2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.6"
47 #define PFX DRV_NAME " "
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct skge_port *skge);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
109 static int skge_get_regs_len(struct net_device *dev)
115 * Returns copy of whole control register region
116 * Note: skip RAM address register because accessing it will
119 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
122 const struct skge_port *skge = netdev_priv(dev);
123 const void __iomem *io = skge->hw->regs;
126 memset(p, 0, regs->len);
127 memcpy_fromio(p, io, B3_RAM_ADDR);
129 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
130 regs->len - B3_RI_WTO_R1);
133 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 static int wol_supported(const struct skge_hw *hw)
136 return !((hw->chip_id == CHIP_ID_GENESIS ||
137 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
140 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
142 struct skge_port *skge = netdev_priv(dev);
144 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
145 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
148 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
150 struct skge_port *skge = netdev_priv(dev);
151 struct skge_hw *hw = skge->hw;
153 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
156 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
159 skge->wol = wol->wolopts == WAKE_MAGIC;
162 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
164 skge_write16(hw, WOL_CTRL_STAT,
165 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
166 WOL_CTL_ENA_MAGIC_PKT_UNIT);
168 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
173 /* Determine supported/advertised modes based on hardware.
174 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 static u32 skge_supported_modes(const struct skge_hw *hw)
181 supported = SUPPORTED_10baseT_Half
182 | SUPPORTED_10baseT_Full
183 | SUPPORTED_100baseT_Half
184 | SUPPORTED_100baseT_Full
185 | SUPPORTED_1000baseT_Half
186 | SUPPORTED_1000baseT_Full
187 | SUPPORTED_Autoneg| SUPPORTED_TP;
189 if (hw->chip_id == CHIP_ID_GENESIS)
190 supported &= ~(SUPPORTED_10baseT_Half
191 | SUPPORTED_10baseT_Full
192 | SUPPORTED_100baseT_Half
193 | SUPPORTED_100baseT_Full);
195 else if (hw->chip_id == CHIP_ID_YUKON)
196 supported &= ~SUPPORTED_1000baseT_Half;
198 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
204 static int skge_get_settings(struct net_device *dev,
205 struct ethtool_cmd *ecmd)
207 struct skge_port *skge = netdev_priv(dev);
208 struct skge_hw *hw = skge->hw;
210 ecmd->transceiver = XCVR_INTERNAL;
211 ecmd->supported = skge_supported_modes(hw);
214 ecmd->port = PORT_TP;
215 ecmd->phy_address = hw->phy_addr;
217 ecmd->port = PORT_FIBRE;
219 ecmd->advertising = skge->advertising;
220 ecmd->autoneg = skge->autoneg;
221 ecmd->speed = skge->speed;
222 ecmd->duplex = skge->duplex;
226 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
228 struct skge_port *skge = netdev_priv(dev);
229 const struct skge_hw *hw = skge->hw;
230 u32 supported = skge_supported_modes(hw);
232 if (ecmd->autoneg == AUTONEG_ENABLE) {
233 ecmd->advertising = supported;
239 switch (ecmd->speed) {
241 if (ecmd->duplex == DUPLEX_FULL)
242 setting = SUPPORTED_1000baseT_Full;
243 else if (ecmd->duplex == DUPLEX_HALF)
244 setting = SUPPORTED_1000baseT_Half;
249 if (ecmd->duplex == DUPLEX_FULL)
250 setting = SUPPORTED_100baseT_Full;
251 else if (ecmd->duplex == DUPLEX_HALF)
252 setting = SUPPORTED_100baseT_Half;
258 if (ecmd->duplex == DUPLEX_FULL)
259 setting = SUPPORTED_10baseT_Full;
260 else if (ecmd->duplex == DUPLEX_HALF)
261 setting = SUPPORTED_10baseT_Half;
269 if ((setting & supported) == 0)
272 skge->speed = ecmd->speed;
273 skge->duplex = ecmd->duplex;
276 skge->autoneg = ecmd->autoneg;
277 skge->advertising = ecmd->advertising;
279 if (netif_running(dev))
280 skge_phy_reset(skge);
285 static void skge_get_drvinfo(struct net_device *dev,
286 struct ethtool_drvinfo *info)
288 struct skge_port *skge = netdev_priv(dev);
290 strcpy(info->driver, DRV_NAME);
291 strcpy(info->version, DRV_VERSION);
292 strcpy(info->fw_version, "N/A");
293 strcpy(info->bus_info, pci_name(skge->hw->pdev));
296 static const struct skge_stat {
297 char name[ETH_GSTRING_LEN];
301 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
302 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
304 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
305 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
306 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
307 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
308 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
309 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
310 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
311 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
313 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
314 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
315 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
316 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
317 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
318 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
320 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
321 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
322 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
323 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
324 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
327 static int skge_get_stats_count(struct net_device *dev)
329 return ARRAY_SIZE(skge_stats);
332 static void skge_get_ethtool_stats(struct net_device *dev,
333 struct ethtool_stats *stats, u64 *data)
335 struct skge_port *skge = netdev_priv(dev);
337 if (skge->hw->chip_id == CHIP_ID_GENESIS)
338 genesis_get_stats(skge, data);
340 yukon_get_stats(skge, data);
343 /* Use hardware MIB variables for critical path statistics and
344 * transmit feedback not reported at interrupt.
345 * Other errors are accounted for in interrupt handler.
347 static struct net_device_stats *skge_get_stats(struct net_device *dev)
349 struct skge_port *skge = netdev_priv(dev);
350 u64 data[ARRAY_SIZE(skge_stats)];
352 if (skge->hw->chip_id == CHIP_ID_GENESIS)
353 genesis_get_stats(skge, data);
355 yukon_get_stats(skge, data);
357 skge->net_stats.tx_bytes = data[0];
358 skge->net_stats.rx_bytes = data[1];
359 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
360 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
361 skge->net_stats.multicast = data[3] + data[5];
362 skge->net_stats.collisions = data[10];
363 skge->net_stats.tx_aborted_errors = data[12];
365 return &skge->net_stats;
368 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
374 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
375 memcpy(data + i * ETH_GSTRING_LEN,
376 skge_stats[i].name, ETH_GSTRING_LEN);
381 static void skge_get_ring_param(struct net_device *dev,
382 struct ethtool_ringparam *p)
384 struct skge_port *skge = netdev_priv(dev);
386 p->rx_max_pending = MAX_RX_RING_SIZE;
387 p->tx_max_pending = MAX_TX_RING_SIZE;
388 p->rx_mini_max_pending = 0;
389 p->rx_jumbo_max_pending = 0;
391 p->rx_pending = skge->rx_ring.count;
392 p->tx_pending = skge->tx_ring.count;
393 p->rx_mini_pending = 0;
394 p->rx_jumbo_pending = 0;
397 static int skge_set_ring_param(struct net_device *dev,
398 struct ethtool_ringparam *p)
400 struct skge_port *skge = netdev_priv(dev);
403 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
404 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
407 skge->rx_ring.count = p->rx_pending;
408 skge->tx_ring.count = p->tx_pending;
410 if (netif_running(dev)) {
420 static u32 skge_get_msglevel(struct net_device *netdev)
422 struct skge_port *skge = netdev_priv(netdev);
423 return skge->msg_enable;
426 static void skge_set_msglevel(struct net_device *netdev, u32 value)
428 struct skge_port *skge = netdev_priv(netdev);
429 skge->msg_enable = value;
432 static int skge_nway_reset(struct net_device *dev)
434 struct skge_port *skge = netdev_priv(dev);
436 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
439 skge_phy_reset(skge);
443 static int skge_set_sg(struct net_device *dev, u32 data)
445 struct skge_port *skge = netdev_priv(dev);
446 struct skge_hw *hw = skge->hw;
448 if (hw->chip_id == CHIP_ID_GENESIS && data)
450 return ethtool_op_set_sg(dev, data);
453 static int skge_set_tx_csum(struct net_device *dev, u32 data)
455 struct skge_port *skge = netdev_priv(dev);
456 struct skge_hw *hw = skge->hw;
458 if (hw->chip_id == CHIP_ID_GENESIS && data)
461 return ethtool_op_set_tx_csum(dev, data);
464 static u32 skge_get_rx_csum(struct net_device *dev)
466 struct skge_port *skge = netdev_priv(dev);
468 return skge->rx_csum;
471 /* Only Yukon supports checksum offload. */
472 static int skge_set_rx_csum(struct net_device *dev, u32 data)
474 struct skge_port *skge = netdev_priv(dev);
476 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
479 skge->rx_csum = data;
483 static void skge_get_pauseparam(struct net_device *dev,
484 struct ethtool_pauseparam *ecmd)
486 struct skge_port *skge = netdev_priv(dev);
488 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
489 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
490 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
491 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
493 ecmd->autoneg = skge->autoneg;
496 static int skge_set_pauseparam(struct net_device *dev,
497 struct ethtool_pauseparam *ecmd)
499 struct skge_port *skge = netdev_priv(dev);
501 skge->autoneg = ecmd->autoneg;
502 if (ecmd->rx_pause && ecmd->tx_pause)
503 skge->flow_control = FLOW_MODE_SYMMETRIC;
504 else if (ecmd->rx_pause && !ecmd->tx_pause)
505 skge->flow_control = FLOW_MODE_REM_SEND;
506 else if (!ecmd->rx_pause && ecmd->tx_pause)
507 skge->flow_control = FLOW_MODE_LOC_SEND;
509 skge->flow_control = FLOW_MODE_NONE;
511 if (netif_running(dev))
512 skge_phy_reset(skge);
516 /* Chip internal frequency for clock calculations */
517 static inline u32 hwkhz(const struct skge_hw *hw)
519 if (hw->chip_id == CHIP_ID_GENESIS)
520 return 53215; /* or: 53.125 MHz */
522 return 78215; /* or: 78.125 MHz */
525 /* Chip HZ to microseconds */
526 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
528 return (ticks * 1000) / hwkhz(hw);
531 /* Microseconds to chip HZ */
532 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
534 return hwkhz(hw) * usec / 1000;
537 static int skge_get_coalesce(struct net_device *dev,
538 struct ethtool_coalesce *ecmd)
540 struct skge_port *skge = netdev_priv(dev);
541 struct skge_hw *hw = skge->hw;
542 int port = skge->port;
544 ecmd->rx_coalesce_usecs = 0;
545 ecmd->tx_coalesce_usecs = 0;
547 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
548 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
549 u32 msk = skge_read32(hw, B2_IRQM_MSK);
551 if (msk & rxirqmask[port])
552 ecmd->rx_coalesce_usecs = delay;
553 if (msk & txirqmask[port])
554 ecmd->tx_coalesce_usecs = delay;
560 /* Note: interrupt timer is per board, but can turn on/off per port */
561 static int skge_set_coalesce(struct net_device *dev,
562 struct ethtool_coalesce *ecmd)
564 struct skge_port *skge = netdev_priv(dev);
565 struct skge_hw *hw = skge->hw;
566 int port = skge->port;
567 u32 msk = skge_read32(hw, B2_IRQM_MSK);
570 if (ecmd->rx_coalesce_usecs == 0)
571 msk &= ~rxirqmask[port];
572 else if (ecmd->rx_coalesce_usecs < 25 ||
573 ecmd->rx_coalesce_usecs > 33333)
576 msk |= rxirqmask[port];
577 delay = ecmd->rx_coalesce_usecs;
580 if (ecmd->tx_coalesce_usecs == 0)
581 msk &= ~txirqmask[port];
582 else if (ecmd->tx_coalesce_usecs < 25 ||
583 ecmd->tx_coalesce_usecs > 33333)
586 msk |= txirqmask[port];
587 delay = min(delay, ecmd->rx_coalesce_usecs);
590 skge_write32(hw, B2_IRQM_MSK, msk);
592 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
594 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
595 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
600 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
601 static void skge_led(struct skge_port *skge, enum led_mode mode)
603 struct skge_hw *hw = skge->hw;
604 int port = skge->port;
606 mutex_lock(&hw->phy_mutex);
607 if (hw->chip_id == CHIP_ID_GENESIS) {
610 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
611 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
612 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
613 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
618 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
620 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
621 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
626 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
627 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
628 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
630 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
636 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
637 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
638 PHY_M_LED_MO_DUP(MO_LED_OFF) |
639 PHY_M_LED_MO_10(MO_LED_OFF) |
640 PHY_M_LED_MO_100(MO_LED_OFF) |
641 PHY_M_LED_MO_1000(MO_LED_OFF) |
642 PHY_M_LED_MO_RX(MO_LED_OFF));
645 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
646 PHY_M_LED_PULS_DUR(PULS_170MS) |
647 PHY_M_LED_BLINK_RT(BLINK_84MS) |
651 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
652 PHY_M_LED_MO_RX(MO_LED_OFF) |
653 (skge->speed == SPEED_100 ?
654 PHY_M_LED_MO_100(MO_LED_ON) : 0));
657 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
658 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
659 PHY_M_LED_MO_DUP(MO_LED_ON) |
660 PHY_M_LED_MO_10(MO_LED_ON) |
661 PHY_M_LED_MO_100(MO_LED_ON) |
662 PHY_M_LED_MO_1000(MO_LED_ON) |
663 PHY_M_LED_MO_RX(MO_LED_ON));
666 mutex_unlock(&hw->phy_mutex);
669 /* blink LED's for finding board */
670 static int skge_phys_id(struct net_device *dev, u32 data)
672 struct skge_port *skge = netdev_priv(dev);
674 enum led_mode mode = LED_MODE_TST;
676 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
677 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
682 skge_led(skge, mode);
683 mode ^= LED_MODE_TST;
685 if (msleep_interruptible(BLINK_MS))
690 /* back to regular LED state */
691 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
696 static struct ethtool_ops skge_ethtool_ops = {
697 .get_settings = skge_get_settings,
698 .set_settings = skge_set_settings,
699 .get_drvinfo = skge_get_drvinfo,
700 .get_regs_len = skge_get_regs_len,
701 .get_regs = skge_get_regs,
702 .get_wol = skge_get_wol,
703 .set_wol = skge_set_wol,
704 .get_msglevel = skge_get_msglevel,
705 .set_msglevel = skge_set_msglevel,
706 .nway_reset = skge_nway_reset,
707 .get_link = ethtool_op_get_link,
708 .get_ringparam = skge_get_ring_param,
709 .set_ringparam = skge_set_ring_param,
710 .get_pauseparam = skge_get_pauseparam,
711 .set_pauseparam = skge_set_pauseparam,
712 .get_coalesce = skge_get_coalesce,
713 .set_coalesce = skge_set_coalesce,
714 .get_sg = ethtool_op_get_sg,
715 .set_sg = skge_set_sg,
716 .get_tx_csum = ethtool_op_get_tx_csum,
717 .set_tx_csum = skge_set_tx_csum,
718 .get_rx_csum = skge_get_rx_csum,
719 .set_rx_csum = skge_set_rx_csum,
720 .get_strings = skge_get_strings,
721 .phys_id = skge_phys_id,
722 .get_stats_count = skge_get_stats_count,
723 .get_ethtool_stats = skge_get_ethtool_stats,
724 .get_perm_addr = ethtool_op_get_perm_addr,
728 * Allocate ring elements and chain them together
729 * One-to-one association of board descriptors with ring elements
731 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
733 struct skge_tx_desc *d;
734 struct skge_element *e;
737 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
741 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
743 if (i == ring->count - 1) {
744 e->next = ring->start;
745 d->next_offset = base;
748 d->next_offset = base + (i+1) * sizeof(*d);
751 ring->to_use = ring->to_clean = ring->start;
756 /* Allocate and setup a new buffer for receiving */
757 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
758 struct sk_buff *skb, unsigned int bufsize)
760 struct skge_rx_desc *rd = e->desc;
763 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
767 rd->dma_hi = map >> 32;
769 rd->csum1_start = ETH_HLEN;
770 rd->csum2_start = ETH_HLEN;
776 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
777 pci_unmap_addr_set(e, mapaddr, map);
778 pci_unmap_len_set(e, maplen, bufsize);
781 /* Resume receiving using existing skb,
782 * Note: DMA address is not changed by chip.
783 * MTU not changed while receiver active.
785 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
787 struct skge_rx_desc *rd = e->desc;
790 rd->csum2_start = ETH_HLEN;
794 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
798 /* Free all buffers in receive ring, assumes receiver stopped */
799 static void skge_rx_clean(struct skge_port *skge)
801 struct skge_hw *hw = skge->hw;
802 struct skge_ring *ring = &skge->rx_ring;
803 struct skge_element *e;
807 struct skge_rx_desc *rd = e->desc;
810 pci_unmap_single(hw->pdev,
811 pci_unmap_addr(e, mapaddr),
812 pci_unmap_len(e, maplen),
814 dev_kfree_skb(e->skb);
817 } while ((e = e->next) != ring->start);
821 /* Allocate buffers for receive ring
822 * For receive: to_clean is next received frame.
824 static int skge_rx_fill(struct skge_port *skge)
826 struct skge_ring *ring = &skge->rx_ring;
827 struct skge_element *e;
833 skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
837 skb_reserve(skb, NET_IP_ALIGN);
838 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
839 } while ( (e = e->next) != ring->start);
841 ring->to_clean = ring->start;
845 static void skge_link_up(struct skge_port *skge)
847 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
848 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
850 netif_carrier_on(skge->netdev);
851 netif_wake_queue(skge->netdev);
853 if (netif_msg_link(skge))
855 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
856 skge->netdev->name, skge->speed,
857 skge->duplex == DUPLEX_FULL ? "full" : "half",
858 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
859 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
860 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
861 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
865 static void skge_link_down(struct skge_port *skge)
867 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
868 netif_carrier_off(skge->netdev);
869 netif_stop_queue(skge->netdev);
871 if (netif_msg_link(skge))
872 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
875 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
879 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
880 *val = xm_read16(hw, port, XM_PHY_DATA);
882 for (i = 0; i < PHY_RETRIES; i++) {
883 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
890 *val = xm_read16(hw, port, XM_PHY_DATA);
895 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
898 if (__xm_phy_read(hw, port, reg, &v))
899 printk(KERN_WARNING PFX "%s: phy read timed out\n",
900 hw->dev[port]->name);
904 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
908 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
909 for (i = 0; i < PHY_RETRIES; i++) {
910 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
917 xm_write16(hw, port, XM_PHY_DATA, val);
918 for (i = 0; i < PHY_RETRIES; i++) {
919 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
926 static void genesis_init(struct skge_hw *hw)
928 /* set blink source counter */
929 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
930 skge_write8(hw, B2_BSC_CTRL, BSC_START);
932 /* configure mac arbiter */
933 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
935 /* configure mac arbiter timeout values */
936 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
937 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
938 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
939 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
941 skge_write8(hw, B3_MA_RCINI_RX1, 0);
942 skge_write8(hw, B3_MA_RCINI_RX2, 0);
943 skge_write8(hw, B3_MA_RCINI_TX1, 0);
944 skge_write8(hw, B3_MA_RCINI_TX2, 0);
946 /* configure packet arbiter timeout */
947 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
948 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
949 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
950 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
951 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
954 static void genesis_reset(struct skge_hw *hw, int port)
956 const u8 zero[8] = { 0 };
958 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
960 /* reset the statistics module */
961 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
962 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
963 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
964 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
965 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
967 /* disable Broadcom PHY IRQ */
968 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
970 xm_outhash(hw, port, XM_HSM, zero);
974 /* Convert mode to MII values */
975 static const u16 phy_pause_map[] = {
976 [FLOW_MODE_NONE] = 0,
977 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
978 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
979 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
983 /* Check status of Broadcom phy link */
984 static void bcom_check_link(struct skge_hw *hw, int port)
986 struct net_device *dev = hw->dev[port];
987 struct skge_port *skge = netdev_priv(dev);
990 /* read twice because of latch */
991 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
992 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
994 if ((status & PHY_ST_LSYNC) == 0) {
995 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
996 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
997 xm_write16(hw, port, XM_MMU_CMD, cmd);
998 /* dummy read to ensure writing */
999 (void) xm_read16(hw, port, XM_MMU_CMD);
1001 if (netif_carrier_ok(dev))
1002 skge_link_down(skge);
1004 if (skge->autoneg == AUTONEG_ENABLE &&
1005 (status & PHY_ST_AN_OVER)) {
1006 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1007 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1009 if (lpa & PHY_B_AN_RF) {
1010 printk(KERN_NOTICE PFX "%s: remote fault\n",
1015 /* Check Duplex mismatch */
1016 switch (aux & PHY_B_AS_AN_RES_MSK) {
1017 case PHY_B_RES_1000FD:
1018 skge->duplex = DUPLEX_FULL;
1020 case PHY_B_RES_1000HD:
1021 skge->duplex = DUPLEX_HALF;
1024 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1030 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1031 switch (aux & PHY_B_AS_PAUSE_MSK) {
1032 case PHY_B_AS_PAUSE_MSK:
1033 skge->flow_control = FLOW_MODE_SYMMETRIC;
1036 skge->flow_control = FLOW_MODE_REM_SEND;
1039 skge->flow_control = FLOW_MODE_LOC_SEND;
1042 skge->flow_control = FLOW_MODE_NONE;
1045 skge->speed = SPEED_1000;
1048 if (!netif_carrier_ok(dev))
1049 genesis_link_up(skge);
1053 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1054 * Phy on for 100 or 10Mbit operation
1056 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1058 struct skge_hw *hw = skge->hw;
1059 int port = skge->port;
1061 u16 id1, r, ext, ctl;
1063 /* magic workaround patterns for Broadcom */
1064 static const struct {
1068 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1069 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1070 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1071 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1073 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1074 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1077 /* read Id from external PHY (all have the same address) */
1078 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1080 /* Optimize MDIO transfer by suppressing preamble. */
1081 r = xm_read16(hw, port, XM_MMU_CMD);
1083 xm_write16(hw, port, XM_MMU_CMD,r);
1086 case PHY_BCOM_ID1_C0:
1088 * Workaround BCOM Errata for the C0 type.
1089 * Write magic patterns to reserved registers.
1091 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1092 xm_phy_write(hw, port,
1093 C0hack[i].reg, C0hack[i].val);
1096 case PHY_BCOM_ID1_A1:
1098 * Workaround BCOM Errata for the A1 type.
1099 * Write magic patterns to reserved registers.
1101 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1102 xm_phy_write(hw, port,
1103 A1hack[i].reg, A1hack[i].val);
1108 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1109 * Disable Power Management after reset.
1111 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1112 r |= PHY_B_AC_DIS_PM;
1113 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1116 xm_read16(hw, port, XM_ISRC);
1118 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1119 ctl = PHY_CT_SP1000; /* always 1000mbit */
1121 if (skge->autoneg == AUTONEG_ENABLE) {
1123 * Workaround BCOM Errata #1 for the C5 type.
1124 * 1000Base-T Link Acquisition Failure in Slave Mode
1125 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1127 u16 adv = PHY_B_1000C_RD;
1128 if (skge->advertising & ADVERTISED_1000baseT_Half)
1129 adv |= PHY_B_1000C_AHD;
1130 if (skge->advertising & ADVERTISED_1000baseT_Full)
1131 adv |= PHY_B_1000C_AFD;
1132 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1134 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1136 if (skge->duplex == DUPLEX_FULL)
1137 ctl |= PHY_CT_DUP_MD;
1138 /* Force to slave */
1139 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1142 /* Set autonegotiation pause parameters */
1143 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1144 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1146 /* Handle Jumbo frames */
1148 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1149 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1151 ext |= PHY_B_PEC_HIGH_LA;
1155 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1156 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1158 /* Use link status change interrupt */
1159 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1161 bcom_check_link(hw, port);
1164 static void genesis_mac_init(struct skge_hw *hw, int port)
1166 struct net_device *dev = hw->dev[port];
1167 struct skge_port *skge = netdev_priv(dev);
1168 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1171 const u8 zero[6] = { 0 };
1173 for (i = 0; i < 10; i++) {
1174 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1176 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1181 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1184 /* Unreset the XMAC. */
1185 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1188 * Perform additional initialization for external PHYs,
1189 * namely for the 1000baseTX cards that use the XMAC's
1192 /* Take external Phy out of reset */
1193 r = skge_read32(hw, B2_GP_IO);
1195 r |= GP_DIR_0|GP_IO_0;
1197 r |= GP_DIR_2|GP_IO_2;
1199 skge_write32(hw, B2_GP_IO, r);
1202 /* Enable GMII interface */
1203 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1205 bcom_phy_init(skge, jumbo);
1207 /* Set Station Address */
1208 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1210 /* We don't use match addresses so clear */
1211 for (i = 1; i < 16; i++)
1212 xm_outaddr(hw, port, XM_EXM(i), zero);
1214 /* Clear MIB counters */
1215 xm_write16(hw, port, XM_STAT_CMD,
1216 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1217 /* Clear two times according to Errata #3 */
1218 xm_write16(hw, port, XM_STAT_CMD,
1219 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1221 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1222 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1224 /* We don't need the FCS appended to the packet. */
1225 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1227 r |= XM_RX_BIG_PK_OK;
1229 if (skge->duplex == DUPLEX_HALF) {
1231 * If in manual half duplex mode the other side might be in
1232 * full duplex mode, so ignore if a carrier extension is not seen
1233 * on frames received
1235 r |= XM_RX_DIS_CEXT;
1237 xm_write16(hw, port, XM_RX_CMD, r);
1240 /* We want short frames padded to 60 bytes. */
1241 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1244 * Bump up the transmit threshold. This helps hold off transmit
1245 * underruns when we're blasting traffic from both ports at once.
1247 xm_write16(hw, port, XM_TX_THR, 512);
1250 * Enable the reception of all error frames. This is is
1251 * a necessary evil due to the design of the XMAC. The
1252 * XMAC's receive FIFO is only 8K in size, however jumbo
1253 * frames can be up to 9000 bytes in length. When bad
1254 * frame filtering is enabled, the XMAC's RX FIFO operates
1255 * in 'store and forward' mode. For this to work, the
1256 * entire frame has to fit into the FIFO, but that means
1257 * that jumbo frames larger than 8192 bytes will be
1258 * truncated. Disabling all bad frame filtering causes
1259 * the RX FIFO to operate in streaming mode, in which
1260 * case the XMAC will start transferring frames out of the
1261 * RX FIFO as soon as the FIFO threshold is reached.
1263 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1267 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1268 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1269 * and 'Octets Rx OK Hi Cnt Ov'.
1271 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1274 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1275 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1276 * and 'Octets Tx OK Hi Cnt Ov'.
1278 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1280 /* Configure MAC arbiter */
1281 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1283 /* configure timeout values */
1284 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1285 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1286 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1287 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1289 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1290 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1291 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1292 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1294 /* Configure Rx MAC FIFO */
1295 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1296 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1297 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1299 /* Configure Tx MAC FIFO */
1300 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1301 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1302 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1305 /* Enable frame flushing if jumbo frames used */
1306 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1308 /* enable timeout timers if normal frames */
1309 skge_write16(hw, B3_PA_CTRL,
1310 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1314 static void genesis_stop(struct skge_port *skge)
1316 struct skge_hw *hw = skge->hw;
1317 int port = skge->port;
1320 genesis_reset(hw, port);
1322 /* Clear Tx packet arbiter timeout IRQ */
1323 skge_write16(hw, B3_PA_CTRL,
1324 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1327 * If the transfer sticks at the MAC the STOP command will not
1328 * terminate if we don't flush the XMAC's transmit FIFO !
1330 xm_write32(hw, port, XM_MODE,
1331 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1335 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1337 /* For external PHYs there must be special handling */
1338 reg = skge_read32(hw, B2_GP_IO);
1346 skge_write32(hw, B2_GP_IO, reg);
1347 skge_read32(hw, B2_GP_IO);
1349 xm_write16(hw, port, XM_MMU_CMD,
1350 xm_read16(hw, port, XM_MMU_CMD)
1351 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1353 xm_read16(hw, port, XM_MMU_CMD);
1357 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1359 struct skge_hw *hw = skge->hw;
1360 int port = skge->port;
1362 unsigned long timeout = jiffies + HZ;
1364 xm_write16(hw, port,
1365 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1367 /* wait for update to complete */
1368 while (xm_read16(hw, port, XM_STAT_CMD)
1369 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1370 if (time_after(jiffies, timeout))
1375 /* special case for 64 bit octet counter */
1376 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1377 | xm_read32(hw, port, XM_TXO_OK_LO);
1378 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1379 | xm_read32(hw, port, XM_RXO_OK_LO);
1381 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1382 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1385 static void genesis_mac_intr(struct skge_hw *hw, int port)
1387 struct skge_port *skge = netdev_priv(hw->dev[port]);
1388 u16 status = xm_read16(hw, port, XM_ISRC);
1390 if (netif_msg_intr(skge))
1391 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1392 skge->netdev->name, status);
1394 if (status & XM_IS_TXF_UR) {
1395 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1396 ++skge->net_stats.tx_fifo_errors;
1398 if (status & XM_IS_RXF_OV) {
1399 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1400 ++skge->net_stats.rx_fifo_errors;
1404 static void genesis_link_up(struct skge_port *skge)
1406 struct skge_hw *hw = skge->hw;
1407 int port = skge->port;
1411 cmd = xm_read16(hw, port, XM_MMU_CMD);
1414 * enabling pause frame reception is required for 1000BT
1415 * because the XMAC is not reset if the link is going down
1417 if (skge->flow_control == FLOW_MODE_NONE ||
1418 skge->flow_control == FLOW_MODE_LOC_SEND)
1419 /* Disable Pause Frame Reception */
1420 cmd |= XM_MMU_IGN_PF;
1422 /* Enable Pause Frame Reception */
1423 cmd &= ~XM_MMU_IGN_PF;
1425 xm_write16(hw, port, XM_MMU_CMD, cmd);
1427 mode = xm_read32(hw, port, XM_MODE);
1428 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1429 skge->flow_control == FLOW_MODE_LOC_SEND) {
1431 * Configure Pause Frame Generation
1432 * Use internal and external Pause Frame Generation.
1433 * Sending pause frames is edge triggered.
1434 * Send a Pause frame with the maximum pause time if
1435 * internal oder external FIFO full condition occurs.
1436 * Send a zero pause time frame to re-start transmission.
1438 /* XM_PAUSE_DA = '010000C28001' (default) */
1439 /* XM_MAC_PTIME = 0xffff (maximum) */
1440 /* remember this value is defined in big endian (!) */
1441 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1443 mode |= XM_PAUSE_MODE;
1444 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1447 * disable pause frame generation is required for 1000BT
1448 * because the XMAC is not reset if the link is going down
1450 /* Disable Pause Mode in Mode Register */
1451 mode &= ~XM_PAUSE_MODE;
1453 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1456 xm_write32(hw, port, XM_MODE, mode);
1459 /* disable GP0 interrupt bit for external Phy */
1460 msk |= XM_IS_INP_ASS;
1462 xm_write16(hw, port, XM_IMSK, msk);
1463 xm_read16(hw, port, XM_ISRC);
1465 /* get MMU Command Reg. */
1466 cmd = xm_read16(hw, port, XM_MMU_CMD);
1467 if (skge->duplex == DUPLEX_FULL)
1468 cmd |= XM_MMU_GMII_FD;
1471 * Workaround BCOM Errata (#10523) for all BCom Phys
1472 * Enable Power Management after link up
1474 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1475 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1476 & ~PHY_B_AC_DIS_PM);
1477 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1480 xm_write16(hw, port, XM_MMU_CMD,
1481 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1486 static inline void bcom_phy_intr(struct skge_port *skge)
1488 struct skge_hw *hw = skge->hw;
1489 int port = skge->port;
1492 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1493 if (netif_msg_intr(skge))
1494 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1495 skge->netdev->name, isrc);
1497 if (isrc & PHY_B_IS_PSE)
1498 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1499 hw->dev[port]->name);
1501 /* Workaround BCom Errata:
1502 * enable and disable loopback mode if "NO HCD" occurs.
1504 if (isrc & PHY_B_IS_NO_HDCL) {
1505 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1506 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1507 ctrl | PHY_CT_LOOP);
1508 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1509 ctrl & ~PHY_CT_LOOP);
1512 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1513 bcom_check_link(hw, port);
1517 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1521 gma_write16(hw, port, GM_SMI_DATA, val);
1522 gma_write16(hw, port, GM_SMI_CTRL,
1523 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1524 for (i = 0; i < PHY_RETRIES; i++) {
1527 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1531 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1532 hw->dev[port]->name);
1536 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1540 gma_write16(hw, port, GM_SMI_CTRL,
1541 GM_SMI_CT_PHY_AD(hw->phy_addr)
1542 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1544 for (i = 0; i < PHY_RETRIES; i++) {
1546 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1552 *val = gma_read16(hw, port, GM_SMI_DATA);
1556 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1559 if (__gm_phy_read(hw, port, reg, &v))
1560 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1561 hw->dev[port]->name);
1565 /* Marvell Phy Initialization */
1566 static void yukon_init(struct skge_hw *hw, int port)
1568 struct skge_port *skge = netdev_priv(hw->dev[port]);
1569 u16 ctrl, ct1000, adv;
1571 if (skge->autoneg == AUTONEG_ENABLE) {
1572 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1574 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1575 PHY_M_EC_MAC_S_MSK);
1576 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1578 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1580 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1583 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1584 if (skge->autoneg == AUTONEG_DISABLE)
1585 ctrl &= ~PHY_CT_ANE;
1587 ctrl |= PHY_CT_RESET;
1588 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1594 if (skge->autoneg == AUTONEG_ENABLE) {
1596 if (skge->advertising & ADVERTISED_1000baseT_Full)
1597 ct1000 |= PHY_M_1000C_AFD;
1598 if (skge->advertising & ADVERTISED_1000baseT_Half)
1599 ct1000 |= PHY_M_1000C_AHD;
1600 if (skge->advertising & ADVERTISED_100baseT_Full)
1601 adv |= PHY_M_AN_100_FD;
1602 if (skge->advertising & ADVERTISED_100baseT_Half)
1603 adv |= PHY_M_AN_100_HD;
1604 if (skge->advertising & ADVERTISED_10baseT_Full)
1605 adv |= PHY_M_AN_10_FD;
1606 if (skge->advertising & ADVERTISED_10baseT_Half)
1607 adv |= PHY_M_AN_10_HD;
1608 } else /* special defines for FIBER (88E1011S only) */
1609 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1611 /* Set Flow-control capabilities */
1612 adv |= phy_pause_map[skge->flow_control];
1614 /* Restart Auto-negotiation */
1615 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1617 /* forced speed/duplex settings */
1618 ct1000 = PHY_M_1000C_MSE;
1620 if (skge->duplex == DUPLEX_FULL)
1621 ctrl |= PHY_CT_DUP_MD;
1623 switch (skge->speed) {
1625 ctrl |= PHY_CT_SP1000;
1628 ctrl |= PHY_CT_SP100;
1632 ctrl |= PHY_CT_RESET;
1635 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1637 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1638 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1640 /* Enable phy interrupt on autonegotiation complete (or link up) */
1641 if (skge->autoneg == AUTONEG_ENABLE)
1642 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1644 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1647 static void yukon_reset(struct skge_hw *hw, int port)
1649 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1650 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1651 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1652 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1653 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1655 gma_write16(hw, port, GM_RX_CTRL,
1656 gma_read16(hw, port, GM_RX_CTRL)
1657 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1660 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1661 static int is_yukon_lite_a0(struct skge_hw *hw)
1666 if (hw->chip_id != CHIP_ID_YUKON)
1669 reg = skge_read32(hw, B2_FAR);
1670 skge_write8(hw, B2_FAR + 3, 0xff);
1671 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1672 skge_write32(hw, B2_FAR, reg);
1676 static void yukon_mac_init(struct skge_hw *hw, int port)
1678 struct skge_port *skge = netdev_priv(hw->dev[port]);
1681 const u8 *addr = hw->dev[port]->dev_addr;
1683 /* WA code for COMA mode -- set PHY reset */
1684 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1685 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1686 reg = skge_read32(hw, B2_GP_IO);
1687 reg |= GP_DIR_9 | GP_IO_9;
1688 skge_write32(hw, B2_GP_IO, reg);
1692 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1693 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1695 /* WA code for COMA mode -- clear PHY reset */
1696 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1697 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1698 reg = skge_read32(hw, B2_GP_IO);
1701 skge_write32(hw, B2_GP_IO, reg);
1704 /* Set hardware config mode */
1705 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1706 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1707 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1709 /* Clear GMC reset */
1710 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1712 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1714 if (skge->autoneg == AUTONEG_DISABLE) {
1715 reg = GM_GPCR_AU_ALL_DIS;
1716 gma_write16(hw, port, GM_GP_CTRL,
1717 gma_read16(hw, port, GM_GP_CTRL) | reg);
1719 switch (skge->speed) {
1721 reg &= ~GM_GPCR_SPEED_100;
1722 reg |= GM_GPCR_SPEED_1000;
1725 reg &= ~GM_GPCR_SPEED_1000;
1726 reg |= GM_GPCR_SPEED_100;
1729 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1733 if (skge->duplex == DUPLEX_FULL)
1734 reg |= GM_GPCR_DUP_FULL;
1736 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1738 switch (skge->flow_control) {
1739 case FLOW_MODE_NONE:
1740 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1741 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1743 case FLOW_MODE_LOC_SEND:
1744 /* disable Rx flow-control */
1745 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1748 gma_write16(hw, port, GM_GP_CTRL, reg);
1749 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1751 yukon_init(hw, port);
1754 reg = gma_read16(hw, port, GM_PHY_ADDR);
1755 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1757 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1758 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1759 gma_write16(hw, port, GM_PHY_ADDR, reg);
1761 /* transmit control */
1762 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1764 /* receive control reg: unicast + multicast + no FCS */
1765 gma_write16(hw, port, GM_RX_CTRL,
1766 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1768 /* transmit flow control */
1769 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1771 /* transmit parameter */
1772 gma_write16(hw, port, GM_TX_PARAM,
1773 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1774 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1775 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1777 /* serial mode register */
1778 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1779 if (hw->dev[port]->mtu > 1500)
1780 reg |= GM_SMOD_JUMBO_ENA;
1782 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1784 /* physical address: used for pause frames */
1785 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1786 /* virtual address for data */
1787 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1789 /* enable interrupt mask for counter overflows */
1790 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1791 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1792 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1794 /* Initialize Mac Fifo */
1796 /* Configure Rx MAC FIFO */
1797 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1798 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1800 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1801 if (is_yukon_lite_a0(hw))
1802 reg &= ~GMF_RX_F_FL_ON;
1804 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1805 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1807 * because Pause Packet Truncation in GMAC is not working
1808 * we have to increase the Flush Threshold to 64 bytes
1809 * in order to flush pause packets in Rx FIFO on Yukon-1
1811 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1813 /* Configure Tx MAC FIFO */
1814 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1815 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1818 /* Go into power down mode */
1819 static void yukon_suspend(struct skge_hw *hw, int port)
1823 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1824 ctrl |= PHY_M_PC_POL_R_DIS;
1825 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1827 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1828 ctrl |= PHY_CT_RESET;
1829 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1831 /* switch IEEE compatible power down mode on */
1832 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1833 ctrl |= PHY_CT_PDOWN;
1834 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1837 static void yukon_stop(struct skge_port *skge)
1839 struct skge_hw *hw = skge->hw;
1840 int port = skge->port;
1842 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1843 yukon_reset(hw, port);
1845 gma_write16(hw, port, GM_GP_CTRL,
1846 gma_read16(hw, port, GM_GP_CTRL)
1847 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1848 gma_read16(hw, port, GM_GP_CTRL);
1850 yukon_suspend(hw, port);
1852 /* set GPHY Control reset */
1853 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1854 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1857 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1859 struct skge_hw *hw = skge->hw;
1860 int port = skge->port;
1863 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1864 | gma_read32(hw, port, GM_TXO_OK_LO);
1865 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1866 | gma_read32(hw, port, GM_RXO_OK_LO);
1868 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1869 data[i] = gma_read32(hw, port,
1870 skge_stats[i].gma_offset);
1873 static void yukon_mac_intr(struct skge_hw *hw, int port)
1875 struct net_device *dev = hw->dev[port];
1876 struct skge_port *skge = netdev_priv(dev);
1877 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1879 if (netif_msg_intr(skge))
1880 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1883 if (status & GM_IS_RX_FF_OR) {
1884 ++skge->net_stats.rx_fifo_errors;
1885 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1888 if (status & GM_IS_TX_FF_UR) {
1889 ++skge->net_stats.tx_fifo_errors;
1890 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1895 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1897 switch (aux & PHY_M_PS_SPEED_MSK) {
1898 case PHY_M_PS_SPEED_1000:
1900 case PHY_M_PS_SPEED_100:
1907 static void yukon_link_up(struct skge_port *skge)
1909 struct skge_hw *hw = skge->hw;
1910 int port = skge->port;
1913 /* Enable Transmit FIFO Underrun */
1914 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1916 reg = gma_read16(hw, port, GM_GP_CTRL);
1917 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1918 reg |= GM_GPCR_DUP_FULL;
1921 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1922 gma_write16(hw, port, GM_GP_CTRL, reg);
1924 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1928 static void yukon_link_down(struct skge_port *skge)
1930 struct skge_hw *hw = skge->hw;
1931 int port = skge->port;
1934 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1936 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1937 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1938 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1940 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1941 /* restore Asymmetric Pause bit */
1942 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1943 gm_phy_read(hw, port,
1949 yukon_reset(hw, port);
1950 skge_link_down(skge);
1952 yukon_init(hw, port);
1955 static void yukon_phy_intr(struct skge_port *skge)
1957 struct skge_hw *hw = skge->hw;
1958 int port = skge->port;
1959 const char *reason = NULL;
1960 u16 istatus, phystat;
1962 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1963 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1965 if (netif_msg_intr(skge))
1966 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1967 skge->netdev->name, istatus, phystat);
1969 if (istatus & PHY_M_IS_AN_COMPL) {
1970 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1972 reason = "remote fault";
1976 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1977 reason = "master/slave fault";
1981 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1982 reason = "speed/duplex";
1986 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1987 ? DUPLEX_FULL : DUPLEX_HALF;
1988 skge->speed = yukon_speed(hw, phystat);
1990 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1991 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1992 case PHY_M_PS_PAUSE_MSK:
1993 skge->flow_control = FLOW_MODE_SYMMETRIC;
1995 case PHY_M_PS_RX_P_EN:
1996 skge->flow_control = FLOW_MODE_REM_SEND;
1998 case PHY_M_PS_TX_P_EN:
1999 skge->flow_control = FLOW_MODE_LOC_SEND;
2002 skge->flow_control = FLOW_MODE_NONE;
2005 if (skge->flow_control == FLOW_MODE_NONE ||
2006 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2007 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2009 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2010 yukon_link_up(skge);
2014 if (istatus & PHY_M_IS_LSP_CHANGE)
2015 skge->speed = yukon_speed(hw, phystat);
2017 if (istatus & PHY_M_IS_DUP_CHANGE)
2018 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2019 if (istatus & PHY_M_IS_LST_CHANGE) {
2020 if (phystat & PHY_M_PS_LINK_UP)
2021 yukon_link_up(skge);
2023 yukon_link_down(skge);
2027 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2028 skge->netdev->name, reason);
2030 /* XXX restart autonegotiation? */
2033 static void skge_phy_reset(struct skge_port *skge)
2035 struct skge_hw *hw = skge->hw;
2036 int port = skge->port;
2038 netif_stop_queue(skge->netdev);
2039 netif_carrier_off(skge->netdev);
2041 mutex_lock(&hw->phy_mutex);
2042 if (hw->chip_id == CHIP_ID_GENESIS) {
2043 genesis_reset(hw, port);
2044 genesis_mac_init(hw, port);
2046 yukon_reset(hw, port);
2047 yukon_init(hw, port);
2049 mutex_unlock(&hw->phy_mutex);
2052 /* Basic MII support */
2053 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2055 struct mii_ioctl_data *data = if_mii(ifr);
2056 struct skge_port *skge = netdev_priv(dev);
2057 struct skge_hw *hw = skge->hw;
2058 int err = -EOPNOTSUPP;
2060 if (!netif_running(dev))
2061 return -ENODEV; /* Phy still in reset */
2065 data->phy_id = hw->phy_addr;
2070 mutex_lock(&hw->phy_mutex);
2071 if (hw->chip_id == CHIP_ID_GENESIS)
2072 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2074 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2075 mutex_unlock(&hw->phy_mutex);
2076 data->val_out = val;
2081 if (!capable(CAP_NET_ADMIN))
2084 mutex_lock(&hw->phy_mutex);
2085 if (hw->chip_id == CHIP_ID_GENESIS)
2086 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2089 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2091 mutex_unlock(&hw->phy_mutex);
2097 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2103 end = start + len - 1;
2105 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2106 skge_write32(hw, RB_ADDR(q, RB_START), start);
2107 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2108 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2109 skge_write32(hw, RB_ADDR(q, RB_END), end);
2111 if (q == Q_R1 || q == Q_R2) {
2112 /* Set thresholds on receive queue's */
2113 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2115 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2118 /* Enable store & forward on Tx queue's because
2119 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2121 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2124 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2127 /* Setup Bus Memory Interface */
2128 static void skge_qset(struct skge_port *skge, u16 q,
2129 const struct skge_element *e)
2131 struct skge_hw *hw = skge->hw;
2132 u32 watermark = 0x600;
2133 u64 base = skge->dma + (e->desc - skge->mem);
2135 /* optimization to reduce window on 32bit/33mhz */
2136 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2139 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2140 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2141 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2142 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2145 static int skge_up(struct net_device *dev)
2147 struct skge_port *skge = netdev_priv(dev);
2148 struct skge_hw *hw = skge->hw;
2149 int port = skge->port;
2150 u32 chunk, ram_addr;
2151 size_t rx_size, tx_size;
2154 if (netif_msg_ifup(skge))
2155 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2157 if (dev->mtu > RX_BUF_SIZE)
2158 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2160 skge->rx_buf_size = RX_BUF_SIZE;
2163 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2164 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2165 skge->mem_size = tx_size + rx_size;
2166 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2170 BUG_ON(skge->dma & 7);
2172 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2173 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2178 memset(skge->mem, 0, skge->mem_size);
2180 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2184 err = skge_rx_fill(skge);
2188 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2189 skge->dma + rx_size);
2193 /* Initialize MAC */
2194 mutex_lock(&hw->phy_mutex);
2195 if (hw->chip_id == CHIP_ID_GENESIS)
2196 genesis_mac_init(hw, port);
2198 yukon_mac_init(hw, port);
2199 mutex_unlock(&hw->phy_mutex);
2201 /* Configure RAMbuffers */
2202 chunk = hw->ram_size / ((hw->ports + 1)*2);
2203 ram_addr = hw->ram_offset + 2 * chunk * port;
2205 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2206 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2208 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2209 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2210 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2212 /* Start receiver BMU */
2214 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2215 skge_led(skge, LED_MODE_ON);
2220 skge_rx_clean(skge);
2221 kfree(skge->rx_ring.start);
2223 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2229 static int skge_down(struct net_device *dev)
2231 struct skge_port *skge = netdev_priv(dev);
2232 struct skge_hw *hw = skge->hw;
2233 int port = skge->port;
2235 if (skge->mem == NULL)
2238 if (netif_msg_ifdown(skge))
2239 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2241 netif_stop_queue(dev);
2243 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2244 if (hw->chip_id == CHIP_ID_GENESIS)
2249 /* Stop transmitter */
2250 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2251 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2252 RB_RST_SET|RB_DIS_OP_MD);
2255 /* Disable Force Sync bit and Enable Alloc bit */
2256 skge_write8(hw, SK_REG(port, TXA_CTRL),
2257 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2259 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2260 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2261 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2263 /* Reset PCI FIFO */
2264 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2265 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2267 /* Reset the RAM Buffer async Tx queue */
2268 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2270 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2271 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2272 RB_RST_SET|RB_DIS_OP_MD);
2273 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2275 if (hw->chip_id == CHIP_ID_GENESIS) {
2276 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2277 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2279 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2280 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2283 skge_led(skge, LED_MODE_OFF);
2285 skge_tx_clean(skge);
2286 skge_rx_clean(skge);
2288 kfree(skge->rx_ring.start);
2289 kfree(skge->tx_ring.start);
2290 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2295 static inline int skge_avail(const struct skge_ring *ring)
2297 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2298 + (ring->to_clean - ring->to_use) - 1;
2301 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2303 struct skge_port *skge = netdev_priv(dev);
2304 struct skge_hw *hw = skge->hw;
2305 struct skge_element *e;
2306 struct skge_tx_desc *td;
2310 unsigned long flags;
2312 if (skb_padto(skb, ETH_ZLEN))
2313 return NETDEV_TX_OK;
2315 if (!spin_trylock_irqsave(&skge->tx_lock, flags))
2316 /* Collision - tell upper layer to requeue */
2317 return NETDEV_TX_LOCKED;
2319 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
2320 if (!netif_queue_stopped(dev)) {
2321 netif_stop_queue(dev);
2323 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2326 spin_unlock_irqrestore(&skge->tx_lock, flags);
2327 return NETDEV_TX_BUSY;
2330 e = skge->tx_ring.to_use;
2332 BUG_ON(td->control & BMU_OWN);
2334 len = skb_headlen(skb);
2335 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2336 pci_unmap_addr_set(e, mapaddr, map);
2337 pci_unmap_len_set(e, maplen, len);
2340 td->dma_hi = map >> 32;
2342 if (skb->ip_summed == CHECKSUM_HW) {
2343 int offset = skb->h.raw - skb->data;
2345 /* This seems backwards, but it is what the sk98lin
2346 * does. Looks like hardware is wrong?
2348 if (skb->h.ipiph->protocol == IPPROTO_UDP
2349 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2350 control = BMU_TCP_CHECK;
2352 control = BMU_UDP_CHECK;
2355 td->csum_start = offset;
2356 td->csum_write = offset + skb->csum;
2358 control = BMU_CHECK;
2360 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2361 control |= BMU_EOF| BMU_IRQ_EOF;
2363 struct skge_tx_desc *tf = td;
2365 control |= BMU_STFWD;
2366 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2367 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2369 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2370 frag->size, PCI_DMA_TODEVICE);
2375 BUG_ON(tf->control & BMU_OWN);
2378 tf->dma_hi = (u64) map >> 32;
2379 pci_unmap_addr_set(e, mapaddr, map);
2380 pci_unmap_len_set(e, maplen, frag->size);
2382 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2384 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2386 /* Make sure all the descriptors written */
2388 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2391 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2393 if (unlikely(netif_msg_tx_queued(skge)))
2394 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2395 dev->name, e - skge->tx_ring.start, skb->len);
2397 skge->tx_ring.to_use = e->next;
2398 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2399 pr_debug("%s: transmit queue full\n", dev->name);
2400 netif_stop_queue(dev);
2403 spin_unlock_irqrestore(&skge->tx_lock, flags);
2405 dev->trans_start = jiffies;
2407 return NETDEV_TX_OK;
2411 /* Free resources associated with this reing element */
2412 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2415 struct pci_dev *pdev = skge->hw->pdev;
2419 /* skb header vs. fragment */
2420 if (control & BMU_STF)
2421 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2422 pci_unmap_len(e, maplen),
2425 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2426 pci_unmap_len(e, maplen),
2429 if (control & BMU_EOF) {
2430 if (unlikely(netif_msg_tx_done(skge)))
2431 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2432 skge->netdev->name, e - skge->tx_ring.start);
2434 dev_kfree_skb_any(e->skb);
2439 /* Free all buffers in transmit ring */
2440 static void skge_tx_clean(struct skge_port *skge)
2442 struct skge_element *e;
2443 unsigned long flags;
2445 spin_lock_irqsave(&skge->tx_lock, flags);
2446 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2447 struct skge_tx_desc *td = e->desc;
2448 skge_tx_free(skge, e, td->control);
2452 skge->tx_ring.to_clean = e;
2453 netif_wake_queue(skge->netdev);
2454 spin_unlock_irqrestore(&skge->tx_lock, flags);
2457 static void skge_tx_timeout(struct net_device *dev)
2459 struct skge_port *skge = netdev_priv(dev);
2461 if (netif_msg_timer(skge))
2462 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2464 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2465 skge_tx_clean(skge);
2468 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2472 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2475 if (!netif_running(dev)) {
2491 static void genesis_set_multicast(struct net_device *dev)
2493 struct skge_port *skge = netdev_priv(dev);
2494 struct skge_hw *hw = skge->hw;
2495 int port = skge->port;
2496 int i, count = dev->mc_count;
2497 struct dev_mc_list *list = dev->mc_list;
2501 mode = xm_read32(hw, port, XM_MODE);
2502 mode |= XM_MD_ENA_HASH;
2503 if (dev->flags & IFF_PROMISC)
2504 mode |= XM_MD_ENA_PROM;
2506 mode &= ~XM_MD_ENA_PROM;
2508 if (dev->flags & IFF_ALLMULTI)
2509 memset(filter, 0xff, sizeof(filter));
2511 memset(filter, 0, sizeof(filter));
2512 for (i = 0; list && i < count; i++, list = list->next) {
2514 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2516 filter[bit/8] |= 1 << (bit%8);
2520 xm_write32(hw, port, XM_MODE, mode);
2521 xm_outhash(hw, port, XM_HSM, filter);
2524 static void yukon_set_multicast(struct net_device *dev)
2526 struct skge_port *skge = netdev_priv(dev);
2527 struct skge_hw *hw = skge->hw;
2528 int port = skge->port;
2529 struct dev_mc_list *list = dev->mc_list;
2533 memset(filter, 0, sizeof(filter));
2535 reg = gma_read16(hw, port, GM_RX_CTRL);
2536 reg |= GM_RXCR_UCF_ENA;
2538 if (dev->flags & IFF_PROMISC) /* promiscuous */
2539 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2540 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2541 memset(filter, 0xff, sizeof(filter));
2542 else if (dev->mc_count == 0) /* no multicast */
2543 reg &= ~GM_RXCR_MCF_ENA;
2546 reg |= GM_RXCR_MCF_ENA;
2548 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2549 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2550 filter[bit/8] |= 1 << (bit%8);
2555 gma_write16(hw, port, GM_MC_ADDR_H1,
2556 (u16)filter[0] | ((u16)filter[1] << 8));
2557 gma_write16(hw, port, GM_MC_ADDR_H2,
2558 (u16)filter[2] | ((u16)filter[3] << 8));
2559 gma_write16(hw, port, GM_MC_ADDR_H3,
2560 (u16)filter[4] | ((u16)filter[5] << 8));
2561 gma_write16(hw, port, GM_MC_ADDR_H4,
2562 (u16)filter[6] | ((u16)filter[7] << 8));
2564 gma_write16(hw, port, GM_RX_CTRL, reg);
2567 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2569 if (hw->chip_id == CHIP_ID_GENESIS)
2570 return status >> XMR_FS_LEN_SHIFT;
2572 return status >> GMR_FS_LEN_SHIFT;
2575 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2577 if (hw->chip_id == CHIP_ID_GENESIS)
2578 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2580 return (status & GMR_FS_ANY_ERR) ||
2581 (status & GMR_FS_RX_OK) == 0;
2585 /* Get receive buffer from descriptor.
2586 * Handles copy of small buffers and reallocation failures
2588 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2589 struct skge_element *e,
2590 u32 control, u32 status, u16 csum)
2592 struct sk_buff *skb;
2593 u16 len = control & BMU_BBC;
2595 if (unlikely(netif_msg_rx_status(skge)))
2596 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2597 skge->netdev->name, e - skge->rx_ring.start,
2600 if (len > skge->rx_buf_size)
2603 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2606 if (bad_phy_status(skge->hw, status))
2609 if (phy_length(skge->hw, status) != len)
2612 if (len < RX_COPY_THRESHOLD) {
2613 skb = alloc_skb(len + 2, GFP_ATOMIC);
2617 skb_reserve(skb, 2);
2618 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2619 pci_unmap_addr(e, mapaddr),
2620 len, PCI_DMA_FROMDEVICE);
2621 memcpy(skb->data, e->skb->data, len);
2622 pci_dma_sync_single_for_device(skge->hw->pdev,
2623 pci_unmap_addr(e, mapaddr),
2624 len, PCI_DMA_FROMDEVICE);
2625 skge_rx_reuse(e, skge->rx_buf_size);
2627 struct sk_buff *nskb;
2628 nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
2632 skb_reserve(nskb, NET_IP_ALIGN);
2633 pci_unmap_single(skge->hw->pdev,
2634 pci_unmap_addr(e, mapaddr),
2635 pci_unmap_len(e, maplen),
2636 PCI_DMA_FROMDEVICE);
2638 prefetch(skb->data);
2639 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2643 skb->dev = skge->netdev;
2644 if (skge->rx_csum) {
2646 skb->ip_summed = CHECKSUM_HW;
2649 skb->protocol = eth_type_trans(skb, skge->netdev);
2654 if (netif_msg_rx_err(skge))
2655 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2656 skge->netdev->name, e - skge->rx_ring.start,
2659 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2660 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2661 skge->net_stats.rx_length_errors++;
2662 if (status & XMR_FS_FRA_ERR)
2663 skge->net_stats.rx_frame_errors++;
2664 if (status & XMR_FS_FCS_ERR)
2665 skge->net_stats.rx_crc_errors++;
2667 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2668 skge->net_stats.rx_length_errors++;
2669 if (status & GMR_FS_FRAGMENT)
2670 skge->net_stats.rx_frame_errors++;
2671 if (status & GMR_FS_CRC_ERR)
2672 skge->net_stats.rx_crc_errors++;
2676 skge_rx_reuse(e, skge->rx_buf_size);
2680 /* Free all buffers in Tx ring which are no longer owned by device */
2681 static void skge_txirq(struct net_device *dev)
2683 struct skge_port *skge = netdev_priv(dev);
2684 struct skge_ring *ring = &skge->tx_ring;
2685 struct skge_element *e;
2689 spin_lock(&skge->tx_lock);
2690 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2691 struct skge_tx_desc *td = e->desc;
2693 if (td->control & BMU_OWN)
2696 skge_tx_free(skge, e, td->control);
2698 skge->tx_ring.to_clean = e;
2700 if (netif_queue_stopped(skge->netdev)
2701 && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2702 netif_wake_queue(skge->netdev);
2704 spin_unlock(&skge->tx_lock);
2707 static int skge_poll(struct net_device *dev, int *budget)
2709 struct skge_port *skge = netdev_priv(dev);
2710 struct skge_hw *hw = skge->hw;
2711 struct skge_ring *ring = &skge->rx_ring;
2712 struct skge_element *e;
2713 int to_do = min(dev->quota, *budget);
2716 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2717 struct skge_rx_desc *rd = e->desc;
2718 struct sk_buff *skb;
2722 control = rd->control;
2723 if (control & BMU_OWN)
2726 skb = skge_rx_get(skge, e, control, rd->status, rd->csum2);
2728 dev->last_rx = jiffies;
2729 netif_receive_skb(skb);
2736 /* restart receiver */
2738 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2740 *budget -= work_done;
2741 dev->quota -= work_done;
2743 if (work_done >= to_do)
2744 return 1; /* not done */
2746 netif_rx_complete(dev);
2748 spin_lock_irq(&hw->hw_lock);
2749 hw->intr_mask |= rxirqmask[skge->port];
2750 skge_write32(hw, B0_IMSK, hw->intr_mask);
2752 spin_unlock_irq(&hw->hw_lock);
2757 /* Parity errors seem to happen when Genesis is connected to a switch
2758 * with no other ports present. Heartbeat error??
2760 static void skge_mac_parity(struct skge_hw *hw, int port)
2762 struct net_device *dev = hw->dev[port];
2765 struct skge_port *skge = netdev_priv(dev);
2766 ++skge->net_stats.tx_heartbeat_errors;
2769 if (hw->chip_id == CHIP_ID_GENESIS)
2770 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2773 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2774 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2775 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2776 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2779 static void skge_mac_intr(struct skge_hw *hw, int port)
2781 if (hw->chip_id == CHIP_ID_GENESIS)
2782 genesis_mac_intr(hw, port);
2784 yukon_mac_intr(hw, port);
2787 /* Handle device specific framing and timeout interrupts */
2788 static void skge_error_irq(struct skge_hw *hw)
2790 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2792 if (hw->chip_id == CHIP_ID_GENESIS) {
2793 /* clear xmac errors */
2794 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2795 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2796 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2797 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2799 /* Timestamp (unused) overflow */
2800 if (hwstatus & IS_IRQ_TIST_OV)
2801 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2804 if (hwstatus & IS_RAM_RD_PAR) {
2805 printk(KERN_ERR PFX "Ram read data parity error\n");
2806 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2809 if (hwstatus & IS_RAM_WR_PAR) {
2810 printk(KERN_ERR PFX "Ram write data parity error\n");
2811 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2814 if (hwstatus & IS_M1_PAR_ERR)
2815 skge_mac_parity(hw, 0);
2817 if (hwstatus & IS_M2_PAR_ERR)
2818 skge_mac_parity(hw, 1);
2820 if (hwstatus & IS_R1_PAR_ERR) {
2821 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2823 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2826 if (hwstatus & IS_R2_PAR_ERR) {
2827 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2829 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2832 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2833 u16 pci_status, pci_cmd;
2835 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
2836 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2838 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
2839 pci_name(hw->pdev), pci_cmd, pci_status);
2841 /* Write the error bits back to clear them. */
2842 pci_status &= PCI_STATUS_ERROR_BITS;
2843 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2844 pci_write_config_word(hw->pdev, PCI_COMMAND,
2845 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2846 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
2847 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2849 /* if error still set then just ignore it */
2850 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2851 if (hwstatus & IS_IRQ_STAT) {
2852 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2853 hw->intr_mask &= ~IS_HW_ERR;
2859 * Interrupt from PHY are handled in work queue
2860 * because accessing phy registers requires spin wait which might
2861 * cause excess interrupt latency.
2863 static void skge_extirq(void *arg)
2865 struct skge_hw *hw = arg;
2868 mutex_lock(&hw->phy_mutex);
2869 for (port = 0; port < hw->ports; port++) {
2870 struct net_device *dev = hw->dev[port];
2871 struct skge_port *skge = netdev_priv(dev);
2873 if (netif_running(dev)) {
2874 if (hw->chip_id != CHIP_ID_GENESIS)
2875 yukon_phy_intr(skge);
2877 bcom_phy_intr(skge);
2880 mutex_unlock(&hw->phy_mutex);
2882 spin_lock_irq(&hw->hw_lock);
2883 hw->intr_mask |= IS_EXT_REG;
2884 skge_write32(hw, B0_IMSK, hw->intr_mask);
2885 spin_unlock_irq(&hw->hw_lock);
2888 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2890 struct skge_hw *hw = dev_id;
2893 /* Reading this register masks IRQ */
2894 status = skge_read32(hw, B0_SP_ISRC);
2898 spin_lock(&hw->hw_lock);
2899 status &= hw->intr_mask;
2900 if (status & IS_EXT_REG) {
2901 hw->intr_mask &= ~IS_EXT_REG;
2902 schedule_work(&hw->phy_work);
2905 if (status & IS_XA1_F) {
2906 skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
2907 skge_txirq(hw->dev[0]);
2910 if (status & IS_R1_F) {
2911 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2912 hw->intr_mask &= ~IS_R1_F;
2913 netif_rx_schedule(hw->dev[0]);
2916 if (status & IS_PA_TO_TX1)
2917 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2919 if (status & IS_PA_TO_RX1) {
2920 struct skge_port *skge = netdev_priv(hw->dev[0]);
2922 ++skge->net_stats.rx_over_errors;
2923 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2927 if (status & IS_MAC1)
2928 skge_mac_intr(hw, 0);
2931 if (status & IS_XA2_F) {
2932 skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
2933 skge_txirq(hw->dev[1]);
2936 if (status & IS_R2_F) {
2937 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2938 hw->intr_mask &= ~IS_R2_F;
2939 netif_rx_schedule(hw->dev[1]);
2942 if (status & IS_PA_TO_RX2) {
2943 struct skge_port *skge = netdev_priv(hw->dev[1]);
2944 ++skge->net_stats.rx_over_errors;
2945 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2948 if (status & IS_PA_TO_TX2)
2949 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2951 if (status & IS_MAC2)
2952 skge_mac_intr(hw, 1);
2955 if (status & IS_HW_ERR)
2958 skge_write32(hw, B0_IMSK, hw->intr_mask);
2959 spin_unlock(&hw->hw_lock);
2964 #ifdef CONFIG_NET_POLL_CONTROLLER
2965 static void skge_netpoll(struct net_device *dev)
2967 struct skge_port *skge = netdev_priv(dev);
2969 disable_irq(dev->irq);
2970 skge_intr(dev->irq, skge->hw, NULL);
2971 enable_irq(dev->irq);
2975 static int skge_set_mac_address(struct net_device *dev, void *p)
2977 struct skge_port *skge = netdev_priv(dev);
2978 struct skge_hw *hw = skge->hw;
2979 unsigned port = skge->port;
2980 const struct sockaddr *addr = p;
2982 if (!is_valid_ether_addr(addr->sa_data))
2983 return -EADDRNOTAVAIL;
2985 mutex_lock(&hw->phy_mutex);
2986 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2987 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2988 dev->dev_addr, ETH_ALEN);
2989 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2990 dev->dev_addr, ETH_ALEN);
2992 if (hw->chip_id == CHIP_ID_GENESIS)
2993 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2995 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2996 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2998 mutex_unlock(&hw->phy_mutex);
3003 static const struct {
3007 { CHIP_ID_GENESIS, "Genesis" },
3008 { CHIP_ID_YUKON, "Yukon" },
3009 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3010 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3013 static const char *skge_board_name(const struct skge_hw *hw)
3016 static char buf[16];
3018 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3019 if (skge_chips[i].id == hw->chip_id)
3020 return skge_chips[i].name;
3022 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3028 * Setup the board data structure, but don't bring up
3031 static int skge_reset(struct skge_hw *hw)
3034 u16 ctst, pci_status;
3035 u8 t8, mac_cfg, pmd_type, phy_type;
3038 ctst = skge_read16(hw, B0_CTST);
3041 skge_write8(hw, B0_CTST, CS_RST_SET);
3042 skge_write8(hw, B0_CTST, CS_RST_CLR);
3044 /* clear PCI errors, if any */
3045 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3046 skge_write8(hw, B2_TST_CTRL2, 0);
3048 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3049 pci_write_config_word(hw->pdev, PCI_STATUS,
3050 pci_status | PCI_STATUS_ERROR_BITS);
3051 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3052 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3054 /* restore CLK_RUN bits (for Yukon-Lite) */
3055 skge_write16(hw, B0_CTST,
3056 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3058 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3059 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3060 pmd_type = skge_read8(hw, B2_PMD_TYP);
3061 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3063 switch (hw->chip_id) {
3064 case CHIP_ID_GENESIS:
3067 hw->phy_addr = PHY_ADDR_BCOM;
3070 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3071 pci_name(hw->pdev), phy_type);
3077 case CHIP_ID_YUKON_LITE:
3078 case CHIP_ID_YUKON_LP:
3079 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3082 hw->phy_addr = PHY_ADDR_MARV;
3086 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3087 pci_name(hw->pdev), hw->chip_id);
3091 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3092 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3093 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3095 /* read the adapters RAM size */
3096 t8 = skge_read8(hw, B2_E_0);
3097 if (hw->chip_id == CHIP_ID_GENESIS) {
3099 /* special case: 4 x 64k x 36, offset = 0x80000 */
3100 hw->ram_size = 0x100000;
3101 hw->ram_offset = 0x80000;
3103 hw->ram_size = t8 * 512;
3106 hw->ram_size = 0x20000;
3108 hw->ram_size = t8 * 4096;
3110 spin_lock_init(&hw->hw_lock);
3111 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3113 hw->intr_mask |= IS_PORT_2;
3115 if (hw->chip_id == CHIP_ID_GENESIS)
3118 /* switch power to VCC (WA for VAUX problem) */
3119 skge_write8(hw, B0_POWER_CTRL,
3120 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3122 /* avoid boards with stuck Hardware error bits */
3123 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3124 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3125 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3126 hw->intr_mask &= ~IS_HW_ERR;
3129 /* Clear PHY COMA */
3130 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3131 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3132 reg &= ~PCI_PHY_COMA;
3133 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3134 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3137 for (i = 0; i < hw->ports; i++) {
3138 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3139 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3143 /* turn off hardware timer (unused) */
3144 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3145 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3146 skge_write8(hw, B0_LED, LED_STAT_ON);
3148 /* enable the Tx Arbiters */
3149 for (i = 0; i < hw->ports; i++)
3150 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3152 /* Initialize ram interface */
3153 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3155 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3156 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3157 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3158 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3159 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3160 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3161 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3162 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3163 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3164 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3165 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3166 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3168 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3170 /* Set interrupt moderation for Transmit only
3171 * Receive interrupts avoided by NAPI
3173 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3174 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3175 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3177 skge_write32(hw, B0_IMSK, hw->intr_mask);
3179 mutex_lock(&hw->phy_mutex);
3180 for (i = 0; i < hw->ports; i++) {
3181 if (hw->chip_id == CHIP_ID_GENESIS)
3182 genesis_reset(hw, i);
3186 mutex_unlock(&hw->phy_mutex);
3191 /* Initialize network device */
3192 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3195 struct skge_port *skge;
3196 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3199 printk(KERN_ERR "skge etherdev alloc failed");
3203 SET_MODULE_OWNER(dev);
3204 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3205 dev->open = skge_up;
3206 dev->stop = skge_down;
3207 dev->do_ioctl = skge_ioctl;
3208 dev->hard_start_xmit = skge_xmit_frame;
3209 dev->get_stats = skge_get_stats;
3210 if (hw->chip_id == CHIP_ID_GENESIS)
3211 dev->set_multicast_list = genesis_set_multicast;
3213 dev->set_multicast_list = yukon_set_multicast;
3215 dev->set_mac_address = skge_set_mac_address;
3216 dev->change_mtu = skge_change_mtu;
3217 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3218 dev->tx_timeout = skge_tx_timeout;
3219 dev->watchdog_timeo = TX_WATCHDOG;
3220 dev->poll = skge_poll;
3221 dev->weight = NAPI_WEIGHT;
3222 #ifdef CONFIG_NET_POLL_CONTROLLER
3223 dev->poll_controller = skge_netpoll;
3225 dev->irq = hw->pdev->irq;
3226 dev->features = NETIF_F_LLTX;
3228 dev->features |= NETIF_F_HIGHDMA;
3230 skge = netdev_priv(dev);
3233 skge->msg_enable = netif_msg_init(debug, default_msg);
3234 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3235 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3237 /* Auto speed and flow control */
3238 skge->autoneg = AUTONEG_ENABLE;
3239 skge->flow_control = FLOW_MODE_SYMMETRIC;
3242 skge->advertising = skge_supported_modes(hw);
3244 hw->dev[port] = dev;
3248 spin_lock_init(&skge->tx_lock);
3250 if (hw->chip_id != CHIP_ID_GENESIS) {
3251 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3255 /* read the mac address */
3256 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3257 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3259 /* device is off until link detection */
3260 netif_carrier_off(dev);
3261 netif_stop_queue(dev);
3266 static void __devinit skge_show_addr(struct net_device *dev)
3268 const struct skge_port *skge = netdev_priv(dev);
3270 if (netif_msg_probe(skge))
3271 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3273 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3274 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3277 static int __devinit skge_probe(struct pci_dev *pdev,
3278 const struct pci_device_id *ent)
3280 struct net_device *dev, *dev1;
3282 int err, using_dac = 0;
3284 err = pci_enable_device(pdev);
3286 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3291 err = pci_request_regions(pdev, DRV_NAME);
3293 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3295 goto err_out_disable_pdev;
3298 pci_set_master(pdev);
3300 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3302 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3303 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3305 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3309 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3311 goto err_out_free_regions;
3315 /* byte swap descriptors in hardware */
3319 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3320 reg |= PCI_REV_DESC;
3321 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3326 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3328 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3330 goto err_out_free_regions;
3334 mutex_init(&hw->phy_mutex);
3335 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3337 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3339 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3341 goto err_out_free_hw;
3344 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, DRV_NAME, hw);
3346 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3347 pci_name(pdev), pdev->irq);
3348 goto err_out_iounmap;
3350 pci_set_drvdata(pdev, hw);
3352 err = skge_reset(hw);
3354 goto err_out_free_irq;
3356 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3357 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3358 skge_board_name(hw), hw->chip_rev);
3360 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3361 goto err_out_led_off;
3363 if (!is_valid_ether_addr(dev->dev_addr)) {
3364 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3367 goto err_out_free_netdev;
3371 err = register_netdev(dev);
3373 printk(KERN_ERR PFX "%s: cannot register net device\n",
3375 goto err_out_free_netdev;
3378 skge_show_addr(dev);
3380 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3381 if (register_netdev(dev1) == 0)
3382 skge_show_addr(dev1);
3384 /* Failure to register second port need not be fatal */
3385 printk(KERN_WARNING PFX "register of second port failed\n");
3393 err_out_free_netdev:
3396 skge_write16(hw, B0_LED, LED_STAT_OFF);
3398 free_irq(pdev->irq, hw);
3403 err_out_free_regions:
3404 pci_release_regions(pdev);
3405 err_out_disable_pdev:
3406 pci_disable_device(pdev);
3407 pci_set_drvdata(pdev, NULL);
3412 static void __devexit skge_remove(struct pci_dev *pdev)
3414 struct skge_hw *hw = pci_get_drvdata(pdev);
3415 struct net_device *dev0, *dev1;
3420 if ((dev1 = hw->dev[1]))
3421 unregister_netdev(dev1);
3423 unregister_netdev(dev0);
3425 spin_lock_irq(&hw->hw_lock);
3427 skge_write32(hw, B0_IMSK, 0);
3428 spin_unlock_irq(&hw->hw_lock);
3430 skge_write16(hw, B0_LED, LED_STAT_OFF);
3431 skge_write8(hw, B0_CTST, CS_RST_SET);
3433 flush_scheduled_work();
3435 free_irq(pdev->irq, hw);
3436 pci_release_regions(pdev);
3437 pci_disable_device(pdev);
3444 pci_set_drvdata(pdev, NULL);
3448 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3450 struct skge_hw *hw = pci_get_drvdata(pdev);
3453 for (i = 0; i < 2; i++) {
3454 struct net_device *dev = hw->dev[i];
3457 struct skge_port *skge = netdev_priv(dev);
3458 if (netif_running(dev)) {
3459 netif_carrier_off(dev);
3461 netif_stop_queue(dev);
3465 netif_device_detach(dev);
3470 pci_save_state(pdev);
3471 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3472 pci_disable_device(pdev);
3473 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3478 static int skge_resume(struct pci_dev *pdev)
3480 struct skge_hw *hw = pci_get_drvdata(pdev);
3483 pci_set_power_state(pdev, PCI_D0);
3484 pci_restore_state(pdev);
3485 pci_enable_wake(pdev, PCI_D0, 0);
3489 for (i = 0; i < 2; i++) {
3490 struct net_device *dev = hw->dev[i];
3492 netif_device_attach(dev);
3493 if (netif_running(dev) && skge_up(dev))
3501 static struct pci_driver skge_driver = {
3503 .id_table = skge_id_table,
3504 .probe = skge_probe,
3505 .remove = __devexit_p(skge_remove),
3507 .suspend = skge_suspend,
3508 .resume = skge_resume,
3512 static int __init skge_init_module(void)
3514 return pci_module_init(&skge_driver);
3517 static void __exit skge_cleanup_module(void)
3519 pci_unregister_driver(&skge_driver);
3522 module_init(skge_init_module);
3523 module_exit(skge_cleanup_module);