2 /* Common Flash Interface structures
3 * See http://support.intel.com/design/flash/technote/index.htm
9 #include <linux/delay.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/mtd/flashchip.h>
13 #include <linux/mtd/map.h>
14 #include <linux/mtd/cfi_endian.h>
16 #ifdef CONFIG_MTD_CFI_I1
17 #define cfi_interleave(cfi) 1
18 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
20 #define cfi_interleave_is_1(cfi) (0)
23 #ifdef CONFIG_MTD_CFI_I2
24 # ifdef cfi_interleave
25 # undef cfi_interleave
26 # define cfi_interleave(cfi) ((cfi)->interleave)
28 # define cfi_interleave(cfi) 2
30 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
32 #define cfi_interleave_is_2(cfi) (0)
35 #ifdef CONFIG_MTD_CFI_I4
36 # ifdef cfi_interleave
37 # undef cfi_interleave
38 # define cfi_interleave(cfi) ((cfi)->interleave)
40 # define cfi_interleave(cfi) 4
42 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
44 #define cfi_interleave_is_4(cfi) (0)
47 #ifdef CONFIG_MTD_CFI_I8
48 # ifdef cfi_interleave
49 # undef cfi_interleave
50 # define cfi_interleave(cfi) ((cfi)->interleave)
52 # define cfi_interleave(cfi) 8
54 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
56 #define cfi_interleave_is_8(cfi) (0)
59 #ifndef cfi_interleave
60 #warning No CONFIG_MTD_CFI_Ix selected. No NOR chip support can work.
61 static inline int cfi_interleave(void *cfi)
68 static inline int cfi_interleave_supported(int i)
71 #ifdef CONFIG_MTD_CFI_I1
74 #ifdef CONFIG_MTD_CFI_I2
77 #ifdef CONFIG_MTD_CFI_I4
80 #ifdef CONFIG_MTD_CFI_I8
91 /* NB: these values must represents the number of bytes needed to meet the
92 * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
93 * These numbers are used in calculations.
95 #define CFI_DEVICETYPE_X8 (8 / 8)
96 #define CFI_DEVICETYPE_X16 (16 / 8)
97 #define CFI_DEVICETYPE_X32 (32 / 8)
98 #define CFI_DEVICETYPE_X64 (64 / 8)
101 /* Device Interface Code Assignments from the "Common Flash Memory Interface
102 * Publication 100" dated December 1, 2001.
104 #define CFI_INTERFACE_X8_ASYNC 0x0000
105 #define CFI_INTERFACE_X16_ASYNC 0x0001
106 #define CFI_INTERFACE_X8_BY_X16_ASYNC 0x0002
107 #define CFI_INTERFACE_X32_ASYNC 0x0003
108 #define CFI_INTERFACE_X16_BY_X32_ASYNC 0x0005
109 #define CFI_INTERFACE_NOT_ALLOWED 0xffff
112 /* NB: We keep these structures in memory in HOST byteorder, except
113 * where individually noted.
116 /* Basic Query Structure */
127 uint8_t WordWriteTimeoutTyp;
128 uint8_t BufWriteTimeoutTyp;
129 uint8_t BlockEraseTimeoutTyp;
130 uint8_t ChipEraseTimeoutTyp;
131 uint8_t WordWriteTimeoutMax;
132 uint8_t BufWriteTimeoutMax;
133 uint8_t BlockEraseTimeoutMax;
134 uint8_t ChipEraseTimeoutMax;
136 uint16_t InterfaceDesc;
137 uint16_t MaxBufWriteSize;
138 uint8_t NumEraseRegions;
139 uint32_t EraseRegionInfo[0]; /* Not host ordered */
140 } __attribute__((packed));
142 /* Extended Query Structure for both PRI and ALT */
144 struct cfi_extquery {
146 uint8_t MajorVersion;
147 uint8_t MinorVersion;
148 } __attribute__((packed));
150 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
152 struct cfi_pri_intelext {
154 uint8_t MajorVersion;
155 uint8_t MinorVersion;
156 uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
157 block follows - FIXME - not currently supported */
158 uint8_t SuspendCmdSupport;
159 uint16_t BlkStatusRegMask;
162 uint8_t NumProtectionFields;
163 uint16_t ProtRegAddr;
164 uint8_t FactProtRegSize;
165 uint8_t UserProtRegSize;
167 } __attribute__((packed));
169 struct cfi_intelext_otpinfo {
170 uint32_t ProtRegAddr;
172 uint8_t FactProtRegSize;
174 uint8_t UserProtRegSize;
175 } __attribute__((packed));
177 struct cfi_intelext_blockinfo {
178 uint16_t NumIdentBlocks;
180 uint16_t MinBlockEraseCycles;
183 } __attribute__((packed));
185 struct cfi_intelext_regioninfo {
186 uint16_t NumIdentPartitions;
187 uint8_t NumOpAllowed;
188 uint8_t NumOpAllowedSimProgMode;
189 uint8_t NumOpAllowedSimEraMode;
190 uint8_t NumBlockTypes;
191 struct cfi_intelext_blockinfo BlockTypes[1];
192 } __attribute__((packed));
194 struct cfi_intelext_programming_regioninfo {
195 uint8_t ProgRegShift;
197 uint8_t ControlValid;
199 uint8_t ControlInvalid;
201 } __attribute__((packed));
203 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
205 struct cfi_pri_amdstd {
207 uint8_t MajorVersion;
208 uint8_t MinorVersion;
209 uint8_t SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
210 uint8_t EraseSuspend;
212 uint8_t TmpBlkUnprotect;
213 uint8_t BlkProtUnprot;
214 uint8_t SimultaneousOps;
220 } __attribute__((packed));
222 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
224 struct cfi_pri_atmel {
226 uint8_t MajorVersion;
227 uint8_t MinorVersion;
232 } __attribute__((packed));
234 struct cfi_pri_query {
236 uint32_t ProtField[1]; /* Not host ordered */
237 } __attribute__((packed));
239 struct cfi_bri_query {
240 uint8_t PageModeReadCap;
242 uint32_t ConfField[1]; /* Not host ordered */
243 } __attribute__((packed));
245 #define P_ID_NONE 0x0000
246 #define P_ID_INTEL_EXT 0x0001
247 #define P_ID_AMD_STD 0x0002
248 #define P_ID_INTEL_STD 0x0003
249 #define P_ID_AMD_EXT 0x0004
250 #define P_ID_WINBOND 0x0006
251 #define P_ID_ST_ADV 0x0020
252 #define P_ID_MITSUBISHI_STD 0x0100
253 #define P_ID_MITSUBISHI_EXT 0x0101
254 #define P_ID_SST_PAGE 0x0102
255 #define P_ID_INTEL_PERFORMANCE 0x0200
256 #define P_ID_INTEL_DATA 0x0210
257 #define P_ID_RESERVED 0xffff
260 #define CFI_MODE_CFI 1
261 #define CFI_MODE_JEDEC 0
268 int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */
271 struct mtd_info *(*cmdset_setup)(struct map_info *);
272 struct cfi_ident *cfiq; /* For now only one. We insist that all devs
273 must be of the same type. */
276 unsigned long chipshift; /* Because they're of the same type */
277 const char *im_name; /* inter_module name for cmdset_setup */
278 struct flchip chips[0]; /* per-chip data structure for each chip */
282 * Returns the command address according to the given geometry.
284 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, int interleave, int type)
286 return (cmd_ofs * type) * interleave;
290 * Transforms the CFI command for the given geometry (bus width & interleave).
291 * It looks too long to be inline, but in the common case it should almost all
292 * get optimised away.
294 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
296 map_word val = { {0} };
297 int wordwidth, words_per_bus, chip_mode, chips_per_word;
298 unsigned long onecmd;
301 /* We do it this way to give the compiler a fighting chance
302 of optimising away all the crap for 'bankwidth' larger than
303 an unsigned long, in the common case where that support is
305 if (map_bankwidth_is_large(map)) {
306 wordwidth = sizeof(unsigned long);
307 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
309 wordwidth = map_bankwidth(map);
313 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
314 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
316 /* First, determine what the bit-pattern should be for a single
317 device, according to chip mode and endianness... */
324 onecmd = cpu_to_cfi16(cmd);
327 onecmd = cpu_to_cfi32(cmd);
331 /* Now replicate it across the size of an unsigned long, or
332 just to the bus width as appropriate */
333 switch (chips_per_word) {
335 #if BITS_PER_LONG >= 64
337 onecmd |= (onecmd << (chip_mode * 32));
340 onecmd |= (onecmd << (chip_mode * 16));
342 onecmd |= (onecmd << (chip_mode * 8));
347 /* And finally, for the multi-word case, replicate it
348 in all words in the structure */
349 for (i=0; i < words_per_bus; i++) {
355 #define CMD(x) cfi_build_cmd((x), map, cfi)
358 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
359 struct cfi_private *cfi)
361 int wordwidth, words_per_bus, chip_mode, chips_per_word;
362 unsigned long onestat, res = 0;
365 /* We do it this way to give the compiler a fighting chance
366 of optimising away all the crap for 'bankwidth' larger than
367 an unsigned long, in the common case where that support is
369 if (map_bankwidth_is_large(map)) {
370 wordwidth = sizeof(unsigned long);
371 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
373 wordwidth = map_bankwidth(map);
377 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
378 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
381 /* Or all status words together */
382 for (i=1; i < words_per_bus; i++) {
387 switch(chips_per_word) {
389 #if BITS_PER_LONG >= 64
391 res |= (onestat >> (chip_mode * 32));
394 res |= (onestat >> (chip_mode * 16));
396 res |= (onestat >> (chip_mode * 8));
401 /* Last, determine what the bit-pattern should be for a single
402 device, according to chip mode and endianness... */
407 res = cfi16_to_cpu(res);
410 res = cfi32_to_cpu(res);
417 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
421 * Sends a CFI command to a bank of flash for the given geometry.
423 * Returns the offset in flash where the command was written.
424 * If prev_val is non-null, it will be set to the value at the command address,
425 * before the command was written.
427 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
428 struct map_info *map, struct cfi_private *cfi,
429 int type, map_word *prev_val)
432 uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type);
434 val = cfi_build_cmd(cmd, map, cfi);
437 *prev_val = map_read(map, addr);
439 map_write(map, val, addr);
444 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
446 map_word val = map_read(map, addr);
448 if (map_bankwidth_is_1(map)) {
450 } else if (map_bankwidth_is_2(map)) {
451 return cfi16_to_cpu(val.x[0]);
453 /* No point in a 64-bit byteswap since that would just be
454 swapping the responses from different chips, and we are
455 only interested in one chip (a representative sample) */
456 return cfi32_to_cpu(val.x[0]);
460 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
462 map_word val = map_read(map, addr);
464 if (map_bankwidth_is_1(map)) {
465 return val.x[0] & 0xff;
466 } else if (map_bankwidth_is_2(map)) {
467 return cfi16_to_cpu(val.x[0]);
469 /* No point in a 64-bit byteswap since that would just be
470 swapping the responses from different chips, and we are
471 only interested in one chip (a representative sample) */
472 return cfi32_to_cpu(val.x[0]);
476 static inline void cfi_udelay(int us)
479 msleep((us+999)/1000);
486 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
491 void (*fixup)(struct mtd_info *mtd, void* param);
495 #define CFI_MFR_ANY 0xffff
496 #define CFI_ID_ANY 0xffff
498 #define CFI_MFR_AMD 0x0001
499 #define CFI_MFR_ATMEL 0x001F
500 #define CFI_MFR_ST 0x0020 /* STMicroelectronics */
502 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
504 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
505 unsigned long adr, int len, void *thunk);
507 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
508 loff_t ofs, size_t len, void *thunk);
511 #endif /* __MTD_CFI_H__ */