2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
46 #define VERSION "0.402"
48 #include <linux/config.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/bitops.h>
52 #include <linux/types.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/errno.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_arp.h>
64 #include <linux/proc_fs.h>
65 #include <linux/rcupdate.h>
66 #include <linux/skbuff.h>
67 #include <linux/netlink.h>
68 #include <linux/init.h>
69 #include <linux/list.h>
71 #include <net/protocol.h>
72 #include <net/route.h>
75 #include <net/ip_fib.h>
76 #include "fib_lookup.h"
78 #undef CONFIG_IP_FIB_TRIE_STATS
79 #define MAX_CHILDS 16384
81 #define KEYLENGTH (8*sizeof(t_key))
82 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
85 typedef unsigned int t_key;
89 #define NODE_TYPE_MASK 0x1UL
90 #define NODE_PARENT(node) \
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
99 #define IS_TNODE(n) (!(n->parent & T_LEAF))
100 #define IS_LEAF(n) (n->parent & T_LEAF)
104 unsigned long parent;
109 unsigned long parent;
110 struct hlist_head list;
115 struct hlist_node hlist;
118 struct list_head falh;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
129 struct node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
144 unsigned int totdepth;
145 unsigned int maxdepth;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
158 unsigned int revision;
161 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 static void tnode_free(struct tnode *tn);
167 static void trie_dump_seq(struct seq_file *seq, struct trie *t);
169 static kmem_cache_t *fn_alias_kmem __read_mostly;
170 static struct trie *trie_local = NULL, *trie_main = NULL;
173 /* rcu_read_lock needs to be hold by caller from readside */
175 static inline struct node *tnode_get_child(struct tnode *tn, int i)
177 BUG_ON(i >= 1 << tn->bits);
179 return rcu_dereference(tn->child[i]);
182 static inline int tnode_child_length(const struct tnode *tn)
184 return 1 << tn->bits;
187 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
189 if (offset < KEYLENGTH)
190 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
195 static inline int tkey_equals(t_key a, t_key b)
200 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
202 if (bits == 0 || offset >= KEYLENGTH)
204 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
205 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
208 static inline int tkey_mismatch(t_key a, int offset, t_key b)
215 while ((diff << i) >> (KEYLENGTH-1) == 0)
221 To understand this stuff, an understanding of keys and all their bits is
222 necessary. Every node in the trie has a key associated with it, but not
223 all of the bits in that key are significant.
225 Consider a node 'n' and its parent 'tp'.
227 If n is a leaf, every bit in its key is significant. Its presence is
228 necessitaded by path compression, since during a tree traversal (when
229 searching for a leaf - unless we are doing an insertion) we will completely
230 ignore all skipped bits we encounter. Thus we need to verify, at the end of
231 a potentially successful search, that we have indeed been walking the
234 Note that we can never "miss" the correct key in the tree if present by
235 following the wrong path. Path compression ensures that segments of the key
236 that are the same for all keys with a given prefix are skipped, but the
237 skipped part *is* identical for each node in the subtrie below the skipped
238 bit! trie_insert() in this implementation takes care of that - note the
239 call to tkey_sub_equals() in trie_insert().
241 if n is an internal node - a 'tnode' here, the various parts of its key
242 have many different meanings.
245 _________________________________________________________________
246 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
247 -----------------------------------------------------------------
248 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
250 _________________________________________________________________
251 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
252 -----------------------------------------------------------------
253 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
260 First, let's just ignore the bits that come before the parent tp, that is
261 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
262 not use them for anything.
264 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
265 index into the parent's child array. That is, they will be used to find
266 'n' among tp's children.
268 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
271 All the bits we have seen so far are significant to the node n. The rest
272 of the bits are really not needed or indeed known in n->key.
274 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
275 n's child array, and will of course be different for each child.
278 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
283 static inline void check_tnode(const struct tnode *tn)
285 WARN_ON(tn && tn->pos+tn->bits > 32);
288 static int halve_threshold = 25;
289 static int inflate_threshold = 50;
292 static void __alias_free_mem(struct rcu_head *head)
294 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
295 kmem_cache_free(fn_alias_kmem, fa);
298 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 call_rcu(&fa->rcu, __alias_free_mem);
303 static void __leaf_free_rcu(struct rcu_head *head)
305 kfree(container_of(head, struct leaf, rcu));
308 static inline void free_leaf(struct leaf *leaf)
310 call_rcu(&leaf->rcu, __leaf_free_rcu);
313 static void __leaf_info_free_rcu(struct rcu_head *head)
315 kfree(container_of(head, struct leaf_info, rcu));
318 static inline void free_leaf_info(struct leaf_info *leaf)
320 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
323 static struct tnode *tnode_alloc(unsigned int size)
327 if (size <= PAGE_SIZE)
328 return kcalloc(size, 1, GFP_KERNEL);
330 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
334 return page_address(pages);
337 static void __tnode_free_rcu(struct rcu_head *head)
339 struct tnode *tn = container_of(head, struct tnode, rcu);
340 unsigned int size = sizeof(struct tnode) +
341 (1 << tn->bits) * sizeof(struct node *);
343 if (size <= PAGE_SIZE)
346 free_pages((unsigned long)tn, get_order(size));
349 static inline void tnode_free(struct tnode *tn)
351 call_rcu(&tn->rcu, __tnode_free_rcu);
354 static struct leaf *leaf_new(void)
356 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
359 INIT_HLIST_HEAD(&l->list);
364 static struct leaf_info *leaf_info_new(int plen)
366 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
369 INIT_LIST_HEAD(&li->falh);
374 static struct tnode* tnode_new(t_key key, int pos, int bits)
376 int nchildren = 1<<bits;
377 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
378 struct tnode *tn = tnode_alloc(sz);
382 tn->parent = T_TNODE;
386 tn->full_children = 0;
387 tn->empty_children = 1<<bits;
390 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
391 (unsigned int) (sizeof(struct node) * 1<<bits));
396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
397 * and no bits are skipped. See discussion in dyntree paper p. 6
400 static inline int tnode_full(const struct tnode *tn, const struct node *n)
402 if (n == NULL || IS_LEAF(n))
405 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
408 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
410 tnode_put_child_reorg(tn, i, n, -1);
414 * Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
418 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
420 struct node *chi = tn->child[i];
423 BUG_ON(i >= 1<<tn->bits);
426 /* update emptyChildren */
427 if (n == NULL && chi != NULL)
428 tn->empty_children++;
429 else if (n != NULL && chi == NULL)
430 tn->empty_children--;
432 /* update fullChildren */
434 wasfull = tnode_full(tn, chi);
436 isfull = tnode_full(tn, n);
437 if (wasfull && !isfull)
439 else if (!wasfull && isfull)
443 NODE_SET_PARENT(n, tn);
445 rcu_assign_pointer(tn->child[i], n);
448 static struct node *resize(struct trie *t, struct tnode *tn)
452 struct tnode *old_tn;
457 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
458 tn, inflate_threshold, halve_threshold);
461 if (tn->empty_children == tnode_child_length(tn)) {
466 if (tn->empty_children == tnode_child_length(tn) - 1)
467 for (i = 0; i < tnode_child_length(tn); i++) {
474 /* compress one level */
475 NODE_SET_PARENT(n, NULL);
480 * Double as long as the resulting node has a number of
481 * nonempty nodes that are above the threshold.
485 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
486 * the Helsinki University of Technology and Matti Tikkanen of Nokia
487 * Telecommunications, page 6:
488 * "A node is doubled if the ratio of non-empty children to all
489 * children in the *doubled* node is at least 'high'."
491 * 'high' in this instance is the variable 'inflate_threshold'. It
492 * is expressed as a percentage, so we multiply it with
493 * tnode_child_length() and instead of multiplying by 2 (since the
494 * child array will be doubled by inflate()) and multiplying
495 * the left-hand side by 100 (to handle the percentage thing) we
496 * multiply the left-hand side by 50.
498 * The left-hand side may look a bit weird: tnode_child_length(tn)
499 * - tn->empty_children is of course the number of non-null children
500 * in the current node. tn->full_children is the number of "full"
501 * children, that is non-null tnodes with a skip value of 0.
502 * All of those will be doubled in the resulting inflated tnode, so
503 * we just count them one extra time here.
505 * A clearer way to write this would be:
507 * to_be_doubled = tn->full_children;
508 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
511 * new_child_length = tnode_child_length(tn) * 2;
513 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
515 * if (new_fill_factor >= inflate_threshold)
517 * ...and so on, tho it would mess up the while () loop.
520 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
524 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
525 * inflate_threshold * new_child_length
527 * expand not_to_be_doubled and to_be_doubled, and shorten:
528 * 100 * (tnode_child_length(tn) - tn->empty_children +
529 * tn->full_children) >= inflate_threshold * new_child_length
531 * expand new_child_length:
532 * 100 * (tnode_child_length(tn) - tn->empty_children +
533 * tn->full_children) >=
534 * inflate_threshold * tnode_child_length(tn) * 2
537 * 50 * (tn->full_children + tnode_child_length(tn) -
538 * tn->empty_children) >= inflate_threshold *
539 * tnode_child_length(tn)
546 while ((tn->full_children > 0 &&
547 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
548 inflate_threshold * tnode_child_length(tn))) {
554 #ifdef CONFIG_IP_FIB_TRIE_STATS
555 t->stats.resize_node_skipped++;
564 * Halve as long as the number of empty children in this
565 * node is above threshold.
569 while (tn->bits > 1 &&
570 100 * (tnode_child_length(tn) - tn->empty_children) <
571 halve_threshold * tnode_child_length(tn)) {
577 #ifdef CONFIG_IP_FIB_TRIE_STATS
578 t->stats.resize_node_skipped++;
585 /* Only one child remains */
586 if (tn->empty_children == tnode_child_length(tn) - 1)
587 for (i = 0; i < tnode_child_length(tn); i++) {
594 /* compress one level */
596 NODE_SET_PARENT(n, NULL);
601 return (struct node *) tn;
604 static struct tnode *inflate(struct trie *t, struct tnode *tn)
607 struct tnode *oldtnode = tn;
608 int olen = tnode_child_length(tn);
611 pr_debug("In inflate\n");
613 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
616 return ERR_PTR(-ENOMEM);
619 * Preallocate and store tnodes before the actual work so we
620 * don't get into an inconsistent state if memory allocation
621 * fails. In case of failure we return the oldnode and inflate
622 * of tnode is ignored.
625 for (i = 0; i < olen; i++) {
626 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
630 inode->pos == oldtnode->pos + oldtnode->bits &&
632 struct tnode *left, *right;
633 t_key m = TKEY_GET_MASK(inode->pos, 1);
635 left = tnode_new(inode->key&(~m), inode->pos + 1,
640 right = tnode_new(inode->key|m, inode->pos + 1,
648 put_child(t, tn, 2*i, (struct node *) left);
649 put_child(t, tn, 2*i+1, (struct node *) right);
653 for (i = 0; i < olen; i++) {
654 struct node *node = tnode_get_child(oldtnode, i);
655 struct tnode *left, *right;
662 /* A leaf or an internal node with skipped bits */
664 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
665 tn->pos + tn->bits - 1) {
666 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
668 put_child(t, tn, 2*i, node);
670 put_child(t, tn, 2*i+1, node);
674 /* An internal node with two children */
675 inode = (struct tnode *) node;
677 if (inode->bits == 1) {
678 put_child(t, tn, 2*i, inode->child[0]);
679 put_child(t, tn, 2*i+1, inode->child[1]);
685 /* An internal node with more than two children */
687 /* We will replace this node 'inode' with two new
688 * ones, 'left' and 'right', each with half of the
689 * original children. The two new nodes will have
690 * a position one bit further down the key and this
691 * means that the "significant" part of their keys
692 * (see the discussion near the top of this file)
693 * will differ by one bit, which will be "0" in
694 * left's key and "1" in right's key. Since we are
695 * moving the key position by one step, the bit that
696 * we are moving away from - the bit at position
697 * (inode->pos) - is the one that will differ between
698 * left and right. So... we synthesize that bit in the
700 * The mask 'm' below will be a single "one" bit at
701 * the position (inode->pos)
704 /* Use the old key, but set the new significant
708 left = (struct tnode *) tnode_get_child(tn, 2*i);
709 put_child(t, tn, 2*i, NULL);
713 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
714 put_child(t, tn, 2*i+1, NULL);
718 size = tnode_child_length(left);
719 for (j = 0; j < size; j++) {
720 put_child(t, left, j, inode->child[j]);
721 put_child(t, right, j, inode->child[j + size]);
723 put_child(t, tn, 2*i, resize(t, left));
724 put_child(t, tn, 2*i+1, resize(t, right));
728 tnode_free(oldtnode);
732 int size = tnode_child_length(tn);
735 for (j = 0; j < size; j++)
737 tnode_free((struct tnode *)tn->child[j]);
741 return ERR_PTR(-ENOMEM);
745 static struct tnode *halve(struct trie *t, struct tnode *tn)
747 struct tnode *oldtnode = tn;
748 struct node *left, *right;
750 int olen = tnode_child_length(tn);
752 pr_debug("In halve\n");
754 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
757 return ERR_PTR(-ENOMEM);
760 * Preallocate and store tnodes before the actual work so we
761 * don't get into an inconsistent state if memory allocation
762 * fails. In case of failure we return the oldnode and halve
763 * of tnode is ignored.
766 for (i = 0; i < olen; i += 2) {
767 left = tnode_get_child(oldtnode, i);
768 right = tnode_get_child(oldtnode, i+1);
770 /* Two nonempty children */
774 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
779 put_child(t, tn, i/2, (struct node *)newn);
784 for (i = 0; i < olen; i += 2) {
785 struct tnode *newBinNode;
787 left = tnode_get_child(oldtnode, i);
788 right = tnode_get_child(oldtnode, i+1);
790 /* At least one of the children is empty */
792 if (right == NULL) /* Both are empty */
794 put_child(t, tn, i/2, right);
799 put_child(t, tn, i/2, left);
803 /* Two nonempty children */
804 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
805 put_child(t, tn, i/2, NULL);
806 put_child(t, newBinNode, 0, left);
807 put_child(t, newBinNode, 1, right);
808 put_child(t, tn, i/2, resize(t, newBinNode));
810 tnode_free(oldtnode);
814 int size = tnode_child_length(tn);
817 for (j = 0; j < size; j++)
819 tnode_free((struct tnode *)tn->child[j]);
823 return ERR_PTR(-ENOMEM);
827 static void trie_init(struct trie *t)
833 rcu_assign_pointer(t->trie, NULL);
835 #ifdef CONFIG_IP_FIB_TRIE_STATS
836 memset(&t->stats, 0, sizeof(struct trie_use_stats));
840 /* readside most use rcu_read_lock currently dump routines
841 via get_fa_head and dump */
843 static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
845 struct hlist_node *node;
846 struct leaf_info *li;
848 hlist_for_each_entry_rcu(li, node, head, hlist)
849 if (li->plen == plen)
855 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
857 struct leaf_info *li = find_leaf_info(&l->list, plen);
865 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
867 struct leaf_info *li = NULL, *last = NULL;
868 struct hlist_node *node;
870 if (hlist_empty(head)) {
871 hlist_add_head_rcu(&new->hlist, head);
873 hlist_for_each_entry(li, node, head, hlist) {
874 if (new->plen > li->plen)
880 hlist_add_after_rcu(&last->hlist, &new->hlist);
882 hlist_add_before_rcu(&new->hlist, &li->hlist);
886 /* rcu_read_lock needs to be hold by caller from readside */
889 fib_find_node(struct trie *t, u32 key)
896 n = rcu_dereference(t->trie);
898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
899 tn = (struct tnode *) n;
903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
904 pos = tn->pos + tn->bits;
905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
909 /* Case we have found a leaf. Compare prefixes */
911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
912 return (struct leaf *)n;
917 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
921 struct tnode *tp = NULL;
925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
927 tp = NODE_PARENT(tn);
928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
933 if (!NODE_PARENT(tn))
936 tn = NODE_PARENT(tn);
938 /* Handle last (top) tnode */
940 tn = (struct tnode*) resize(t, (struct tnode *)tn);
942 return (struct node*) tn;
945 /* only used from updater-side */
947 static struct list_head *
948 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
951 struct tnode *tp = NULL, *tn = NULL;
955 struct list_head *fa_head = NULL;
956 struct leaf_info *li;
962 /* If we point to NULL, stop. Either the tree is empty and we should
963 * just put a new leaf in if, or we have reached an empty child slot,
964 * and we should just put our new leaf in that.
965 * If we point to a T_TNODE, check if it matches our key. Note that
966 * a T_TNODE might be skipping any number of bits - its 'pos' need
967 * not be the parent's 'pos'+'bits'!
969 * If it does match the current key, get pos/bits from it, extract
970 * the index from our key, push the T_TNODE and walk the tree.
972 * If it doesn't, we have to replace it with a new T_TNODE.
974 * If we point to a T_LEAF, it might or might not have the same key
975 * as we do. If it does, just change the value, update the T_LEAF's
976 * value, and return it.
977 * If it doesn't, we need to replace it with a T_TNODE.
980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
981 tn = (struct tnode *) n;
985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
987 pos = tn->pos + tn->bits;
988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
990 BUG_ON(n && NODE_PARENT(n) != tn);
996 * n ----> NULL, LEAF or TNODE
998 * tp is n's (parent) ----> NULL or TNODE
1001 BUG_ON(tp && IS_LEAF(tp));
1003 /* Case 1: n is a leaf. Compare prefixes */
1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1006 struct leaf *l = (struct leaf *) n;
1008 li = leaf_info_new(plen);
1015 fa_head = &li->falh;
1016 insert_leaf_info(&l->list, li);
1028 li = leaf_info_new(plen);
1031 tnode_free((struct tnode *) l);
1036 fa_head = &li->falh;
1037 insert_leaf_info(&l->list, li);
1039 if (t->trie && n == NULL) {
1040 /* Case 2: n is NULL, and will just insert a new leaf */
1042 NODE_SET_PARENT(l, tp);
1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1049 * Add a new tnode here
1050 * first tnode need some special handling
1054 pos = tp->pos+tp->bits;
1059 newpos = tkey_mismatch(key, pos, n->key);
1060 tn = tnode_new(n->key, newpos, 1);
1063 tn = tnode_new(key, newpos, 1); /* First tnode */
1068 tnode_free((struct tnode *) l);
1073 NODE_SET_PARENT(tn, tp);
1075 missbit = tkey_extract_bits(key, newpos, 1);
1076 put_child(t, tn, missbit, (struct node *)l);
1077 put_child(t, tn, 1-missbit, n);
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1088 if (tp && tp->pos + tp->bits > 32)
1089 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1090 tp, tp->pos, tp->bits, key, plen);
1092 /* Rebalance the trie */
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1102 fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1103 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1105 struct trie *t = (struct trie *) tb->tb_data;
1106 struct fib_alias *fa, *new_fa;
1107 struct list_head *fa_head = NULL;
1108 struct fib_info *fi;
1109 int plen = r->rtm_dst_len;
1110 int type = r->rtm_type;
1111 u8 tos = r->rtm_tos;
1121 memcpy(&key, rta->rta_dst, 4);
1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1127 mask = ntohl(inet_make_mask(plen));
1134 fi = fib_create_info(r, rta, nlhdr, &err);
1139 l = fib_find_node(t, key);
1143 fa_head = get_fa_head(l, plen);
1144 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1147 /* Now fa, if non-NULL, points to the first fib alias
1148 * with the same keys [prefix,tos,priority], if such key already
1149 * exists or to the node before which we will insert new one.
1151 * If fa is NULL, we will need to allocate a new one and
1152 * insert to the head of f.
1154 * If f is NULL, no fib node matched the destination key
1155 * and we need to allocate a new one of those as well.
1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1159 struct fib_alias *fa_orig;
1162 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1165 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1166 struct fib_info *fi_drop;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1174 fi_drop = fa->fa_info;
1175 new_fa->fa_tos = fa->fa_tos;
1176 new_fa->fa_info = fi;
1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
1179 state = fa->fa_state;
1180 new_fa->fa_state &= ~FA_S_ACCESSED;
1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1196 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1197 if (fa->fa_tos != tos)
1199 if (fa->fa_info->fib_priority != fi->fib_priority)
1201 if (fa->fa_type == type &&
1202 fa->fa_scope == r->rtm_scope &&
1203 fa->fa_info == fi) {
1207 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = type;
1222 new_fa->fa_scope = r->rtm_scope;
1223 new_fa->fa_state = 0;
1225 * Insert new entry to the list.
1229 fa_head = fib_insert_node(t, &err, key, plen);
1232 goto out_free_new_fa;
1235 list_add_tail_rcu(&new_fa->fa_list,
1236 (fa ? &fa->fa_list : fa_head));
1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1244 kmem_cache_free(fn_alias_kmem, new_fa);
1246 fib_release_info(fi);
1252 /* should be clalled with rcu_read_lock */
1253 static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
1255 struct fib_result *res)
1259 struct leaf_info *li;
1260 struct hlist_head *hhead = &l->list;
1261 struct hlist_node *node;
1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1265 mask = ntohl(inet_make_mask(i));
1266 if (l->key != (key & mask))
1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 t->stats.semantic_match_passed++;
1276 #ifdef CONFIG_IP_FIB_TRIE_STATS
1277 t->stats.semantic_match_miss++;
1284 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1286 struct trie *t = (struct trie *) tb->tb_data;
1291 t_key key = ntohl(flp->fl4_dst);
1294 int current_prefix_length = KEYLENGTH;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1301 n = rcu_dereference(t->trie);
1305 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1315 pn = (struct tnode *) n;
1323 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1325 n = tnode_get_child(pn, cindex);
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.null_node_hit++;
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1343 cn = (struct tnode *)n;
1346 * It's a tnode, and we can do some extra checks here if we
1347 * like, to avoid descending into a dead-end branch.
1348 * This tnode is in the parent's child array at index
1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1350 * chopped off, so in reality the index may be just a
1351 * subprefix, padded with zero at the end.
1352 * We can also take a look at any skipped bits in this
1353 * tnode - everything up to p_pos is supposed to be ok,
1354 * and the non-chopped bits of the index (se previous
1355 * paragraph) are also guaranteed ok, but the rest is
1356 * considered unknown.
1358 * The skipped bits are key[pos+bits..cn->pos].
1361 /* If current_prefix_length < pos+bits, we are already doing
1362 * actual prefix matching, which means everything from
1363 * pos+(bits-chopped_off) onward must be zero along some
1364 * branch of this subtree - otherwise there is *no* valid
1365 * prefix present. Here we can only check the skipped
1366 * bits. Remember, since we have already indexed into the
1367 * parent's child array, we know that the bits we chopped of
1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1373 if (current_prefix_length < pos+bits) {
1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1375 cn->pos - current_prefix_length) != 0 ||
1381 * If chopped_off=0, the index is fully validated and we
1382 * only need to look at the skipped bits for this, the new,
1383 * tnode. What we actually want to do is to find out if
1384 * these skipped bits match our key perfectly, or if we will
1385 * have to count on finding a matching prefix further down,
1386 * because if we do, we would like to have some way of
1387 * verifying the existence of such a prefix at this point.
1390 /* The only thing we can do at this point is to verify that
1391 * any such matching prefix can indeed be a prefix to our
1392 * key, and if the bits in the node we are inspecting that
1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1399 /* Note: We aren't very concerned about the piece of the key
1400 * that precede pn->pos+pn->bits, since these have already been
1401 * checked. The bits after cn->pos aren't checked since these are
1402 * by definition "unknown" at this point. Thus, what we want to
1403 * see is if we are about to enter the "prefix matching" state,
1404 * and in that case verify that the skipped bits that will prevail
1405 * throughout this subtree are zero, as they have to be if we are
1406 * to find a matching prefix.
1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1410 key_prefix = MASK_PFX(key, cn->pos);
1411 pref_mismatch = key_prefix^node_prefix;
1414 /* In short: If skipped bits in this node do not match the search
1415 * key, enter the "prefix matching" state.directly.
1417 if (pref_mismatch) {
1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1420 pref_mismatch = pref_mismatch <<1;
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1424 if (key_prefix != 0)
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
1431 pn = (struct tnode *)n; /* Descend */
1438 /* As zero don't change the child key (cindex) */
1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1442 /* Decrease current_... with bits chopped off */
1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
1447 * Either we do the actual chop off according or if we have
1448 * chopped off all bits in this tnode walk up to our parent.
1451 if (chopped_off <= pn->bits) {
1452 cindex &= ~(1 << (chopped_off-1));
1454 if (NODE_PARENT(pn) == NULL)
1457 /* Get Child's index */
1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1459 pn = NODE_PARENT(pn);
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.backtrack++;
1475 /* only called from updater side */
1476 static int trie_leaf_remove(struct trie *t, t_key key)
1479 struct tnode *tp = NULL;
1480 struct node *n = t->trie;
1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
1485 /* Note that in the case skipped bits, those bits are *not* checked!
1486 * When we finish this, we will have NULL or a T_LEAF, and the
1487 * T_LEAF may or may not match our key.
1490 while (n != NULL && IS_TNODE(n)) {
1491 struct tnode *tn = (struct tnode *) n;
1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1495 BUG_ON(n && NODE_PARENT(n) != tn);
1497 l = (struct leaf *) n;
1499 if (!n || !tkey_equals(l->key, key))
1504 * Remove the leaf and rebalance the tree
1511 tp = NODE_PARENT(n);
1512 tnode_free((struct tnode *) n);
1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1516 put_child(t, (struct tnode *)tp, cindex, NULL);
1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1519 rcu_assign_pointer(t->trie, NULL);
1526 fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1529 struct trie *t = (struct trie *) tb->tb_data;
1531 int plen = r->rtm_dst_len;
1532 u8 tos = r->rtm_tos;
1533 struct fib_alias *fa, *fa_to_delete;
1534 struct list_head *fa_head;
1536 struct leaf_info *li;
1544 memcpy(&key, rta->rta_dst, 4);
1547 mask = ntohl(inet_make_mask(plen));
1553 l = fib_find_node(t, key);
1558 fa_head = get_fa_head(l, plen);
1559 fa = fib_find_alias(fa_head, tos, 0);
1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566 fa_to_delete = NULL;
1567 fa_head = fa->fa_list.prev;
1569 list_for_each_entry(fa, fa_head, fa_list) {
1570 struct fib_info *fi = fa->fa_info;
1572 if (fa->fa_tos != tos)
1575 if ((!r->rtm_type ||
1576 fa->fa_type == r->rtm_type) &&
1577 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1578 fa->fa_scope == r->rtm_scope) &&
1579 (!r->rtm_protocol ||
1580 fi->fib_protocol == r->rtm_protocol) &&
1581 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1593 l = fib_find_node(t, key);
1594 li = find_leaf_info(&l->list, plen);
1596 list_del_rcu(&fa->fa_list);
1598 if (list_empty(fa_head)) {
1599 hlist_del_rcu(&li->hlist);
1603 if (hlist_empty(&l->list))
1604 trie_leaf_remove(t, key);
1606 if (fa->fa_state & FA_S_ACCESSED)
1609 fib_release_info(fa->fa_info);
1610 alias_free_mem_rcu(fa);
1614 static int trie_flush_list(struct trie *t, struct list_head *head)
1616 struct fib_alias *fa, *fa_node;
1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1620 struct fib_info *fi = fa->fa_info;
1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
1632 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1635 struct hlist_head *lih = &l->list;
1636 struct hlist_node *node, *tmp;
1637 struct leaf_info *li = NULL;
1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1640 found += trie_flush_list(t, &li->falh);
1642 if (list_empty(&li->falh)) {
1643 hlist_del_rcu(&li->hlist);
1650 /* rcu_read_lock needs to be hold by caller from readside */
1652 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1654 struct node *c = (struct node *) thisleaf;
1657 struct node *trie = rcu_dereference(t->trie);
1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1664 return (struct leaf *) trie;
1666 p = (struct tnode*) trie; /* Start */
1668 p = (struct tnode *) NODE_PARENT(c);
1673 /* Find the next child of the parent */
1675 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1679 last = 1 << p->bits;
1680 for (idx = pos; idx < last ; idx++) {
1681 c = rcu_dereference(p->child[idx]);
1686 /* Decend if tnode */
1687 while (IS_TNODE(c)) {
1688 p = (struct tnode *) c;
1691 /* Rightmost non-NULL branch */
1692 if (p && IS_TNODE(p))
1693 while (!(c = rcu_dereference(p->child[idx]))
1694 && idx < (1<<p->bits)) idx++;
1696 /* Done with this tnode? */
1697 if (idx >= (1 << p->bits) || !c)
1700 return (struct leaf *) c;
1703 /* No more children go up one step */
1704 c = (struct node *) p;
1705 p = (struct tnode *) NODE_PARENT(p);
1707 return NULL; /* Ready. Root of trie */
1710 static int fn_trie_flush(struct fib_table *tb)
1712 struct trie *t = (struct trie *) tb->tb_data;
1713 struct leaf *ll = NULL, *l = NULL;
1719 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1720 found += trie_flush_leaf(t, l);
1722 if (ll && hlist_empty(&ll->list))
1723 trie_leaf_remove(t, ll->key);
1728 if (ll && hlist_empty(&ll->list))
1729 trie_leaf_remove(t, ll->key);
1731 pr_debug("trie_flush found=%d\n", found);
1735 static int trie_last_dflt = -1;
1738 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1740 struct trie *t = (struct trie *) tb->tb_data;
1741 int order, last_idx;
1742 struct fib_info *fi = NULL;
1743 struct fib_info *last_resort;
1744 struct fib_alias *fa = NULL;
1745 struct list_head *fa_head;
1754 l = fib_find_node(t, 0);
1758 fa_head = get_fa_head(l, 0);
1762 if (list_empty(fa_head))
1765 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1766 struct fib_info *next_fi = fa->fa_info;
1768 if (fa->fa_scope != res->scope ||
1769 fa->fa_type != RTN_UNICAST)
1772 if (next_fi->fib_priority > res->fi->fib_priority)
1774 if (!next_fi->fib_nh[0].nh_gw ||
1775 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1777 fa->fa_state |= FA_S_ACCESSED;
1780 if (next_fi != res->fi)
1782 } else if (!fib_detect_death(fi, order, &last_resort,
1783 &last_idx, &trie_last_dflt)) {
1785 fib_info_put(res->fi);
1787 atomic_inc(&fi->fib_clntref);
1788 trie_last_dflt = order;
1794 if (order <= 0 || fi == NULL) {
1795 trie_last_dflt = -1;
1799 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1801 fib_info_put(res->fi);
1803 atomic_inc(&fi->fib_clntref);
1804 trie_last_dflt = order;
1807 if (last_idx >= 0) {
1809 fib_info_put(res->fi);
1810 res->fi = last_resort;
1812 atomic_inc(&last_resort->fib_clntref);
1814 trie_last_dflt = last_idx;
1819 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1820 struct sk_buff *skb, struct netlink_callback *cb)
1823 struct fib_alias *fa;
1825 u32 xkey = htonl(key);
1830 /* rcu_read_lock is hold by caller */
1832 list_for_each_entry_rcu(fa, fah, fa_list) {
1837 if (fa->fa_info->fib_nh == NULL) {
1838 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1842 if (fa->fa_info == NULL) {
1843 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1848 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1857 fa->fa_info, 0) < 0) {
1867 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1868 struct netlink_callback *cb)
1871 struct list_head *fa_head;
1872 struct leaf *l = NULL;
1876 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1880 memset(&cb->args[3], 0,
1881 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1883 fa_head = get_fa_head(l, plen);
1888 if (list_empty(fa_head))
1891 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1900 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1903 struct trie *t = (struct trie *) tb->tb_data;
1908 for (m = 0; m <= 32; m++) {
1912 memset(&cb->args[2], 0,
1913 sizeof(cb->args) - 2*sizeof(cb->args[0]));
1915 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1928 /* Fix more generic FIB names for init later */
1930 #ifdef CONFIG_IP_MULTIPLE_TABLES
1931 struct fib_table * fib_hash_init(int id)
1933 struct fib_table * __init fib_hash_init(int id)
1936 struct fib_table *tb;
1939 if (fn_alias_kmem == NULL)
1940 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1941 sizeof(struct fib_alias),
1942 0, SLAB_HWCACHE_ALIGN,
1945 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1951 tb->tb_lookup = fn_trie_lookup;
1952 tb->tb_insert = fn_trie_insert;
1953 tb->tb_delete = fn_trie_delete;
1954 tb->tb_flush = fn_trie_flush;
1955 tb->tb_select_default = fn_trie_select_default;
1956 tb->tb_dump = fn_trie_dump;
1957 memset(tb->tb_data, 0, sizeof(struct trie));
1959 t = (struct trie *) tb->tb_data;
1963 if (id == RT_TABLE_LOCAL)
1965 else if (id == RT_TABLE_MAIN)
1968 if (id == RT_TABLE_LOCAL)
1969 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1974 /* Trie dump functions */
1976 static void putspace_seq(struct seq_file *seq, int n)
1979 seq_printf(seq, " ");
1982 static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
1985 seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
1988 static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
1989 int pend, int cindex, int bits)
1991 putspace_seq(seq, indent);
1993 seq_printf(seq, "|");
1995 seq_printf(seq, "+");
1997 seq_printf(seq, "%d/", cindex);
1998 printbin_seq(seq, cindex, bits);
1999 seq_printf(seq, ": ");
2001 seq_printf(seq, "<root>: ");
2002 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
2005 struct leaf *l = (struct leaf *)n;
2006 struct fib_alias *fa;
2009 seq_printf(seq, "key=%d.%d.%d.%d\n",
2010 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2012 for (i = 32; i >= 0; i--)
2013 if (find_leaf_info(&l->list, i)) {
2014 struct list_head *fa_head = get_fa_head(l, i);
2019 if (list_empty(fa_head))
2022 putspace_seq(seq, indent+2);
2023 seq_printf(seq, "{/%d...dumping}\n", i);
2025 list_for_each_entry_rcu(fa, fa_head, fa_list) {
2026 putspace_seq(seq, indent+2);
2027 if (fa->fa_info == NULL) {
2028 seq_printf(seq, "Error fa_info=NULL\n");
2031 if (fa->fa_info->fib_nh == NULL) {
2032 seq_printf(seq, "Error _fib_nh=NULL\n");
2036 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
2043 struct tnode *tn = (struct tnode *)n;
2044 int plen = ((struct tnode *)n)->pos;
2045 t_key prf = MASK_PFX(n->key, plen);
2047 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2048 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2050 putspace_seq(seq, indent); seq_printf(seq, "| ");
2051 seq_printf(seq, "{key prefix=%08x/", tn->key & TKEY_GET_MASK(0, tn->pos));
2052 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
2053 seq_printf(seq, "}\n");
2054 putspace_seq(seq, indent); seq_printf(seq, "| ");
2055 seq_printf(seq, "{pos=%d", tn->pos);
2056 seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
2057 seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
2058 putspace_seq(seq, indent); seq_printf(seq, "| ");
2059 seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
2063 static void trie_dump_seq(struct seq_file *seq, struct trie *t)
2073 n = rcu_dereference(t->trie);
2074 seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
2077 seq_printf(seq, "------ trie is empty\n");
2083 printnode_seq(seq, indent, n, pend, cindex, 0);
2090 tn = (struct tnode *)n;
2091 pend = tn->pos+tn->bits;
2092 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2096 while (tn && cindex < (1 << tn->bits)) {
2097 struct node *child = rcu_dereference(tn->child[cindex]);
2102 printnode_seq(seq, indent, child, pend,
2110 * New tnode. Decend one level
2115 tn = (struct tnode *)n;
2116 pend = tn->pos+tn->bits;
2117 putspace_seq(seq, indent);
2118 seq_printf(seq, "\\--\n");
2125 * Test if we are done
2128 while (cindex >= (1 << tn->bits)) {
2130 * Move upwards and test for root
2131 * pop off all traversed nodes
2134 if (NODE_PARENT(tn) == NULL) {
2139 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2141 tn = NODE_PARENT(tn);
2142 pend = tn->pos + tn->bits;
2150 static struct trie_stat *trie_stat_new(void)
2152 struct trie_stat *s;
2155 s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
2163 s->nullpointers = 0;
2165 for (i = 0; i < MAX_CHILDS; i++)
2166 s->nodesizes[i] = 0;
2171 static struct trie_stat *trie_collect_stats(struct trie *t)
2174 struct trie_stat *s = trie_stat_new();
2183 n = rcu_dereference(t->trie);
2189 struct tnode *tn = (struct tnode *)n;
2190 pend = tn->pos+tn->bits;
2191 s->nodesizes[tn->bits]++;
2194 while (tn && cindex < (1 << tn->bits)) {
2195 struct node *ch = rcu_dereference(tn->child[cindex]);
2200 if (IS_LEAF(tn->child[cindex])) {
2204 if (depth > s->maxdepth)
2205 s->maxdepth = depth;
2206 s->totdepth += depth;
2210 * New tnode. Decend one level
2214 s->nodesizes[tn->bits]++;
2218 tn = (struct tnode *)n;
2219 pend = tn->pos+tn->bits;
2229 * Test if we are done
2232 while (cindex >= (1 << tn->bits)) {
2234 * Move upwards and test for root
2235 * pop off all traversed nodes
2238 if (NODE_PARENT(tn) == NULL) {
2244 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2245 tn = NODE_PARENT(tn);
2247 n = (struct node *)tn;
2248 pend = tn->pos+tn->bits;
2258 #ifdef CONFIG_PROC_FS
2260 static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
2265 static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
2270 static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
2272 if (!ip_fib_main_table)
2276 return fib_triestat_get_next(seq);
2278 return SEQ_START_TOKEN;
2281 static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2284 if (v == SEQ_START_TOKEN)
2285 return fib_triestat_get_first(seq);
2287 return fib_triestat_get_next(seq);
2290 static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
2296 * This outputs /proc/net/fib_triestats
2298 * It always works in backward compatibility mode.
2299 * The format of the file is not supposed to be changed.
2302 static void collect_and_show(struct trie *t, struct seq_file *seq)
2304 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
2305 int i, max, pointers;
2306 struct trie_stat *stat;
2309 stat = trie_collect_stats(t);
2312 seq_printf(seq, "trie=%p\n", t);
2316 avdepth = stat->totdepth*100 / stat->leaves;
2319 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100);
2320 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
2322 seq_printf(seq, "Leaves: %d\n", stat->leaves);
2323 bytes += sizeof(struct leaf) * stat->leaves;
2324 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
2325 bytes += sizeof(struct tnode) * stat->tnodes;
2329 while (max >= 0 && stat->nodesizes[max] == 0)
2333 for (i = 1; i <= max; i++)
2334 if (stat->nodesizes[i] != 0) {
2335 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2336 pointers += (1<<i) * stat->nodesizes[i];
2338 seq_printf(seq, "\n");
2339 seq_printf(seq, "Pointers: %d\n", pointers);
2340 bytes += sizeof(struct node *) * pointers;
2341 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2342 seq_printf(seq, "Total size: %d kB\n", bytes / 1024);
2347 #ifdef CONFIG_IP_FIB_TRIE_STATS
2348 seq_printf(seq, "Counters:\n---------\n");
2349 seq_printf(seq,"gets = %d\n", t->stats.gets);
2350 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2351 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2352 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2353 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2354 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2356 memset(&(t->stats), 0, sizeof(t->stats));
2358 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2361 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2365 if (v == SEQ_START_TOKEN) {
2366 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2367 sizeof(struct leaf), sizeof(struct tnode));
2369 collect_and_show(trie_local, seq);
2372 collect_and_show(trie_main, seq);
2374 snprintf(bf, sizeof(bf), "*\t%08X\t%08X", 200, 400);
2376 seq_printf(seq, "%-127s\n", bf);
2381 static struct seq_operations fib_triestat_seq_ops = {
2382 .start = fib_triestat_seq_start,
2383 .next = fib_triestat_seq_next,
2384 .stop = fib_triestat_seq_stop,
2385 .show = fib_triestat_seq_show,
2388 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2390 struct seq_file *seq;
2393 rc = seq_open(file, &fib_triestat_seq_ops);
2397 seq = file->private_data;
2404 static struct file_operations fib_triestat_seq_fops = {
2405 .owner = THIS_MODULE,
2406 .open = fib_triestat_seq_open,
2408 .llseek = seq_lseek,
2409 .release = seq_release_private,
2412 int __init fib_stat_proc_init(void)
2414 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
2419 void __init fib_stat_proc_exit(void)
2421 proc_net_remove("fib_triestat");
2424 static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
2429 static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
2434 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2436 if (!ip_fib_main_table)
2440 return fib_trie_get_next(seq);
2442 return SEQ_START_TOKEN;
2445 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2448 if (v == SEQ_START_TOKEN)
2449 return fib_trie_get_first(seq);
2451 return fib_trie_get_next(seq);
2455 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2460 * This outputs /proc/net/fib_trie.
2462 * It always works in backward compatibility mode.
2463 * The format of the file is not supposed to be changed.
2466 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2470 if (v == SEQ_START_TOKEN) {
2472 trie_dump_seq(seq, trie_local);
2475 trie_dump_seq(seq, trie_main);
2477 snprintf(bf, sizeof(bf),
2478 "*\t%08X\t%08X", 200, 400);
2479 seq_printf(seq, "%-127s\n", bf);
2485 static struct seq_operations fib_trie_seq_ops = {
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_trie_seq_show,
2492 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2494 struct seq_file *seq;
2497 rc = seq_open(file, &fib_trie_seq_ops);
2501 seq = file->private_data;
2508 static struct file_operations fib_trie_seq_fops = {
2509 .owner = THIS_MODULE,
2510 .open = fib_trie_seq_open,
2512 .llseek = seq_lseek,
2513 .release= seq_release_private,
2516 int __init fib_proc_init(void)
2518 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
2523 void __init fib_proc_exit(void)
2525 proc_net_remove("fib_trie");
2528 #endif /* CONFIG_PROC_FS */