1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
21 Version LK1.01a (jgarzik):
22 - Replace some MII-related magic numbers with constants
24 Version LK1.02 (D-Link):
25 - Add new board to PCI ID list
28 Version LK1.03 (D-Link):
29 - New Rx scheme, reduce Rx congestion
30 - Option to disable flow control
32 Version LK1.04 (D-Link):
34 - More support for ethtool.
37 - Remove unused/constant members from struct pci_id_info
38 (which then allows removal of 'drv_flags' from private struct)
40 - If no phy is found, fail to load that board (jgarzik)
41 - Always start phy id scan at id 1 to avoid problems (Donald Becker)
42 - Autodetect where mii_preable_required is needed,
43 default to not needed. (Donald Becker)
46 - Remove mii_preamble_required module parameter (Donald Becker)
47 - Add per-interface mii_preamble_required (setting is autodetected)
49 - Remove unnecessary cast from void pointer (jgarzik)
50 - Re-align comments in private struct (jgarzik)
52 Version LK1.04c (jgarzik):
53 - Support bitmapped message levels (NETIF_MSG_xxx), and the
54 two ethtool ioctls that get/set them
55 - Don't hand-code MII ethtool support, use standard API/lib
58 - Merge from Donald Becker's sundance.c: (Jason Lunz)
59 * proper support for variably-sized MTUs
60 * default to PIO, to fix chip bugs
61 - Add missing unregister_netdev (Jason Lunz)
62 - Add CONFIG_SUNDANCE_MMIO config option (jgarzik)
63 - Better rx buf size calculation (Donald Becker)
65 Version LK1.05 (D-Link):
66 - Fix DFE-580TX packet drop issue (for DL10050C)
69 Version LK1.06 (D-Link):
70 - Fix crash while unloading driver
72 Versin LK1.06b (D-Link):
73 - New tx scheme, adaptive tx_coalesce
75 Version LK1.07 (D-Link):
76 - Fix tx bugs in big-endian machines
77 - Remove unused max_interrupt_work module parameter, the new
78 NAPI-like rx scheme doesn't need it.
79 - Remove redundancy get_stats() in intr_handler(), those
80 I/O access could affect performance in ARM-based system
81 - Add Linux software VLAN support
83 Version LK1.08 (Philippe De Muyter phdm@macqel.be):
84 - Fix bug of custom mac address
85 (StationAddr register only accept word write)
87 Version LK1.09 (D-Link):
88 - Fix the flowctrl bug.
89 - Set Pause bit in MII ANAR if flow control enabled.
91 Version LK1.09a (ICPlus):
92 - Add the delay time in reading the contents of EEPROM
94 Version LK1.10 (Philippe De Muyter phdm@macqel.be):
95 - Make 'unblock interface after Tx underrun' work
97 Version LK1.11 (Pedro Alejandro Lopez-Valencia palopezv at gmail.com):
98 - Add support for IC Plus Corporation IP100A chipset
101 #define DRV_NAME "sundance"
102 #define DRV_VERSION "1.01+LK1.11"
103 #define DRV_RELDATE "14-Jun-2006"
106 /* The user-configurable values.
107 These may be modified when a driver module is loaded.*/
108 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
109 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
110 Typical is a 64 element hash table based on the Ethernet CRC. */
111 static const int multicast_filter_limit = 32;
113 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
114 Setting to > 1518 effectively disables this feature.
115 This chip can receive into offset buffers, so the Alpha does not
116 need a copy-align. */
117 static int rx_copybreak;
118 static int flowctrl=1;
120 /* media[] specifies the media type the NIC operates at.
121 autosense Autosensing active media.
122 10mbps_hd 10Mbps half duplex.
123 10mbps_fd 10Mbps full duplex.
124 100mbps_hd 100Mbps half duplex.
125 100mbps_fd 100Mbps full duplex.
126 0 Autosensing active media.
127 1 10Mbps half duplex.
128 2 10Mbps full duplex.
129 3 100Mbps half duplex.
130 4 100Mbps full duplex.
133 static char *media[MAX_UNITS];
136 /* Operational parameters that are set at compile time. */
138 /* Keep the ring sizes a power of two for compile efficiency.
139 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
140 Making the Tx ring too large decreases the effectiveness of channel
141 bonding and packet priority, and more than 128 requires modifying the
143 Large receive rings merely waste memory. */
144 #define TX_RING_SIZE 32
145 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
146 #define RX_RING_SIZE 64
148 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
149 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
151 /* Operational parameters that usually are not changed. */
152 /* Time in jiffies before concluding the transmitter is hung. */
153 #define TX_TIMEOUT (4*HZ)
154 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
156 /* Include files, designed to support most kernel versions 2.0.0 and later. */
157 #include <linux/module.h>
158 #include <linux/kernel.h>
159 #include <linux/string.h>
160 #include <linux/timer.h>
161 #include <linux/errno.h>
162 #include <linux/ioport.h>
163 #include <linux/slab.h>
164 #include <linux/interrupt.h>
165 #include <linux/pci.h>
166 #include <linux/netdevice.h>
167 #include <linux/etherdevice.h>
168 #include <linux/skbuff.h>
169 #include <linux/init.h>
170 #include <linux/bitops.h>
171 #include <asm/uaccess.h>
172 #include <asm/processor.h> /* Processor type for cache alignment. */
174 #include <linux/delay.h>
175 #include <linux/spinlock.h>
176 #ifndef _COMPAT_WITH_OLD_KERNEL
177 #include <linux/crc32.h>
178 #include <linux/ethtool.h>
179 #include <linux/mii.h>
187 /* These identify the driver base version and may not be removed. */
188 static char version[] __devinitdata =
189 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
190 KERN_INFO " http://www.scyld.com/network/sundance.html\n";
192 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
193 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
194 MODULE_LICENSE("GPL");
196 module_param(debug, int, 0);
197 module_param(rx_copybreak, int, 0);
198 module_param_array(media, charp, NULL, 0);
199 module_param(flowctrl, int, 0);
200 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
201 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
207 I. Board Compatibility
209 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
211 II. Board-specific settings
213 III. Driver operation
217 This driver uses two statically allocated fixed-size descriptor lists
218 formed into rings by a branch from the final descriptor to the beginning of
219 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
220 Some chips explicitly use only 2^N sized rings, while others use a
221 'next descriptor' pointer that the driver forms into rings.
223 IIIb/c. Transmit/Receive Structure
225 This driver uses a zero-copy receive and transmit scheme.
226 The driver allocates full frame size skbuffs for the Rx ring buffers at
227 open() time and passes the skb->data field to the chip as receive data
228 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
229 a fresh skbuff is allocated and the frame is copied to the new skbuff.
230 When the incoming frame is larger, the skbuff is passed directly up the
231 protocol stack. Buffers consumed this way are replaced by newly allocated
232 skbuffs in a later phase of receives.
234 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
235 using a full-sized skbuff for small frames vs. the copying costs of larger
236 frames. New boards are typically used in generously configured machines
237 and the underfilled buffers have negligible impact compared to the benefit of
238 a single allocation size, so the default value of zero results in never
239 copying packets. When copying is done, the cost is usually mitigated by using
240 a combined copy/checksum routine. Copying also preloads the cache, which is
241 most useful with small frames.
243 A subtle aspect of the operation is that the IP header at offset 14 in an
244 ethernet frame isn't longword aligned for further processing.
245 Unaligned buffers are permitted by the Sundance hardware, so
246 frames are received into the skbuff at an offset of "+2", 16-byte aligning
249 IIId. Synchronization
251 The driver runs as two independent, single-threaded flows of control. One
252 is the send-packet routine, which enforces single-threaded use by the
253 dev->tbusy flag. The other thread is the interrupt handler, which is single
254 threaded by the hardware and interrupt handling software.
256 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
257 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
258 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
259 the 'lp->tx_full' flag.
261 The interrupt handler has exclusive control over the Rx ring and records stats
262 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
263 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
264 clears both the tx_full and tbusy flags.
270 The Sundance ST201 datasheet, preliminary version.
271 The Kendin KS8723 datasheet, preliminary version.
272 The ICplus IP100 datasheet, preliminary version.
273 http://www.scyld.com/expert/100mbps.html
274 http://www.scyld.com/expert/NWay.html
280 /* Work-around for Kendin chip bugs. */
281 #ifndef CONFIG_SUNDANCE_MMIO
285 static struct pci_device_id sundance_pci_tbl[] = {
286 {0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0},
287 {0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1},
288 {0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2},
289 {0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3},
290 {0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4},
291 {0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5},
292 {0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6},
295 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
304 static const struct pci_id_info pci_id_tbl[] = {
305 {"D-Link DFE-550TX FAST Ethernet Adapter"},
306 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
307 {"D-Link DFE-580TX 4 port Server Adapter"},
308 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
309 {"D-Link DL10050-based FAST Ethernet Adapter"},
310 {"Sundance Technology Alta"},
311 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
312 {NULL,}, /* 0 terminated list. */
315 /* This driver was written to use PCI memory space, however x86-oriented
316 hardware often uses I/O space accesses. */
318 /* Offsets to the device registers.
319 Unlike software-only systems, device drivers interact with complex hardware.
320 It's not useful to define symbolic names for every register bit in the
321 device. The name can only partially document the semantics and make
322 the driver longer and more difficult to read.
323 In general, only the important configuration values or bits changed
324 multiple times should be defined symbolically.
329 TxDMABurstThresh = 0x08,
330 TxDMAUrgentThresh = 0x09,
331 TxDMAPollPeriod = 0x0a,
336 RxDMABurstThresh = 0x14,
337 RxDMAUrgentThresh = 0x15,
338 RxDMAPollPeriod = 0x16,
343 TxStartThresh = 0x3c,
344 RxEarlyThresh = 0x3e,
359 MulticastFilter0 = 0x60,
360 MulticastFilter1 = 0x64,
367 StatsCarrierError = 0x74,
368 StatsLateColl = 0x75,
369 StatsMultiColl = 0x76,
373 StatsTxXSDefer = 0x7a,
379 /* Aliased and bogus values! */
382 enum ASICCtrl_HiWord_bit {
383 GlobalReset = 0x0001,
388 NetworkReset = 0x0020,
393 /* Bits in the interrupt status/mask registers. */
394 enum intr_status_bits {
395 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
396 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
398 StatsMax=0x0080, LinkChange=0x0100,
399 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
402 /* Bits in the RxMode register. */
404 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
405 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
407 /* Bits in MACCtrl. */
408 enum mac_ctrl0_bits {
409 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
410 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
412 enum mac_ctrl1_bits {
413 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
414 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
415 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
418 /* The Rx and Tx buffer descriptors. */
419 /* Note that using only 32 bit fields simplifies conversion to big-endian
424 struct desc_frag { u32 addr, length; } frag[1];
427 /* Bits in netdev_desc.status */
428 enum desc_status_bits {
430 DescEndPacket=0x4000,
434 DescIntrOnDMADone=0x80000000,
435 DisableAlign = 0x00000001,
438 #define PRIV_ALIGN 15 /* Required alignment mask */
439 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
440 within the structure. */
442 struct netdev_private {
443 /* Descriptor rings first for alignment. */
444 struct netdev_desc *rx_ring;
445 struct netdev_desc *tx_ring;
446 struct sk_buff* rx_skbuff[RX_RING_SIZE];
447 struct sk_buff* tx_skbuff[TX_RING_SIZE];
448 dma_addr_t tx_ring_dma;
449 dma_addr_t rx_ring_dma;
450 struct net_device_stats stats;
451 struct timer_list timer; /* Media monitoring timer. */
452 /* Frequently used values: keep some adjacent for cache effect. */
454 spinlock_t rx_lock; /* Group with Tx control cache line. */
457 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
458 unsigned int rx_buf_sz; /* Based on MTU+slack. */
459 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
460 unsigned int cur_tx, dirty_tx;
461 /* These values are keep track of the transceiver/media in use. */
462 unsigned int flowctrl:1;
463 unsigned int default_port:4; /* Last dev->if_port value. */
464 unsigned int an_enable:1;
466 struct tasklet_struct rx_tasklet;
467 struct tasklet_struct tx_tasklet;
470 /* Multicast and receive mode. */
471 spinlock_t mcastlock; /* SMP lock multicast updates. */
473 /* MII transceiver section. */
474 struct mii_if_info mii_if;
475 int mii_preamble_required;
476 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
477 struct pci_dev *pci_dev;
479 unsigned char pci_rev_id;
482 /* The station address location in the EEPROM. */
483 #define EEPROM_SA_OFFSET 0x10
484 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
485 IntrDrvRqst | IntrTxDone | StatsMax | \
488 static int change_mtu(struct net_device *dev, int new_mtu);
489 static int eeprom_read(void __iomem *ioaddr, int location);
490 static int mdio_read(struct net_device *dev, int phy_id, int location);
491 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
492 static int netdev_open(struct net_device *dev);
493 static void check_duplex(struct net_device *dev);
494 static void netdev_timer(unsigned long data);
495 static void tx_timeout(struct net_device *dev);
496 static void init_ring(struct net_device *dev);
497 static int start_tx(struct sk_buff *skb, struct net_device *dev);
498 static int reset_tx (struct net_device *dev);
499 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
500 static void rx_poll(unsigned long data);
501 static void tx_poll(unsigned long data);
502 static void refill_rx (struct net_device *dev);
503 static void netdev_error(struct net_device *dev, int intr_status);
504 static void netdev_error(struct net_device *dev, int intr_status);
505 static void set_rx_mode(struct net_device *dev);
506 static int __set_mac_addr(struct net_device *dev);
507 static struct net_device_stats *get_stats(struct net_device *dev);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static int netdev_close(struct net_device *dev);
510 static struct ethtool_ops ethtool_ops;
512 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
514 struct netdev_private *np = netdev_priv(dev);
515 void __iomem *ioaddr = np->base + ASICCtrl;
518 /* ST201 documentation states ASICCtrl is a 32bit register */
519 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
520 /* ST201 documentation states reset can take up to 1 ms */
522 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
523 if (--countdown == 0) {
524 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
531 static int __devinit sundance_probe1 (struct pci_dev *pdev,
532 const struct pci_device_id *ent)
534 struct net_device *dev;
535 struct netdev_private *np;
537 int chip_idx = ent->driver_data;
540 void __iomem *ioaddr;
549 int phy, phy_idx = 0;
552 /* when built into the kernel, we only print version if device is found */
554 static int printed_version;
555 if (!printed_version++)
559 if (pci_enable_device(pdev))
561 pci_set_master(pdev);
565 dev = alloc_etherdev(sizeof(*np));
568 SET_MODULE_OWNER(dev);
569 SET_NETDEV_DEV(dev, &pdev->dev);
571 if (pci_request_regions(pdev, DRV_NAME))
574 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
578 for (i = 0; i < 3; i++)
579 ((u16 *)dev->dev_addr)[i] =
580 le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
581 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
583 dev->base_addr = (unsigned long)ioaddr;
586 np = netdev_priv(dev);
589 np->chip_id = chip_idx;
590 np->msg_enable = (1 << debug) - 1;
591 spin_lock_init(&np->lock);
592 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
593 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
595 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
597 goto err_out_cleardev;
598 np->tx_ring = (struct netdev_desc *)ring_space;
599 np->tx_ring_dma = ring_dma;
601 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
603 goto err_out_unmap_tx;
604 np->rx_ring = (struct netdev_desc *)ring_space;
605 np->rx_ring_dma = ring_dma;
607 np->mii_if.dev = dev;
608 np->mii_if.mdio_read = mdio_read;
609 np->mii_if.mdio_write = mdio_write;
610 np->mii_if.phy_id_mask = 0x1f;
611 np->mii_if.reg_num_mask = 0x1f;
613 /* The chip-specific entries in the device structure. */
614 dev->open = &netdev_open;
615 dev->hard_start_xmit = &start_tx;
616 dev->stop = &netdev_close;
617 dev->get_stats = &get_stats;
618 dev->set_multicast_list = &set_rx_mode;
619 dev->do_ioctl = &netdev_ioctl;
620 SET_ETHTOOL_OPS(dev, ðtool_ops);
621 dev->tx_timeout = &tx_timeout;
622 dev->watchdog_timeo = TX_TIMEOUT;
623 dev->change_mtu = &change_mtu;
624 pci_set_drvdata(pdev, dev);
626 pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id);
628 i = register_netdev(dev);
630 goto err_out_unmap_rx;
632 printk(KERN_INFO "%s: %s at %p, ",
633 dev->name, pci_id_tbl[chip_idx].name, ioaddr);
634 for (i = 0; i < 5; i++)
635 printk("%2.2x:", dev->dev_addr[i]);
636 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
638 np->phys[0] = 1; /* Default setting */
639 np->mii_preamble_required++;
641 * It seems some phys doesn't deal well with address 0 being accessed
642 * first, so leave address zero to the end of the loop (32 & 31).
644 for (phy = 1; phy <= 32 && phy_idx < MII_CNT; phy++) {
645 int phyx = phy & 0x1f;
646 int mii_status = mdio_read(dev, phyx, MII_BMSR);
647 if (mii_status != 0xffff && mii_status != 0x0000) {
648 np->phys[phy_idx++] = phyx;
649 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
650 if ((mii_status & 0x0040) == 0)
651 np->mii_preamble_required++;
652 printk(KERN_INFO "%s: MII PHY found at address %d, status "
653 "0x%4.4x advertising %4.4x.\n",
654 dev->name, phyx, mii_status, np->mii_if.advertising);
657 np->mii_preamble_required--;
660 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
661 dev->name, ioread32(ioaddr + ASICCtrl));
662 goto err_out_unregister;
665 np->mii_if.phy_id = np->phys[0];
667 /* Parse override configuration */
669 if (card_idx < MAX_UNITS) {
670 if (media[card_idx] != NULL) {
672 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
673 strcmp (media[card_idx], "4") == 0) {
675 np->mii_if.full_duplex = 1;
676 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
677 || strcmp (media[card_idx], "3") == 0) {
679 np->mii_if.full_duplex = 0;
680 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
681 strcmp (media[card_idx], "2") == 0) {
683 np->mii_if.full_duplex = 1;
684 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
685 strcmp (media[card_idx], "1") == 0) {
687 np->mii_if.full_duplex = 0;
697 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
698 /* Default 100Mbps Full */
701 np->mii_if.full_duplex = 1;
706 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
708 /* If flow control enabled, we need to advertise it.*/
710 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
711 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
712 /* Force media type */
713 if (!np->an_enable) {
715 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
716 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
717 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
718 printk (KERN_INFO "Override speed=%d, %s duplex\n",
719 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
723 /* Perhaps move the reset here? */
724 /* Reset the chip to erase previous misconfiguration. */
725 if (netif_msg_hw(np))
726 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
727 iowrite16(0x00ff, ioaddr + ASICCtrl + 2);
728 if (netif_msg_hw(np))
729 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
735 unregister_netdev(dev);
737 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
739 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
741 pci_set_drvdata(pdev, NULL);
742 pci_iounmap(pdev, ioaddr);
744 pci_release_regions(pdev);
750 static int change_mtu(struct net_device *dev, int new_mtu)
752 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
754 if (netif_running(dev))
760 #define eeprom_delay(ee_addr) ioread32(ee_addr)
761 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
762 static int __devinit eeprom_read(void __iomem *ioaddr, int location)
764 int boguscnt = 10000; /* Typical 1900 ticks. */
765 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
767 eeprom_delay(ioaddr + EECtrl);
768 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
769 return ioread16(ioaddr + EEData);
771 } while (--boguscnt > 0);
775 /* MII transceiver control section.
776 Read and write the MII registers using software-generated serial
777 MDIO protocol. See the MII specifications or DP83840A data sheet
780 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
781 met by back-to-back 33Mhz PCI cycles. */
782 #define mdio_delay() ioread8(mdio_addr)
785 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
787 #define MDIO_EnbIn (0)
788 #define MDIO_WRITE0 (MDIO_EnbOutput)
789 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
791 /* Generate the preamble required for initial synchronization and
792 a few older transceivers. */
793 static void mdio_sync(void __iomem *mdio_addr)
797 /* Establish sync by sending at least 32 logic ones. */
798 while (--bits >= 0) {
799 iowrite8(MDIO_WRITE1, mdio_addr);
801 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
806 static int mdio_read(struct net_device *dev, int phy_id, int location)
808 struct netdev_private *np = netdev_priv(dev);
809 void __iomem *mdio_addr = np->base + MIICtrl;
810 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
813 if (np->mii_preamble_required)
814 mdio_sync(mdio_addr);
816 /* Shift the read command bits out. */
817 for (i = 15; i >= 0; i--) {
818 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
820 iowrite8(dataval, mdio_addr);
822 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
825 /* Read the two transition, 16 data, and wire-idle bits. */
826 for (i = 19; i > 0; i--) {
827 iowrite8(MDIO_EnbIn, mdio_addr);
829 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
830 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
833 return (retval>>1) & 0xffff;
836 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
838 struct netdev_private *np = netdev_priv(dev);
839 void __iomem *mdio_addr = np->base + MIICtrl;
840 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
843 if (np->mii_preamble_required)
844 mdio_sync(mdio_addr);
846 /* Shift the command bits out. */
847 for (i = 31; i >= 0; i--) {
848 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
850 iowrite8(dataval, mdio_addr);
852 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
855 /* Clear out extra bits. */
856 for (i = 2; i > 0; i--) {
857 iowrite8(MDIO_EnbIn, mdio_addr);
859 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
865 static int netdev_open(struct net_device *dev)
867 struct netdev_private *np = netdev_priv(dev);
868 void __iomem *ioaddr = np->base;
871 /* Do we need to reset the chip??? */
873 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
877 if (netif_msg_ifup(np))
878 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
879 dev->name, dev->irq);
882 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
883 /* The Tx list pointer is written as packets are queued. */
885 /* Initialize other registers. */
887 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
888 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
890 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
893 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
895 /* Configure the PCI bus bursts and FIFO thresholds. */
897 if (dev->if_port == 0)
898 dev->if_port = np->default_port;
900 spin_lock_init(&np->mcastlock);
903 iowrite16(0, ioaddr + IntrEnable);
904 iowrite16(0, ioaddr + DownCounter);
905 /* Set the chip to poll every N*320nsec. */
906 iowrite8(100, ioaddr + RxDMAPollPeriod);
907 iowrite8(127, ioaddr + TxDMAPollPeriod);
908 /* Fix DFE-580TX packet drop issue */
909 if (np->pci_rev_id >= 0x14)
910 iowrite8(0x01, ioaddr + DebugCtrl1);
911 netif_start_queue(dev);
913 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
915 if (netif_msg_ifup(np))
916 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
917 "MAC Control %x, %4.4x %4.4x.\n",
918 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
919 ioread32(ioaddr + MACCtrl0),
920 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
922 /* Set the timer to check for link beat. */
923 init_timer(&np->timer);
924 np->timer.expires = jiffies + 3*HZ;
925 np->timer.data = (unsigned long)dev;
926 np->timer.function = &netdev_timer; /* timer handler */
927 add_timer(&np->timer);
929 /* Enable interrupts by setting the interrupt mask. */
930 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
935 static void check_duplex(struct net_device *dev)
937 struct netdev_private *np = netdev_priv(dev);
938 void __iomem *ioaddr = np->base;
939 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
940 int negotiated = mii_lpa & np->mii_if.advertising;
944 if (!np->an_enable || mii_lpa == 0xffff) {
945 if (np->mii_if.full_duplex)
946 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
951 /* Autonegotiation */
952 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
953 if (np->mii_if.full_duplex != duplex) {
954 np->mii_if.full_duplex = duplex;
955 if (netif_msg_link(np))
956 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
957 "negotiated capability %4.4x.\n", dev->name,
958 duplex ? "full" : "half", np->phys[0], negotiated);
959 iowrite16(ioread16(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0);
963 static void netdev_timer(unsigned long data)
965 struct net_device *dev = (struct net_device *)data;
966 struct netdev_private *np = netdev_priv(dev);
967 void __iomem *ioaddr = np->base;
968 int next_tick = 10*HZ;
970 if (netif_msg_timer(np)) {
971 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
973 dev->name, ioread16(ioaddr + IntrEnable),
974 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
977 np->timer.expires = jiffies + next_tick;
978 add_timer(&np->timer);
981 static void tx_timeout(struct net_device *dev)
983 struct netdev_private *np = netdev_priv(dev);
984 void __iomem *ioaddr = np->base;
987 netif_stop_queue(dev);
988 tasklet_disable(&np->tx_tasklet);
989 iowrite16(0, ioaddr + IntrEnable);
990 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
992 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
993 ioread8(ioaddr + TxFrameId));
997 for (i=0; i<TX_RING_SIZE; i++) {
998 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
999 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1000 le32_to_cpu(np->tx_ring[i].next_desc),
1001 le32_to_cpu(np->tx_ring[i].status),
1002 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
1003 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1004 le32_to_cpu(np->tx_ring[i].frag[0].length));
1006 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1007 ioread32(np->base + TxListPtr),
1008 netif_queue_stopped(dev));
1009 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1010 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1011 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1012 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1013 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1015 spin_lock_irqsave(&np->lock, flag);
1017 /* Stop and restart the chip's Tx processes . */
1019 spin_unlock_irqrestore(&np->lock, flag);
1023 dev->trans_start = jiffies;
1024 np->stats.tx_errors++;
1025 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1026 netif_wake_queue(dev);
1028 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1029 tasklet_enable(&np->tx_tasklet);
1033 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1034 static void init_ring(struct net_device *dev)
1036 struct netdev_private *np = netdev_priv(dev);
1039 np->cur_rx = np->cur_tx = 0;
1040 np->dirty_rx = np->dirty_tx = 0;
1043 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1045 /* Initialize all Rx descriptors. */
1046 for (i = 0; i < RX_RING_SIZE; i++) {
1047 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1048 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1049 np->rx_ring[i].status = 0;
1050 np->rx_ring[i].frag[0].length = 0;
1051 np->rx_skbuff[i] = NULL;
1054 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1055 for (i = 0; i < RX_RING_SIZE; i++) {
1056 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1057 np->rx_skbuff[i] = skb;
1060 skb->dev = dev; /* Mark as being used by this device. */
1061 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1062 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1063 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz,
1064 PCI_DMA_FROMDEVICE));
1065 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1067 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1069 for (i = 0; i < TX_RING_SIZE; i++) {
1070 np->tx_skbuff[i] = NULL;
1071 np->tx_ring[i].status = 0;
1076 static void tx_poll (unsigned long data)
1078 struct net_device *dev = (struct net_device *)data;
1079 struct netdev_private *np = netdev_priv(dev);
1080 unsigned head = np->cur_task % TX_RING_SIZE;
1081 struct netdev_desc *txdesc =
1082 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1084 /* Chain the next pointer */
1085 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1086 int entry = np->cur_task % TX_RING_SIZE;
1087 txdesc = &np->tx_ring[entry];
1089 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1090 entry*sizeof(struct netdev_desc));
1092 np->last_tx = txdesc;
1094 /* Indicate the latest descriptor of tx ring */
1095 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1097 if (ioread32 (np->base + TxListPtr) == 0)
1098 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1099 np->base + TxListPtr);
1104 start_tx (struct sk_buff *skb, struct net_device *dev)
1106 struct netdev_private *np = netdev_priv(dev);
1107 struct netdev_desc *txdesc;
1110 /* Calculate the next Tx descriptor entry. */
1111 entry = np->cur_tx % TX_RING_SIZE;
1112 np->tx_skbuff[entry] = skb;
1113 txdesc = &np->tx_ring[entry];
1115 txdesc->next_desc = 0;
1116 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1117 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1120 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1122 /* Increment cur_tx before tasklet_schedule() */
1125 /* Schedule a tx_poll() task */
1126 tasklet_schedule(&np->tx_tasklet);
1128 /* On some architectures: explicitly flush cache lines here. */
1129 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1
1130 && !netif_queue_stopped(dev)) {
1133 netif_stop_queue (dev);
1135 dev->trans_start = jiffies;
1136 if (netif_msg_tx_queued(np)) {
1138 "%s: Transmit frame #%d queued in slot %d.\n",
1139 dev->name, np->cur_tx, entry);
1144 /* Reset hardware tx and free all of tx buffers */
1146 reset_tx (struct net_device *dev)
1148 struct netdev_private *np = netdev_priv(dev);
1149 void __iomem *ioaddr = np->base;
1150 struct sk_buff *skb;
1152 int irq = in_interrupt();
1154 /* Reset tx logic, TxListPtr will be cleaned */
1155 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1156 iowrite16 (TxReset | DMAReset | FIFOReset | NetworkReset,
1157 ioaddr + ASICCtrl + 2);
1158 for (i=50; i > 0; i--) {
1159 if ((ioread16(ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
1163 /* free all tx skbuff */
1164 for (i = 0; i < TX_RING_SIZE; i++) {
1165 skb = np->tx_skbuff[i];
1167 pci_unmap_single(np->pci_dev,
1168 np->tx_ring[i].frag[0].addr, skb->len,
1171 dev_kfree_skb_irq (skb);
1173 dev_kfree_skb (skb);
1174 np->tx_skbuff[i] = NULL;
1175 np->stats.tx_dropped++;
1178 np->cur_tx = np->dirty_tx = 0;
1180 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1184 /* The interrupt handler cleans up after the Tx thread,
1185 and schedule a Rx thread work */
1186 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1188 struct net_device *dev = (struct net_device *)dev_instance;
1189 struct netdev_private *np = netdev_priv(dev);
1190 void __iomem *ioaddr = np->base;
1198 int intr_status = ioread16(ioaddr + IntrStatus);
1199 iowrite16(intr_status, ioaddr + IntrStatus);
1201 if (netif_msg_intr(np))
1202 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1203 dev->name, intr_status);
1205 if (!(intr_status & DEFAULT_INTR))
1210 if (intr_status & (IntrRxDMADone)) {
1211 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1212 ioaddr + IntrEnable);
1214 np->budget = RX_BUDGET;
1215 tasklet_schedule(&np->rx_tasklet);
1217 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1218 tx_status = ioread16 (ioaddr + TxStatus);
1219 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1220 if (netif_msg_tx_done(np))
1222 ("%s: Transmit status is %2.2x.\n",
1223 dev->name, tx_status);
1224 if (tx_status & 0x1e) {
1225 if (netif_msg_tx_err(np))
1226 printk("%s: Transmit error status %4.4x.\n",
1227 dev->name, tx_status);
1228 np->stats.tx_errors++;
1229 if (tx_status & 0x10)
1230 np->stats.tx_fifo_errors++;
1231 if (tx_status & 0x08)
1232 np->stats.collisions++;
1233 if (tx_status & 0x04)
1234 np->stats.tx_fifo_errors++;
1235 if (tx_status & 0x02)
1236 np->stats.tx_window_errors++;
1238 ** This reset has been verified on
1239 ** DFE-580TX boards ! phdm@macqel.be.
1241 if (tx_status & 0x10) { /* TxUnderrun */
1242 unsigned short txthreshold;
1244 txthreshold = ioread16 (ioaddr + TxStartThresh);
1245 /* Restart Tx FIFO and transmitter */
1246 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1247 iowrite16 (txthreshold, ioaddr + TxStartThresh);
1248 /* No need to reset the Tx pointer here */
1250 /* Restart the Tx. */
1251 iowrite16 (TxEnable, ioaddr + MACCtrl1);
1253 /* Yup, this is a documentation bug. It cost me *hours*. */
1254 iowrite16 (0, ioaddr + TxStatus);
1256 iowrite32(5000, ioaddr + DownCounter);
1259 tx_status = ioread16 (ioaddr + TxStatus);
1261 hw_frame_id = (tx_status >> 8) & 0xff;
1263 hw_frame_id = ioread8(ioaddr + TxFrameId);
1266 if (np->pci_rev_id >= 0x14) {
1267 spin_lock(&np->lock);
1268 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1269 int entry = np->dirty_tx % TX_RING_SIZE;
1270 struct sk_buff *skb;
1272 sw_frame_id = (le32_to_cpu(
1273 np->tx_ring[entry].status) >> 2) & 0xff;
1274 if (sw_frame_id == hw_frame_id &&
1275 !(le32_to_cpu(np->tx_ring[entry].status)
1278 if (sw_frame_id == (hw_frame_id + 1) %
1281 skb = np->tx_skbuff[entry];
1282 /* Free the original skb. */
1283 pci_unmap_single(np->pci_dev,
1284 np->tx_ring[entry].frag[0].addr,
1285 skb->len, PCI_DMA_TODEVICE);
1286 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1287 np->tx_skbuff[entry] = NULL;
1288 np->tx_ring[entry].frag[0].addr = 0;
1289 np->tx_ring[entry].frag[0].length = 0;
1291 spin_unlock(&np->lock);
1293 spin_lock(&np->lock);
1294 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1295 int entry = np->dirty_tx % TX_RING_SIZE;
1296 struct sk_buff *skb;
1297 if (!(le32_to_cpu(np->tx_ring[entry].status)
1300 skb = np->tx_skbuff[entry];
1301 /* Free the original skb. */
1302 pci_unmap_single(np->pci_dev,
1303 np->tx_ring[entry].frag[0].addr,
1304 skb->len, PCI_DMA_TODEVICE);
1305 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1306 np->tx_skbuff[entry] = NULL;
1307 np->tx_ring[entry].frag[0].addr = 0;
1308 np->tx_ring[entry].frag[0].length = 0;
1310 spin_unlock(&np->lock);
1313 if (netif_queue_stopped(dev) &&
1314 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1315 /* The ring is no longer full, clear busy flag. */
1316 netif_wake_queue (dev);
1318 /* Abnormal error summary/uncommon events handlers. */
1319 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1320 netdev_error(dev, intr_status);
1322 if (netif_msg_intr(np))
1323 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1324 dev->name, ioread16(ioaddr + IntrStatus));
1325 return IRQ_RETVAL(handled);
1328 static void rx_poll(unsigned long data)
1330 struct net_device *dev = (struct net_device *)data;
1331 struct netdev_private *np = netdev_priv(dev);
1332 int entry = np->cur_rx % RX_RING_SIZE;
1333 int boguscnt = np->budget;
1334 void __iomem *ioaddr = np->base;
1337 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1339 struct netdev_desc *desc = &(np->rx_ring[entry]);
1340 u32 frame_status = le32_to_cpu(desc->status);
1343 if (--boguscnt < 0) {
1346 if (!(frame_status & DescOwn))
1348 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1349 if (netif_msg_rx_status(np))
1350 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1352 if (frame_status & 0x001f4000) {
1353 /* There was a error. */
1354 if (netif_msg_rx_err(np))
1355 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1357 np->stats.rx_errors++;
1358 if (frame_status & 0x00100000) np->stats.rx_length_errors++;
1359 if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
1360 if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
1361 if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
1362 if (frame_status & 0x00100000) {
1363 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1365 dev->name, frame_status);
1368 struct sk_buff *skb;
1369 #ifndef final_version
1370 if (netif_msg_rx_status(np))
1371 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1372 ", bogus_cnt %d.\n",
1375 /* Check if the packet is long enough to accept without copying
1376 to a minimally-sized skbuff. */
1377 if (pkt_len < rx_copybreak
1378 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1380 skb_reserve(skb, 2); /* 16 byte align the IP header */
1381 pci_dma_sync_single_for_cpu(np->pci_dev,
1384 PCI_DMA_FROMDEVICE);
1386 eth_copy_and_sum(skb, np->rx_skbuff[entry]->data, pkt_len, 0);
1387 pci_dma_sync_single_for_device(np->pci_dev,
1390 PCI_DMA_FROMDEVICE);
1391 skb_put(skb, pkt_len);
1393 pci_unmap_single(np->pci_dev,
1396 PCI_DMA_FROMDEVICE);
1397 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1398 np->rx_skbuff[entry] = NULL;
1400 skb->protocol = eth_type_trans(skb, dev);
1401 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1403 dev->last_rx = jiffies;
1405 entry = (entry + 1) % RX_RING_SIZE;
1410 np->budget -= received;
1411 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1419 np->budget -= received;
1420 if (np->budget <= 0)
1421 np->budget = RX_BUDGET;
1422 tasklet_schedule(&np->rx_tasklet);
1426 static void refill_rx (struct net_device *dev)
1428 struct netdev_private *np = netdev_priv(dev);
1432 /* Refill the Rx ring buffers. */
1433 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1434 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1435 struct sk_buff *skb;
1436 entry = np->dirty_rx % RX_RING_SIZE;
1437 if (np->rx_skbuff[entry] == NULL) {
1438 skb = dev_alloc_skb(np->rx_buf_sz);
1439 np->rx_skbuff[entry] = skb;
1441 break; /* Better luck next round. */
1442 skb->dev = dev; /* Mark as being used by this device. */
1443 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1444 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1445 pci_map_single(np->pci_dev, skb->data,
1446 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1448 /* Perhaps we need not reset this field. */
1449 np->rx_ring[entry].frag[0].length =
1450 cpu_to_le32(np->rx_buf_sz | LastFrag);
1451 np->rx_ring[entry].status = 0;
1456 static void netdev_error(struct net_device *dev, int intr_status)
1458 struct netdev_private *np = netdev_priv(dev);
1459 void __iomem *ioaddr = np->base;
1460 u16 mii_ctl, mii_advertise, mii_lpa;
1463 if (intr_status & LinkChange) {
1464 if (np->an_enable) {
1465 mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE);
1466 mii_lpa= mdio_read (dev, np->phys[0], MII_LPA);
1467 mii_advertise &= mii_lpa;
1468 printk (KERN_INFO "%s: Link changed: ", dev->name);
1469 if (mii_advertise & ADVERTISE_100FULL) {
1471 printk ("100Mbps, full duplex\n");
1472 } else if (mii_advertise & ADVERTISE_100HALF) {
1474 printk ("100Mbps, half duplex\n");
1475 } else if (mii_advertise & ADVERTISE_10FULL) {
1477 printk ("10Mbps, full duplex\n");
1478 } else if (mii_advertise & ADVERTISE_10HALF) {
1480 printk ("10Mbps, half duplex\n");
1485 mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR);
1486 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1488 printk (KERN_INFO "%s: Link changed: %dMbps ,",
1490 printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ?
1494 if (np->flowctrl && np->mii_if.full_duplex) {
1495 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1496 ioaddr + MulticastFilter1+2);
1497 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1501 if (intr_status & StatsMax) {
1504 if (intr_status & IntrPCIErr) {
1505 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1506 dev->name, intr_status);
1507 /* We must do a global reset of DMA to continue. */
1511 static struct net_device_stats *get_stats(struct net_device *dev)
1513 struct netdev_private *np = netdev_priv(dev);
1514 void __iomem *ioaddr = np->base;
1517 /* We should lock this segment of code for SMP eventually, although
1518 the vulnerability window is very small and statistics are
1520 /* The chip only need report frame silently dropped. */
1521 np->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1522 np->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1523 np->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1524 np->stats.collisions += ioread8(ioaddr + StatsLateColl);
1525 np->stats.collisions += ioread8(ioaddr + StatsMultiColl);
1526 np->stats.collisions += ioread8(ioaddr + StatsOneColl);
1527 np->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1528 ioread8(ioaddr + StatsTxDefer);
1529 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1530 ioread8(ioaddr + i);
1531 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1532 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1533 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1534 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1539 static void set_rx_mode(struct net_device *dev)
1541 struct netdev_private *np = netdev_priv(dev);
1542 void __iomem *ioaddr = np->base;
1543 u16 mc_filter[4]; /* Multicast hash filter */
1547 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1548 /* Unconditionally log net taps. */
1549 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1550 memset(mc_filter, 0xff, sizeof(mc_filter));
1551 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1552 } else if ((dev->mc_count > multicast_filter_limit)
1553 || (dev->flags & IFF_ALLMULTI)) {
1554 /* Too many to match, or accept all multicasts. */
1555 memset(mc_filter, 0xff, sizeof(mc_filter));
1556 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1557 } else if (dev->mc_count) {
1558 struct dev_mc_list *mclist;
1562 memset (mc_filter, 0, sizeof (mc_filter));
1563 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1564 i++, mclist = mclist->next) {
1565 crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1566 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1567 if (crc & 0x80000000) index |= 1 << bit;
1568 mc_filter[index/16] |= (1 << (index % 16));
1570 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1572 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1575 if (np->mii_if.full_duplex && np->flowctrl)
1576 mc_filter[3] |= 0x0200;
1578 for (i = 0; i < 4; i++)
1579 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1580 iowrite8(rx_mode, ioaddr + RxMode);
1583 static int __set_mac_addr(struct net_device *dev)
1585 struct netdev_private *np = netdev_priv(dev);
1588 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1589 iowrite16(addr16, np->base + StationAddr);
1590 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1591 iowrite16(addr16, np->base + StationAddr+2);
1592 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1593 iowrite16(addr16, np->base + StationAddr+4);
1597 static int check_if_running(struct net_device *dev)
1599 if (!netif_running(dev))
1604 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1606 struct netdev_private *np = netdev_priv(dev);
1607 strcpy(info->driver, DRV_NAME);
1608 strcpy(info->version, DRV_VERSION);
1609 strcpy(info->bus_info, pci_name(np->pci_dev));
1612 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1614 struct netdev_private *np = netdev_priv(dev);
1615 spin_lock_irq(&np->lock);
1616 mii_ethtool_gset(&np->mii_if, ecmd);
1617 spin_unlock_irq(&np->lock);
1621 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1623 struct netdev_private *np = netdev_priv(dev);
1625 spin_lock_irq(&np->lock);
1626 res = mii_ethtool_sset(&np->mii_if, ecmd);
1627 spin_unlock_irq(&np->lock);
1631 static int nway_reset(struct net_device *dev)
1633 struct netdev_private *np = netdev_priv(dev);
1634 return mii_nway_restart(&np->mii_if);
1637 static u32 get_link(struct net_device *dev)
1639 struct netdev_private *np = netdev_priv(dev);
1640 return mii_link_ok(&np->mii_if);
1643 static u32 get_msglevel(struct net_device *dev)
1645 struct netdev_private *np = netdev_priv(dev);
1646 return np->msg_enable;
1649 static void set_msglevel(struct net_device *dev, u32 val)
1651 struct netdev_private *np = netdev_priv(dev);
1652 np->msg_enable = val;
1655 static struct ethtool_ops ethtool_ops = {
1656 .begin = check_if_running,
1657 .get_drvinfo = get_drvinfo,
1658 .get_settings = get_settings,
1659 .set_settings = set_settings,
1660 .nway_reset = nway_reset,
1661 .get_link = get_link,
1662 .get_msglevel = get_msglevel,
1663 .set_msglevel = set_msglevel,
1664 .get_perm_addr = ethtool_op_get_perm_addr,
1667 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1669 struct netdev_private *np = netdev_priv(dev);
1670 void __iomem *ioaddr = np->base;
1674 if (!netif_running(dev))
1677 spin_lock_irq(&np->lock);
1678 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1679 spin_unlock_irq(&np->lock);
1681 case SIOCDEVPRIVATE:
1682 for (i=0; i<TX_RING_SIZE; i++) {
1683 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
1684 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1685 le32_to_cpu(np->tx_ring[i].next_desc),
1686 le32_to_cpu(np->tx_ring[i].status),
1687 (le32_to_cpu(np->tx_ring[i].status) >> 2)
1689 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1690 le32_to_cpu(np->tx_ring[i].frag[0].length));
1692 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1693 ioread32(np->base + TxListPtr),
1694 netif_queue_stopped(dev));
1695 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1696 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1697 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1698 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1699 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1700 printk(KERN_DEBUG "TxStatus=%04x\n", ioread16(ioaddr + TxStatus));
1708 static int netdev_close(struct net_device *dev)
1710 struct netdev_private *np = netdev_priv(dev);
1711 void __iomem *ioaddr = np->base;
1712 struct sk_buff *skb;
1715 netif_stop_queue(dev);
1717 if (netif_msg_ifdown(np)) {
1718 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1719 "Rx %4.4x Int %2.2x.\n",
1720 dev->name, ioread8(ioaddr + TxStatus),
1721 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1722 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1723 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1726 /* Disable interrupts by clearing the interrupt mask. */
1727 iowrite16(0x0000, ioaddr + IntrEnable);
1729 /* Stop the chip's Tx and Rx processes. */
1730 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1732 /* Wait and kill tasklet */
1733 tasklet_kill(&np->rx_tasklet);
1734 tasklet_kill(&np->tx_tasklet);
1737 if (netif_msg_hw(np)) {
1738 printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
1739 (int)(np->tx_ring_dma));
1740 for (i = 0; i < TX_RING_SIZE; i++)
1741 printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
1742 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1743 np->tx_ring[i].frag[0].length);
1744 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1745 (int)(np->rx_ring_dma));
1746 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1747 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1748 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1749 np->rx_ring[i].frag[0].length);
1752 #endif /* __i386__ debugging only */
1754 free_irq(dev->irq, dev);
1756 del_timer_sync(&np->timer);
1758 /* Free all the skbuffs in the Rx queue. */
1759 for (i = 0; i < RX_RING_SIZE; i++) {
1760 np->rx_ring[i].status = 0;
1761 np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
1762 skb = np->rx_skbuff[i];
1764 pci_unmap_single(np->pci_dev,
1765 np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
1766 PCI_DMA_FROMDEVICE);
1768 np->rx_skbuff[i] = NULL;
1771 for (i = 0; i < TX_RING_SIZE; i++) {
1772 skb = np->tx_skbuff[i];
1774 pci_unmap_single(np->pci_dev,
1775 np->tx_ring[i].frag[0].addr, skb->len,
1778 np->tx_skbuff[i] = NULL;
1785 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1787 struct net_device *dev = pci_get_drvdata(pdev);
1790 struct netdev_private *np = netdev_priv(dev);
1792 unregister_netdev(dev);
1793 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1795 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1797 pci_iounmap(pdev, np->base);
1798 pci_release_regions(pdev);
1800 pci_set_drvdata(pdev, NULL);
1804 static struct pci_driver sundance_driver = {
1806 .id_table = sundance_pci_tbl,
1807 .probe = sundance_probe1,
1808 .remove = __devexit_p(sundance_remove1),
1811 static int __init sundance_init(void)
1813 /* when a module, this is printed whether or not devices are found in probe */
1817 return pci_module_init(&sundance_driver);
1820 static void __exit sundance_exit(void)
1822 pci_unregister_driver(&sundance_driver);
1825 module_init(sundance_init);
1826 module_exit(sundance_exit);