4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
73 unsigned long num_physpages;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init disable_randmaps(char *s)
101 randomize_va_space = 0;
104 __setup("norandmaps", disable_randmaps);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t *pgd)
119 void pud_clear_bad(pud_t *pud)
125 void pmd_clear_bad(pmd_t *pmd)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
137 pgtable_t token = pmd_pgtable(*pmd);
139 pte_free_tlb(tlb, token);
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
152 pmd = pmd_offset(pud, addr);
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
157 free_pte_range(tlb, pmd);
158 } while (pmd++, addr = next, addr != end);
168 if (end - 1 > ceiling - 1)
171 pmd = pmd_offset(pud, start);
173 pmd_free_tlb(tlb, pmd);
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
185 pud = pud_offset(pgd, addr);
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 } while (pud++, addr = next, addr != end);
197 ceiling &= PGDIR_MASK;
201 if (end - 1 > ceiling - 1)
204 pud = pud_offset(pgd, start);
206 pud_free_tlb(tlb, pud);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather **tlb,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end - 1 > ceiling - 1)
265 pgd = pgd_offset((*tlb)->mm, addr);
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 } while (pgd++, addr = next, addr != end);
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 unsigned long floor, unsigned long ceiling)
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
287 if (is_vm_hugetlb_page(vma)) {
288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 floor, next? next->vm_start: ceiling);
292 * Optimization: gather nearby vmas into one call down
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 && !is_vm_hugetlb_page(next)) {
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
310 pgtable_t new = pte_alloc_one(mm, address);
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
329 spin_lock(&mm->page_table_lock);
330 if (!pmd_present(*pmd)) { /* Has another populated it ? */
332 pmd_populate(mm, pmd, new);
335 spin_unlock(&mm->page_table_lock);
341 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
343 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 smp_wmb(); /* See comment in __pte_alloc */
349 spin_lock(&init_mm.page_table_lock);
350 if (!pmd_present(*pmd)) { /* Has another populated it ? */
351 pmd_populate_kernel(&init_mm, pmd, new);
354 spin_unlock(&init_mm.page_table_lock);
356 pte_free_kernel(&init_mm, new);
360 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363 add_mm_counter(mm, file_rss, file_rss);
365 add_mm_counter(mm, anon_rss, anon_rss);
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
373 * The calling function must still handle the error.
375 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
377 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte),
380 (vma->vm_mm == current->mm ? current->comm : "???"),
381 vma->vm_flags, vaddr);
385 static inline int is_cow_mapping(unsigned int flags)
387 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
413 * And for normal mappings this is false.
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
435 # define HAVE_PTE_SPECIAL 0
437 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 if (HAVE_PTE_SPECIAL) {
443 if (likely(!pte_special(pte))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445 return pte_page(pte);
447 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
451 /* !HAVE_PTE_SPECIAL case follows: */
455 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456 if (vma->vm_flags & VM_MIXEDMAP) {
462 off = (addr - vma->vm_start) >> PAGE_SHIFT;
463 if (pfn == vma->vm_pgoff + off)
465 if (!is_cow_mapping(vma->vm_flags))
470 VM_BUG_ON(!pfn_valid(pfn));
473 * NOTE! We still have PageReserved() pages in the page tables.
475 * eg. VDSO mappings can cause them to exist.
478 return pfn_to_page(pfn);
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
488 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490 unsigned long addr, int *rss)
492 unsigned long vm_flags = vma->vm_flags;
493 pte_t pte = *src_pte;
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte))) {
498 if (!pte_file(pte)) {
499 swp_entry_t entry = pte_to_swp_entry(pte);
501 swap_duplicate(entry);
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm->mmlist))) {
504 spin_lock(&mmlist_lock);
505 if (list_empty(&dst_mm->mmlist))
506 list_add(&dst_mm->mmlist,
508 spin_unlock(&mmlist_lock);
510 if (is_write_migration_entry(entry) &&
511 is_cow_mapping(vm_flags)) {
513 * COW mappings require pages in both parent
514 * and child to be set to read.
516 make_migration_entry_read(&entry);
517 pte = swp_entry_to_pte(entry);
518 set_pte_at(src_mm, addr, src_pte, pte);
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
528 if (is_cow_mapping(vm_flags)) {
529 ptep_set_wrprotect(src_mm, addr, src_pte);
530 pte = pte_wrprotect(pte);
534 * If it's a shared mapping, mark it clean in
537 if (vm_flags & VM_SHARED)
538 pte = pte_mkclean(pte);
539 pte = pte_mkold(pte);
541 page = vm_normal_page(vma, addr, pte);
544 page_dup_rmap(page, vma, addr);
545 rss[!!PageAnon(page)]++;
549 set_pte_at(dst_mm, addr, dst_pte, pte);
552 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554 unsigned long addr, unsigned long end)
556 pte_t *src_pte, *dst_pte;
557 spinlock_t *src_ptl, *dst_ptl;
563 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
566 src_pte = pte_offset_map_nested(src_pmd, addr);
567 src_ptl = pte_lockptr(src_mm, src_pmd);
568 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569 arch_enter_lazy_mmu_mode();
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
576 if (progress >= 32) {
578 if (need_resched() ||
579 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
582 if (pte_none(*src_pte)) {
586 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
588 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
590 arch_leave_lazy_mmu_mode();
591 spin_unlock(src_ptl);
592 pte_unmap_nested(src_pte - 1);
593 add_mm_rss(dst_mm, rss[0], rss[1]);
594 pte_unmap_unlock(dst_pte - 1, dst_ptl);
601 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603 unsigned long addr, unsigned long end)
605 pmd_t *src_pmd, *dst_pmd;
608 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611 src_pmd = pmd_offset(src_pud, addr);
613 next = pmd_addr_end(addr, end);
614 if (pmd_none_or_clear_bad(src_pmd))
616 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
623 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625 unsigned long addr, unsigned long end)
627 pud_t *src_pud, *dst_pud;
630 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633 src_pud = pud_offset(src_pgd, addr);
635 next = pud_addr_end(addr, end);
636 if (pud_none_or_clear_bad(src_pud))
638 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641 } while (dst_pud++, src_pud++, addr = next, addr != end);
645 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646 struct vm_area_struct *vma)
648 pgd_t *src_pgd, *dst_pgd;
650 unsigned long addr = vma->vm_start;
651 unsigned long end = vma->vm_end;
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
659 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
664 if (is_vm_hugetlb_page(vma))
665 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
667 dst_pgd = pgd_offset(dst_mm, addr);
668 src_pgd = pgd_offset(src_mm, addr);
670 next = pgd_addr_end(addr, end);
671 if (pgd_none_or_clear_bad(src_pgd))
673 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
680 static unsigned long zap_pte_range(struct mmu_gather *tlb,
681 struct vm_area_struct *vma, pmd_t *pmd,
682 unsigned long addr, unsigned long end,
683 long *zap_work, struct zap_details *details)
685 struct mm_struct *mm = tlb->mm;
691 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692 arch_enter_lazy_mmu_mode();
695 if (pte_none(ptent)) {
700 (*zap_work) -= PAGE_SIZE;
702 if (pte_present(ptent)) {
705 page = vm_normal_page(vma, addr, ptent);
706 if (unlikely(details) && page) {
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
712 if (details->check_mapping &&
713 details->check_mapping != page->mapping)
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
719 if (details->nonlinear_vma &&
720 (page->index < details->first_index ||
721 page->index > details->last_index))
724 ptent = ptep_get_and_clear_full(mm, addr, pte,
726 tlb_remove_tlb_entry(tlb, pte, addr);
729 if (unlikely(details) && details->nonlinear_vma
730 && linear_page_index(details->nonlinear_vma,
731 addr) != page->index)
732 set_pte_at(mm, addr, pte,
733 pgoff_to_pte(page->index));
737 if (pte_dirty(ptent))
738 set_page_dirty(page);
739 if (pte_young(ptent))
740 SetPageReferenced(page);
743 page_remove_rmap(page, vma);
744 tlb_remove_page(tlb, page);
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
751 if (unlikely(details))
753 if (!pte_file(ptent))
754 free_swap_and_cache(pte_to_swp_entry(ptent));
755 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
758 add_mm_rss(mm, file_rss, anon_rss);
759 arch_leave_lazy_mmu_mode();
760 pte_unmap_unlock(pte - 1, ptl);
765 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766 struct vm_area_struct *vma, pud_t *pud,
767 unsigned long addr, unsigned long end,
768 long *zap_work, struct zap_details *details)
773 pmd = pmd_offset(pud, addr);
775 next = pmd_addr_end(addr, end);
776 if (pmd_none_or_clear_bad(pmd)) {
780 next = zap_pte_range(tlb, vma, pmd, addr, next,
782 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
787 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788 struct vm_area_struct *vma, pgd_t *pgd,
789 unsigned long addr, unsigned long end,
790 long *zap_work, struct zap_details *details)
795 pud = pud_offset(pgd, addr);
797 next = pud_addr_end(addr, end);
798 if (pud_none_or_clear_bad(pud)) {
802 next = zap_pmd_range(tlb, vma, pud, addr, next,
804 } while (pud++, addr = next, (addr != end && *zap_work > 0));
809 static unsigned long unmap_page_range(struct mmu_gather *tlb,
810 struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end,
812 long *zap_work, struct zap_details *details)
817 if (details && !details->check_mapping && !details->nonlinear_vma)
821 tlb_start_vma(tlb, vma);
822 pgd = pgd_offset(vma->vm_mm, addr);
824 next = pgd_addr_end(addr, end);
825 if (pgd_none_or_clear_bad(pgd)) {
829 next = zap_pud_range(tlb, vma, pgd, addr, next,
831 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
832 tlb_end_vma(tlb, vma);
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
853 * Returns the end address of the unmapping (restart addr if interrupted).
855 * Unmap all pages in the vma list.
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
859 * return the ending mmu_gather to the caller.
861 * Only addresses between `start' and `end' will be unmapped.
863 * The VMA list must be sorted in ascending virtual address order.
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
870 unsigned long unmap_vmas(struct mmu_gather **tlbp,
871 struct vm_area_struct *vma, unsigned long start_addr,
872 unsigned long end_addr, unsigned long *nr_accounted,
873 struct zap_details *details)
875 long zap_work = ZAP_BLOCK_SIZE;
876 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
877 int tlb_start_valid = 0;
878 unsigned long start = start_addr;
879 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880 int fullmm = (*tlbp)->fullmm;
882 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
885 start = max(vma->vm_start, start_addr);
886 if (start >= vma->vm_end)
888 end = min(vma->vm_end, end_addr);
889 if (end <= vma->vm_start)
892 if (vma->vm_flags & VM_ACCOUNT)
893 *nr_accounted += (end - start) >> PAGE_SHIFT;
895 while (start != end) {
896 if (!tlb_start_valid) {
901 if (unlikely(is_vm_hugetlb_page(vma))) {
902 unmap_hugepage_range(vma, start, end);
903 zap_work -= (end - start) /
904 (HPAGE_SIZE / PAGE_SIZE);
907 start = unmap_page_range(*tlbp, vma,
908 start, end, &zap_work, details);
911 BUG_ON(start != end);
915 tlb_finish_mmu(*tlbp, tlb_start, start);
917 if (need_resched() ||
918 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
926 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
928 zap_work = ZAP_BLOCK_SIZE;
932 return start; /* which is now the end (or restart) address */
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
942 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943 unsigned long size, struct zap_details *details)
945 struct mm_struct *mm = vma->vm_mm;
946 struct mmu_gather *tlb;
947 unsigned long end = address + size;
948 unsigned long nr_accounted = 0;
951 tlb = tlb_gather_mmu(mm, 0);
952 update_hiwater_rss(mm);
953 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
955 tlb_finish_mmu(tlb, address, end);
960 * Do a quick page-table lookup for a single page.
962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
971 struct mm_struct *mm = vma->vm_mm;
973 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
975 BUG_ON(flags & FOLL_GET);
980 pgd = pgd_offset(mm, address);
981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
984 pud = pud_offset(pgd, address);
985 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
988 pmd = pmd_offset(pud, address);
992 if (pmd_huge(*pmd)) {
993 BUG_ON(flags & FOLL_GET);
994 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
998 if (unlikely(pmd_bad(*pmd)))
1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1004 if (!pte_present(pte))
1006 if ((flags & FOLL_WRITE) && !pte_write(pte))
1008 page = vm_normal_page(vma, address, pte);
1009 if (unlikely(!page))
1012 if (flags & FOLL_GET)
1014 if (flags & FOLL_TOUCH) {
1015 if ((flags & FOLL_WRITE) &&
1016 !pte_dirty(pte) && !PageDirty(page))
1017 set_page_dirty(page);
1018 mark_page_accessed(page);
1021 pte_unmap_unlock(ptep, ptl);
1026 pte_unmap_unlock(ptep, ptl);
1027 return ERR_PTR(-EFAULT);
1030 pte_unmap_unlock(ptep, ptl);
1033 /* Fall through to ZERO_PAGE handling */
1036 * When core dumping an enormous anonymous area that nobody
1037 * has touched so far, we don't want to allocate page tables.
1039 if (flags & FOLL_ANON) {
1040 page = ZERO_PAGE(0);
1041 if (flags & FOLL_GET)
1043 BUG_ON(flags & FOLL_WRITE);
1048 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1049 unsigned long start, int len, int write, int force,
1050 struct page **pages, struct vm_area_struct **vmas)
1053 unsigned int vm_flags;
1058 * Require read or write permissions.
1059 * If 'force' is set, we only require the "MAY" flags.
1061 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1062 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1066 struct vm_area_struct *vma;
1067 unsigned int foll_flags;
1069 vma = find_extend_vma(mm, start);
1070 if (!vma && in_gate_area(tsk, start)) {
1071 unsigned long pg = start & PAGE_MASK;
1072 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1077 if (write) /* user gate pages are read-only */
1078 return i ? : -EFAULT;
1080 pgd = pgd_offset_k(pg);
1082 pgd = pgd_offset_gate(mm, pg);
1083 BUG_ON(pgd_none(*pgd));
1084 pud = pud_offset(pgd, pg);
1085 BUG_ON(pud_none(*pud));
1086 pmd = pmd_offset(pud, pg);
1088 return i ? : -EFAULT;
1089 pte = pte_offset_map(pmd, pg);
1090 if (pte_none(*pte)) {
1092 return i ? : -EFAULT;
1095 struct page *page = vm_normal_page(gate_vma, start, *pte);
1109 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1110 || !(vm_flags & vma->vm_flags))
1111 return i ? : -EFAULT;
1113 if (is_vm_hugetlb_page(vma)) {
1114 i = follow_hugetlb_page(mm, vma, pages, vmas,
1115 &start, &len, i, write);
1119 foll_flags = FOLL_TOUCH;
1121 foll_flags |= FOLL_GET;
1122 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1123 (!vma->vm_ops || !vma->vm_ops->fault))
1124 foll_flags |= FOLL_ANON;
1130 * If tsk is ooming, cut off its access to large memory
1131 * allocations. It has a pending SIGKILL, but it can't
1132 * be processed until returning to user space.
1134 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1138 foll_flags |= FOLL_WRITE;
1141 while (!(page = follow_page(vma, start, foll_flags))) {
1143 ret = handle_mm_fault(mm, vma, start,
1144 foll_flags & FOLL_WRITE);
1145 if (ret & VM_FAULT_ERROR) {
1146 if (ret & VM_FAULT_OOM)
1147 return i ? i : -ENOMEM;
1148 else if (ret & VM_FAULT_SIGBUS)
1149 return i ? i : -EFAULT;
1152 if (ret & VM_FAULT_MAJOR)
1158 * The VM_FAULT_WRITE bit tells us that
1159 * do_wp_page has broken COW when necessary,
1160 * even if maybe_mkwrite decided not to set
1161 * pte_write. We can thus safely do subsequent
1162 * page lookups as if they were reads.
1164 if (ret & VM_FAULT_WRITE)
1165 foll_flags &= ~FOLL_WRITE;
1170 return i ? i : PTR_ERR(page);
1174 flush_anon_page(vma, page, start);
1175 flush_dcache_page(page);
1182 } while (len && start < vma->vm_end);
1186 EXPORT_SYMBOL(get_user_pages);
1188 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1191 pgd_t * pgd = pgd_offset(mm, addr);
1192 pud_t * pud = pud_alloc(mm, pgd, addr);
1194 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1196 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1202 * This is the old fallback for page remapping.
1204 * For historical reasons, it only allows reserved pages. Only
1205 * old drivers should use this, and they needed to mark their
1206 * pages reserved for the old functions anyway.
1208 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1209 struct page *page, pgprot_t prot)
1211 struct mm_struct *mm = vma->vm_mm;
1216 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1224 flush_dcache_page(page);
1225 pte = get_locked_pte(mm, addr, &ptl);
1229 if (!pte_none(*pte))
1232 /* Ok, finally just insert the thing.. */
1234 inc_mm_counter(mm, file_rss);
1235 page_add_file_rmap(page);
1236 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1239 pte_unmap_unlock(pte, ptl);
1242 pte_unmap_unlock(pte, ptl);
1244 mem_cgroup_uncharge_page(page);
1250 * vm_insert_page - insert single page into user vma
1251 * @vma: user vma to map to
1252 * @addr: target user address of this page
1253 * @page: source kernel page
1255 * This allows drivers to insert individual pages they've allocated
1258 * The page has to be a nice clean _individual_ kernel allocation.
1259 * If you allocate a compound page, you need to have marked it as
1260 * such (__GFP_COMP), or manually just split the page up yourself
1261 * (see split_page()).
1263 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1264 * took an arbitrary page protection parameter. This doesn't allow
1265 * that. Your vma protection will have to be set up correctly, which
1266 * means that if you want a shared writable mapping, you'd better
1267 * ask for a shared writable mapping!
1269 * The page does not need to be reserved.
1271 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1274 if (addr < vma->vm_start || addr >= vma->vm_end)
1276 if (!page_count(page))
1278 vma->vm_flags |= VM_INSERTPAGE;
1279 return insert_page(vma, addr, page, vma->vm_page_prot);
1281 EXPORT_SYMBOL(vm_insert_page);
1283 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1284 unsigned long pfn, pgprot_t prot)
1286 struct mm_struct *mm = vma->vm_mm;
1292 pte = get_locked_pte(mm, addr, &ptl);
1296 if (!pte_none(*pte))
1299 /* Ok, finally just insert the thing.. */
1300 entry = pte_mkspecial(pfn_pte(pfn, prot));
1301 set_pte_at(mm, addr, pte, entry);
1302 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1306 pte_unmap_unlock(pte, ptl);
1312 * vm_insert_pfn - insert single pfn into user vma
1313 * @vma: user vma to map to
1314 * @addr: target user address of this page
1315 * @pfn: source kernel pfn
1317 * Similar to vm_inert_page, this allows drivers to insert individual pages
1318 * they've allocated into a user vma. Same comments apply.
1320 * This function should only be called from a vm_ops->fault handler, and
1321 * in that case the handler should return NULL.
1323 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1327 * Technically, architectures with pte_special can avoid all these
1328 * restrictions (same for remap_pfn_range). However we would like
1329 * consistency in testing and feature parity among all, so we should
1330 * try to keep these invariants in place for everybody.
1332 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1333 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1334 (VM_PFNMAP|VM_MIXEDMAP));
1335 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1336 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1338 if (addr < vma->vm_start || addr >= vma->vm_end)
1340 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1342 EXPORT_SYMBOL(vm_insert_pfn);
1344 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1347 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1349 if (addr < vma->vm_start || addr >= vma->vm_end)
1353 * If we don't have pte special, then we have to use the pfn_valid()
1354 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1355 * refcount the page if pfn_valid is true (hence insert_page rather
1358 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1361 page = pfn_to_page(pfn);
1362 return insert_page(vma, addr, page, vma->vm_page_prot);
1364 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1366 EXPORT_SYMBOL(vm_insert_mixed);
1369 * maps a range of physical memory into the requested pages. the old
1370 * mappings are removed. any references to nonexistent pages results
1371 * in null mappings (currently treated as "copy-on-access")
1373 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1374 unsigned long addr, unsigned long end,
1375 unsigned long pfn, pgprot_t prot)
1380 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1383 arch_enter_lazy_mmu_mode();
1385 BUG_ON(!pte_none(*pte));
1386 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1388 } while (pte++, addr += PAGE_SIZE, addr != end);
1389 arch_leave_lazy_mmu_mode();
1390 pte_unmap_unlock(pte - 1, ptl);
1394 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1395 unsigned long addr, unsigned long end,
1396 unsigned long pfn, pgprot_t prot)
1401 pfn -= addr >> PAGE_SHIFT;
1402 pmd = pmd_alloc(mm, pud, addr);
1406 next = pmd_addr_end(addr, end);
1407 if (remap_pte_range(mm, pmd, addr, next,
1408 pfn + (addr >> PAGE_SHIFT), prot))
1410 } while (pmd++, addr = next, addr != end);
1414 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1415 unsigned long addr, unsigned long end,
1416 unsigned long pfn, pgprot_t prot)
1421 pfn -= addr >> PAGE_SHIFT;
1422 pud = pud_alloc(mm, pgd, addr);
1426 next = pud_addr_end(addr, end);
1427 if (remap_pmd_range(mm, pud, addr, next,
1428 pfn + (addr >> PAGE_SHIFT), prot))
1430 } while (pud++, addr = next, addr != end);
1435 * remap_pfn_range - remap kernel memory to userspace
1436 * @vma: user vma to map to
1437 * @addr: target user address to start at
1438 * @pfn: physical address of kernel memory
1439 * @size: size of map area
1440 * @prot: page protection flags for this mapping
1442 * Note: this is only safe if the mm semaphore is held when called.
1444 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1445 unsigned long pfn, unsigned long size, pgprot_t prot)
1449 unsigned long end = addr + PAGE_ALIGN(size);
1450 struct mm_struct *mm = vma->vm_mm;
1454 * Physically remapped pages are special. Tell the
1455 * rest of the world about it:
1456 * VM_IO tells people not to look at these pages
1457 * (accesses can have side effects).
1458 * VM_RESERVED is specified all over the place, because
1459 * in 2.4 it kept swapout's vma scan off this vma; but
1460 * in 2.6 the LRU scan won't even find its pages, so this
1461 * flag means no more than count its pages in reserved_vm,
1462 * and omit it from core dump, even when VM_IO turned off.
1463 * VM_PFNMAP tells the core MM that the base pages are just
1464 * raw PFN mappings, and do not have a "struct page" associated
1467 * There's a horrible special case to handle copy-on-write
1468 * behaviour that some programs depend on. We mark the "original"
1469 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1471 if (is_cow_mapping(vma->vm_flags)) {
1472 if (addr != vma->vm_start || end != vma->vm_end)
1474 vma->vm_pgoff = pfn;
1477 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1479 BUG_ON(addr >= end);
1480 pfn -= addr >> PAGE_SHIFT;
1481 pgd = pgd_offset(mm, addr);
1482 flush_cache_range(vma, addr, end);
1484 next = pgd_addr_end(addr, end);
1485 err = remap_pud_range(mm, pgd, addr, next,
1486 pfn + (addr >> PAGE_SHIFT), prot);
1489 } while (pgd++, addr = next, addr != end);
1492 EXPORT_SYMBOL(remap_pfn_range);
1494 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1495 unsigned long addr, unsigned long end,
1496 pte_fn_t fn, void *data)
1501 spinlock_t *uninitialized_var(ptl);
1503 pte = (mm == &init_mm) ?
1504 pte_alloc_kernel(pmd, addr) :
1505 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1509 BUG_ON(pmd_huge(*pmd));
1511 token = pmd_pgtable(*pmd);
1514 err = fn(pte, token, addr, data);
1517 } while (pte++, addr += PAGE_SIZE, addr != end);
1520 pte_unmap_unlock(pte-1, ptl);
1524 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1525 unsigned long addr, unsigned long end,
1526 pte_fn_t fn, void *data)
1532 pmd = pmd_alloc(mm, pud, addr);
1536 next = pmd_addr_end(addr, end);
1537 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1540 } while (pmd++, addr = next, addr != end);
1544 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1545 unsigned long addr, unsigned long end,
1546 pte_fn_t fn, void *data)
1552 pud = pud_alloc(mm, pgd, addr);
1556 next = pud_addr_end(addr, end);
1557 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1560 } while (pud++, addr = next, addr != end);
1565 * Scan a region of virtual memory, filling in page tables as necessary
1566 * and calling a provided function on each leaf page table.
1568 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1569 unsigned long size, pte_fn_t fn, void *data)
1573 unsigned long end = addr + size;
1576 BUG_ON(addr >= end);
1577 pgd = pgd_offset(mm, addr);
1579 next = pgd_addr_end(addr, end);
1580 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1583 } while (pgd++, addr = next, addr != end);
1586 EXPORT_SYMBOL_GPL(apply_to_page_range);
1589 * handle_pte_fault chooses page fault handler according to an entry
1590 * which was read non-atomically. Before making any commitment, on
1591 * those architectures or configurations (e.g. i386 with PAE) which
1592 * might give a mix of unmatched parts, do_swap_page and do_file_page
1593 * must check under lock before unmapping the pte and proceeding
1594 * (but do_wp_page is only called after already making such a check;
1595 * and do_anonymous_page and do_no_page can safely check later on).
1597 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1598 pte_t *page_table, pte_t orig_pte)
1601 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1602 if (sizeof(pte_t) > sizeof(unsigned long)) {
1603 spinlock_t *ptl = pte_lockptr(mm, pmd);
1605 same = pte_same(*page_table, orig_pte);
1609 pte_unmap(page_table);
1614 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1615 * servicing faults for write access. In the normal case, do always want
1616 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1617 * that do not have writing enabled, when used by access_process_vm.
1619 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1621 if (likely(vma->vm_flags & VM_WRITE))
1622 pte = pte_mkwrite(pte);
1626 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1629 * If the source page was a PFN mapping, we don't have
1630 * a "struct page" for it. We do a best-effort copy by
1631 * just copying from the original user address. If that
1632 * fails, we just zero-fill it. Live with it.
1634 if (unlikely(!src)) {
1635 void *kaddr = kmap_atomic(dst, KM_USER0);
1636 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1639 * This really shouldn't fail, because the page is there
1640 * in the page tables. But it might just be unreadable,
1641 * in which case we just give up and fill the result with
1644 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1645 memset(kaddr, 0, PAGE_SIZE);
1646 kunmap_atomic(kaddr, KM_USER0);
1647 flush_dcache_page(dst);
1649 copy_user_highpage(dst, src, va, vma);
1653 * This routine handles present pages, when users try to write
1654 * to a shared page. It is done by copying the page to a new address
1655 * and decrementing the shared-page counter for the old page.
1657 * Note that this routine assumes that the protection checks have been
1658 * done by the caller (the low-level page fault routine in most cases).
1659 * Thus we can safely just mark it writable once we've done any necessary
1662 * We also mark the page dirty at this point even though the page will
1663 * change only once the write actually happens. This avoids a few races,
1664 * and potentially makes it more efficient.
1666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1667 * but allow concurrent faults), with pte both mapped and locked.
1668 * We return with mmap_sem still held, but pte unmapped and unlocked.
1670 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1671 unsigned long address, pte_t *page_table, pmd_t *pmd,
1672 spinlock_t *ptl, pte_t orig_pte)
1674 struct page *old_page, *new_page;
1676 int reuse = 0, ret = 0;
1677 int page_mkwrite = 0;
1678 struct page *dirty_page = NULL;
1680 old_page = vm_normal_page(vma, address, orig_pte);
1685 * Take out anonymous pages first, anonymous shared vmas are
1686 * not dirty accountable.
1688 if (PageAnon(old_page)) {
1689 if (!TestSetPageLocked(old_page)) {
1690 reuse = can_share_swap_page(old_page);
1691 unlock_page(old_page);
1693 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1694 (VM_WRITE|VM_SHARED))) {
1696 * Only catch write-faults on shared writable pages,
1697 * read-only shared pages can get COWed by
1698 * get_user_pages(.write=1, .force=1).
1700 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1702 * Notify the address space that the page is about to
1703 * become writable so that it can prohibit this or wait
1704 * for the page to get into an appropriate state.
1706 * We do this without the lock held, so that it can
1707 * sleep if it needs to.
1709 page_cache_get(old_page);
1710 pte_unmap_unlock(page_table, ptl);
1712 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1713 goto unwritable_page;
1716 * Since we dropped the lock we need to revalidate
1717 * the PTE as someone else may have changed it. If
1718 * they did, we just return, as we can count on the
1719 * MMU to tell us if they didn't also make it writable.
1721 page_table = pte_offset_map_lock(mm, pmd, address,
1723 page_cache_release(old_page);
1724 if (!pte_same(*page_table, orig_pte))
1729 dirty_page = old_page;
1730 get_page(dirty_page);
1735 flush_cache_page(vma, address, pte_pfn(orig_pte));
1736 entry = pte_mkyoung(orig_pte);
1737 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1738 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1739 update_mmu_cache(vma, address, entry);
1740 ret |= VM_FAULT_WRITE;
1745 * Ok, we need to copy. Oh, well..
1747 page_cache_get(old_page);
1749 pte_unmap_unlock(page_table, ptl);
1751 if (unlikely(anon_vma_prepare(vma)))
1753 VM_BUG_ON(old_page == ZERO_PAGE(0));
1754 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1757 cow_user_page(new_page, old_page, address, vma);
1758 __SetPageUptodate(new_page);
1760 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1764 * Re-check the pte - we dropped the lock
1766 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1767 if (likely(pte_same(*page_table, orig_pte))) {
1769 page_remove_rmap(old_page, vma);
1770 if (!PageAnon(old_page)) {
1771 dec_mm_counter(mm, file_rss);
1772 inc_mm_counter(mm, anon_rss);
1775 inc_mm_counter(mm, anon_rss);
1776 flush_cache_page(vma, address, pte_pfn(orig_pte));
1777 entry = mk_pte(new_page, vma->vm_page_prot);
1778 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1780 * Clear the pte entry and flush it first, before updating the
1781 * pte with the new entry. This will avoid a race condition
1782 * seen in the presence of one thread doing SMC and another
1785 ptep_clear_flush(vma, address, page_table);
1786 set_pte_at(mm, address, page_table, entry);
1787 update_mmu_cache(vma, address, entry);
1788 lru_cache_add_active(new_page);
1789 page_add_new_anon_rmap(new_page, vma, address);
1791 /* Free the old page.. */
1792 new_page = old_page;
1793 ret |= VM_FAULT_WRITE;
1795 mem_cgroup_uncharge_page(new_page);
1798 page_cache_release(new_page);
1800 page_cache_release(old_page);
1802 pte_unmap_unlock(page_table, ptl);
1805 file_update_time(vma->vm_file);
1808 * Yes, Virginia, this is actually required to prevent a race
1809 * with clear_page_dirty_for_io() from clearing the page dirty
1810 * bit after it clear all dirty ptes, but before a racing
1811 * do_wp_page installs a dirty pte.
1813 * do_no_page is protected similarly.
1815 wait_on_page_locked(dirty_page);
1816 set_page_dirty_balance(dirty_page, page_mkwrite);
1817 put_page(dirty_page);
1821 page_cache_release(new_page);
1824 page_cache_release(old_page);
1825 return VM_FAULT_OOM;
1828 page_cache_release(old_page);
1829 return VM_FAULT_SIGBUS;
1833 * Helper functions for unmap_mapping_range().
1835 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1837 * We have to restart searching the prio_tree whenever we drop the lock,
1838 * since the iterator is only valid while the lock is held, and anyway
1839 * a later vma might be split and reinserted earlier while lock dropped.
1841 * The list of nonlinear vmas could be handled more efficiently, using
1842 * a placeholder, but handle it in the same way until a need is shown.
1843 * It is important to search the prio_tree before nonlinear list: a vma
1844 * may become nonlinear and be shifted from prio_tree to nonlinear list
1845 * while the lock is dropped; but never shifted from list to prio_tree.
1847 * In order to make forward progress despite restarting the search,
1848 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1849 * quickly skip it next time around. Since the prio_tree search only
1850 * shows us those vmas affected by unmapping the range in question, we
1851 * can't efficiently keep all vmas in step with mapping->truncate_count:
1852 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1853 * mapping->truncate_count and vma->vm_truncate_count are protected by
1856 * In order to make forward progress despite repeatedly restarting some
1857 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1858 * and restart from that address when we reach that vma again. It might
1859 * have been split or merged, shrunk or extended, but never shifted: so
1860 * restart_addr remains valid so long as it remains in the vma's range.
1861 * unmap_mapping_range forces truncate_count to leap over page-aligned
1862 * values so we can save vma's restart_addr in its truncate_count field.
1864 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1866 static void reset_vma_truncate_counts(struct address_space *mapping)
1868 struct vm_area_struct *vma;
1869 struct prio_tree_iter iter;
1871 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1872 vma->vm_truncate_count = 0;
1873 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1874 vma->vm_truncate_count = 0;
1877 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1878 unsigned long start_addr, unsigned long end_addr,
1879 struct zap_details *details)
1881 unsigned long restart_addr;
1885 * files that support invalidating or truncating portions of the
1886 * file from under mmaped areas must have their ->fault function
1887 * return a locked page (and set VM_FAULT_LOCKED in the return).
1888 * This provides synchronisation against concurrent unmapping here.
1892 restart_addr = vma->vm_truncate_count;
1893 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1894 start_addr = restart_addr;
1895 if (start_addr >= end_addr) {
1896 /* Top of vma has been split off since last time */
1897 vma->vm_truncate_count = details->truncate_count;
1902 restart_addr = zap_page_range(vma, start_addr,
1903 end_addr - start_addr, details);
1904 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1906 if (restart_addr >= end_addr) {
1907 /* We have now completed this vma: mark it so */
1908 vma->vm_truncate_count = details->truncate_count;
1912 /* Note restart_addr in vma's truncate_count field */
1913 vma->vm_truncate_count = restart_addr;
1918 spin_unlock(details->i_mmap_lock);
1920 spin_lock(details->i_mmap_lock);
1924 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1925 struct zap_details *details)
1927 struct vm_area_struct *vma;
1928 struct prio_tree_iter iter;
1929 pgoff_t vba, vea, zba, zea;
1932 vma_prio_tree_foreach(vma, &iter, root,
1933 details->first_index, details->last_index) {
1934 /* Skip quickly over those we have already dealt with */
1935 if (vma->vm_truncate_count == details->truncate_count)
1938 vba = vma->vm_pgoff;
1939 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1940 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1941 zba = details->first_index;
1944 zea = details->last_index;
1948 if (unmap_mapping_range_vma(vma,
1949 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1950 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1956 static inline void unmap_mapping_range_list(struct list_head *head,
1957 struct zap_details *details)
1959 struct vm_area_struct *vma;
1962 * In nonlinear VMAs there is no correspondence between virtual address
1963 * offset and file offset. So we must perform an exhaustive search
1964 * across *all* the pages in each nonlinear VMA, not just the pages
1965 * whose virtual address lies outside the file truncation point.
1968 list_for_each_entry(vma, head, shared.vm_set.list) {
1969 /* Skip quickly over those we have already dealt with */
1970 if (vma->vm_truncate_count == details->truncate_count)
1972 details->nonlinear_vma = vma;
1973 if (unmap_mapping_range_vma(vma, vma->vm_start,
1974 vma->vm_end, details) < 0)
1980 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1981 * @mapping: the address space containing mmaps to be unmapped.
1982 * @holebegin: byte in first page to unmap, relative to the start of
1983 * the underlying file. This will be rounded down to a PAGE_SIZE
1984 * boundary. Note that this is different from vmtruncate(), which
1985 * must keep the partial page. In contrast, we must get rid of
1987 * @holelen: size of prospective hole in bytes. This will be rounded
1988 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1990 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1991 * but 0 when invalidating pagecache, don't throw away private data.
1993 void unmap_mapping_range(struct address_space *mapping,
1994 loff_t const holebegin, loff_t const holelen, int even_cows)
1996 struct zap_details details;
1997 pgoff_t hba = holebegin >> PAGE_SHIFT;
1998 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2000 /* Check for overflow. */
2001 if (sizeof(holelen) > sizeof(hlen)) {
2003 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2004 if (holeend & ~(long long)ULONG_MAX)
2005 hlen = ULONG_MAX - hba + 1;
2008 details.check_mapping = even_cows? NULL: mapping;
2009 details.nonlinear_vma = NULL;
2010 details.first_index = hba;
2011 details.last_index = hba + hlen - 1;
2012 if (details.last_index < details.first_index)
2013 details.last_index = ULONG_MAX;
2014 details.i_mmap_lock = &mapping->i_mmap_lock;
2016 spin_lock(&mapping->i_mmap_lock);
2018 /* Protect against endless unmapping loops */
2019 mapping->truncate_count++;
2020 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2021 if (mapping->truncate_count == 0)
2022 reset_vma_truncate_counts(mapping);
2023 mapping->truncate_count++;
2025 details.truncate_count = mapping->truncate_count;
2027 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2028 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2029 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2030 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2031 spin_unlock(&mapping->i_mmap_lock);
2033 EXPORT_SYMBOL(unmap_mapping_range);
2036 * vmtruncate - unmap mappings "freed" by truncate() syscall
2037 * @inode: inode of the file used
2038 * @offset: file offset to start truncating
2040 * NOTE! We have to be ready to update the memory sharing
2041 * between the file and the memory map for a potential last
2042 * incomplete page. Ugly, but necessary.
2044 int vmtruncate(struct inode * inode, loff_t offset)
2046 if (inode->i_size < offset) {
2047 unsigned long limit;
2049 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2050 if (limit != RLIM_INFINITY && offset > limit)
2052 if (offset > inode->i_sb->s_maxbytes)
2054 i_size_write(inode, offset);
2056 struct address_space *mapping = inode->i_mapping;
2059 * truncation of in-use swapfiles is disallowed - it would
2060 * cause subsequent swapout to scribble on the now-freed
2063 if (IS_SWAPFILE(inode))
2065 i_size_write(inode, offset);
2068 * unmap_mapping_range is called twice, first simply for
2069 * efficiency so that truncate_inode_pages does fewer
2070 * single-page unmaps. However after this first call, and
2071 * before truncate_inode_pages finishes, it is possible for
2072 * private pages to be COWed, which remain after
2073 * truncate_inode_pages finishes, hence the second
2074 * unmap_mapping_range call must be made for correctness.
2076 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2077 truncate_inode_pages(mapping, offset);
2078 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2081 if (inode->i_op && inode->i_op->truncate)
2082 inode->i_op->truncate(inode);
2086 send_sig(SIGXFSZ, current, 0);
2090 EXPORT_SYMBOL(vmtruncate);
2092 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2094 struct address_space *mapping = inode->i_mapping;
2097 * If the underlying filesystem is not going to provide
2098 * a way to truncate a range of blocks (punch a hole) -
2099 * we should return failure right now.
2101 if (!inode->i_op || !inode->i_op->truncate_range)
2104 mutex_lock(&inode->i_mutex);
2105 down_write(&inode->i_alloc_sem);
2106 unmap_mapping_range(mapping, offset, (end - offset), 1);
2107 truncate_inode_pages_range(mapping, offset, end);
2108 unmap_mapping_range(mapping, offset, (end - offset), 1);
2109 inode->i_op->truncate_range(inode, offset, end);
2110 up_write(&inode->i_alloc_sem);
2111 mutex_unlock(&inode->i_mutex);
2117 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2118 * but allow concurrent faults), and pte mapped but not yet locked.
2119 * We return with mmap_sem still held, but pte unmapped and unlocked.
2121 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2122 unsigned long address, pte_t *page_table, pmd_t *pmd,
2123 int write_access, pte_t orig_pte)
2131 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2134 entry = pte_to_swp_entry(orig_pte);
2135 if (is_migration_entry(entry)) {
2136 migration_entry_wait(mm, pmd, address);
2139 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2140 page = lookup_swap_cache(entry);
2142 grab_swap_token(); /* Contend for token _before_ read-in */
2143 page = swapin_readahead(entry,
2144 GFP_HIGHUSER_MOVABLE, vma, address);
2147 * Back out if somebody else faulted in this pte
2148 * while we released the pte lock.
2150 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2151 if (likely(pte_same(*page_table, orig_pte)))
2153 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2157 /* Had to read the page from swap area: Major fault */
2158 ret = VM_FAULT_MAJOR;
2159 count_vm_event(PGMAJFAULT);
2162 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2163 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2168 mark_page_accessed(page);
2170 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2173 * Back out if somebody else already faulted in this pte.
2175 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2176 if (unlikely(!pte_same(*page_table, orig_pte)))
2179 if (unlikely(!PageUptodate(page))) {
2180 ret = VM_FAULT_SIGBUS;
2184 /* The page isn't present yet, go ahead with the fault. */
2186 inc_mm_counter(mm, anon_rss);
2187 pte = mk_pte(page, vma->vm_page_prot);
2188 if (write_access && can_share_swap_page(page)) {
2189 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2193 flush_icache_page(vma, page);
2194 set_pte_at(mm, address, page_table, pte);
2195 page_add_anon_rmap(page, vma, address);
2199 remove_exclusive_swap_page(page);
2203 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2204 if (ret & VM_FAULT_ERROR)
2205 ret &= VM_FAULT_ERROR;
2209 /* No need to invalidate - it was non-present before */
2210 update_mmu_cache(vma, address, pte);
2212 pte_unmap_unlock(page_table, ptl);
2216 mem_cgroup_uncharge_page(page);
2217 pte_unmap_unlock(page_table, ptl);
2219 page_cache_release(page);
2224 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2225 * but allow concurrent faults), and pte mapped but not yet locked.
2226 * We return with mmap_sem still held, but pte unmapped and unlocked.
2228 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2229 unsigned long address, pte_t *page_table, pmd_t *pmd,
2236 /* Allocate our own private page. */
2237 pte_unmap(page_table);
2239 if (unlikely(anon_vma_prepare(vma)))
2241 page = alloc_zeroed_user_highpage_movable(vma, address);
2244 __SetPageUptodate(page);
2246 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2249 entry = mk_pte(page, vma->vm_page_prot);
2250 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2252 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2253 if (!pte_none(*page_table))
2255 inc_mm_counter(mm, anon_rss);
2256 lru_cache_add_active(page);
2257 page_add_new_anon_rmap(page, vma, address);
2258 set_pte_at(mm, address, page_table, entry);
2260 /* No need to invalidate - it was non-present before */
2261 update_mmu_cache(vma, address, entry);
2263 pte_unmap_unlock(page_table, ptl);
2266 mem_cgroup_uncharge_page(page);
2267 page_cache_release(page);
2270 page_cache_release(page);
2272 return VM_FAULT_OOM;
2276 * __do_fault() tries to create a new page mapping. It aggressively
2277 * tries to share with existing pages, but makes a separate copy if
2278 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2279 * the next page fault.
2281 * As this is called only for pages that do not currently exist, we
2282 * do not need to flush old virtual caches or the TLB.
2284 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2285 * but allow concurrent faults), and pte neither mapped nor locked.
2286 * We return with mmap_sem still held, but pte unmapped and unlocked.
2288 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2289 unsigned long address, pmd_t *pmd,
2290 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2297 struct page *dirty_page = NULL;
2298 struct vm_fault vmf;
2300 int page_mkwrite = 0;
2302 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2307 ret = vma->vm_ops->fault(vma, &vmf);
2308 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2312 * For consistency in subsequent calls, make the faulted page always
2315 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2316 lock_page(vmf.page);
2318 VM_BUG_ON(!PageLocked(vmf.page));
2321 * Should we do an early C-O-W break?
2324 if (flags & FAULT_FLAG_WRITE) {
2325 if (!(vma->vm_flags & VM_SHARED)) {
2327 if (unlikely(anon_vma_prepare(vma))) {
2331 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2337 copy_user_highpage(page, vmf.page, address, vma);
2338 __SetPageUptodate(page);
2341 * If the page will be shareable, see if the backing
2342 * address space wants to know that the page is about
2343 * to become writable
2345 if (vma->vm_ops->page_mkwrite) {
2347 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2348 ret = VM_FAULT_SIGBUS;
2349 anon = 1; /* no anon but release vmf.page */
2354 * XXX: this is not quite right (racy vs
2355 * invalidate) to unlock and relock the page
2356 * like this, however a better fix requires
2357 * reworking page_mkwrite locking API, which
2358 * is better done later.
2360 if (!page->mapping) {
2362 anon = 1; /* no anon but release vmf.page */
2371 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2376 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2379 * This silly early PAGE_DIRTY setting removes a race
2380 * due to the bad i386 page protection. But it's valid
2381 * for other architectures too.
2383 * Note that if write_access is true, we either now have
2384 * an exclusive copy of the page, or this is a shared mapping,
2385 * so we can make it writable and dirty to avoid having to
2386 * handle that later.
2388 /* Only go through if we didn't race with anybody else... */
2389 if (likely(pte_same(*page_table, orig_pte))) {
2390 flush_icache_page(vma, page);
2391 entry = mk_pte(page, vma->vm_page_prot);
2392 if (flags & FAULT_FLAG_WRITE)
2393 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2394 set_pte_at(mm, address, page_table, entry);
2396 inc_mm_counter(mm, anon_rss);
2397 lru_cache_add_active(page);
2398 page_add_new_anon_rmap(page, vma, address);
2400 inc_mm_counter(mm, file_rss);
2401 page_add_file_rmap(page);
2402 if (flags & FAULT_FLAG_WRITE) {
2404 get_page(dirty_page);
2408 /* no need to invalidate: a not-present page won't be cached */
2409 update_mmu_cache(vma, address, entry);
2411 mem_cgroup_uncharge_page(page);
2413 page_cache_release(page);
2415 anon = 1; /* no anon but release faulted_page */
2418 pte_unmap_unlock(page_table, ptl);
2421 unlock_page(vmf.page);
2424 page_cache_release(vmf.page);
2425 else if (dirty_page) {
2427 file_update_time(vma->vm_file);
2429 set_page_dirty_balance(dirty_page, page_mkwrite);
2430 put_page(dirty_page);
2436 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2437 unsigned long address, pte_t *page_table, pmd_t *pmd,
2438 int write_access, pte_t orig_pte)
2440 pgoff_t pgoff = (((address & PAGE_MASK)
2441 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2442 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2444 pte_unmap(page_table);
2445 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2450 * do_no_pfn() tries to create a new page mapping for a page without
2451 * a struct_page backing it
2453 * As this is called only for pages that do not currently exist, we
2454 * do not need to flush old virtual caches or the TLB.
2456 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2457 * but allow concurrent faults), and pte mapped but not yet locked.
2458 * We return with mmap_sem still held, but pte unmapped and unlocked.
2460 * It is expected that the ->nopfn handler always returns the same pfn
2461 * for a given virtual mapping.
2463 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2465 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2466 unsigned long address, pte_t *page_table, pmd_t *pmd,
2473 pte_unmap(page_table);
2474 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2475 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2477 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2479 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2481 if (unlikely(pfn == NOPFN_OOM))
2482 return VM_FAULT_OOM;
2483 else if (unlikely(pfn == NOPFN_SIGBUS))
2484 return VM_FAULT_SIGBUS;
2485 else if (unlikely(pfn == NOPFN_REFAULT))
2488 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2490 /* Only go through if we didn't race with anybody else... */
2491 if (pte_none(*page_table)) {
2492 entry = pfn_pte(pfn, vma->vm_page_prot);
2494 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2495 set_pte_at(mm, address, page_table, entry);
2497 pte_unmap_unlock(page_table, ptl);
2502 * Fault of a previously existing named mapping. Repopulate the pte
2503 * from the encoded file_pte if possible. This enables swappable
2506 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2507 * but allow concurrent faults), and pte mapped but not yet locked.
2508 * We return with mmap_sem still held, but pte unmapped and unlocked.
2510 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2511 unsigned long address, pte_t *page_table, pmd_t *pmd,
2512 int write_access, pte_t orig_pte)
2514 unsigned int flags = FAULT_FLAG_NONLINEAR |
2515 (write_access ? FAULT_FLAG_WRITE : 0);
2518 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2521 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2522 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2524 * Page table corrupted: show pte and kill process.
2526 print_bad_pte(vma, orig_pte, address);
2527 return VM_FAULT_OOM;
2530 pgoff = pte_to_pgoff(orig_pte);
2531 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2535 * These routines also need to handle stuff like marking pages dirty
2536 * and/or accessed for architectures that don't do it in hardware (most
2537 * RISC architectures). The early dirtying is also good on the i386.
2539 * There is also a hook called "update_mmu_cache()" that architectures
2540 * with external mmu caches can use to update those (ie the Sparc or
2541 * PowerPC hashed page tables that act as extended TLBs).
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2547 static inline int handle_pte_fault(struct mm_struct *mm,
2548 struct vm_area_struct *vma, unsigned long address,
2549 pte_t *pte, pmd_t *pmd, int write_access)
2555 if (!pte_present(entry)) {
2556 if (pte_none(entry)) {
2558 if (likely(vma->vm_ops->fault))
2559 return do_linear_fault(mm, vma, address,
2560 pte, pmd, write_access, entry);
2561 if (unlikely(vma->vm_ops->nopfn))
2562 return do_no_pfn(mm, vma, address, pte,
2565 return do_anonymous_page(mm, vma, address,
2566 pte, pmd, write_access);
2568 if (pte_file(entry))
2569 return do_nonlinear_fault(mm, vma, address,
2570 pte, pmd, write_access, entry);
2571 return do_swap_page(mm, vma, address,
2572 pte, pmd, write_access, entry);
2575 ptl = pte_lockptr(mm, pmd);
2577 if (unlikely(!pte_same(*pte, entry)))
2580 if (!pte_write(entry))
2581 return do_wp_page(mm, vma, address,
2582 pte, pmd, ptl, entry);
2583 entry = pte_mkdirty(entry);
2585 entry = pte_mkyoung(entry);
2586 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2587 update_mmu_cache(vma, address, entry);
2590 * This is needed only for protection faults but the arch code
2591 * is not yet telling us if this is a protection fault or not.
2592 * This still avoids useless tlb flushes for .text page faults
2596 flush_tlb_page(vma, address);
2599 pte_unmap_unlock(pte, ptl);
2604 * By the time we get here, we already hold the mm semaphore
2606 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2607 unsigned long address, int write_access)
2614 __set_current_state(TASK_RUNNING);
2616 count_vm_event(PGFAULT);
2618 if (unlikely(is_vm_hugetlb_page(vma)))
2619 return hugetlb_fault(mm, vma, address, write_access);
2621 pgd = pgd_offset(mm, address);
2622 pud = pud_alloc(mm, pgd, address);
2624 return VM_FAULT_OOM;
2625 pmd = pmd_alloc(mm, pud, address);
2627 return VM_FAULT_OOM;
2628 pte = pte_alloc_map(mm, pmd, address);
2630 return VM_FAULT_OOM;
2632 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2635 #ifndef __PAGETABLE_PUD_FOLDED
2637 * Allocate page upper directory.
2638 * We've already handled the fast-path in-line.
2640 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2642 pud_t *new = pud_alloc_one(mm, address);
2646 smp_wmb(); /* See comment in __pte_alloc */
2648 spin_lock(&mm->page_table_lock);
2649 if (pgd_present(*pgd)) /* Another has populated it */
2652 pgd_populate(mm, pgd, new);
2653 spin_unlock(&mm->page_table_lock);
2656 #endif /* __PAGETABLE_PUD_FOLDED */
2658 #ifndef __PAGETABLE_PMD_FOLDED
2660 * Allocate page middle directory.
2661 * We've already handled the fast-path in-line.
2663 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2665 pmd_t *new = pmd_alloc_one(mm, address);
2669 smp_wmb(); /* See comment in __pte_alloc */
2671 spin_lock(&mm->page_table_lock);
2672 #ifndef __ARCH_HAS_4LEVEL_HACK
2673 if (pud_present(*pud)) /* Another has populated it */
2676 pud_populate(mm, pud, new);
2678 if (pgd_present(*pud)) /* Another has populated it */
2681 pgd_populate(mm, pud, new);
2682 #endif /* __ARCH_HAS_4LEVEL_HACK */
2683 spin_unlock(&mm->page_table_lock);
2686 #endif /* __PAGETABLE_PMD_FOLDED */
2688 int make_pages_present(unsigned long addr, unsigned long end)
2690 int ret, len, write;
2691 struct vm_area_struct * vma;
2693 vma = find_vma(current->mm, addr);
2696 write = (vma->vm_flags & VM_WRITE) != 0;
2697 BUG_ON(addr >= end);
2698 BUG_ON(end > vma->vm_end);
2699 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2700 ret = get_user_pages(current, current->mm, addr,
2701 len, write, 0, NULL, NULL);
2704 return ret == len ? 0 : -1;
2707 #if !defined(__HAVE_ARCH_GATE_AREA)
2709 #if defined(AT_SYSINFO_EHDR)
2710 static struct vm_area_struct gate_vma;
2712 static int __init gate_vma_init(void)
2714 gate_vma.vm_mm = NULL;
2715 gate_vma.vm_start = FIXADDR_USER_START;
2716 gate_vma.vm_end = FIXADDR_USER_END;
2717 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2718 gate_vma.vm_page_prot = __P101;
2720 * Make sure the vDSO gets into every core dump.
2721 * Dumping its contents makes post-mortem fully interpretable later
2722 * without matching up the same kernel and hardware config to see
2723 * what PC values meant.
2725 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2728 __initcall(gate_vma_init);
2731 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2733 #ifdef AT_SYSINFO_EHDR
2740 int in_gate_area_no_task(unsigned long addr)
2742 #ifdef AT_SYSINFO_EHDR
2743 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2749 #endif /* __HAVE_ARCH_GATE_AREA */
2752 * Access another process' address space.
2753 * Source/target buffer must be kernel space,
2754 * Do not walk the page table directly, use get_user_pages
2756 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2758 struct mm_struct *mm;
2759 struct vm_area_struct *vma;
2761 void *old_buf = buf;
2763 mm = get_task_mm(tsk);
2767 down_read(&mm->mmap_sem);
2768 /* ignore errors, just check how much was successfully transferred */
2770 int bytes, ret, offset;
2773 ret = get_user_pages(tsk, mm, addr, 1,
2774 write, 1, &page, &vma);
2779 offset = addr & (PAGE_SIZE-1);
2780 if (bytes > PAGE_SIZE-offset)
2781 bytes = PAGE_SIZE-offset;
2785 copy_to_user_page(vma, page, addr,
2786 maddr + offset, buf, bytes);
2787 set_page_dirty_lock(page);
2789 copy_from_user_page(vma, page, addr,
2790 buf, maddr + offset, bytes);
2793 page_cache_release(page);
2798 up_read(&mm->mmap_sem);
2801 return buf - old_buf;
2805 * Print the name of a VMA.
2807 void print_vma_addr(char *prefix, unsigned long ip)
2809 struct mm_struct *mm = current->mm;
2810 struct vm_area_struct *vma;
2813 * Do not print if we are in atomic
2814 * contexts (in exception stacks, etc.):
2816 if (preempt_count())
2819 down_read(&mm->mmap_sem);
2820 vma = find_vma(mm, ip);
2821 if (vma && vma->vm_file) {
2822 struct file *f = vma->vm_file;
2823 char *buf = (char *)__get_free_page(GFP_KERNEL);
2827 p = d_path(&f->f_path, buf, PAGE_SIZE);
2830 s = strrchr(p, '/');
2833 printk("%s%s[%lx+%lx]", prefix, p,
2835 vma->vm_end - vma->vm_start);
2836 free_page((unsigned long)buf);
2839 up_read(¤t->mm->mmap_sem);