2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/rslib.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
21 #define CAFE_NAND_CTRL1 0x00
22 #define CAFE_NAND_CTRL2 0x04
23 #define CAFE_NAND_CTRL3 0x08
24 #define CAFE_NAND_STATUS 0x0c
25 #define CAFE_NAND_IRQ 0x10
26 #define CAFE_NAND_IRQ_MASK 0x14
27 #define CAFE_NAND_DATA_LEN 0x18
28 #define CAFE_NAND_ADDR1 0x1c
29 #define CAFE_NAND_ADDR2 0x20
30 #define CAFE_NAND_TIMING1 0x24
31 #define CAFE_NAND_TIMING2 0x28
32 #define CAFE_NAND_TIMING3 0x2c
33 #define CAFE_NAND_NONMEM 0x30
34 #define CAFE_NAND_ECC_RESULT 0x3C
35 #define CAFE_NAND_DMA_CTRL 0x40
36 #define CAFE_NAND_DMA_ADDR0 0x44
37 #define CAFE_NAND_DMA_ADDR1 0x48
38 #define CAFE_NAND_ECC_SYN01 0x50
39 #define CAFE_NAND_ECC_SYN23 0x54
40 #define CAFE_NAND_ECC_SYN45 0x58
41 #define CAFE_NAND_ECC_SYN67 0x5c
42 #define CAFE_NAND_READ_DATA 0x1000
43 #define CAFE_NAND_WRITE_DATA 0x2000
45 #define CAFE_GLOBAL_CTRL 0x3004
46 #define CAFE_GLOBAL_IRQ 0x3008
47 #define CAFE_GLOBAL_IRQ_MASK 0x300c
48 #define CAFE_NAND_RESET 0x3034
50 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
51 #define CTRL1_CHIPSELECT (1<<19)
54 struct nand_chip nand;
57 struct rs_control *rs;
65 unsigned char *dmabuf;
68 static int usedma = 1;
69 module_param(usedma, int, 0644);
71 static int skipbbt = 0;
72 module_param(skipbbt, int, 0644);
75 module_param(debug, int, 0644);
77 static int regdebug = 0;
78 module_param(regdebug, int, 0644);
80 static int checkecc = 1;
81 module_param(checkecc, int, 0644);
83 static int numtimings;
85 module_param_array(timing, int, &numtimings, 0644);
87 /* Hrm. Why isn't this already conditional on something in the struct device? */
88 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
90 /* Make it easier to switch to PIO if we need to */
91 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
92 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
94 static int cafe_device_ready(struct mtd_info *mtd)
96 struct cafe_priv *cafe = mtd->priv;
97 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
98 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
100 cafe_writel(cafe, irqs, NAND_IRQ);
102 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
103 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
104 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
110 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
112 struct cafe_priv *cafe = mtd->priv;
115 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
117 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
119 cafe->datalen += len;
121 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
125 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
127 struct cafe_priv *cafe = mtd->priv;
130 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
132 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
134 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
136 cafe->datalen += len;
139 static uint8_t cafe_read_byte(struct mtd_info *mtd)
141 struct cafe_priv *cafe = mtd->priv;
144 cafe_read_buf(mtd, &d, 1);
145 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
150 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
151 int column, int page_addr)
153 struct cafe_priv *cafe = mtd->priv;
156 uint32_t doneint = 0x80000000;
158 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
159 command, column, page_addr);
161 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
162 /* Second half of a command we already calculated */
163 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
165 cafe->ctl2 &= ~(1<<30);
166 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
167 cafe->ctl1, cafe->nr_data);
170 /* Reset ECC engine */
171 cafe_writel(cafe, 0, NAND_CTRL2);
173 /* Emulate NAND_CMD_READOOB on large-page chips */
174 if (mtd->writesize > 512 &&
175 command == NAND_CMD_READOOB) {
176 column += mtd->writesize;
177 command = NAND_CMD_READ0;
180 /* FIXME: Do we need to send read command before sending data
181 for small-page chips, to position the buffer correctly? */
184 cafe_writel(cafe, column, NAND_ADDR1);
188 } else if (page_addr != -1) {
189 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
192 cafe_writel(cafe, page_addr, NAND_ADDR2);
194 if (mtd->size > mtd->writesize << 16)
198 cafe->data_pos = cafe->datalen = 0;
200 /* Set command valid bit, mask in the chip select bit */
201 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
203 /* Set RD or WR bits as appropriate */
204 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
205 ctl1 |= (1<<26); /* rd */
206 /* Always 5 bytes, for now */
208 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
210 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
211 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
212 ctl1 |= 1<<26; /* rd */
213 /* For now, assume just read to end of page */
214 cafe->datalen = mtd->writesize + mtd->oobsize - column;
215 } else if (command == NAND_CMD_SEQIN)
216 ctl1 |= 1<<25; /* wr */
218 /* Set number of address bytes */
220 ctl1 |= ((adrbytes-1)|8) << 27;
222 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
223 /* Ignore the first command of a pair; the hardware
224 deals with them both at once, later */
226 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
227 cafe->ctl1, cafe->datalen);
230 /* RNDOUT and READ0 commands need a following byte */
231 if (command == NAND_CMD_RNDOUT)
232 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
233 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
234 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
237 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
238 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
240 /* NB: The datasheet lies -- we really should be subtracting 1 here */
241 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
242 cafe_writel(cafe, 0x90000000, NAND_IRQ);
243 if (usedma && (ctl1 & (3<<25))) {
244 uint32_t dmactl = 0xc0000000 + cafe->datalen;
245 /* If WR or RD bits set, set up DMA */
246 if (ctl1 & (1<<26)) {
249 /* ... so it's done when the DMA is done, not just
251 doneint = 0x10000000;
253 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
257 if (unlikely(regdebug)) {
259 printk("About to write command %08x to register 0\n", ctl1);
260 for (i=4; i< 0x5c; i+=4)
261 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
264 cafe_writel(cafe, ctl1, NAND_CTRL1);
265 /* Apply this short delay always to ensure that we do wait tWB in
266 * any case on any machine. */
273 for (c = 500000; c != 0; c--) {
274 irqs = cafe_readl(cafe, NAND_IRQ);
279 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
282 cafe_writel(cafe, doneint, NAND_IRQ);
283 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
284 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
287 WARN_ON(cafe->ctl2 & (1<<30));
291 case NAND_CMD_CACHEDPROG:
292 case NAND_CMD_PAGEPROG:
293 case NAND_CMD_ERASE1:
294 case NAND_CMD_ERASE2:
297 case NAND_CMD_STATUS:
298 case NAND_CMD_DEPLETE1:
299 case NAND_CMD_RNDOUT:
300 case NAND_CMD_STATUS_ERROR:
301 case NAND_CMD_STATUS_ERROR0:
302 case NAND_CMD_STATUS_ERROR1:
303 case NAND_CMD_STATUS_ERROR2:
304 case NAND_CMD_STATUS_ERROR3:
305 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
308 nand_wait_ready(mtd);
309 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
312 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
314 struct cafe_priv *cafe = mtd->priv;
316 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
318 /* Mask the appropriate bit into the stored value of ctl1
319 which will be used by cafe_nand_cmdfunc() */
321 cafe->ctl1 |= CTRL1_CHIPSELECT;
323 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
326 static int cafe_nand_interrupt(int irq, void *id)
328 struct mtd_info *mtd = id;
329 struct cafe_priv *cafe = mtd->priv;
330 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
331 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
335 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
339 static void cafe_nand_bug(struct mtd_info *mtd)
344 static int cafe_nand_write_oob(struct mtd_info *mtd,
345 struct nand_chip *chip, int page)
349 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
350 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
351 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
352 status = chip->waitfunc(mtd, chip);
354 return status & NAND_STATUS_FAIL ? -EIO : 0;
357 /* Don't use -- use nand_read_oob_std for now */
358 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
359 int page, int sndcmd)
361 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
362 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
366 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
367 * @mtd: mtd info structure
368 * @chip: nand chip info structure
369 * @buf: buffer to store read data
371 * The hw generator calculates the error syndrome automatically. Therefor
372 * we need a special oob layout and handling.
374 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
377 struct cafe_priv *cafe = mtd->priv;
379 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
380 cafe_readl(cafe, NAND_ECC_RESULT),
381 cafe_readl(cafe, NAND_ECC_SYN01));
383 chip->read_buf(mtd, buf, mtd->writesize);
384 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
386 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
387 unsigned short syn[8], pat[4];
389 u8 *oob = chip->oob_poi;
392 for (i=0; i<8; i+=2) {
393 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
394 syn[i] = cafe->rs->index_of[tmp & 0xfff];
395 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
398 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
401 for (i = 0; i < n; i++) {
404 /* The 12-bit symbols are mapped to bytes here */
410 /* high four bits do not correspond to data */
415 } else if (p == 1365) {
416 buf[2047] ^= pat[i] >> 4;
417 oob[0] ^= pat[i] << 4;
418 } else if (p > 1365) {
420 oob[3*p/2 - 2048] ^= pat[i] >> 4;
421 oob[3*p/2 - 2047] ^= pat[i] << 4;
423 oob[3*p/2 - 2049] ^= pat[i] >> 8;
424 oob[3*p/2 - 2048] ^= pat[i];
426 } else if ((p & 1) == 1) {
427 buf[3*p/2] ^= pat[i] >> 4;
428 buf[3*p/2 + 1] ^= pat[i] << 4;
430 buf[3*p/2 - 1] ^= pat[i] >> 8;
431 buf[3*p/2] ^= pat[i];
436 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
437 cafe_readl(cafe, NAND_ADDR2) * 2048);
438 for (i = 0; i < 0x5c; i += 4)
439 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
440 mtd->ecc_stats.failed++;
442 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
443 mtd->ecc_stats.corrected += n;
450 static struct nand_ecclayout cafe_oobinfo_2048 = {
452 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
453 .oobfree = {{14, 50}}
456 /* Ick. The BBT code really ought to be able to work this bit out
457 for itself from the above, at least for the 2KiB case */
458 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
459 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
461 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
462 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
465 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
466 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
467 | NAND_BBT_2BIT | NAND_BBT_VERSION,
472 .pattern = cafe_bbt_pattern_2048
475 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
476 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477 | NAND_BBT_2BIT | NAND_BBT_VERSION,
482 .pattern = cafe_mirror_pattern_2048
485 static struct nand_ecclayout cafe_oobinfo_512 = {
487 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
491 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
492 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
493 | NAND_BBT_2BIT | NAND_BBT_VERSION,
498 .pattern = cafe_bbt_pattern_512
501 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
502 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503 | NAND_BBT_2BIT | NAND_BBT_VERSION,
508 .pattern = cafe_mirror_pattern_512
512 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
513 struct nand_chip *chip, const uint8_t *buf)
515 struct cafe_priv *cafe = mtd->priv;
517 chip->write_buf(mtd, buf, mtd->writesize);
518 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
520 /* Set up ECC autogeneration */
521 cafe->ctl2 |= (1<<30);
524 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
525 const uint8_t *buf, int page, int cached, int raw)
529 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
532 chip->ecc.write_page_raw(mtd, chip, buf);
534 chip->ecc.write_page(mtd, chip, buf);
537 * Cached progamming disabled for now, Not sure if its worth the
538 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
542 if (!cached || !(chip->options & NAND_CACHEPRG)) {
544 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
545 status = chip->waitfunc(mtd, chip);
547 * See if operation failed and additional status checks are
550 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
551 status = chip->errstat(mtd, chip, FL_WRITING, status,
554 if (status & NAND_STATUS_FAIL)
557 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
558 status = chip->waitfunc(mtd, chip);
561 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
562 /* Send command to read back the data */
563 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
565 if (chip->verify_buf(mtd, buf, mtd->writesize))
571 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
576 /* F_2[X]/(X**6+X+1) */
577 static unsigned short __devinit gf64_mul(u8 a, u8 b)
583 for (i = 0; i < 6; i++) {
595 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
596 static u16 __devinit gf4096_mul(u16 a, u16 b)
598 u8 ah, al, bh, bl, ch, cl;
605 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
606 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
608 return (ch << 6) ^ cl;
611 static int __devinit cafe_mul(int x)
615 return gf4096_mul(x, 0xe01);
618 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
619 const struct pci_device_id *ent)
621 struct mtd_info *mtd;
622 struct cafe_priv *cafe;
626 /* Very old versions shared the same PCI ident for all three
627 functions on the chip. Verify the class too... */
628 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
631 err = pci_enable_device(pdev);
635 pci_set_master(pdev);
637 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
639 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
642 cafe = (void *)(&mtd[1]);
645 mtd->owner = THIS_MODULE;
648 cafe->mmio = pci_iomap(pdev, 0, 0);
650 dev_warn(&pdev->dev, "failed to iomap\n");
654 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
655 &cafe->dmaaddr, GFP_KERNEL);
660 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
662 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
668 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
669 cafe->nand.dev_ready = cafe_device_ready;
670 cafe->nand.read_byte = cafe_read_byte;
671 cafe->nand.read_buf = cafe_read_buf;
672 cafe->nand.write_buf = cafe_write_buf;
673 cafe->nand.select_chip = cafe_select_chip;
675 cafe->nand.chip_delay = 0;
677 /* Enable the following for a flash based bad block table */
678 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
681 cafe->nand.options |= NAND_SKIP_BBTSCAN;
682 cafe->nand.block_bad = cafe_nand_block_bad;
685 if (numtimings && numtimings != 3) {
686 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
689 if (numtimings == 3) {
690 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
691 timing[0], timing[1], timing[2]);
693 timing[0] = cafe_readl(cafe, NAND_TIMING1);
694 timing[1] = cafe_readl(cafe, NAND_TIMING2);
695 timing[2] = cafe_readl(cafe, NAND_TIMING3);
697 if (timing[0] | timing[1] | timing[2]) {
698 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
699 timing[0], timing[1], timing[2]);
701 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
702 timing[0] = timing[1] = timing[2] = 0xffffffff;
706 /* Start off by resetting the NAND controller completely */
707 cafe_writel(cafe, 1, NAND_RESET);
708 cafe_writel(cafe, 0, NAND_RESET);
710 cafe_writel(cafe, timing[0], NAND_TIMING1);
711 cafe_writel(cafe, timing[1], NAND_TIMING2);
712 cafe_writel(cafe, timing[2], NAND_TIMING3);
714 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
715 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
718 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
722 /* Disable master reset, enable NAND clock */
723 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
726 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
727 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
728 cafe_writel(cafe, 0, NAND_DMA_CTRL);
730 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
731 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
733 /* Set up DMA address */
734 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
735 if (sizeof(cafe->dmaaddr) > 4)
736 /* Shift in two parts to shut the compiler up */
737 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
739 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
741 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
742 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
744 /* Enable NAND IRQ in global IRQ mask register */
745 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
746 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
747 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
749 /* Scan to find existence of the device */
750 if (nand_scan_ident(mtd, 2)) {
755 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
756 if (mtd->writesize == 2048)
757 cafe->ctl2 |= 1<<29; /* 2KiB page size */
759 /* Set up ECC according to the type of chip we found */
760 if (mtd->writesize == 2048) {
761 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
762 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
763 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
764 } else if (mtd->writesize == 512) {
765 cafe->nand.ecc.layout = &cafe_oobinfo_512;
766 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
767 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
769 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
773 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
774 cafe->nand.ecc.size = mtd->writesize;
775 cafe->nand.ecc.bytes = 14;
776 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
777 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
778 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
779 cafe->nand.write_page = cafe_nand_write_page;
780 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
781 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
782 cafe->nand.ecc.read_page = cafe_nand_read_page;
783 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
785 err = nand_scan_tail(mtd);
789 pci_set_drvdata(pdev, mtd);
794 /* Disable NAND IRQ in global IRQ mask register */
795 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
796 free_irq(pdev->irq, mtd);
798 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
800 pci_iounmap(pdev, cafe->mmio);
807 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
809 struct mtd_info *mtd = pci_get_drvdata(pdev);
810 struct cafe_priv *cafe = mtd->priv;
813 /* Disable NAND IRQ in global IRQ mask register */
814 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
815 free_irq(pdev->irq, mtd);
818 pci_iounmap(pdev, cafe->mmio);
819 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
823 static struct pci_device_id cafe_nand_tbl[] = {
824 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID },
828 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
830 static int cafe_nand_resume(struct pci_dev *pdev)
833 struct mtd_info *mtd = pci_get_drvdata(pdev);
834 struct cafe_priv *cafe = mtd->priv;
836 /* Start off by resetting the NAND controller completely */
837 cafe_writel(cafe, 1, NAND_RESET);
838 cafe_writel(cafe, 0, NAND_RESET);
839 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
841 /* Restore timing configuration */
842 cafe_writel(cafe, timing[0], NAND_TIMING1);
843 cafe_writel(cafe, timing[1], NAND_TIMING2);
844 cafe_writel(cafe, timing[2], NAND_TIMING3);
846 /* Disable master reset, enable NAND clock */
847 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
850 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
851 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
852 cafe_writel(cafe, 0, NAND_DMA_CTRL);
853 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
854 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
856 /* Set up DMA address */
857 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
858 if (sizeof(cafe->dmaaddr) > 4)
859 /* Shift in two parts to shut the compiler up */
860 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
862 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
864 /* Enable NAND IRQ in global IRQ mask register */
865 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
869 static struct pci_driver cafe_nand_pci_driver = {
871 .id_table = cafe_nand_tbl,
872 .probe = cafe_nand_probe,
873 .remove = __devexit_p(cafe_nand_remove),
874 .resume = cafe_nand_resume,
877 static int cafe_nand_init(void)
879 return pci_register_driver(&cafe_nand_pci_driver);
882 static void cafe_nand_exit(void)
884 pci_unregister_driver(&cafe_nand_pci_driver);
886 module_init(cafe_nand_init);
887 module_exit(cafe_nand_exit);
889 MODULE_LICENSE("GPL");
890 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
891 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");