2  *  Kernel Probes (KProbes)
 
   3  *  arch/i386/kernel/kprobes.c
 
   5  * This program is free software; you can redistribute it and/or modify
 
   6  * it under the terms of the GNU General Public License as published by
 
   7  * the Free Software Foundation; either version 2 of the License, or
 
   8  * (at your option) any later version.
 
  10  * This program is distributed in the hope that it will be useful,
 
  11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  13  * GNU General Public License for more details.
 
  15  * You should have received a copy of the GNU General Public License
 
  16  * along with this program; if not, write to the Free Software
 
  17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 
  19  * Copyright (C) IBM Corporation, 2002, 2004
 
  21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 
  22  *              Probes initial implementation ( includes contributions from
 
  24  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 
  25  *              interface to access function arguments.
 
  26  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 
  27  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 
  28  *              <prasanna@in.ibm.com> added function-return probes.
 
  31 #include <linux/kprobes.h>
 
  32 #include <linux/ptrace.h>
 
  33 #include <linux/preempt.h>
 
  34 #include <asm/cacheflush.h>
 
  35 #include <asm/kdebug.h>
 
  37 #include <asm/uaccess.h>
 
  39 void jprobe_return_end(void);
 
  41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 
  42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 
  44 /* insert a jmp code */
 
  45 static __always_inline void set_jmp_op(void *from, void *to)
 
  47         struct __arch_jmp_op {
 
  50         } __attribute__((packed)) *jop;
 
  51         jop = (struct __arch_jmp_op *)from;
 
  52         jop->raddr = (long)(to) - ((long)(from) + 5);
 
  53         jop->op = RELATIVEJUMP_INSTRUCTION;
 
  57  * returns non-zero if opcodes can be boosted.
 
  59 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
 
  61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)                \
 
  62         (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 
  63           (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 
  64           (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 
  65           (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 
  68          * Undefined/reserved opcodes, conditional jump, Opcode Extension
 
  69          * Groups, and some special opcodes can not be boost.
 
  71         static const unsigned long twobyte_is_boostable[256 / 32] = {
 
  72                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
 
  73                 /*      -------------------------------         */
 
  74                 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
 
  75                 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
 
  76                 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
 
  77                 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
 
  78                 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
 
  79                 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
 
  80                 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
 
  81                 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
 
  82                 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
 
  83                 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
 
  84                 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
 
  85                 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
 
  86                 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
 
  87                 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
 
  88                 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
 
  89                 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0)  /* f0 */
 
  90                 /*      -------------------------------         */
 
  91                 /*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
 
  94         kprobe_opcode_t opcode;
 
  95         kprobe_opcode_t *orig_opcodes = opcodes;
 
  97         if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 
  99         opcode = *(opcodes++);
 
 101         /* 2nd-byte opcode */
 
 102         if (opcode == 0x0f) {
 
 103                 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 
 105                 return test_bit(*opcodes, twobyte_is_boostable);
 
 108         switch (opcode & 0xf0) {
 
 110                 if (0x63 < opcode && opcode < 0x67)
 
 111                         goto retry; /* prefixes */
 
 112                 /* can't boost Address-size override and bound */
 
 113                 return (opcode != 0x62 && opcode != 0x67);
 
 115                 return 0; /* can't boost conditional jump */
 
 117                 /* can't boost software-interruptions */
 
 118                 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 
 120                 /* can boost AA* and XLAT */
 
 121                 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 
 123                 /* can boost in/out and absolute jmps */
 
 124                 return ((opcode & 0x04) || opcode == 0xea);
 
 126                 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
 
 127                         goto retry; /* lock/rep(ne) prefix */
 
 128                 /* clear and set flags can be boost */
 
 129                 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 
 131                 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
 
 132                         goto retry; /* prefixes */
 
 133                 /* can't boost CS override and call */
 
 134                 return (opcode != 0x2e && opcode != 0x9a);
 
 139  * returns non-zero if opcode modifies the interrupt flag.
 
 141 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
 
 146         case 0xcf:              /* iret/iretd */
 
 147         case 0x9d:              /* popf/popfd */
 
 153 int __kprobes arch_prepare_kprobe(struct kprobe *p)
 
 155         /* insn: must be on special executable page on i386. */
 
 156         p->ainsn.insn = get_insn_slot();
 
 160         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 
 161         p->opcode = *p->addr;
 
 162         if (can_boost(p->addr)) {
 
 163                 p->ainsn.boostable = 0;
 
 165                 p->ainsn.boostable = -1;
 
 170 void __kprobes arch_arm_kprobe(struct kprobe *p)
 
 172         *p->addr = BREAKPOINT_INSTRUCTION;
 
 173         flush_icache_range((unsigned long) p->addr,
 
 174                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 
 177 void __kprobes arch_disarm_kprobe(struct kprobe *p)
 
 179         *p->addr = p->opcode;
 
 180         flush_icache_range((unsigned long) p->addr,
 
 181                            (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 
 184 void __kprobes arch_remove_kprobe(struct kprobe *p)
 
 186         mutex_lock(&kprobe_mutex);
 
 187         free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
 
 188         mutex_unlock(&kprobe_mutex);
 
 191 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 
 193         kcb->prev_kprobe.kp = kprobe_running();
 
 194         kcb->prev_kprobe.status = kcb->kprobe_status;
 
 195         kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
 
 196         kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
 
 199 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 
 201         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 
 202         kcb->kprobe_status = kcb->prev_kprobe.status;
 
 203         kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
 
 204         kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
 
 207 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 
 208                                 struct kprobe_ctlblk *kcb)
 
 210         __get_cpu_var(current_kprobe) = p;
 
 211         kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
 
 212                 = (regs->eflags & (TF_MASK | IF_MASK));
 
 213         if (is_IF_modifier(p->opcode))
 
 214                 kcb->kprobe_saved_eflags &= ~IF_MASK;
 
 217 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 
 219         regs->eflags |= TF_MASK;
 
 220         regs->eflags &= ~IF_MASK;
 
 221         /*single step inline if the instruction is an int3*/
 
 222         if (p->opcode == BREAKPOINT_INSTRUCTION)
 
 223                 regs->eip = (unsigned long)p->addr;
 
 225                 regs->eip = (unsigned long)p->ainsn.insn;
 
 228 /* Called with kretprobe_lock held */
 
 229 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
 
 230                                       struct pt_regs *regs)
 
 232         unsigned long *sara = (unsigned long *)®s->esp;
 
 234         struct kretprobe_instance *ri;
 
 236         if ((ri = get_free_rp_inst(rp)) != NULL) {
 
 239                 ri->ret_addr = (kprobe_opcode_t *) *sara;
 
 241                 /* Replace the return addr with trampoline addr */
 
 242                 *sara = (unsigned long) &kretprobe_trampoline;
 
 250  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 
 251  * remain disabled thorough out this function.
 
 253 static int __kprobes kprobe_handler(struct pt_regs *regs)
 
 257         kprobe_opcode_t *addr;
 
 258         struct kprobe_ctlblk *kcb;
 
 260         addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
 
 263          * We don't want to be preempted for the entire
 
 264          * duration of kprobe processing
 
 267         kcb = get_kprobe_ctlblk();
 
 269         /* Check we're not actually recursing */
 
 270         if (kprobe_running()) {
 
 271                 p = get_kprobe(addr);
 
 273                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
 
 274                                 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
 
 275                                 regs->eflags &= ~TF_MASK;
 
 276                                 regs->eflags |= kcb->kprobe_saved_eflags;
 
 279                         /* We have reentered the kprobe_handler(), since
 
 280                          * another probe was hit while within the handler.
 
 281                          * We here save the original kprobes variables and
 
 282                          * just single step on the instruction of the new probe
 
 283                          * without calling any user handlers.
 
 285                         save_previous_kprobe(kcb);
 
 286                         set_current_kprobe(p, regs, kcb);
 
 287                         kprobes_inc_nmissed_count(p);
 
 288                         prepare_singlestep(p, regs);
 
 289                         kcb->kprobe_status = KPROBE_REENTER;
 
 292                         if (*addr != BREAKPOINT_INSTRUCTION) {
 
 293                         /* The breakpoint instruction was removed by
 
 294                          * another cpu right after we hit, no further
 
 295                          * handling of this interrupt is appropriate
 
 297                                 regs->eip -= sizeof(kprobe_opcode_t);
 
 301                         p = __get_cpu_var(current_kprobe);
 
 302                         if (p->break_handler && p->break_handler(p, regs)) {
 
 309         p = get_kprobe(addr);
 
 311                 if (*addr != BREAKPOINT_INSTRUCTION) {
 
 313                          * The breakpoint instruction was removed right
 
 314                          * after we hit it.  Another cpu has removed
 
 315                          * either a probepoint or a debugger breakpoint
 
 316                          * at this address.  In either case, no further
 
 317                          * handling of this interrupt is appropriate.
 
 318                          * Back up over the (now missing) int3 and run
 
 319                          * the original instruction.
 
 321                         regs->eip -= sizeof(kprobe_opcode_t);
 
 324                 /* Not one of ours: let kernel handle it */
 
 328         set_current_kprobe(p, regs, kcb);
 
 329         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 
 331         if (p->pre_handler && p->pre_handler(p, regs))
 
 332                 /* handler has already set things up, so skip ss setup */
 
 336 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
 
 337         if (p->ainsn.boostable == 1 && !p->post_handler){
 
 338                 /* Boost up -- we can execute copied instructions directly */
 
 339                 reset_current_kprobe();
 
 340                 regs->eip = (unsigned long)p->ainsn.insn;
 
 341                 preempt_enable_no_resched();
 
 345         prepare_singlestep(p, regs);
 
 346         kcb->kprobe_status = KPROBE_HIT_SS;
 
 350         preempt_enable_no_resched();
 
 355  * For function-return probes, init_kprobes() establishes a probepoint
 
 356  * here. When a retprobed function returns, this probe is hit and
 
 357  * trampoline_probe_handler() runs, calling the kretprobe's handler.
 
 359  void __kprobes kretprobe_trampoline_holder(void)
 
 361         asm volatile ( ".global kretprobe_trampoline\n"
 
 362                         "kretprobe_trampoline: \n"
 
 364                         /* skip cs, eip, orig_eax */
 
 377                         "       call trampoline_handler\n"
 
 378                         /* move eflags to cs */
 
 379                         "       movl 52(%esp), %edx\n"
 
 380                         "       movl %edx, 48(%esp)\n"
 
 381                         /* save true return address on eflags */
 
 382                         "       movl %eax, 52(%esp)\n"
 
 390                         /* skip eip, orig_eax, es, ds, fs */
 
 397  * Called from kretprobe_trampoline
 
 399 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
 
 401         struct kretprobe_instance *ri = NULL;
 
 402         struct hlist_head *head, empty_rp;
 
 403         struct hlist_node *node, *tmp;
 
 404         unsigned long flags, orig_ret_address = 0;
 
 405         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 
 407         INIT_HLIST_HEAD(&empty_rp);
 
 408         spin_lock_irqsave(&kretprobe_lock, flags);
 
 409         head = kretprobe_inst_table_head(current);
 
 410         /* fixup registers */
 
 411         regs->xcs = __KERNEL_CS | get_kernel_rpl();
 
 412         regs->eip = trampoline_address;
 
 413         regs->orig_eax = 0xffffffff;
 
 416          * It is possible to have multiple instances associated with a given
 
 417          * task either because an multiple functions in the call path
 
 418          * have a return probe installed on them, and/or more then one return
 
 419          * return probe was registered for a target function.
 
 421          * We can handle this because:
 
 422          *     - instances are always inserted at the head of the list
 
 423          *     - when multiple return probes are registered for the same
 
 424          *       function, the first instance's ret_addr will point to the
 
 425          *       real return address, and all the rest will point to
 
 426          *       kretprobe_trampoline
 
 428         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 
 429                 if (ri->task != current)
 
 430                         /* another task is sharing our hash bucket */
 
 433                 if (ri->rp && ri->rp->handler){
 
 434                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
 
 435                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 
 436                         ri->rp->handler(ri, regs);
 
 437                         __get_cpu_var(current_kprobe) = NULL;
 
 440                 orig_ret_address = (unsigned long)ri->ret_addr;
 
 441                 recycle_rp_inst(ri, &empty_rp);
 
 443                 if (orig_ret_address != trampoline_address)
 
 445                          * This is the real return address. Any other
 
 446                          * instances associated with this task are for
 
 447                          * other calls deeper on the call stack
 
 452         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
 
 454         spin_unlock_irqrestore(&kretprobe_lock, flags);
 
 456         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 
 457                 hlist_del(&ri->hlist);
 
 460         return (void*)orig_ret_address;
 
 464  * Called after single-stepping.  p->addr is the address of the
 
 465  * instruction whose first byte has been replaced by the "int 3"
 
 466  * instruction.  To avoid the SMP problems that can occur when we
 
 467  * temporarily put back the original opcode to single-step, we
 
 468  * single-stepped a copy of the instruction.  The address of this
 
 469  * copy is p->ainsn.insn.
 
 471  * This function prepares to return from the post-single-step
 
 472  * interrupt.  We have to fix up the stack as follows:
 
 474  * 0) Except in the case of absolute or indirect jump or call instructions,
 
 475  * the new eip is relative to the copied instruction.  We need to make
 
 476  * it relative to the original instruction.
 
 478  * 1) If the single-stepped instruction was pushfl, then the TF and IF
 
 479  * flags are set in the just-pushed eflags, and may need to be cleared.
 
 481  * 2) If the single-stepped instruction was a call, the return address
 
 482  * that is atop the stack is the address following the copied instruction.
 
 483  * We need to make it the address following the original instruction.
 
 485  * This function also checks instruction size for preparing direct execution.
 
 487 static void __kprobes resume_execution(struct kprobe *p,
 
 488                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 
 490         unsigned long *tos = (unsigned long *)®s->esp;
 
 491         unsigned long copy_eip = (unsigned long)p->ainsn.insn;
 
 492         unsigned long orig_eip = (unsigned long)p->addr;
 
 494         regs->eflags &= ~TF_MASK;
 
 495         switch (p->ainsn.insn[0]) {
 
 496         case 0x9c:              /* pushfl */
 
 497                 *tos &= ~(TF_MASK | IF_MASK);
 
 498                 *tos |= kcb->kprobe_old_eflags;
 
 500         case 0xc2:              /* iret/ret/lret */
 
 505         case 0xea:              /* jmp absolute -- eip is correct */
 
 506                 /* eip is already adjusted, no more changes required */
 
 507                 p->ainsn.boostable = 1;
 
 509         case 0xe8:              /* call relative - Fix return addr */
 
 510                 *tos = orig_eip + (*tos - copy_eip);
 
 512         case 0x9a:              /* call absolute -- same as call absolute, indirect */
 
 513                 *tos = orig_eip + (*tos - copy_eip);
 
 516                 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
 
 518                          * call absolute, indirect
 
 519                          * Fix return addr; eip is correct.
 
 520                          * But this is not boostable
 
 522                         *tos = orig_eip + (*tos - copy_eip);
 
 524                 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||       /* jmp near, absolute indirect */
 
 525                            ((p->ainsn.insn[1] & 0x31) == 0x21)) {       /* jmp far, absolute indirect */
 
 526                         /* eip is correct. And this is boostable */
 
 527                         p->ainsn.boostable = 1;
 
 534         if (p->ainsn.boostable == 0) {
 
 535                 if ((regs->eip > copy_eip) &&
 
 536                     (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
 
 538                          * These instructions can be executed directly if it
 
 539                          * jumps back to correct address.
 
 541                         set_jmp_op((void *)regs->eip,
 
 542                                    (void *)orig_eip + (regs->eip - copy_eip));
 
 543                         p->ainsn.boostable = 1;
 
 545                         p->ainsn.boostable = -1;
 
 549         regs->eip = orig_eip + (regs->eip - copy_eip);
 
 556  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 
 557  * remain disabled thoroughout this function.
 
 559 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 
 561         struct kprobe *cur = kprobe_running();
 
 562         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 567         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 
 568                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
 
 569                 cur->post_handler(cur, regs, 0);
 
 572         resume_execution(cur, regs, kcb);
 
 573         regs->eflags |= kcb->kprobe_saved_eflags;
 
 575         /*Restore back the original saved kprobes variables and continue. */
 
 576         if (kcb->kprobe_status == KPROBE_REENTER) {
 
 577                 restore_previous_kprobe(kcb);
 
 580         reset_current_kprobe();
 
 582         preempt_enable_no_resched();
 
 585          * if somebody else is singlestepping across a probe point, eflags
 
 586          * will have TF set, in which case, continue the remaining processing
 
 587          * of do_debug, as if this is not a probe hit.
 
 589         if (regs->eflags & TF_MASK)
 
 595 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 
 597         struct kprobe *cur = kprobe_running();
 
 598         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 600         switch(kcb->kprobe_status) {
 
 604                  * We are here because the instruction being single
 
 605                  * stepped caused a page fault. We reset the current
 
 606                  * kprobe and the eip points back to the probe address
 
 607                  * and allow the page fault handler to continue as a
 
 610                 regs->eip = (unsigned long)cur->addr;
 
 611                 regs->eflags |= kcb->kprobe_old_eflags;
 
 612                 if (kcb->kprobe_status == KPROBE_REENTER)
 
 613                         restore_previous_kprobe(kcb);
 
 615                         reset_current_kprobe();
 
 616                 preempt_enable_no_resched();
 
 618         case KPROBE_HIT_ACTIVE:
 
 619         case KPROBE_HIT_SSDONE:
 
 621                  * We increment the nmissed count for accounting,
 
 622                  * we can also use npre/npostfault count for accouting
 
 623                  * these specific fault cases.
 
 625                 kprobes_inc_nmissed_count(cur);
 
 628                  * We come here because instructions in the pre/post
 
 629                  * handler caused the page_fault, this could happen
 
 630                  * if handler tries to access user space by
 
 631                  * copy_from_user(), get_user() etc. Let the
 
 632                  * user-specified handler try to fix it first.
 
 634                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 
 638                  * In case the user-specified fault handler returned
 
 639                  * zero, try to fix up.
 
 641                 if (fixup_exception(regs))
 
 645                  * fixup_exception() could not handle it,
 
 646                  * Let do_page_fault() fix it.
 
 656  * Wrapper routine to for handling exceptions.
 
 658 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 
 659                                        unsigned long val, void *data)
 
 661         struct die_args *args = (struct die_args *)data;
 
 662         int ret = NOTIFY_DONE;
 
 664         if (args->regs && user_mode_vm(args->regs))
 
 669                 if (kprobe_handler(args->regs))
 
 673                 if (post_kprobe_handler(args->regs))
 
 678                 /* kprobe_running() needs smp_processor_id() */
 
 680                 if (kprobe_running() &&
 
 681                     kprobe_fault_handler(args->regs, args->trapnr))
 
 691 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 
 693         struct jprobe *jp = container_of(p, struct jprobe, kp);
 
 695         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 697         kcb->jprobe_saved_regs = *regs;
 
 698         kcb->jprobe_saved_esp = ®s->esp;
 
 699         addr = (unsigned long)(kcb->jprobe_saved_esp);
 
 702          * TBD: As Linus pointed out, gcc assumes that the callee
 
 703          * owns the argument space and could overwrite it, e.g.
 
 704          * tailcall optimization. So, to be absolutely safe
 
 705          * we also save and restore enough stack bytes to cover
 
 708         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
 
 709                         MIN_STACK_SIZE(addr));
 
 710         regs->eflags &= ~IF_MASK;
 
 711         regs->eip = (unsigned long)(jp->entry);
 
 715 void __kprobes jprobe_return(void)
 
 717         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 719         asm volatile ("       xchgl   %%ebx,%%esp     \n"
 
 721                       "       .globl jprobe_return_end  \n"
 
 722                       "       jprobe_return_end:        \n"
 
 724                       (kcb->jprobe_saved_esp):"memory");
 
 727 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 
 729         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 
 730         u8 *addr = (u8 *) (regs->eip - 1);
 
 731         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
 
 732         struct jprobe *jp = container_of(p, struct jprobe, kp);
 
 734         if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
 
 735                 if (®s->esp != kcb->jprobe_saved_esp) {
 
 736                         struct pt_regs *saved_regs =
 
 737                             container_of(kcb->jprobe_saved_esp,
 
 738                                             struct pt_regs, esp);
 
 739                         printk("current esp %p does not match saved esp %p\n",
 
 740                                ®s->esp, kcb->jprobe_saved_esp);
 
 741                         printk("Saved registers for jprobe %p\n", jp);
 
 742                         show_registers(saved_regs);
 
 743                         printk("Current registers\n");
 
 744                         show_registers(regs);
 
 747                 *regs = kcb->jprobe_saved_regs;
 
 748                 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
 
 749                        MIN_STACK_SIZE(stack_addr));
 
 750                 preempt_enable_no_resched();
 
 756 int __init arch_init_kprobes(void)