on the system.
4874  * The Link LED will blink for a time specified by the user for
4875  * identification.
4876  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4877  * identification is possible only if it's link is up.
4878  * Return value:
4879  * int , returns 0 on success
4880  */
4881
4882 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4883 {
4884         u64 val64 = 0, last_gpio_ctrl_val;
4885         struct s2io_nic *sp = dev->priv;
4886         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4887         u16 subid;
4888
4889         subid = sp->pdev->subsystem_device;
4890         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4891         if ((sp->device_type == XFRAME_I_DEVICE) &&
4892                 ((subid & 0xFF) < 0x07)) {
4893                 val64 = readq(&bar0->adapter_control);
4894                 if (!(val64 & ADAPTER_CNTL_EN)) {
4895                         printk(KERN_ERR
4896                                "Adapter Link down, cannot blink LED\n");
4897                         return -EFAULT;
4898                 }
4899         }
4900         if (sp->id_timer.function == NULL) {
4901                 init_timer(&sp->id_timer);
4902                 sp->id_timer.function = s2io_phy_id;
4903                 sp->id_timer.data = (unsigned long) sp;
4904         }
4905         mod_timer(&sp->id_timer, jiffies);
4906         if (data)
4907                 msleep_interruptible(data * HZ);
4908         else
4909                 msleep_interruptible(MAX_FLICKER_TIME);
4910         del_timer_sync(&sp->id_timer);
4911
4912         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4913                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4914                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4915         }
4916
4917         return 0;
4918 }
4919
4920 static void s2io_ethtool_gringparam(struct net_device *dev,
4921                                     struct ethtool_ringparam *ering)
4922 {
4923         struct s2io_nic *sp = dev->priv;
4924         int i,tx_desc_count=0,rx_desc_count=0;
4925
4926         if (sp->rxd_mode == RXD_MODE_1)
4927                 ering->rx_max_pending = MAX_RX_DESC_1;
4928         else if (sp->rxd_mode == RXD_MODE_3B)
4929                 ering->rx_max_pending = MAX_RX_DESC_2;
4930         else if (sp->rxd_mode == RXD_MODE_3A)
4931                 ering->rx_max_pending = MAX_RX_DESC_3;
4932
4933         ering->tx_max_pending = MAX_TX_DESC;
4934         for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4935                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4936         }
4937         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4938         ering->tx_pending = tx_desc_count;
4939         rx_desc_count = 0;
4940         for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4941                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4942         }
4943         ering->rx_pending = rx_desc_count;
4944
4945         ering->rx_mini_max_pending = 0;
4946         ering->rx_mini_pending = 0;
4947         if(sp->rxd_mode == RXD_MODE_1)
4948                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4949         else if (sp->rxd_mode == RXD_MODE_3B)
4950                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4951         ering->rx_jumbo_pending = rx_desc_count;
4952 }
4953
4954 /**
4955  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4956  * @sp : private member of the device structure, which is a pointer to the
4957  *      s2io_nic structure.
4958  * @ep : pointer to the structure with pause parameters given by ethtool.
4959  * Description:
4960  * Returns the Pause frame generation and reception capability of the NIC.
4961  * Return value:
4962  *  void
4963  */
4964 static void s2io_ethtool_getpause_data(struct net_device *dev,
4965                                        struct ethtool_pauseparam *ep)
4966 {
4967         u64 val64;
4968         struct s2io_nic *sp = dev->priv;
4969         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4970
4971         val64 = readq(&bar0->rmac_pause_cfg);
4972         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4973                 ep->tx_pause = TRUE;
4974         if (val64 & RMAC_PAUSE_RX_ENABLE)
4975                 ep->rx_pause = TRUE;
4976         ep->autoneg = FALSE;
4977 }
4978
4979 /**
4980  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4981  * @sp : private member of the device structure, which is a pointer to the
4982  *      s2io_nic structure.
4983  * @ep : pointer to the structure with pause parameters given by ethtool.
4984  * Description:
4985  * It can be used to set or reset Pause frame generation or reception
4986  * support of the NIC.
4987  * Return value:
4988  * int, returns 0 on Success
4989  */
4990
4991 static int s2io_ethtool_setpause_data(struct net_device *dev,
4992                                struct ethtool_pauseparam *ep)
4993 {
4994         u64 val64;
4995         struct s2io_nic *sp = dev->priv;
4996         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4997
4998         val64 = readq(&bar0->rmac_pause_cfg);
4999         if (ep->tx_pause)
5000                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5001         else
5002                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5003         if (ep->rx_pause)
5004                 val64 |= RMAC_PAUSE_RX_ENABLE;
5005         else
5006                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5007         writeq(val64, &bar0->rmac_pause_cfg);
5008         return 0;
5009 }
5010
5011 /**
5012  * read_eeprom - reads 4 bytes of data from user given offset.
5013  * @sp : private member of the device structure, which is a pointer to the
5014  *      s2io_nic structure.
5015  * @off : offset at which the data must be written
5016  * @data : Its an output parameter where the data read at the given
5017  *      offset is stored.
5018  * Description:
5019  * Will read 4 bytes of data from the user given offset and return the
5020  * read data.
5021  * NOTE: Will allow to read only part of the EEPROM visible through the
5022  *   I2C bus.
5023  * Return value:
5024  *  -1 on failure and 0 on success.
5025  */
5026
5027 #define S2IO_DEV_ID             5
5028 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5029 {
5030         int ret = -1;
5031         u32 exit_cnt = 0;
5032         u64 val64;
5033         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5034
5035         if (sp->device_type == XFRAME_I_DEVICE) {
5036                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5037                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5038                     I2C_CONTROL_CNTL_START;
5039                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5040
5041                 while (exit_cnt < 5) {
5042                         val64 = readq(&bar0->i2c_control);
5043                         if (I2C_CONTROL_CNTL_END(val64)) {
5044                                 *data = I2C_CONTROL_GET_DATA(val64);
5045                                 ret = 0;
5046                                 break;
5047                         }
5048                         msleep(50);
5049                         exit_cnt++;
5050                 }
5051         }
5052
5053         if (sp->device_type == XFRAME_II_DEVICE) {
5054                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5055                         SPI_CONTROL_BYTECNT(0x3) |
5056                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5057                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5058                 val64 |= SPI_CONTROL_REQ;
5059                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5060                 while (exit_cnt < 5) {
5061                         val64 = readq(&bar0->spi_control);
5062                         if (val64 & SPI_CONTROL_NACK) {
5063                                 ret = 1;
5064                                 break;
5065                         } else if (val64 & SPI_CONTROL_DONE) {
5066                                 *data = readq(&bar0->spi_data);
5067                                 *data &= 0xffffff;
5068                                 ret = 0;
5069                                 break;
5070                         }
5071                         msleep(50);
5072                         exit_cnt++;
5073                 }
5074         }
5075         return ret;
5076 }
5077
5078 /**
5079  *  write_eeprom - actually writes the relevant part of the data value.
5080  *  @sp : private member of the device structure, which is a pointer to the
5081  *       s2io_nic structure.
5082  *  @off : offset at which the data must be written
5083  *  @data : The data that is to be written
5084  *  @cnt : Number of bytes of the data that are actually to be written into
5085  *  the Eeprom. (max of 3)
5086  * Description:
5087  *  Actually writes the relevant part of the data value into the Eeprom
5088  *  through the I2C bus.
5089  * Return value:
5090  *  0 on success, -1 on failure.
5091  */
5092
5093 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5094 {
5095         int exit_cnt = 0, ret = -1;
5096         u64 val64;
5097         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5098
5099         if (sp->device_type == XFRAME_I_DEVICE) {
5100                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5101                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5102                     I2C_CONTROL_CNTL_START;
5103                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5104
5105                 while (exit_cnt < 5) {
5106                         val64 = readq(&bar0->i2c_control);
5107                         if (I2C_CONTROL_CNTL_END(val64)) {
5108                                 if (!(val64 & I2C_CONTROL_NACK))
5109                                         ret = 0;
5110                                 break;
5111                         }
5112                         msleep(50);
5113                         exit_cnt++;
5114                 }
5115         }
5116
5117         if (sp->device_type == XFRAME_II_DEVICE) {
5118                 int write_cnt = (cnt == 8) ? 0 : cnt;
5119                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5120
5121                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5122                         SPI_CONTROL_BYTECNT(write_cnt) |
5123                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5124                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5125                 val64 |= SPI_CONTROL_REQ;
5126                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5127                 while (exit_cnt < 5) {
5128                         val64 = readq(&bar0->spi_control);
5129                         if (val64 & SPI_CONTROL_NACK) {
5130                                 ret = 1;
5131                                 break;
5132                         } else if (val64 & SPI_CONTROL_DONE) {
5133                                 ret = 0;
5134                                 break;
5135                         }
5136                         msleep(50);
5137                         exit_cnt++;
5138                 }
5139         }
5140         return ret;
5141 }
5142 static void s2io_vpd_read(struct s2io_nic *nic)
5143 {
5144         u8 *vpd_data;
5145         u8 data;
5146         int i=0, cnt, fail = 0;
5147         int vpd_addr = 0x80;
5148
5149         if (nic->device_type == XFRAME_II_DEVICE) {
5150                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5151                 vpd_addr = 0x80;
5152         }
5153         else {
5154                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5155                 vpd_addr = 0x50;
5156         }
5157         strcpy(nic->serial_num, "NOT AVAILABLE");
5158
5159         vpd_data = kmalloc(256, GFP_KERNEL);
5160         if (!vpd_data) {
5161                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5162                 return;
5163         }
5164         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5165
5166         for (i = 0; i < 256; i +=4 ) {
5167                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5168                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5169                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5170                 for (cnt = 0; cnt <5; cnt++) {
5171                         msleep(2);
5172                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5173                         if (data == 0x80)
5174                                 break;
5175                 }
5176                 if (cnt >= 5) {
5177                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5178                         fail = 1;
5179                         break;
5180                 }
5181                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5182                                       (u32 *)&vpd_data[i]);
5183         }
5184
5185         if(!fail) {
5186                 /* read serial number of adapter */
5187                 for (cnt = 0; cnt < 256; cnt++) {
5188                 if ((vpd_data[cnt] == 'S') &&
5189                         (vpd_data[cnt+1] == 'N') &&
5190                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5191                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5192                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5193                                         vpd_data[cnt+2]);
5194                                 break;
5195                         }
5196                 }
5197         }
5198
5199         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5200                 memset(nic->product_name, 0, vpd_data[1]);
5201                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5202         }
5203         kfree(vpd_data);
5204         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5205 }
5206
5207 /**
5208  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5209  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5210  *  @eeprom : pointer to the user level structure provided by ethtool,
5211  *  containing all relevant information.
5212  *  @data_buf : user defined value to be written into Eeprom.
5213  *  Description: Reads the values stored in the Eeprom at given offset
5214  *  for a given length. Stores these values int the input argument data
5215  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5216  *  Return value:
5217  *  int  0 on success
5218  */
5219
5220 static int s2io_ethtool_geeprom(struct net_device *dev,
5221                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5222 {
5223         u32 i, valid;
5224         u64 data;
5225         struct s2io_nic *sp = dev->priv;
5226
5227         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5228
5229         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5230                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5231
5232         for (i = 0; i < eeprom->len; i += 4) {
5233                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5234                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5235                         return -EFAULT;
5236                 }
5237                 valid = INV(data);
5238                 memcpy((data_buf + i), &valid, 4);
5239         }
5240         return 0;
5241 }
5242
5243 /**
5244  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5245  *  @sp : private member of the device structure, which is a pointer to the
5246  *  s2io_nic structure.
5247  *  @eeprom : pointer to the user level structure provided by ethtool,
5248  *  containing all relevant information.
5249  *  @data_buf ; user defined value to be written into Eeprom.
5250  *  Description:
5251  *  Tries to write the user provided value in the Eeprom, at the offset
5252  *  given by the user.
5253  *  Return value:
5254  *  0 on success, -EFAULT on failure.
5255  */
5256
5257 static int s2io_ethtool_seeprom(struct net_device *dev,
5258                                 struct ethtool_eeprom *eeprom,
5259                                 u8 * data_buf)
5260 {
5261         int len = eeprom->len, cnt = 0;
5262         u64 valid = 0, data;
5263         struct s2io_nic *sp = dev->priv;
5264
5265         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5266                 DBG_PRINT(ERR_DBG,
5267                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5268                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5269                           eeprom->magic);
5270                 return -EFAULT;
5271         }
5272
5273         while (len) {
5274                 data = (u32) data_buf[cnt] & 0x000000FF;
5275                 if (data) {
5276                         valid = (u32) (data << 24);
5277                 } else
5278                         valid = data;
5279
5280                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5281                         DBG_PRINT(ERR_DBG,
5282                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5283                         DBG_PRINT(ERR_DBG,
5284                                   "write into the specified offset\n");
5285                         return -EFAULT;
5286                 }
5287                 cnt++;
5288                 len--;
5289         }
5290
5291         return 0;
5292 }
5293
5294 /**
5295  * s2io_register_test - reads and writes into all clock domains.
5296  * @sp : private member of the device structure, which is a pointer to the
5297  * s2io_nic structure.
5298  * @data : variable that returns the result of each of the test conducted b
5299  * by the driver.
5300  * Description:
5301  * Read and write into all clock domains. The NIC has 3 clock domains,
5302  * see that registers in all the three regions are accessible.
5303  * Return value:
5304  * 0 on success.
5305  */
5306
5307 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5308 {
5309         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5310         u64 val64 = 0, exp_val;
5311         int fail = 0;
5312
5313         val64 = readq(&bar0->pif_rd_swapper_fb);
5314         if (val64 != 0x123456789abcdefULL) {
5315                 fail = 1;
5316                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5317         }
5318
5319         val64 = readq(&bar0->rmac_pause_cfg);
5320         if (val64 != 0xc000ffff00000000ULL) {
5321                 fail = 1;
5322                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5323         }
5324
5325         val64 = readq(&bar0->rx_queue_cfg);
5326         if (sp->device_type == XFRAME_II_DEVICE)
5327                 exp_val = 0x0404040404040404ULL;
5328         else
5329                 exp_val = 0x0808080808080808ULL;
5330         if (val64 != exp_val) {
5331                 fail = 1;
5332                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5333         }
5334
5335         val64 = readq(&bar0->xgxs_efifo_cfg);
5336         if (val64 != 0x000000001923141EULL) {
5337                 fail = 1;
5338                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5339         }
5340
5341         val64 = 0x5A5A5A5A5A5A5A5AULL;
5342         writeq(val64, &bar0->xmsi_data);
5343         val64 = readq(&bar0->xmsi_data);
5344         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5345                 fail = 1;
5346                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5347         }
5348
5349         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5350         writeq(val64, &bar0->xmsi_data);
5351         val64 = readq(&bar0->xmsi_data);
5352         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5353                 fail = 1;
5354                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5355         }
5356
5357         *data = fail;
5358         return fail;
5359 }
5360
5361 /**
5362  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5363  * @sp : private member of the device structure, which is a pointer to the
5364  * s2io_nic structure.
5365  * @data:variable that returns the result of each of the test conducted by
5366  * the driver.
5367  * Description:
5368  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5369  * register.
5370  * Return value:
5371  * 0 on success.
5372  */
5373
5374 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5375 {
5376         int fail = 0;
5377         u64 ret_data, org_4F0, org_7F0;
5378         u8 saved_4F0 = 0, saved_7F0 = 0;
5379         struct net_device *dev = sp->dev;
5380
5381         /* Test Write Error at offset 0 */
5382         /* Note that SPI interface allows write access to all areas
5383          * of EEPROM. Hence doing all negative testing only for Xframe I.
5384          */
5385         if (sp->device_type == XFRAME_I_DEVICE)
5386                 if (!write_eeprom(sp, 0, 0, 3))
5387                         fail = 1;
5388
5389         /* Save current values at offsets 0x4F0 and 0x7F0 */
5390         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5391                 saved_4F0 = 1;
5392         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5393                 saved_7F0 = 1;
5394
5395         /* Test Write at offset 4f0 */
5396         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5397                 fail = 1;
5398         if (read_eeprom(sp, 0x4F0, &ret_data))
5399                 fail = 1;
5400
5401         if (ret_data != 0x012345) {
5402                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5403                         "Data written %llx Data read %llx\n",
5404                         dev->name, (unsigned long long)0x12345,
5405                         (unsigned long long)ret_data);
5406                 fail = 1;
5407         }
5408
5409         /* Reset the EEPROM data go FFFF */
5410         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5411
5412         /* Test Write Request Error at offset 0x7c */
5413         if (sp->device_type == XFRAME_I_DEVICE)
5414                 if (!write_eeprom(sp, 0x07C, 0, 3))
5415                         fail = 1;
5416
5417         /* Test Write Request at offset 0x7f0 */
5418         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5419                 fail = 1;
5420         if (read_eeprom(sp, 0x7F0, &ret_data))
5421                 fail = 1;
5422
5423         if (ret_data != 0x012345) {
5424                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5425                         "Data written %llx Data read %llx\n",
5426                         dev->name, (unsigned long long)0x12345,
5427                         (unsigned long long)ret_data);
5428                 fail = 1;
5429         }
5430
5431         /* Reset the EEPROM data go FFFF */
5432         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5433
5434         if (sp->device_type == XFRAME_I_DEVICE) {
5435                 /* Test Write Error at offset 0x80 */
5436                 if (!write_eeprom(sp, 0x080, 0, 3))
5437                         fail = 1;
5438
5439                 /* Test Write Error at offset 0xfc */
5440                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5441                         fail = 1;
5442
5443                 /* Test Write Error at offset 0x100 */
5444                 if (!write_eeprom(sp, 0x100, 0, 3))
5445                         fail = 1;
5446
5447                 /* Test Write Error at offset 4ec */
5448                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5449                         fail = 1;
5450         }
5451
5452         /* Restore values at offsets 0x4F0 and 0x7F0 */
5453         if (saved_4F0)
5454                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5455         if (saved_7F0)
5456                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5457
5458         *data = fail;
5459         return fail;
5460 }
5461
5462 /**
5463  * s2io_bist_test - invokes the MemBist test of the card .
5464  * @sp : private member of the device structure, which is a pointer to the
5465  * s2io_nic structure.
5466  * @data:variable that returns the result of each of the test conducted by
5467  * the driver.
5468  * Description:
5469  * This invokes the MemBist test of the card. We give around
5470  * 2 secs time for the Test to complete. If it's still not complete
5471  * within this peiod, we consider that the test failed.
5472  * Return value:
5473  * 0 on success and -1 on failure.
5474  */
5475
5476 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5477 {
5478         u8 bist = 0;
5479         int cnt = 0, ret = -1;
5480
5481         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5482         bist |= PCI_BIST_START;
5483         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5484
5485         while (cnt < 20) {
5486                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5487                 if (!(bist & PCI_BIST_START)) {
5488                         *data = (bist & PCI_BIST_CODE_MASK);
5489                         ret = 0;
5490                         break;
5491                 }
5492                 msleep(100);
5493                 cnt++;
5494         }
5495
5496         return ret;
5497 }
5498
5499 /**
5500  * s2io-link_test - verifies the link state of the nic
5501  * @sp ; private member of the device structure, which is a pointer to the
5502  * s2io_nic structure.
5503  * @data: variable that returns the result of each of the test conducted by
5504  * the driver.
5505  * Description:
5506  * The function verifies the link state of the NIC and updates the input
5507  * argument 'data' appropriately.
5508  * Return value:
5509  * 0 on success.
5510  */
5511
5512 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5513 {
5514         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5515         u64 val64;
5516
5517         val64 = readq(&bar0->adapter_status);
5518         if(!(LINK_IS_UP(val64)))
5519                 *data = 1;
5520         else
5521                 *data = 0;
5522
5523         return *data;
5524 }
5525
5526 /**
5527  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5528  * @sp - private member of the device structure, which is a pointer to the
5529  * s2io_nic structure.
5530  * @data - variable that returns the result of each of the test
5531  * conducted by the driver.
5532  * Description:
5533  *  This is one of the offline test that tests the read and write
5534  *  access to the RldRam chip on the NIC.
5535  * Return value:
5536  *  0 on success.
5537  */
5538
5539 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5540 {
5541         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5542         u64 val64;
5543         int cnt, iteration = 0, test_fail = 0;
5544
5545         val64 = readq(&bar0->adapter_control);
5546         val64 &= ~ADAPTER_ECC_EN;
5547         writeq(val64, &bar0->adapter_control);
5548
5549         val64 = readq(&bar0->mc_rldram_test_ctrl);
5550         val64 |= MC_RLDRAM_TEST_MODE;
5551         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5552
5553         val64 = readq(&bar0->mc_rldram_mrs);
5554         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5555         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5556
5557         val64 |= MC_RLDRAM_MRS_ENABLE;
5558         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5559
5560         while (iteration < 2) {
5561                 val64 = 0x55555555aaaa0000ULL;
5562                 if (iteration == 1) {
5563                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5564                 }
5565                 writeq(val64, &bar0->mc_rldram_test_d0);
5566
5567                 val64 = 0xaaaa5a5555550000ULL;
5568                 if (iteration == 1) {
5569                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5570                 }
5571                 writeq(val64, &bar0->mc_rldram_test_d1);
5572
5573                 val64 = 0x55aaaaaaaa5a0000ULL;
5574                 if (iteration == 1) {
5575                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5576                 }
5577                 writeq(val64, &bar0->mc_rldram_test_d2);
5578
5579                 val64 = (u64) (0x0000003ffffe0100ULL);
5580                 writeq(val64, &bar0->mc_rldram_test_add);
5581
5582                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5583                         MC_RLDRAM_TEST_GO;
5584                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5585
5586                 for (cnt = 0; cnt < 5; cnt++) {
5587                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5588                         if (val64 & MC_RLDRAM_TEST_DONE)
5589                                 break;
5590                         msleep(200);
5591                 }
5592
5593                 if (cnt == 5)
5594                         break;
5595
5596                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5597                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5598
5599                 for (cnt = 0; cnt < 5; cnt++) {
5600                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5601                         if (val64 & MC_RLDRAM_TEST_DONE)
5602                                 break;
5603                         msleep(500);
5604                 }
5605
5606                 if (cnt == 5)
5607                         break;
5608
5609                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5610                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5611                         test_fail = 1;
5612
5613                 iteration++;
5614         }
5615
5616         *data = test_fail;
5617
5618         /* Bring the adapter out of test mode */
5619         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5620
5621         return test_fail;
5622 }
5623
5624 /**
5625  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5626  *  @sp : private member of the device structure, which is a pointer to the
5627  *  s2io_nic structure.
5628  *  @ethtest : pointer to a ethtool command specific structure that will be
5629  *  returned to the user.
5630  *  @data : variable that returns the result of each of the test
5631  * conducted by the driver.
5632  * Description:
5633  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5634  *  the health of the card.
5635  * Return value:
5636  *  void
5637  */
5638
5639 static void s2io_ethtool_test(struct net_device *dev,
5640                               struct ethtool_test *ethtest,
5641                               uint64_t * data)
5642 {
5643         struct s2io_nic *sp = dev->priv;
5644         int orig_state = netif_running(sp->dev);
5645
5646         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5647                 /* Offline Tests. */
5648                 if (orig_state)
5649                         s2io_close(sp->dev);
5650
5651                 if (s2io_register_test(sp, &data[0]))
5652                         ethtest->flags |= ETH_TEST_FL_FAILED;
5653
5654                 s2io_reset(sp);
5655
5656                 if (s2io_rldram_test(sp, &data[3]))
5657                         ethtest->flags |= ETH_TEST_FL_FAILED;
5658
5659                 s2io_reset(sp);
5660
5661                 if (s2io_eeprom_test(sp, &data[1]))
5662                         ethtest->flags |= ETH_TEST_FL_FAILED;
5663
5664                 if (s2io_bist_test(sp, &data[4]))
5665                         ethtest->flags |= ETH_TEST_FL_FAILED;
5666
5667                 if (orig_state)
5668                         s2io_open(sp->dev);
5669
5670                 data[2] = 0;
5671         } else {
5672                 /* Online Tests. */
5673                 if (!orig_state) {
5674                         DBG_PRINT(ERR_DBG,
5675                                   "%s: is not up, cannot run test\n",
5676                                   dev->name);
5677                         data[0] = -1;
5678                         data[1] = -1;
5679                         data[2] = -1;
5680                         data[3] = -1;
5681                         data[4] = -1;
5682                 }
5683
5684                 if (s2io_link_test(sp, &data[2]))
5685                         ethtest->flags |= ETH_TEST_FL_FAILED;
5686
5687                 data[0] = 0;
5688                 data[1] = 0;
5689                 data[3] = 0;
5690                 data[4] = 0;
5691         }
5692 }
5693
5694 static void s2io_get_ethtool_stats(struct net_device *dev,
5695                                    struct ethtool_stats *estats,
5696                                    u64 * tmp_stats)
5697 {
5698         int i = 0;
5699         struct s2io_nic *sp = dev->priv;
5700         struct stat_block *stat_info = sp->mac_control.stats_info;
5701
5702         s2io_updt_stats(sp);
5703         tmp_stats[i++] =
5704                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5705                 le32_to_cpu(stat_info->tmac_frms);
5706         tmp_stats[i++] =
5707                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5708                 le32_to_cpu(stat_info->tmac_data_octets);
5709         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5710         tmp_stats[i++] =
5711                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5712                 le32_to_cpu(stat_info->tmac_mcst_frms);
5713         tmp_stats[i++] =
5714                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5715                 le32_to_cpu(stat_info->tmac_bcst_frms);
5716         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5717         tmp_stats[i++] =
5718                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5719                 le32_to_cpu(stat_info->tmac_ttl_octets);
5720         tmp_stats[i++] =
5721                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5722                 le32_to_cpu(stat_info->tmac_ucst_frms);
5723         tmp_stats[i++] =
5724                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5725                 le32_to_cpu(stat_info->tmac_nucst_frms);
5726         tmp_stats[i++] =
5727                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5728                 le32_to_cpu(stat_info->tmac_any_err_frms);
5729         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5730         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5731         tmp_stats[i++] =
5732                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5733                 le32_to_cpu(stat_info->tmac_vld_ip);
5734         tmp_stats[i++] =
5735                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5736                 le32_to_cpu(stat_info->tmac_drop_ip);
5737         tmp_stats[i++] =
5738                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5739                 le32_to_cpu(stat_info->tmac_icmp);
5740         tmp_stats[i++] =
5741                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5742                 le32_to_cpu(stat_info->tmac_rst_tcp);
5743         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5744         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5745                 le32_to_cpu(stat_info->tmac_udp);
5746         tmp_stats[i++] =
5747                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5748                 le32_to_cpu(stat_info->rmac_vld_frms);
5749         tmp_stats[i++] =
5750                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5751                 le32_to_cpu(stat_info->rmac_data_octets);
5752         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5753         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5754         tmp_stats[i++] =
5755                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5756                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5757         tmp_stats[i++] =
5758                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5759                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5760         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5761         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5762         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5763         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5764         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5765         tmp_stats[i++] =
5766                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5767                 le32_to_cpu(stat_info->rmac_ttl_octets);
5768         tmp_stats[i++] =
5769                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5770                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5771         tmp_stats[i++] =
5772                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5773                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5774         tmp_stats[i++] =
5775                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5776                 le32_to_cpu(stat_info->rmac_discarded_frms);
5777         tmp_stats[i++] =
5778                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5779                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5780         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5781         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5782         tmp_stats[i++] =
5783                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5784                 le32_to_cpu(stat_info->rmac_usized_frms);
5785         tmp_stats[i++] =
5786                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5787                 le32_to_cpu(stat_info->rmac_osized_frms);
5788         tmp_stats[i++] =
5789                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5790                 le32_to_cpu(stat_info->rmac_frag_frms);
5791         tmp_stats[i++] =
5792                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5793                 le32_to_cpu(stat_info->rmac_jabber_frms);
5794         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5795         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5796         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5797         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5798         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5799         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5800         tmp_stats[i++] =
5801                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5802                 le32_to_cpu(stat_info->rmac_ip);
5803         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5804         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5805         tmp_stats[i++] =
5806                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5807                 le32_to_cpu(stat_info->rmac_drop_ip);
5808         tmp_stats[i++] =
5809                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5810                 le32_to_cpu(stat_info->rmac_icmp);
5811         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5812         tmp_stats[i++] =
5813                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5814                 le32_to_cpu(stat_info->rmac_udp);
5815         tmp_stats[i++] =
5816                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5817                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5818         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5819         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5820         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5821         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5822         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5823         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5824         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5825         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5826         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5827         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5828         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5829         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5830         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5831         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5832         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5833         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5834         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5835         tmp_stats[i++] =
5836                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5837                 le32_to_cpu(stat_info->rmac_pause_cnt);
5838         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5839         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5840         tmp_stats[i++] =
5841                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5842                 le32_to_cpu(stat_info->rmac_accepted_ip);
5843         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5844         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5845         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5846         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5847         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5848         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5849         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5850         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5851         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5852         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5853         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5854         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5855         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5856         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5857         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5858         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5859         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5860         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5861         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5862
5863         /* Enhanced statistics exist only for Hercules */
5864         if(sp->device_type == XFRAME_II_DEVICE) {
5865                 tmp_stats[i++] =
5866                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5867                 tmp_stats[i++] =
5868                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5869                 tmp_stats[i++] =
5870                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5871                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5872                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5873                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5874                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5875                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5876                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5877                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5878                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5879                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5880                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5881                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5882                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5883                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5884         }
5885
5886         tmp_stats[i++] = 0;
5887         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5888         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5889         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5890         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5891         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5892         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5893         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5894         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5895         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5896         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5897         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5898         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5899         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5900         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5901         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5902         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5903         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5904         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5905         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5906         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5907         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5908         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5909         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5910         if (stat_info->sw_stat.num_aggregations) {
5911                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5912                 int count = 0;
5913                 /*
5914                  * Since 64-bit divide does not work on all platforms,
5915                  * do repeated subtraction.
5916                  */
5917                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5918                         tmp -= stat_info->sw_stat.num_aggregations;
5919                         count++;
5920                 }
5921                 tmp_stats[i++] = count;
5922         }
5923         else
5924                 tmp_stats[i++] = 0;
5925         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5926         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5927         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5928         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5929         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5930         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5931         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5932         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5933
5934         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5935         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5936         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5937         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5938         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5939
5940         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5941         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5942         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5943         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5944         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5945         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5946         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5947         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5948         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5949 }
5950
5951 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5952 {
5953         return (XENA_REG_SPACE);
5954 }
5955
5956
5957 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5958 {
5959         struct s2io_nic *sp = dev->priv;
5960
5961         return (sp->rx_csum);
5962 }
5963
5964 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5965 {
5966         struct s2io_nic *sp = dev->priv;
5967
5968         if (data)
5969                 sp->rx_csum = 1;
5970         else
5971                 sp->rx_csum = 0;
5972
5973         return 0;
5974 }
5975
5976 static int s2io_get_eeprom_len(struct net_device *dev)
5977 {
5978         return (XENA_EEPROM_SPACE);
5979 }
5980
5981 static int s2io_ethtool_self_test_count(struct net_device *dev)
5982 {
5983         return (S2IO_TEST_LEN);
5984 }
5985
5986 static void s2io_ethtool_get_strings(struct net_device *dev,
5987                                      u32 stringset, u8 * data)
5988 {
5989         int stat_size = 0;
5990         struct s2io_nic *sp = dev->priv;
5991
5992         switch (stringset) {
5993         case ETH_SS_TEST:
5994                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5995                 break;
5996         case ETH_SS_STATS:
5997                 stat_size = sizeof(ethtool_xena_stats_keys);
5998                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5999                 if(sp->device_type == XFRAME_II_DEVICE) {
6000                         memcpy(data + stat_size,
6001                                 &ethtool_enhanced_stats_keys,
6002                                 sizeof(ethtool_enhanced_stats_keys));
6003                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6004                 }
6005
6006                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6007                         sizeof(ethtool_driver_stats_keys));
6008         }
6009 }
6010 static int s2io_ethtool_get_stats_count(struct net_device *dev)
6011 {
6012         struct s2io_nic *sp = dev->priv;
6013         int stat_count = 0;
6014         switch(sp->device_type) {
6015         case XFRAME_I_DEVICE:
6016                 stat_count = XFRAME_I_STAT_LEN;
6017         break;
6018
6019         case XFRAME_II_DEVICE:
6020                 stat_count = XFRAME_II_STAT_LEN;
6021         break;
6022         }
6023
6024         return stat_count;
6025 }
6026
6027 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6028 {
6029         if (data)
6030                 dev->features |= NETIF_F_IP_CSUM;
6031         else
6032                 dev->features &= ~NETIF_F_IP_CSUM;
6033
6034         return 0;
6035 }
6036
6037 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6038 {
6039         return (dev->features & NETIF_F_TSO) != 0;
6040 }
6041 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6042 {
6043         if (data)
6044                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6045         else
6046                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6047
6048         return 0;
6049 }
6050
6051 static const struct ethtool_ops netdev_ethtool_ops = {
6052         .get_settings = s2io_ethtool_gset,
6053         .set_settings = s2io_ethtool_sset,
6054         .get_drvinfo = s2io_ethtool_gdrvinfo,
6055         .get_regs_len = s2io_ethtool_get_regs_len,
6056         .get_regs = s2io_ethtool_gregs,
6057         .get_link = ethtool_op_get_link,
6058         .get_eeprom_len = s2io_get_eeprom_len,
6059         .get_eeprom = s2io_ethtool_geeprom,
6060         .set_eeprom = s2io_ethtool_seeprom,
6061         .get_ringparam = s2io_ethtool_gringparam,
6062         .get_pauseparam = s2io_ethtool_getpause_data,
6063         .set_pauseparam = s2io_ethtool_setpause_data,
6064         .get_rx_csum = s2io_ethtool_get_rx_csum,
6065         .set_rx_csum = s2io_ethtool_set_rx_csum,
6066         .get_tx_csum = ethtool_op_get_tx_csum,
6067         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6068         .get_sg = ethtool_op_get_sg,
6069         .set_sg = ethtool_op_set_sg,
6070         .get_tso = s2io_ethtool_op_get_tso,
6071         .set_tso = s2io_ethtool_op_set_tso,
6072         .get_ufo = ethtool_op_get_ufo,
6073         .set_ufo = ethtool_op_set_ufo,
6074         .self_test_count = s2io_ethtool_self_test_count,
6075         .self_test = s2io_ethtool_test,
6076         .get_strings = s2io_ethtool_get_strings,
6077         .phys_id = s2io_ethtool_idnic,
6078         .get_stats_count = s2io_ethtool_get_stats_count,
6079         .get_ethtool_stats = s2io_get_ethtool_stats
6080 };
6081
6082 /**
6083  *  s2io_ioctl - Entry point for the Ioctl
6084  *  @dev :  Device pointer.
6085  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6086  *  a proprietary structure used to pass information to the driver.
6087  *  @cmd :  This is used to distinguish between the different commands that
6088  *  can be passed to the IOCTL functions.
6089  *  Description:
6090  *  Currently there are no special functionality supported in IOCTL, hence
6091  *  function always return EOPNOTSUPPORTED
6092  */
6093
6094 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6095 {
6096         return -EOPNOTSUPP;
6097 }
6098
6099 /**
6100  *  s2io_change_mtu - entry point to change MTU size for the device.
6101  *   @dev : device pointer.
6102  *   @new_mtu : the new MTU size for the device.
6103  *   Description: A driver entry point to change MTU size for the device.
6104  *   Before changing the MTU the device must be stopped.
6105  *  Return value:
6106  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6107  *   file on failure.
6108  */
6109
6110 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6111 {
6112         struct s2io_nic *sp = dev->priv;
6113
6114         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6115                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6116                           dev->name);
6117                 return -EPERM;
6118         }
6119
6120         dev->mtu = new_mtu;
6121         if (netif_running(dev)) {
6122                 s2io_card_down(sp);
6123                 netif_stop_queue(dev);
6124                 if (s2io_card_up(sp)) {
6125                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6126                                   __FUNCTION__);
6127                 }
6128                 if (netif_queue_stopped(dev))
6129                         netif_wake_queue(dev);
6130         } else { /* Device is down */
6131                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6132                 u64 val64 = new_mtu;
6133
6134                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6135         }
6136
6137         return 0;
6138 }
6139
6140 /**
6141  *  s2io_tasklet - Bottom half of the ISR.
6142  *  @dev_adr : address of the device structure in dma_addr_t format.
6143  *  Description:
6144  *  This is the tasklet or the bottom half of the ISR. This is
6145  *  an extension of the ISR which is scheduled by the scheduler to be run
6146  *  when the load on the CPU is low. All low priority tasks of the ISR can
6147  *  be pushed into the tasklet. For now the tasklet is used only to
6148  *  replenish the Rx buffers in the Rx buffer descriptors.
6149  *  Return value:
6150  *  void.
6151  */
6152
6153 static void s2io_tasklet(unsigned long dev_addr)
6154 {
6155         struct net_device *dev = (struct net_device *) dev_addr;
6156         struct s2io_nic *sp = dev->priv;
6157         int i, ret;
6158         struct mac_info *mac_control;
6159         struct config_param *config;
6160
6161         mac_control = &sp->mac_control;
6162         config = &sp->config;
6163
6164         if (!TASKLET_IN_USE) {
6165                 for (i = 0; i < config->rx_ring_num; i++) {
6166                         ret = fill_rx_buffers(sp, i);
6167                         if (ret == -ENOMEM) {
6168                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6169                                           dev->name);
6170                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6171                                 break;
6172                         } else if (ret == -EFILL) {
6173                                 DBG_PRINT(INFO_DBG,
6174                                           "%s: Rx Ring %d is full\n",
6175                                           dev->name, i);
6176                                 break;
6177                         }
6178                 }
6179                 clear_bit(0, (&sp->tasklet_status));
6180         }
6181 }
6182
6183 /**
6184  * s2io_set_link - Set the LInk status
6185  * @data: long pointer to device private structue
6186  * Description: Sets the link status for the adapter
6187  */
6188
6189 static void s2io_set_link(struct work_struct *work)
6190 {
6191         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6192         struct net_device *dev = nic->dev;
6193         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6194         register u64 val64;
6195         u16 subid;
6196
6197         rtnl_lock();
6198
6199         if (!netif_running(dev))
6200                 goto out_unlock;
6201
6202         if (test_and_set_bit(0, &(nic->link_state))) {
6203                 /* The card is being reset, no point doing anything */
6204                 goto out_unlock;
6205         }
6206
6207         subid = nic->pdev->subsystem_device;
6208         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6209                 /*
6210                  * Allow a small delay for the NICs self initiated
6211                  * cleanup to complete.
6212                  */
6213                 msleep(100);
6214         }
6215
6216         val64 = readq(&bar0->adapter_status);
6217         if (LINK_IS_UP(val64)) {
6218                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6219                         if (verify_xena_quiescence(nic)) {
6220                                 val64 = readq(&bar0->adapter_control);
6221                                 val64 |= ADAPTER_CNTL_EN;
6222                                 writeq(val64, &bar0->adapter_control);
6223                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6224                                         nic->device_type, subid)) {
6225                                         val64 = readq(&bar0->gpio_control);
6226                                         val64 |= GPIO_CTRL_GPIO_0;
6227                                         writeq(val64, &bar0->gpio_control);
6228                                         val64 = readq(&bar0->gpio_control);
6229                                 } else {
6230                                         val64 |= ADAPTER_LED_ON;
6231                                         writeq(val64, &bar0->adapter_control);
6232                                 }
6233                                 nic->device_enabled_once = TRUE;
6234                         } else {
6235                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6236                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6237                                 netif_stop_queue(dev);
6238                         }
6239                 }
6240                 val64 = readq(&bar0->adapter_status);
6241                 if (!LINK_IS_UP(val64)) {
6242                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6243                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6244                         DBG_PRINT(ERR_DBG, "device \n");
6245                 } else
6246                         s2io_link(nic, LINK_UP);
6247         } else {
6248                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6249                                                       subid)) {
6250                         val64 = readq(&bar0->gpio_control);
6251                         val64 &= ~GPIO_CTRL_GPIO_0;
6252                         writeq(val64, &bar0->gpio_control);
6253                         val64 = readq(&bar0->gpio_control);
6254                 }
6255                 s2io_link(nic, LINK_DOWN);
6256         }
6257         clear_bit(0, &(nic->link_state));
6258
6259 out_unlock:
6260         rtnl_unlock();
6261 }
6262
6263 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6264                                 struct buffAdd *ba,
6265                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6266                                 u64 *temp2, int size)
6267 {
6268         struct net_device *dev = sp->dev;
6269         struct sk_buff *frag_list;
6270
6271         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6272                 /* allocate skb */
6273                 if (*skb) {
6274                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6275                         /*
6276                          * As Rx frame are not going to be processed,
6277                          * using same mapped address for the Rxd
6278                          * buffer pointer
6279                          */
6280                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6281                 } else {
6282                         *skb = dev_alloc_skb(size);
6283                         if (!(*skb)) {
6284                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6285                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6286                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6287                                 sp->mac_control.stats_info->sw_stat. \
6288                                         mem_alloc_fail_cnt++;
6289                                 return -ENOMEM ;
6290                         }
6291                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6292                                 += (*skb)->truesize;
6293                         /* storing the mapped addr in a temp variable
6294                          * such it will be used for next rxd whose
6295                          * Host Control is NULL
6296                          */
6297                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6298                                 pci_map_single( sp->pdev, (*skb)->data,
6299                                         size - NET_IP_ALIGN,
6300                                         PCI_DMA_FROMDEVICE);
6301                         rxdp->Host_Control = (unsigned long) (*skb);
6302                 }
6303         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6304                 /* Two buffer Mode */
6305                 if (*skb) {
6306                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6307                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6308                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6309                 } else {
6310                         *skb = dev_alloc_skb(size);
6311                         if (!(*skb)) {
6312                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6313                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6314                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6315                                 sp->mac_control.stats_info->sw_stat. \
6316                                         mem_alloc_fail_cnt++;
6317                                 return -ENOMEM;
6318                         }
6319                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6320                                 += (*skb)->truesize;
6321                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6322                                 pci_map_single(sp->pdev, (*skb)->data,
6323                                                dev->mtu + 4,
6324                                                PCI_DMA_FROMDEVICE);
6325                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6326                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6327                                                 PCI_DMA_FROMDEVICE);
6328                         rxdp->Host_Control = (unsigned long) (*skb);
6329
6330                         /* Buffer-1 will be dummy buffer not used */
6331                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6332                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6333                                                PCI_DMA_FROMDEVICE);
6334                 }
6335         } else if ((rxdp->Host_Control == 0)) {
6336                 /* Three buffer mode */
6337                 if (*skb) {
6338                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6339                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6340                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6341                 } else {
6342                         *skb = dev_alloc_skb(size);
6343                         if (!(*skb)) {
6344                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6345                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6346                                 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6347                                 sp->mac_control.stats_info->sw_stat. \
6348                                         mem_alloc_fail_cnt++;
6349                                 return -ENOMEM;
6350                         }
6351                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6352                                 += (*skb)->truesize;
6353                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6354                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6355                                                PCI_DMA_FROMDEVICE);
6356                         /* Buffer-1 receives L3/L4 headers */
6357                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6358                                 pci_map_single( sp->pdev, (*skb)->data,
6359                                                 l3l4hdr_size + 4,
6360                                                 PCI_DMA_FROMDEVICE);
6361                         /*
6362                          * skb_shinfo(skb)->frag_list will have L4
6363                          * data payload
6364                          */
6365                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6366                                                                    ALIGN_SIZE);
6367                         if (skb_shinfo(*skb)->frag_list == NULL) {
6368                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6369                                           failed\n ", dev->name);
6370                                 sp->mac_control.stats_info->sw_stat. \
6371                                         mem_alloc_fail_cnt++;
6372                                 return -ENOMEM ;
6373                         }
6374                         frag_list = skb_shinfo(*skb)->frag_list;
6375                         frag_list->next = NULL;
6376                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6377                                 += frag_list->truesize;
6378                         /*
6379                          * Buffer-2 receives L4 data payload
6380                          */
6381                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6382                                 pci_map_single( sp->pdev, frag_list->data,
6383                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6384                 }
6385         }
6386         return 0;
6387 }
6388 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6389                                 int size)
6390 {
6391         struct net_device *dev = sp->dev;
6392         if (sp->rxd_mode == RXD_MODE_1) {
6393                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6394         } else if (sp->rxd_mode == RXD_MODE_3B) {
6395                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6396                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6397                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6398         } else {
6399                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6400                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6401                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6402         }
6403 }
6404
6405 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6406 {
6407         int i, j, k, blk_cnt = 0, size;
6408         struct mac_info * mac_control = &sp->mac_control;
6409         struct config_param *config = &sp->config;
6410         struct net_device *dev = sp->dev;
6411         struct RxD_t *rxdp = NULL;
6412         struct sk_buff *skb = NULL;
6413         struct buffAdd *ba = NULL;
6414         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6415
6416         /* Calculate the size based on ring mode */
6417         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6418                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6419         if (sp->rxd_mode == RXD_MODE_1)
6420                 size += NET_IP_ALIGN;
6421         else if (sp->rxd_mode == RXD_MODE_3B)
6422                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6423         else
6424                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6425
6426         for (i = 0; i < config->rx_ring_num; i++) {
6427                 blk_cnt = config->rx_cfg[i].num_rxd /
6428                         (rxd_count[sp->rxd_mode] +1);
6429
6430                 for (j = 0; j < blk_cnt; j++) {
6431                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6432                                 rxdp = mac_control->rings[i].
6433                                         rx_blocks[j].rxds[k].virt_addr;
6434                                 if(sp->rxd_mode >= RXD_MODE_3A)
6435                                         ba = &mac_control->rings[i].ba[j][k];
6436                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6437                                                        &skb,(u64 *)&temp0_64,
6438                                                        (u64 *)&temp1_64,
6439                                                        (u64 *)&temp2_64,
6440                                                         size) == ENOMEM) {
6441                                         return 0;
6442                                 }
6443
6444                                 set_rxd_buffer_size(sp, rxdp, size);
6445                                 wmb();
6446                                 /* flip the Ownership bit to Hardware */
6447                                 rxdp->Control_1 |= RXD_OWN_XENA;
6448                         }
6449                 }
6450         }
6451         return 0;
6452
6453 }
6454
6455 static int s2io_add_isr(struct s2io_nic * sp)
6456 {
6457         int ret = 0;
6458         struct net_device *dev = sp->dev;
6459         int err = 0;
6460
6461         if (sp->intr_type == MSI)
6462                 ret = s2io_enable_msi(sp);
6463         else if (sp->intr_type == MSI_X)
6464                 ret = s2io_enable_msi_x(sp);
6465         if (ret) {
6466                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6467                 sp->intr_type = INTA;
6468         }
6469
6470         /* Store the values of the MSIX table in the struct s2io_nic structure */
6471         store_xmsi_data(sp);
6472
6473         /* After proper initialization of H/W, register ISR */
6474         if (sp->intr_type == MSI) {
6475                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6476                         IRQF_SHARED, sp->name, dev);
6477                 if (err) {
6478                         pci_disable_msi(sp->pdev);
6479                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6480                                   dev->name);
6481                         return -1;
6482                 }
6483         }
6484         if (sp->intr_type == MSI_X) {
6485                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6486
6487                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6488                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6489                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6490                                         dev->name, i);
6491                                 err = request_irq(sp->entries[i].vector,
6492                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6493                                                   sp->s2io_entries[i].arg);
6494                                 /* If either data or addr is zero print it */
6495                                 if(!(sp->msix_info[i].addr &&
6496                                         sp->msix_info[i].data)) {
6497                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6498                                                 "Data:0x%lx\n",sp->desc[i],
6499                                                 (unsigned long long)
6500                                                 sp->msix_info[i].addr,
6501                                                 (unsigned long)
6502                                                 ntohl(sp->msix_info[i].data));
6503                                 } else {
6504                                         msix_tx_cnt++;
6505                                 }
6506                         } else {
6507                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6508                                         dev->name, i);
6509                                 err = request_irq(sp->entries[i].vector,
6510                                           s2io_msix_ring_handle, 0, sp->desc[i],
6511                                                   sp->s2io_entries[i].arg);
6512                                 /* If either data or addr is zero print it */
6513                                 if(!(sp->msix_info[i].addr &&
6514                                         sp->msix_info[i].data)) {
6515                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6516                                                 "Data:0x%lx\n",sp->desc[i],
6517                                                 (unsigned long long)
6518                                                 sp->msix_info[i].addr,
6519                                                 (unsigned long)
6520                                                 ntohl(sp->msix_info[i].data));
6521                                 } else {
6522                                         msix_rx_cnt++;
6523                                 }
6524                         }
6525                         if (err) {
6526                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6527                                           "failed\n", dev->name, i);
6528                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6529                                 return -1;
6530                         }
6531                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6532                 }
6533                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6534                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6535         }
6536         if (sp->intr_type == INTA) {
6537                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6538                                 sp->name, dev);
6539                 if (err) {
6540                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6541                                   dev->name);
6542                         return -1;
6543                 }
6544         }
6545         return 0;
6546 }
6547 static void s2io_rem_isr(struct s2io_nic * sp)
6548 {
6549         int cnt = 0;
6550         struct net_device *dev = sp->dev;
6551
6552         if (sp->intr_type == MSI_X) {
6553                 int i;
6554                 u16 msi_control;
6555
6556                 for (i=1; (sp->s2io_entries[i].in_use ==
6557                         MSIX_REGISTERED_SUCCESS); i++) {
6558                         int vector = sp->entries[i].vector;
6559                         void *arg = sp->s2io_entries[i].arg;
6560
6561                         free_irq(vector, arg);
6562                 }
6563                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6564                 msi_control &= 0xFFFE; /* Disable MSI */
6565                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6566
6567                 pci_disable_msix(sp->pdev);
6568         } else {
6569                 free_irq(sp->pdev->irq, dev);
6570                 if (sp->intr_type == MSI) {
6571                         u16 val;
6572
6573                         pci_disable_msi(sp->pdev);
6574                         pci_read_config_word(sp->pdev, 0x4c, &val);
6575                         val ^= 0x1;
6576                         pci_write_config_word(sp->pdev, 0x4c, val);
6577                 }
6578         }
6579         /* Waiting till all Interrupt handlers are complete */
6580         cnt = 0;
6581         do {
6582                 msleep(10);
6583                 if (!atomic_read(&sp->isr_cnt))
6584                         break;
6585                 cnt++;
6586         } while(cnt < 5);
6587 }
6588
6589 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6590 {
6591         int cnt = 0;
6592         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6593         unsigned long flags;
6594         register u64 val64 = 0;
6595
6596         del_timer_sync(&sp->alarm_timer);
6597         /* If s2io_set_link task is executing, wait till it completes. */
6598         while (test_and_set_bit(0, &(sp->link_state))) {
6599                 msleep(50);
6600         }
6601         atomic_set(&sp->card_state, CARD_DOWN);
6602
6603         /* disable Tx and Rx traffic on the NIC */
6604         if (do_io)
6605                 stop_nic(sp);
6606
6607         s2io_rem_isr(sp);
6608
6609         /* Kill tasklet. */
6610         tasklet_kill(&sp->task);
6611
6612         /* Check if the device is Quiescent and then Reset the NIC */
6613         while(do_io) {
6614                 /* As per the HW requirement we need to replenish the
6615                  * receive buffer to avoid the ring bump. Since there is
6616                  * no intention of processing the Rx frame at this pointwe are
6617                  * just settting the ownership bit of rxd in Each Rx
6618                  * ring to HW and set the appropriate buffer size
6619                  * based on the ring mode
6620                  */
6621                 rxd_owner_bit_reset(sp);
6622
6623                 val64 = readq(&bar0->adapter_status);
6624                 if (verify_xena_quiescence(sp)) {
6625                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6626                         break;
6627                 }
6628
6629                 msleep(50);
6630                 cnt++;
6631                 if (cnt == 10) {
6632                         DBG_PRINT(ERR_DBG,
6633                                   "s2io_close:Device not Quiescent ");
6634                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6635                                   (unsigned long long) val64);
6636                         break;
6637                 }
6638         }
6639         if (do_io)
6640                 s2io_reset(sp);
6641
6642         spin_lock_irqsave(&sp->tx_lock, flags);
6643         /* Free all Tx buffers */
6644         free_tx_buffers(sp);
6645         spin_unlock_irqrestore(&sp->tx_lock, flags);
6646
6647         /* Free all Rx buffers */
6648         spin_lock_irqsave(&sp->rx_lock, flags);
6649         free_rx_buffers(sp);
6650         spin_unlock_irqrestore(&sp->rx_lock, flags);
6651
6652         clear_bit(0, &(sp->link_state));
6653 }
6654
6655 static void s2io_card_down(struct s2io_nic * sp)
6656 {
6657         do_s2io_card_down(sp, 1);
6658 }
6659
6660 static int s2io_card_up(struct s2io_nic * sp)
6661 {
6662         int i, ret = 0;
6663         struct mac_info *mac_control;
6664         struct config_param *config;
6665         struct net_device *dev = (struct net_device *) sp->dev;
6666         u16 interruptible;
6667
6668         /* Initialize the H/W I/O registers */
6669         if (init_nic(sp) != 0) {
6670                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6671                           dev->name);
6672                 s2io_reset(sp);
6673                 return -ENODEV;
6674         }
6675
6676         /*
6677          * Initializing the Rx buffers. For now we are considering only 1
6678          * Rx ring and initializing buffers into 30 Rx blocks
6679          */
6680         mac_control = &sp->mac_control;
6681         config = &sp->config;
6682
6683         for (i = 0; i < config->rx_ring_num; i++) {
6684                 if ((ret = fill_rx_buffers(sp, i))) {
6685                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6686                                   dev->name);
6687                         s2io_reset(sp);
6688                         free_rx_buffers(sp);
6689                         return -ENOMEM;
6690                 }
6691                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6692                           atomic_read(&sp->rx_bufs_left[i]));
6693         }
6694         /* Maintain the state prior to the open */
6695         if (sp->promisc_flg)
6696                 sp->promisc_flg = 0;
6697         if (sp->m_cast_flg) {
6698                 sp->m_cast_flg = 0;
6699                 sp->all_multi_pos= 0;
6700         }
6701
6702         /* Setting its receive mode */
6703         s2io_set_multicast(dev);
6704
6705         if (sp->lro) {
6706                 /* Initialize max aggregatable pkts per session based on MTU */
6707                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6708                 /* Check if we can use(if specified) user provided value */
6709                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6710                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6711         }
6712
6713         /* Enable Rx Traffic and interrupts on the NIC */
6714         if (start_nic(sp)) {
6715                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6716                 s2io_reset(sp);
6717                 free_rx_buffers(sp);
6718                 return -ENODEV;
6719         }
6720
6721         /* Add interrupt service routine */
6722         if (s2io_add_isr(sp) != 0) {
6723                 if (sp->intr_type == MSI_X)
6724                         s2io_rem_isr(sp);
6725                 s2io_reset(sp);
6726                 free_rx_buffers(sp);
6727                 return -ENODEV;
6728         }
6729
6730         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6731
6732         /* Enable tasklet for the device */
6733         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6734
6735         /*  Enable select interrupts */
6736         if (sp->intr_type != INTA)
6737                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6738         else {
6739                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6740                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6741                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6742                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6743         }
6744
6745
6746         atomic_set(&sp->card_state, CARD_UP);
6747         return 0;
6748 }
6749
6750 /**
6751  * s2io_restart_nic - Resets the NIC.
6752  * @data : long pointer to the device private structure
6753  * Description:
6754  * This function is scheduled to be run by the s2io_tx_watchdog
6755  * function after 0.5 secs to reset the NIC. The idea is to reduce
6756  * the run time of the watch dog routine which is run holding a
6757  * spin lock.
6758  */
6759
6760 static void s2io_restart_nic(struct work_struct *work)
6761 {
6762         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6763         struct net_device *dev = sp->dev;
6764
6765         rtnl_lock();
6766
6767         if (!netif_running(dev))
6768                 goto out_unlock;
6769
6770         s2io_card_down(sp);
6771         if (s2io_card_up(sp)) {
6772                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6773                           dev->name);
6774         }
6775         netif_wake_queue(dev);
6776         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6777                   dev->name);
6778 out_unlock:
6779         rtnl_unlock();
6780 }
6781
6782 /**
6783  *  s2io_tx_watchdog - Watchdog for transmit side.
6784  *  @dev : Pointer to net device structure
6785  *  Description:
6786  *  This function is triggered if the Tx Queue is stopped
6787  *  for a pre-defined amount of time when the Interface is still up.
6788  *  If the Interface is jammed in such a situation, the hardware is
6789  *  reset (by s2io_close) and restarted again (by s2io_open) to
6790  *  overcome any problem that might have been caused in the hardware.
6791  *  Return value:
6792  *  void
6793  */
6794
6795 static void s2io_tx_watchdog(struct net_device *dev)
6796 {
6797         struct s2io_nic *sp = dev->priv;
6798
6799         if (netif_carrier_ok(dev)) {
6800                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6801                 schedule_work(&sp->rst_timer_task);
6802                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6803         }
6804 }
6805
6806 /**
6807  *   rx_osm_handler - To perform some OS related operations on SKB.
6808  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6809  *   @skb : the socket buffer pointer.
6810  *   @len : length of the packet
6811  *   @cksum : FCS checksum of the frame.
6812  *   @ring_no : the ring from which this RxD was extracted.
6813  *   Description:
6814  *   This function is called by the Rx interrupt serivce routine to perform
6815  *   some OS related operations on the SKB before passing it to the upper
6816  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6817  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6818  *   to the upper layer. If the checksum is wrong, it increments the Rx
6819  *   packet error count, frees the SKB and returns error.
6820  *   Return value:
6821  *   SUCCESS on success and -1 on failure.
6822  */
6823 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6824 {
6825         struct s2io_nic *sp = ring_data->nic;
6826         struct net_device *dev = (struct net_device *) sp->dev;
6827         struct sk_buff *skb = (struct sk_buff *)
6828                 ((unsigned long) rxdp->Host_Control);
6829         int ring_no = ring_data->ring_no;
6830         u16 l3_csum, l4_csum;
6831         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6832         struct lro *lro;
6833         u8 err_mask;
6834
6835         skb->dev = dev;
6836
6837         if (err) {
6838                 /* Check for parity error */
6839                 if (err & 0x1) {
6840                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6841                 }
6842                 err_mask = err >> 48;
6843                 switch(err_mask) {
6844                         case 1:
6845                                 sp->mac_control.stats_info->sw_stat.
6846                                 rx_parity_err_cnt++;
6847                         break;
6848
6849                         case 2:
6850                                 sp->mac_control.stats_info->sw_stat.
6851                                 rx_abort_cnt++;
6852                         break;
6853
6854                         case 3:
6855                                 sp->mac_control.stats_info->sw_stat.
6856                                 rx_parity_abort_cnt++;
6857                         break;
6858
6859                         case 4:
6860                                 sp->mac_control.stats_info->sw_stat.
6861                                 rx_rda_fail_cnt++;
6862                         break;
6863
6864                         case 5:
6865                                 sp->mac_control.stats_info->sw_stat.
6866                                 rx_unkn_prot_cnt++;
6867                         break;
6868
6869                         case 6:
6870                                 sp->mac_control.stats_info->sw_stat.
6871                                 rx_fcs_err_cnt++;
6872                         break;
6873
6874                         case 7:
6875                                 sp->mac_control.stats_info->sw_stat.
6876                                 rx_buf_size_err_cnt++;
6877                         break;
6878
6879                         case 8:
6880                                 sp->mac_control.stats_info->sw_stat.
6881                                 rx_rxd_corrupt_cnt++;
6882                         break;
6883
6884                         case 15:
6885                                 sp->mac_control.stats_info->sw_stat.
6886                                 rx_unkn_err_cnt++;
6887                         break;
6888                 }
6889                 /*
6890                 * Drop the packet if bad transfer code. Exception being
6891                 * 0x5, which could be due to unsupported IPv6 extension header.
6892                 * In this case, we let stack handle the packet.
6893                 * Note that in this case, since checksum will be incorrect,
6894                 * stack will validate the same.
6895                 */
6896                 if (err_mask != 0x5) {
6897                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6898                                 dev->name, err_mask);
6899                         sp->stats.rx_crc_errors++;
6900                         sp->mac_control.stats_info->sw_stat.mem_freed 
6901                                 += skb->truesize;
6902                         dev_kfree_skb(skb);
6903                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6904                         rxdp->Host_Control = 0;
6905                         return 0;
6906                 }
6907         }
6908
6909         /* Updating statistics */
6910         rxdp->Host_Control = 0;
6911         if (sp->rxd_mode == RXD_MODE_1) {
6912                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6913
6914                 sp->stats.rx_bytes += len;
6915                 skb_put(skb, len);
6916
6917         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6918                 int get_block = ring_data->rx_curr_get_info.block_index;
6919                 int get_off = ring_data->rx_curr_get_info.offset;
6920                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6921                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6922                 unsigned char *buff = skb_push(skb, buf0_len);
6923
6924                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6925                 sp->stats.rx_bytes += buf0_len + buf2_len;
6926                 memcpy(buff, ba->ba_0, buf0_len);
6927
6928                 if (sp->rxd_mode == RXD_MODE_3A) {
6929                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6930
6931                         skb_put(skb, buf1_len);
6932                         skb->len += buf2_len;
6933                         skb->data_len += buf2_len;
6934                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6935                         sp->stats.rx_bytes += buf1_len;
6936
6937                 } else
6938                         skb_put(skb, buf2_len);
6939         }
6940
6941         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6942             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6943             (sp->rx_csum)) {
6944                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6945                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6946                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6947                         /*
6948                          * NIC verifies if the Checksum of the received
6949                          * frame is Ok or not and accordingly returns
6950                          * a flag in the RxD.
6951                          */
6952                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6953                         if (sp->lro) {
6954                                 u32 tcp_len;
6955                                 u8 *tcp;
6956                                 int ret = 0;
6957
6958                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6959                                                 &tcp_len, &lro, rxdp, sp);
6960                                 switch (ret) {
6961                                         case 3: /* Begin anew */
6962                                                 lro->parent = skb;
6963                                                 goto aggregate;
6964                                         case 1: /* Aggregate */
6965                                         {
6966                                                 lro_append_pkt(sp, lro,
6967                                                         skb, tcp_len);
6968                                                 goto aggregate;
6969                                         }
6970                                         case 4: /* Flush session */
6971                                         {
6972                                                 lro_append_pkt(sp, lro,
6973                                                         skb, tcp_len);
6974                                                 queue_rx_frame(lro->parent);
6975                                                 clear_lro_session(lro);
6976                                                 sp->mac_control.stats_info->
6977                                                     sw_stat.flush_max_pkts++;
6978                                                 goto aggregate;
6979                                         }
6980                                         case 2: /* Flush both */
6981                                                 lro->parent->data_len =
6982                                                         lro->frags_len;
6983                                                 sp->mac_control.stats_info->
6984                                                      sw_stat.sending_both++;
6985                                                 queue_rx_frame(lro->parent);
6986                                                 clear_lro_session(lro);
6987                                                 goto send_up;
6988                                         case 0: /* sessions exceeded */
6989                                         case -1: /* non-TCP or not
6990                                                   * L2 aggregatable
6991                                                   */
6992                                         case 5: /*
6993                                                  * First pkt in session not
6994                                                  * L3/L4 aggregatable
6995                                                  */
6996                                                 break;
6997                                         default:
6998                                                 DBG_PRINT(ERR_DBG,
6999                                                         "%s: Samadhana!!\n",
7000                                                          __FUNCTION__);
7001                                                 BUG();
7002                                 }
7003                         }
7004                 } else {
7005                         /*
7006                          * Packet with erroneous checksum, let the
7007                          * upper layers deal with it.
7008                          */
7009                         skb->ip_summed = CHECKSUM_NONE;
7010                 }
7011         } else {
7012                 skb->ip_summed = CHECKSUM_NONE;
7013         }
7014         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7015         if (!sp->lro) {
7016                 skb->protocol = eth_type_trans(skb, dev);
7017                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7018                         vlan_strip_flag)) {
7019                         /* Queueing the vlan frame to the upper layer */
7020                         if (napi)
7021                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7022                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7023                         else
7024                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7025                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7026                 } else {
7027                         if (napi)
7028                                 netif_receive_skb(skb);
7029                         else
7030                                 netif_rx(skb);
7031                 }
7032         } else {
7033 send_up:
7034                 queue_rx_frame(skb);
7035         }
7036         dev->last_rx = jiffies;
7037 aggregate:
7038         atomic_dec(&sp->rx_bufs_left[ring_no]);
7039         return SUCCESS;
7040 }
7041
7042 /**
7043  *  s2io_link - stops/starts the Tx queue.
7044  *  @sp : private member of the device structure, which is a pointer to the
7045  *  s2io_nic structure.
7046  *  @link : inidicates whether link is UP/DOWN.
7047  *  Description:
7048  *  This function stops/starts the Tx queue depending on whether the link
7049  *  status of the NIC is is down or up. This is called by the Alarm
7050  *  interrupt handler whenever a link change interrupt comes up.
7051  *  Return value:
7052  *  void.
7053  */
7054
7055 static void s2io_link(struct s2io_nic * sp, int link)
7056 {
7057         struct net_device *dev = (struct net_device *) sp->dev;
7058
7059         if (link != sp->last_link_state) {
7060                 if (link == LINK_DOWN) {
7061                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7062                         netif_carrier_off(dev);
7063                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7064                         sp->mac_control.stats_info->sw_stat.link_up_time = 
7065                                 jiffies - sp->start_time;
7066                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7067                 } else {
7068                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7069                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7070                         sp->mac_control.stats_info->sw_stat.link_down_time = 
7071                                 jiffies - sp->start_time;
7072                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7073                         netif_carrier_on(dev);
7074                 }
7075         }
7076         sp->last_link_state = link;
7077         sp->start_time = jiffies;
7078 }
7079
7080 /**
7081  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7082  *  @sp : private member of the device structure, which is a pointer to the
7083  *  s2io_nic structure.
7084  *  Description:
7085  *  This function initializes a few of the PCI and PCI-X configuration registers
7086  *  with recommended values.
7087  *  Return value:
7088  *  void
7089  */
7090
7091 static void s2io_init_pci(struct s2io_nic * sp)
7092 {
7093         u16 pci_cmd = 0, pcix_cmd = 0;
7094
7095         /* Enable Data Parity Error Recovery in PCI-X command register. */
7096         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7097                              &(pcix_cmd));
7098         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7099                               (pcix_cmd | 1));
7100         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7101                              &(pcix_cmd));
7102
7103         /* Set the PErr Response bit in PCI command register. */
7104         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7105         pci_write_config_word(sp->pdev, PCI_COMMAND,
7106                               (pci_cmd | PCI_COMMAND_PARITY));
7107         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7108 }
7109
7110 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7111 {
7112         if ( tx_fifo_num > 8) {
7113                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7114                          "supported\n");
7115                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7116                 tx_fifo_num = 8;
7117         }
7118         if ( rx_ring_num > 8) {
7119                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7120                          "supported\n");
7121                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7122                 rx_ring_num = 8;
7123         }
7124         if (*dev_intr_type != INTA)
7125                 napi = 0;
7126
7127 #ifndef CONFIG_PCI_MSI
7128         if (*dev_intr_type != INTA) {
7129                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7130                           "MSI/MSI-X. Defaulting to INTA\n");
7131                 *dev_intr_type = INTA;
7132         }
7133 #else
7134         if (*dev_intr_type > MSI_X) {
7135                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7136                           "Defaulting to INTA\n");
7137                 *dev_intr_type = INTA;
7138         }
7139 #endif
7140         if ((*dev_intr_type == MSI_X) &&
7141                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7142                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7143                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7144                                         "Defaulting to INTA\n");
7145                 *dev_intr_type = INTA;
7146         }
7147
7148         if (rx_ring_mode > 3) {
7149                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7150                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7151                 rx_ring_mode = 3;
7152         }
7153         return SUCCESS;
7154 }
7155
7156 /**
7157  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7158  * or Traffic class respectively.
7159  * @nic: device peivate variable
7160  * Description: The function configures the receive steering to
7161  * desired receive ring.
7162  * Return Value:  SUCCESS on success and
7163  * '-1' on failure (endian settings incorrect).
7164  */
7165 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7166 {
7167         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7168         register u64 val64 = 0;
7169
7170         if (ds_codepoint > 63)
7171                 return FAILURE;
7172
7173         val64 = RTS_DS_MEM_DATA(ring);
7174         writeq(val64, &bar0->rts_ds_mem_data);
7175
7176         val64 = RTS_DS_MEM_CTRL_WE |
7177                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7178                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7179
7180         writeq(val64, &bar0->rts_ds_mem_ctrl);
7181
7182         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7183                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7184                                 S2IO_BIT_RESET);
7185 }
7186
7187 /**
7188  *  s2io_init_nic - Initialization of the adapter .
7189  *  @pdev : structure containing the PCI related information of the device.
7190  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7191  *  Description:
7192  *  The function initializes an adapter identified by the pci_dec structure.
7193  *  All OS related initialization including memory and device structure and
7194  *  initlaization of the device private variable is done. Also the swapper
7195  *  control register is initialized to enable read and write into the I/O
7196  *  registers of the device.
7197  *  Return value:
7198  *  returns 0 on success and negative on failure.
7199  */
7200
7201 static int __devinit
7202 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7203 {
7204         struct s2io_nic *sp;
7205         struct net_device *dev;
7206         int i, j, ret;
7207         int dma_flag = FALSE;
7208         u32 mac_up, mac_down;
7209         u64 val64 = 0, tmp64 = 0;
7210         struct XENA_dev_config __iomem *bar0 = NULL;
7211         u16 subid;
7212         struct mac_info *mac_control;
7213         struct config_param *config;
7214         int mode;
7215         u8 dev_intr_type = intr_type;
7216
7217         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7218                 return ret;
7219
7220         if ((ret = pci_enable_device(pdev))) {
7221                 DBG_PRINT(ERR_DBG,
7222                           "s2io_init_nic: pci_enable_device failed\n");
7223                 return ret;
7224         }
7225
7226         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7227                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7228                 dma_flag = TRUE;
7229                 if (pci_set_consistent_dma_mask
7230                     (pdev, DMA_64BIT_MASK)) {
7231                         DBG_PRINT(ERR_DBG,
7232                                   "Unable to obtain 64bit DMA for \
7233                                         consistent allocations\n");
7234                         pci_disable_device(pdev);
7235                         return -ENOMEM;
7236                 }
7237         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7238                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7239         } else {
7240                 pci_disable_device(pdev);
7241                 return -ENOMEM;
7242         }
7243         if (dev_intr_type != MSI_X) {
7244                 if (pci_request_regions(pdev, s2io_driver_name)) {
7245                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7246                         pci_disable_device(pdev);
7247                         return -ENODEV;
7248                 }
7249         }
7250         else {
7251                 if (!(request_mem_region(pci_resource_start(pdev, 0),
7252                          pci_resource_len(pdev, 0), s2io_driver_name))) {
7253                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7254                         pci_disable_device(pdev);
7255                         return -ENODEV;
7256                 }
7257                 if (!(request_mem_region(pci_resource_start(pdev, 2),
7258                          pci_resource_len(pdev, 2), s2io_driver_name))) {
7259                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7260                         release_mem_region(pci_resource_start(pdev, 0),
7261                                    pci_resource_len(pdev, 0));
7262                         pci_disable_device(pdev);
7263                         return -ENODEV;
7264                 }
7265         }
7266
7267         dev = alloc_etherdev(sizeof(struct s2io_nic));
7268         if (dev == NULL) {
7269                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7270                 pci_disable_device(pdev);
7271                 pci_release_regions(pdev);
7272                 return -ENODEV;
7273         }
7274
7275         pci_set_master(pdev);
7276         pci_set_drvdata(pdev, dev);
7277         SET_MODULE_OWNER(dev);
7278         SET_NETDEV_DEV(dev, &pdev->dev);
7279
7280         /*  Private member variable initialized to s2io NIC structure */
7281         sp = dev->priv;
7282         memset(sp, 0, sizeof(struct s2io_nic));
7283         sp->dev = dev;
7284         sp->pdev = pdev;
7285         sp->high_dma_flag = dma_flag;
7286         sp->device_enabled_once = FALSE;
7287         if (rx_ring_mode == 1)
7288                 sp->rxd_mode = RXD_MODE_1;
7289         if (rx_ring_mode == 2)
7290                 sp->rxd_mode = RXD_MODE_3B;
7291         if (rx_ring_mode == 3)
7292                 sp->rxd_mode = RXD_MODE_3A;
7293
7294         sp->intr_type = dev_intr_type;
7295
7296         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7297                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7298                 sp->device_type = XFRAME_II_DEVICE;
7299         else
7300                 sp->device_type = XFRAME_I_DEVICE;
7301
7302         sp->lro = lro;
7303
7304         /* Initialize some PCI/PCI-X fields of the NIC. */
7305         s2io_init_pci(sp);
7306
7307         /*
7308          * Setting the device configuration parameters.
7309          * Most of these parameters can be specified by the user during
7310          * module insertion as they are module loadable parameters. If
7311          * these parameters are not not specified during load time, they
7312          * are initialized with default values.
7313          */
7314         mac_control = &sp->mac_control;
7315         config = &sp->config;
7316
7317         /* Tx side parameters. */
7318         config->tx_fifo_num = tx_fifo_num;
7319         for (i = 0; i < MAX_TX_FIFOS; i++) {
7320                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7321                 config->tx_cfg[i].fifo_priority = i;
7322         }
7323
7324         /* mapping the QoS priority to the configured fifos */
7325         for (i = 0; i < MAX_TX_FIFOS; i++)
7326                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7327
7328         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7329         for (i = 0; i < config->tx_fifo_num; i++) {
7330                 config->tx_cfg[i].f_no_snoop =
7331                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7332                 if (config->tx_cfg[i].fifo_len < 65) {
7333                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7334                         break;
7335                 }
7336         }
7337         /* + 2 because one Txd for skb->data and one Txd for UFO */
7338         config->max_txds = MAX_SKB_FRAGS + 2;
7339
7340         /* Rx side parameters. */
7341         config->rx_ring_num = rx_ring_num;
7342         for (i = 0; i < MAX_RX_RINGS; i++) {
7343                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7344                     (rxd_count[sp->rxd_mode] + 1);
7345                 config->rx_cfg[i].ring_priority = i;
7346         }
7347
7348         for (i = 0; i < rx_ring_num; i++) {
7349                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7350                 config->rx_cfg[i].f_no_snoop =
7351                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7352         }
7353
7354         /*  Setting Mac Control parameters */
7355         mac_control->rmac_pause_time = rmac_pause_time;
7356         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7357         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7358
7359
7360         /* Initialize Ring buffer parameters. */
7361         for (i = 0; i < config->rx_ring_num; i++)
7362                 atomic_set(&sp->rx_bufs_left[i], 0);
7363
7364         /* Initialize the number of ISRs currently running */
7365         atomic_set(&sp->isr_cnt, 0);
7366
7367         /*  initialize the shared memory used by the NIC and the host */
7368         if (init_shared_mem(sp)) {
7369                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7370                           dev->name);
7371                 ret = -ENOMEM;
7372                 goto mem_alloc_failed;
7373         }
7374
7375         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7376                                      pci_resource_len(pdev, 0));
7377         if (!sp->bar0) {
7378                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7379                           dev->name);
7380                 ret = -ENOMEM;
7381                 goto bar0_remap_failed;
7382         }
7383
7384         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7385                                      pci_resource_len(pdev, 2));
7386         if (!sp->bar1) {
7387                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7388                           dev->name);
7389                 ret = -ENOMEM;
7390                 goto bar1_remap_failed;
7391         }
7392
7393         dev->irq = pdev->irq;
7394         dev->base_addr = (unsigned long) sp->bar0;
7395
7396         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7397         for (j = 0; j < MAX_TX_FIFOS; j++) {
7398                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7399                     (sp->bar1 + (j * 0x00020000));
7400         }
7401
7402         /*  Driver entry points */
7403         dev->open = &s2io_open;
7404         dev->stop = &s2io_close;
7405         dev->hard_start_xmit = &s2io_xmit;
7406         dev->get_stats = &s2io_get_stats;
7407         dev->set_multicast_list = &s2io_set_multicast;
7408         dev->do_ioctl = &s2io_ioctl;
7409         dev->change_mtu = &s2io_change_mtu;
7410         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7411         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7412         dev->vlan_rx_register = s2io_vlan_rx_register;
7413
7414         /*
7415          * will use eth_mac_addr() for  dev->set_mac_address
7416          * mac address will be set every time dev->open() is called
7417          */
7418         dev->poll = s2io_poll;
7419         dev->weight = 32;
7420
7421 #ifdef CONFIG_NET_POLL_CONTROLLER
7422         dev->poll_controller = s2io_netpoll;
7423 #endif
7424
7425         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7426         if (sp->high_dma_flag == TRUE)
7427                 dev->features |= NETIF_F_HIGHDMA;
7428         dev->features |= NETIF_F_TSO;
7429         dev->features |= NETIF_F_TSO6;
7430         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7431                 dev->features |= NETIF_F_UFO;
7432                 dev->features |= NETIF_F_HW_CSUM;
7433         }
7434
7435         dev->tx_timeout = &s2io_tx_watchdog;
7436         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7437         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7438         INIT_WORK(&sp->set_link_task, s2io_set_link);
7439
7440         pci_save_state(sp->pdev);
7441
7442         /* Setting swapper control on the NIC, for proper reset operation */
7443         if (s2io_set_swapper(sp)) {
7444                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7445                           dev->name);
7446                 ret = -EAGAIN;
7447                 goto set_swap_failed;
7448         }
7449
7450         /* Verify if the Herc works on the slot its placed into */
7451         if (sp->device_type & XFRAME_II_DEVICE) {
7452                 mode = s2io_verify_pci_mode(sp);
7453                 if (mode < 0) {
7454                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7455                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7456                         ret = -EBADSLT;
7457                         goto set_swap_failed;
7458                 }
7459         }
7460
7461         /* Not needed for Herc */
7462         if (sp->device_type & XFRAME_I_DEVICE) {
7463                 /*
7464                  * Fix for all "FFs" MAC address problems observed on
7465                  * Alpha platforms
7466                  */
7467                 fix_mac_address(sp);
7468                 s2io_reset(sp);
7469         }
7470
7471         /*
7472          * MAC address initialization.
7473          * For now only one mac address will be read and used.
7474          */
7475         bar0 = sp->bar0;
7476         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7477             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7478         writeq(val64, &bar0->rmac_addr_cmd_mem);
7479         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7480                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7481         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7482         mac_down = (u32) tmp64;
7483         mac_up = (u32) (tmp64 >> 32);
7484
7485         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7486         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7487         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7488         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7489         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7490         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7491
7492         /*  Set the factory defined MAC address initially   */
7493         dev->addr_len = ETH_ALEN;
7494         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7495
7496         /* reset Nic and bring it to known state */
7497         s2io_reset(sp);
7498
7499         /*
7500          * Initialize the tasklet status and link state flags
7501          * and the card state parameter
7502          */
7503         atomic_set(&(sp->card_state), 0);
7504         sp->tasklet_status = 0;
7505         sp->link_state = 0;
7506
7507         /* Initialize spinlocks */
7508         spin_lock_init(&sp->tx_lock);
7509
7510         if (!napi)
7511                 spin_lock_init(&sp->put_lock);
7512         spin_lock_init(&sp->rx_lock);
7513
7514         /*
7515          * SXE-002: Configure link and activity LED to init state
7516          * on driver load.
7517          */
7518         subid = sp->pdev->subsystem_device;
7519         if ((subid & 0xFF) >= 0x07) {
7520                 val64 = readq(&bar0->gpio_control);
7521                 val64 |= 0x0000800000000000ULL;
7522                 writeq(val64, &bar0->gpio_control);
7523                 val64 = 0x0411040400000000ULL;
7524                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7525                 val64 = readq(&bar0->gpio_control);
7526         }
7527
7528         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7529
7530         if (register_netdev(dev)) {
7531                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7532                 ret = -ENODEV;
7533                 goto register_failed;
7534         }
7535         s2io_vpd_read(sp);
7536         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7537         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7538                   sp->product_name, pdev->revision);
7539         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7540                   s2io_driver_version);
7541         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7542                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7543                           sp->def_mac_addr[0].mac_addr[0],
7544                           sp->def_mac_addr[0].mac_addr[1],
7545                           sp->def_mac_addr[0].mac_addr[2],
7546                           sp->def_mac_addr[0].mac_addr[3],
7547                           sp->def_mac_addr[0].mac_addr[4],
7548                           sp->def_mac_addr[0].mac_addr[5]);
7549         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7550         if (sp->device_type & XFRAME_II_DEVICE) {
7551                 mode = s2io_print_pci_mode(sp);
7552                 if (mode < 0) {
7553                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7554                         ret = -EBADSLT;
7555                         unregister_netdev(dev);
7556                         goto set_swap_failed;
7557                 }
7558         }
7559         switch(sp->rxd_mode) {
7560                 case RXD_MODE_1:
7561                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7562                                                 dev->name);
7563                     break;
7564                 case RXD_MODE_3B:
7565                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7566                                                 dev->name);
7567                     break;
7568                 case RXD_MODE_3A:
7569                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7570                                                 dev->name);
7571                     break;
7572         }
7573
7574         if (napi)
7575                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7576         switch(sp->intr_type) {
7577                 case INTA:
7578                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7579                     break;
7580                 case MSI:
7581                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7582                     break;
7583                 case MSI_X:
7584                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7585                     break;
7586         }
7587         if (sp->lro)
7588                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7589                           dev->name);
7590         if (ufo)
7591                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7592                                         " enabled\n", dev->name);
7593         /* Initialize device name */
7594         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7595
7596         /* Initialize bimodal Interrupts */
7597         sp->config.bimodal = bimodal;
7598         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7599                 sp->config.bimodal = 0;
7600                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7601                         dev->name);
7602         }
7603
7604         /*
7605          * Make Link state as off at this point, when the Link change
7606          * interrupt comes the state will be automatically changed to
7607          * the right state.
7608          */
7609         netif_carrier_off(dev);
7610
7611         return 0;
7612
7613       register_failed:
7614       set_swap_failed:
7615         iounmap(sp->bar1);
7616       bar1_remap_failed:
7617         iounmap(sp->bar0);
7618       bar0_remap_failed:
7619       mem_alloc_failed:
7620         free_shared_mem(sp);
7621         pci_disable_device(pdev);
7622         if (dev_intr_type != MSI_X)
7623                 pci_release_regions(pdev);
7624         else {
7625                 release_mem_region(pci_resource_start(pdev, 0),
7626                         pci_resource_len(pdev, 0));
7627                 release_mem_region(pci_resource_start(pdev, 2),
7628                         pci_resource_len(pdev, 2));
7629         }
7630         pci_set_drvdata(pdev, NULL);
7631         free_netdev(dev);
7632
7633         return ret;
7634 }
7635
7636 /**
7637  * s2io_rem_nic - Free the PCI device
7638  * @pdev: structure containing the PCI related information of the device.
7639  * Description: This function is called by the Pci subsystem to release a
7640  * PCI device and free up all resource held up by the device. This could
7641  * be in response to a Hot plug event or when the driver is to be removed
7642  * from memory.
7643  */
7644
7645 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7646 {
7647         struct net_device *dev =
7648             (struct net_device *) pci_get_drvdata(pdev);
7649         struct s2io_nic *sp;
7650
7651         if (dev == NULL) {
7652                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7653                 return;
7654         }
7655
7656         flush_scheduled_work();
7657
7658         sp = dev->priv;
7659         unregister_netdev(dev);
7660
7661         free_shared_mem(sp);
7662         iounmap(sp->bar0);
7663         iounmap(sp->bar1);
7664         if (sp->intr_type != MSI_X)
7665                 pci_release_regions(pdev);
7666         else {
7667                 release_mem_region(pci_resource_start(pdev, 0),
7668                         pci_resource_len(pdev, 0));
7669                 release_mem_region(pci_resource_start(pdev, 2),
7670                         pci_resource_len(pdev, 2));
7671         }
7672         pci_set_drvdata(pdev, NULL);
7673         free_netdev(dev);
7674         pci_disable_device(pdev);
7675 }
7676
7677 /**
7678  * s2io_starter - Entry point for the driver
7679  * Description: This function is the entry point for the driver. It verifies
7680  * the module loadable parameters and initializes PCI configuration space.
7681  */
7682
7683 int __init s2io_starter(void)
7684 {
7685         return pci_register_driver(&s2io_driver);
7686 }
7687
7688 /**
7689  * s2io_closer - Cleanup routine for the driver
7690  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7691  */
7692
7693 static __exit void s2io_closer(void)
7694 {
7695         pci_unregister_driver(&s2io_driver);
7696         DBG_PRINT(INIT_DBG, "cleanup done\n");
7697 }
7698
7699 module_init(s2io_starter);
7700 module_exit(s2io_closer);
7701
7702 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7703                 struct tcphdr **tcp, struct RxD_t *rxdp)
7704 {
7705         int ip_off;
7706         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7707
7708         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7709                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7710                           __FUNCTION__);
7711                 return -1;
7712         }
7713
7714         /* TODO:
7715          * By default the VLAN field in the MAC is stripped by the card, if this
7716          * feature is turned off in rx_pa_cfg register, then the ip_off field
7717          * has to be shifted by a further 2 bytes
7718          */
7719         switch (l2_type) {
7720                 case 0: /* DIX type */
7721                 case 4: /* DIX type with VLAN */
7722                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7723                         break;
7724                 /* LLC, SNAP etc are considered non-mergeable */
7725                 default:
7726                         return -1;
7727         }
7728
7729         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7730         ip_len = (u8)((*ip)->ihl);
7731         ip_len <<= 2;
7732         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7733
7734         return 0;
7735 }
7736
7737 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7738                                   struct tcphdr *tcp)
7739 {
7740         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7741         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7742            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7743                 return -1;
7744         return 0;
7745 }
7746
7747 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7748 {
7749         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7750 }
7751
7752 static void initiate_new_session(struct lro *lro, u8 *l2h,
7753                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7754 {
7755         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7756         lro->l2h = l2h;
7757         lro->iph = ip;
7758         lro->tcph = tcp;
7759         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7760         lro->tcp_ack = ntohl(tcp->ack_seq);
7761         lro->sg_num = 1;
7762         lro->total_len = ntohs(ip->tot_len);
7763         lro->frags_len = 0;
7764         /*
7765          * check if we saw TCP timestamp. Other consistency checks have
7766          * already been done.
7767          */
7768         if (tcp->doff == 8) {
7769                 u32 *ptr;
7770                 ptr = (u32 *)(tcp+1);
7771                 lro->saw_ts = 1;
7772                 lro->cur_tsval = *(ptr+1);
7773                 lro->cur_tsecr = *(ptr+2);
7774         }
7775         lro->in_use = 1;
7776 }
7777
7778 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7779 {
7780         struct iphdr *ip = lro->iph;
7781         struct tcphdr *tcp = lro->tcph;
7782         __sum16 nchk;
7783         struct stat_block *statinfo = sp->mac_control.stats_info;
7784         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7785
7786         /* Update L3 header */
7787         ip->tot_len = htons(lro->total_len);
7788         ip->check = 0;
7789         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7790         ip->check = nchk;
7791
7792         /* Update L4 header */
7793         tcp->ack_seq = lro->tcp_ack;
7794         tcp->window = lro->window;
7795
7796         /* Update tsecr field if this session has timestamps enabled */
7797         if (lro->saw_ts) {
7798                 u32 *ptr = (u32 *)(tcp + 1);
7799                 *(ptr+2) = lro->cur_tsecr;
7800         }
7801
7802         /* Update counters required for calculation of
7803          * average no. of packets aggregated.
7804          */
7805         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7806         statinfo->sw_stat.num_aggregations++;
7807 }
7808
7809 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7810                 struct tcphdr *tcp, u32 l4_pyld)
7811 {
7812         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7813         lro->total_len += l4_pyld;
7814         lro->frags_len += l4_pyld;
7815         lro->tcp_next_seq += l4_pyld;
7816         lro->sg_num++;
7817
7818         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7819         lro->tcp_ack = tcp->ack_seq;
7820         lro->window = tcp->window;
7821
7822         if (lro->saw_ts) {
7823                 u32 *ptr;
7824                 /* Update tsecr and tsval from this packet */
7825                 ptr = (u32 *) (tcp + 1);
7826                 lro->cur_tsval = *(ptr + 1);
7827                 lro->cur_tsecr = *(ptr + 2);
7828         }
7829 }
7830
7831 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7832                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7833 {
7834         u8 *ptr;
7835
7836         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7837
7838         if (!tcp_pyld_len) {
7839                 /* Runt frame or a pure ack */
7840                 return -1;
7841         }
7842
7843         if (ip->ihl != 5) /* IP has options */
7844                 return -1;
7845
7846         /* If we see CE codepoint in IP header, packet is not mergeable */
7847         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7848                 return -1;
7849
7850         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7851         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7852                                     tcp->ece || tcp->cwr || !tcp->ack) {
7853                 /*
7854                  * Currently recognize only the ack control word and
7855                  * any other control field being set would result in
7856                  * flushing the LRO session
7857                  */
7858                 return -1;
7859         }
7860
7861         /*
7862          * Allow only one TCP timestamp option. Don't aggregate if
7863          * any other options are detected.
7864          */
7865         if (tcp->doff != 5 && tcp->doff != 8)
7866                 return -1;
7867
7868         if (tcp->doff == 8) {
7869                 ptr = (u8 *)(tcp + 1);
7870                 while (*ptr == TCPOPT_NOP)
7871                         ptr++;
7872                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7873                         return -1;
7874
7875                 /* Ensure timestamp value increases monotonically */
7876                 if (l_lro)
7877                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7878                                 return -1;
7879
7880                 /* timestamp echo reply should be non-zero */
7881                 if (*((u32 *)(ptr+6)) == 0)
7882                         return -1;
7883         }
7884
7885         return 0;
7886 }
7887
7888 static int
7889 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7890                       struct RxD_t *rxdp, struct s2io_nic *sp)
7891 {
7892         struct iphdr *ip;
7893         struct tcphdr *tcph;
7894         int ret = 0, i;
7895
7896         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7897                                          rxdp))) {
7898                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7899                           ip->saddr, ip->daddr);
7900         } else {
7901                 return ret;
7902         }
7903
7904         tcph = (struct tcphdr *)*tcp;
7905         *tcp_len = get_l4_pyld_length(ip, tcph);
7906         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7907                 struct lro *l_lro = &sp->lro0_n[i];
7908                 if (l_lro->in_use) {
7909                         if (check_for_socket_match(l_lro, ip, tcph))
7910                                 continue;
7911                         /* Sock pair matched */
7912                         *lro = l_lro;
7913
7914                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7915                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7916                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7917                                           (*lro)->tcp_next_seq,
7918                                           ntohl(tcph->seq));
7919
7920                                 sp->mac_control.stats_info->
7921                                    sw_stat.outof_sequence_pkts++;
7922                                 ret = 2;
7923                                 break;
7924                         }
7925
7926                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7927                                 ret = 1; /* Aggregate */
7928                         else
7929                                 ret = 2; /* Flush both */
7930                         break;
7931                 }
7932         }
7933
7934         if (ret == 0) {
7935                 /* Before searching for available LRO objects,
7936                  * check if the pkt is L3/L4 aggregatable. If not
7937                  * don't create new LRO session. Just send this
7938                  * packet up.
7939                  */
7940                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7941                         return 5;
7942                 }
7943
7944                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7945                         struct lro *l_lro = &sp->lro0_n[i];
7946                         if (!(l_lro->in_use)) {
7947                                 *lro = l_lro;
7948                                 ret = 3; /* Begin anew */
7949                                 break;
7950                         }
7951                 }
7952         }
7953
7954         if (ret == 0) { /* sessions exceeded */
7955                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7956                           __FUNCTION__);
7957                 *lro = NULL;
7958                 return ret;
7959         }
7960
7961         switch (ret) {
7962                 case 3:
7963                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7964                         break;
7965                 case 2:
7966                         update_L3L4_header(sp, *lro);
7967                         break;
7968                 case 1:
7969                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7970                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7971                                 update_L3L4_header(sp, *lro);
7972                                 ret = 4; /* Flush the LRO */
7973                         }
7974                         break;
7975                 default:
7976                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7977                                 __FUNCTION__);
7978                         break;
7979         }
7980
7981         return ret;
7982 }
7983
7984 static void clear_lro_session(struct lro *lro)
7985 {
7986         static u16 lro_struct_size = sizeof(struct lro);
7987
7988         memset(lro, 0, lro_struct_size);
7989 }
7990
7991 static void queue_rx_frame(struct sk_buff *skb)
7992 {
7993         struct net_device *dev = skb->dev;
7994
7995         skb->protocol = eth_type_trans(skb, dev);
7996         if (napi)
7997                 netif_receive_skb(skb);
7998         else
7999                 netif_rx(skb);
8000 }
8001
8002 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8003                            struct sk_buff *skb,
8004                            u32 tcp_len)
8005 {
8006         struct sk_buff *first = lro->parent;
8007
8008         first->len += tcp_len;
8009         first->data_len = lro->frags_len;
8010         skb_pull(skb, (skb->len - tcp_len));
8011         if (skb_shinfo(first)->frag_list)
8012                 lro->last_frag->next = skb;
8013         else
8014                 skb_shinfo(first)->frag_list = skb;
8015         first->truesize += skb->truesize;
8016         lro->last_frag = skb;
8017         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8018         return;
8019 }
8020
8021 /**
8022  * s2io_io_error_detected - called when PCI error is detected
8023  * @pdev: Pointer to PCI device
8024  * @state: The current pci connection state
8025  *
8026  * This function is called after a PCI bus error affecting
8027  * this device has been detected.
8028  */
8029 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8030                                                pci_channel_state_t state)
8031 {
8032         struct net_device *netdev = pci_get_drvdata(pdev);
8033         struct s2io_nic *sp = netdev->priv;
8034
8035         netif_device_detach(netdev);
8036
8037         if (netif_running(netdev)) {
8038                 /* Bring down the card, while avoiding PCI I/O */
8039                 do_s2io_card_down(sp, 0);
8040         }
8041         pci_disable_device(pdev);
8042
8043         return PCI_ERS_RESULT_NEED_RESET;
8044 }
8045
8046 /**
8047  * s2io_io_slot_reset - called after the pci bus has been reset.
8048  * @pdev: Pointer to PCI device
8049  *
8050  * Restart the card from scratch, as if from a cold-boot.
8051  * At this point, the card has exprienced a hard reset,
8052  * followed by fixups by BIOS, and has its config space
8053  * set up identically to what it was at cold boot.
8054  */
8055 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8056 {
8057         struct net_device *netdev = pci_get_drvdata(pdev);
8058         struct s2io_nic *sp = netdev->priv;
8059
8060         if (pci_enable_device(pdev)) {
8061                 printk(KERN_ERR "s2io: "
8062                        "Cannot re-enable PCI device after reset.\n");
8063                 return PCI_ERS_RESULT_DISCONNECT;
8064         }
8065
8066         pci_set_master(pdev);
8067         s2io_reset(sp);
8068
8069         return PCI_ERS_RESULT_RECOVERED;
8070 }
8071
8072 /**
8073  * s2io_io_resume - called when traffic can start flowing again.
8074  * @pdev: Pointer to PCI device
8075  *
8076  * This callback is called when the error recovery driver tells
8077  * us that its OK to resume normal operation.
8078  */
8079 static void s2io_io_resume(struct pci_dev *pdev)
8080 {
8081         struct net_device *netdev = pci_get_drvdata(pdev);
8082         struct s2io_nic *sp = netdev->priv;
8083
8084         if (netif_running(netdev)) {
8085                 if (s2io_card_up(sp)) {
8086                         printk(KERN_ERR "s2io: "
8087                                "Can't bring device back up after reset.\n");
8088                         return;
8089                 }
8090
8091                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8092                         s2io_card_down(sp);
8093                         printk(KERN_ERR "s2io: "
8094                                "Can't resetore mac addr after reset.\n");
8095                         return;
8096                 }
8097         }
8098
8099         netif_device_attach(netdev);
8100         netif_wake_queue(netdev);
8101 }