1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
117 struct audit_aux_data {
118 struct audit_aux_data *next;
122 #define AUDIT_AUX_IPCPERM 0
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
146 struct mm_struct *mm;
149 struct audit_aux_data_fd_pair {
150 struct audit_aux_data d;
154 struct audit_aux_data_pids {
155 struct audit_aux_data d;
156 pid_t target_pid[AUDIT_AUX_PIDS];
157 uid_t target_auid[AUDIT_AUX_PIDS];
158 uid_t target_uid[AUDIT_AUX_PIDS];
159 unsigned int target_sessionid[AUDIT_AUX_PIDS];
160 u32 target_sid[AUDIT_AUX_PIDS];
161 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
165 struct audit_aux_data_bprm_fcaps {
166 struct audit_aux_data d;
167 struct audit_cap_data fcap;
168 unsigned int fcap_ver;
169 struct audit_cap_data old_pcap;
170 struct audit_cap_data new_pcap;
173 struct audit_aux_data_capset {
174 struct audit_aux_data d;
176 struct audit_cap_data cap;
179 struct audit_tree_refs {
180 struct audit_tree_refs *next;
181 struct audit_chunk *c[31];
184 /* The per-task audit context. */
185 struct audit_context {
186 int dummy; /* must be the first element */
187 int in_syscall; /* 1 if task is in a syscall */
188 enum audit_state state;
189 unsigned int serial; /* serial number for record */
190 struct timespec ctime; /* time of syscall entry */
191 int major; /* syscall number */
192 unsigned long argv[4]; /* syscall arguments */
193 int return_valid; /* return code is valid */
194 long return_code;/* syscall return code */
195 int auditable; /* 1 if record should be written */
197 struct audit_names names[AUDIT_NAMES];
198 char * filterkey; /* key for rule that triggered record */
200 struct audit_context *previous; /* For nested syscalls */
201 struct audit_aux_data *aux;
202 struct audit_aux_data *aux_pids;
203 struct sockaddr_storage *sockaddr;
205 /* Save things to print about task_struct */
207 uid_t uid, euid, suid, fsuid;
208 gid_t gid, egid, sgid, fsgid;
209 unsigned long personality;
215 unsigned int target_sessionid;
217 char target_comm[TASK_COMM_LEN];
219 struct audit_tree_refs *trees, *first_trees;
237 unsigned long qbytes;
241 struct mq_attr mqstat;
255 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
256 static inline int open_arg(int flags, int mask)
258 int n = ACC_MODE(flags);
259 if (flags & (O_TRUNC | O_CREAT))
260 n |= AUDIT_PERM_WRITE;
264 static int audit_match_perm(struct audit_context *ctx, int mask)
271 switch (audit_classify_syscall(ctx->arch, n)) {
273 if ((mask & AUDIT_PERM_WRITE) &&
274 audit_match_class(AUDIT_CLASS_WRITE, n))
276 if ((mask & AUDIT_PERM_READ) &&
277 audit_match_class(AUDIT_CLASS_READ, n))
279 if ((mask & AUDIT_PERM_ATTR) &&
280 audit_match_class(AUDIT_CLASS_CHATTR, n))
283 case 1: /* 32bit on biarch */
284 if ((mask & AUDIT_PERM_WRITE) &&
285 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 if ((mask & AUDIT_PERM_READ) &&
288 audit_match_class(AUDIT_CLASS_READ_32, n))
290 if ((mask & AUDIT_PERM_ATTR) &&
291 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
295 return mask & ACC_MODE(ctx->argv[1]);
297 return mask & ACC_MODE(ctx->argv[2]);
298 case 4: /* socketcall */
299 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 return mask & AUDIT_PERM_EXEC;
307 static int audit_match_filetype(struct audit_context *ctx, int which)
309 unsigned index = which & ~S_IFMT;
310 mode_t mode = which & S_IFMT;
315 if (index >= ctx->name_count)
317 if (ctx->names[index].ino == -1)
319 if ((ctx->names[index].mode ^ mode) & S_IFMT)
325 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
326 * ->first_trees points to its beginning, ->trees - to the current end of data.
327 * ->tree_count is the number of free entries in array pointed to by ->trees.
328 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
329 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
330 * it's going to remain 1-element for almost any setup) until we free context itself.
331 * References in it _are_ dropped - at the same time we free/drop aux stuff.
334 #ifdef CONFIG_AUDIT_TREE
335 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
337 struct audit_tree_refs *p = ctx->trees;
338 int left = ctx->tree_count;
340 p->c[--left] = chunk;
341 ctx->tree_count = left;
350 ctx->tree_count = 30;
356 static int grow_tree_refs(struct audit_context *ctx)
358 struct audit_tree_refs *p = ctx->trees;
359 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
365 p->next = ctx->trees;
367 ctx->first_trees = ctx->trees;
368 ctx->tree_count = 31;
373 static void unroll_tree_refs(struct audit_context *ctx,
374 struct audit_tree_refs *p, int count)
376 #ifdef CONFIG_AUDIT_TREE
377 struct audit_tree_refs *q;
380 /* we started with empty chain */
381 p = ctx->first_trees;
383 /* if the very first allocation has failed, nothing to do */
388 for (q = p; q != ctx->trees; q = q->next, n = 31) {
390 audit_put_chunk(q->c[n]);
394 while (n-- > ctx->tree_count) {
395 audit_put_chunk(q->c[n]);
399 ctx->tree_count = count;
403 static void free_tree_refs(struct audit_context *ctx)
405 struct audit_tree_refs *p, *q;
406 for (p = ctx->first_trees; p; p = q) {
412 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
414 #ifdef CONFIG_AUDIT_TREE
415 struct audit_tree_refs *p;
420 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
421 for (n = 0; n < 31; n++)
422 if (audit_tree_match(p->c[n], tree))
427 for (n = ctx->tree_count; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
435 /* Determine if any context name data matches a rule's watch data */
436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state)
444 const struct cred *cred = get_task_cred(tsk);
445 int i, j, need_sid = 1;
448 for (i = 0; i < rule->field_count; i++) {
449 struct audit_field *f = &rule->fields[i];
454 result = audit_comparator(tsk->pid, f->op, f->val);
459 ctx->ppid = sys_getppid();
460 result = audit_comparator(ctx->ppid, f->op, f->val);
464 result = audit_comparator(cred->uid, f->op, f->val);
467 result = audit_comparator(cred->euid, f->op, f->val);
470 result = audit_comparator(cred->suid, f->op, f->val);
473 result = audit_comparator(cred->fsuid, f->op, f->val);
476 result = audit_comparator(cred->gid, f->op, f->val);
479 result = audit_comparator(cred->egid, f->op, f->val);
482 result = audit_comparator(cred->sgid, f->op, f->val);
485 result = audit_comparator(cred->fsgid, f->op, f->val);
488 result = audit_comparator(tsk->personality, f->op, f->val);
492 result = audit_comparator(ctx->arch, f->op, f->val);
496 if (ctx && ctx->return_valid)
497 result = audit_comparator(ctx->return_code, f->op, f->val);
500 if (ctx && ctx->return_valid) {
502 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
504 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
509 result = audit_comparator(MAJOR(name->dev),
512 for (j = 0; j < ctx->name_count; j++) {
513 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
522 result = audit_comparator(MINOR(name->dev),
525 for (j = 0; j < ctx->name_count; j++) {
526 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
535 result = (name->ino == f->val);
537 for (j = 0; j < ctx->name_count; j++) {
538 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
546 if (name && rule->watch->ino != (unsigned long)-1)
547 result = (name->dev == rule->watch->dev &&
548 name->ino == rule->watch->ino);
552 result = match_tree_refs(ctx, rule->tree);
557 result = audit_comparator(tsk->loginuid, f->op, f->val);
559 case AUDIT_SUBJ_USER:
560 case AUDIT_SUBJ_ROLE:
561 case AUDIT_SUBJ_TYPE:
564 /* NOTE: this may return negative values indicating
565 a temporary error. We simply treat this as a
566 match for now to avoid losing information that
567 may be wanted. An error message will also be
571 security_task_getsecid(tsk, &sid);
574 result = security_audit_rule_match(sid, f->type,
583 case AUDIT_OBJ_LEV_LOW:
584 case AUDIT_OBJ_LEV_HIGH:
585 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
588 /* Find files that match */
590 result = security_audit_rule_match(
591 name->osid, f->type, f->op,
594 for (j = 0; j < ctx->name_count; j++) {
595 if (security_audit_rule_match(
604 /* Find ipc objects that match */
605 if (!ctx || ctx->type != AUDIT_IPC)
607 if (security_audit_rule_match(ctx->ipc.osid,
618 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
620 case AUDIT_FILTERKEY:
621 /* ignore this field for filtering */
625 result = audit_match_perm(ctx, f->val);
628 result = audit_match_filetype(ctx, f->val);
637 if (rule->filterkey && ctx)
638 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
639 switch (rule->action) {
640 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
641 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
647 /* At process creation time, we can determine if system-call auditing is
648 * completely disabled for this task. Since we only have the task
649 * structure at this point, we can only check uid and gid.
651 static enum audit_state audit_filter_task(struct task_struct *tsk)
653 struct audit_entry *e;
654 enum audit_state state;
657 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
658 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
664 return AUDIT_BUILD_CONTEXT;
667 /* At syscall entry and exit time, this filter is called if the
668 * audit_state is not low enough that auditing cannot take place, but is
669 * also not high enough that we already know we have to write an audit
670 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
672 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
673 struct audit_context *ctx,
674 struct list_head *list)
676 struct audit_entry *e;
677 enum audit_state state;
679 if (audit_pid && tsk->tgid == audit_pid)
680 return AUDIT_DISABLED;
683 if (!list_empty(list)) {
684 int word = AUDIT_WORD(ctx->major);
685 int bit = AUDIT_BIT(ctx->major);
687 list_for_each_entry_rcu(e, list, list) {
688 if ((e->rule.mask[word] & bit) == bit &&
689 audit_filter_rules(tsk, &e->rule, ctx, NULL,
697 return AUDIT_BUILD_CONTEXT;
700 /* At syscall exit time, this filter is called if any audit_names[] have been
701 * collected during syscall processing. We only check rules in sublists at hash
702 * buckets applicable to the inode numbers in audit_names[].
703 * Regarding audit_state, same rules apply as for audit_filter_syscall().
705 enum audit_state audit_filter_inodes(struct task_struct *tsk,
706 struct audit_context *ctx)
709 struct audit_entry *e;
710 enum audit_state state;
712 if (audit_pid && tsk->tgid == audit_pid)
713 return AUDIT_DISABLED;
716 for (i = 0; i < ctx->name_count; i++) {
717 int word = AUDIT_WORD(ctx->major);
718 int bit = AUDIT_BIT(ctx->major);
719 struct audit_names *n = &ctx->names[i];
720 int h = audit_hash_ino((u32)n->ino);
721 struct list_head *list = &audit_inode_hash[h];
723 if (list_empty(list))
726 list_for_each_entry_rcu(e, list, list) {
727 if ((e->rule.mask[word] & bit) == bit &&
728 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
735 return AUDIT_BUILD_CONTEXT;
738 void audit_set_auditable(struct audit_context *ctx)
743 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
747 struct audit_context *context = tsk->audit_context;
749 if (likely(!context))
751 context->return_valid = return_valid;
754 * we need to fix up the return code in the audit logs if the actual
755 * return codes are later going to be fixed up by the arch specific
758 * This is actually a test for:
759 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
760 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
762 * but is faster than a bunch of ||
764 if (unlikely(return_code <= -ERESTARTSYS) &&
765 (return_code >= -ERESTART_RESTARTBLOCK) &&
766 (return_code != -ENOIOCTLCMD))
767 context->return_code = -EINTR;
769 context->return_code = return_code;
771 if (context->in_syscall && !context->dummy && !context->auditable) {
772 enum audit_state state;
774 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
775 if (state == AUDIT_RECORD_CONTEXT) {
776 context->auditable = 1;
780 state = audit_filter_inodes(tsk, context);
781 if (state == AUDIT_RECORD_CONTEXT)
782 context->auditable = 1;
788 tsk->audit_context = NULL;
792 static inline void audit_free_names(struct audit_context *context)
797 if (context->auditable
798 ||context->put_count + context->ino_count != context->name_count) {
799 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
800 " name_count=%d put_count=%d"
801 " ino_count=%d [NOT freeing]\n",
803 context->serial, context->major, context->in_syscall,
804 context->name_count, context->put_count,
806 for (i = 0; i < context->name_count; i++) {
807 printk(KERN_ERR "names[%d] = %p = %s\n", i,
808 context->names[i].name,
809 context->names[i].name ?: "(null)");
816 context->put_count = 0;
817 context->ino_count = 0;
820 for (i = 0; i < context->name_count; i++) {
821 if (context->names[i].name && context->names[i].name_put)
822 __putname(context->names[i].name);
824 context->name_count = 0;
825 path_put(&context->pwd);
826 context->pwd.dentry = NULL;
827 context->pwd.mnt = NULL;
830 static inline void audit_free_aux(struct audit_context *context)
832 struct audit_aux_data *aux;
834 while ((aux = context->aux)) {
835 context->aux = aux->next;
838 while ((aux = context->aux_pids)) {
839 context->aux_pids = aux->next;
844 static inline void audit_zero_context(struct audit_context *context,
845 enum audit_state state)
847 memset(context, 0, sizeof(*context));
848 context->state = state;
851 static inline struct audit_context *audit_alloc_context(enum audit_state state)
853 struct audit_context *context;
855 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
857 audit_zero_context(context, state);
862 * audit_alloc - allocate an audit context block for a task
865 * Filter on the task information and allocate a per-task audit context
866 * if necessary. Doing so turns on system call auditing for the
867 * specified task. This is called from copy_process, so no lock is
870 int audit_alloc(struct task_struct *tsk)
872 struct audit_context *context;
873 enum audit_state state;
875 if (likely(!audit_ever_enabled))
876 return 0; /* Return if not auditing. */
878 state = audit_filter_task(tsk);
879 if (likely(state == AUDIT_DISABLED))
882 if (!(context = audit_alloc_context(state))) {
883 audit_log_lost("out of memory in audit_alloc");
887 tsk->audit_context = context;
888 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
892 static inline void audit_free_context(struct audit_context *context)
894 struct audit_context *previous;
898 previous = context->previous;
899 if (previous || (count && count < 10)) {
901 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
902 " freeing multiple contexts (%d)\n",
903 context->serial, context->major,
904 context->name_count, count);
906 audit_free_names(context);
907 unroll_tree_refs(context, NULL, 0);
908 free_tree_refs(context);
909 audit_free_aux(context);
910 kfree(context->filterkey);
911 kfree(context->sockaddr);
916 printk(KERN_ERR "audit: freed %d contexts\n", count);
919 void audit_log_task_context(struct audit_buffer *ab)
926 security_task_getsecid(current, &sid);
930 error = security_secid_to_secctx(sid, &ctx, &len);
932 if (error != -EINVAL)
937 audit_log_format(ab, " subj=%s", ctx);
938 security_release_secctx(ctx, len);
942 audit_panic("error in audit_log_task_context");
946 EXPORT_SYMBOL(audit_log_task_context);
948 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
950 char name[sizeof(tsk->comm)];
951 struct mm_struct *mm = tsk->mm;
952 struct vm_area_struct *vma;
956 get_task_comm(name, tsk);
957 audit_log_format(ab, " comm=");
958 audit_log_untrustedstring(ab, name);
961 down_read(&mm->mmap_sem);
964 if ((vma->vm_flags & VM_EXECUTABLE) &&
966 audit_log_d_path(ab, "exe=",
967 &vma->vm_file->f_path);
972 up_read(&mm->mmap_sem);
974 audit_log_task_context(ab);
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 uid_t auid, uid_t uid, unsigned int sessionid,
981 struct audit_buffer *ab;
986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
992 if (security_secid_to_secctx(sid, &ctx, &len)) {
993 audit_log_format(ab, " obj=(none)");
996 audit_log_format(ab, " obj=%s", ctx);
997 security_release_secctx(ctx, len);
999 audit_log_format(ab, " ocomm=");
1000 audit_log_untrustedstring(ab, comm);
1007 * to_send and len_sent accounting are very loose estimates. We aren't
1008 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1009 * within about 500 bytes (next page boundry)
1011 * why snprintf? an int is up to 12 digits long. if we just assumed when
1012 * logging that a[%d]= was going to be 16 characters long we would be wasting
1013 * space in every audit message. In one 7500 byte message we can log up to
1014 * about 1000 min size arguments. That comes down to about 50% waste of space
1015 * if we didn't do the snprintf to find out how long arg_num_len was.
1017 static int audit_log_single_execve_arg(struct audit_context *context,
1018 struct audit_buffer **ab,
1021 const char __user *p,
1024 char arg_num_len_buf[12];
1025 const char __user *tmp_p = p;
1026 /* how many digits are in arg_num? 3 is the length of a=\n */
1027 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1028 size_t len, len_left, to_send;
1029 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1030 unsigned int i, has_cntl = 0, too_long = 0;
1033 /* strnlen_user includes the null we don't want to send */
1034 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1037 * We just created this mm, if we can't find the strings
1038 * we just copied into it something is _very_ wrong. Similar
1039 * for strings that are too long, we should not have created
1042 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1044 send_sig(SIGKILL, current, 0);
1048 /* walk the whole argument looking for non-ascii chars */
1050 if (len_left > MAX_EXECVE_AUDIT_LEN)
1051 to_send = MAX_EXECVE_AUDIT_LEN;
1054 ret = copy_from_user(buf, tmp_p, to_send);
1056 * There is no reason for this copy to be short. We just
1057 * copied them here, and the mm hasn't been exposed to user-
1062 send_sig(SIGKILL, current, 0);
1065 buf[to_send] = '\0';
1066 has_cntl = audit_string_contains_control(buf, to_send);
1069 * hex messages get logged as 2 bytes, so we can only
1070 * send half as much in each message
1072 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1075 len_left -= to_send;
1077 } while (len_left > 0);
1081 if (len > max_execve_audit_len)
1084 /* rewalk the argument actually logging the message */
1085 for (i = 0; len_left > 0; i++) {
1088 if (len_left > max_execve_audit_len)
1089 to_send = max_execve_audit_len;
1093 /* do we have space left to send this argument in this ab? */
1094 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1096 room_left -= (to_send * 2);
1098 room_left -= to_send;
1099 if (room_left < 0) {
1102 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108 * first record needs to say how long the original string was
1109 * so we can be sure nothing was lost.
1111 if ((i == 0) && (too_long))
1112 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1113 has_cntl ? 2*len : len);
1116 * normally arguments are small enough to fit and we already
1117 * filled buf above when we checked for control characters
1118 * so don't bother with another copy_from_user
1120 if (len >= max_execve_audit_len)
1121 ret = copy_from_user(buf, p, to_send);
1126 send_sig(SIGKILL, current, 0);
1129 buf[to_send] = '\0';
1131 /* actually log it */
1132 audit_log_format(*ab, "a%d", arg_num);
1134 audit_log_format(*ab, "[%d]", i);
1135 audit_log_format(*ab, "=");
1137 audit_log_n_hex(*ab, buf, to_send);
1139 audit_log_format(*ab, "\"%s\"", buf);
1140 audit_log_format(*ab, "\n");
1143 len_left -= to_send;
1144 *len_sent += arg_num_len;
1146 *len_sent += to_send * 2;
1148 *len_sent += to_send;
1150 /* include the null we didn't log */
1154 static void audit_log_execve_info(struct audit_context *context,
1155 struct audit_buffer **ab,
1156 struct audit_aux_data_execve *axi)
1159 size_t len, len_sent = 0;
1160 const char __user *p;
1163 if (axi->mm != current->mm)
1164 return; /* execve failed, no additional info */
1166 p = (const char __user *)axi->mm->arg_start;
1168 audit_log_format(*ab, "argc=%d ", axi->argc);
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1178 audit_panic("out of memory for argv string\n");
1182 for (i = 0; i < axi->argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1192 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1196 audit_log_format(ab, " %s=", prefix);
1197 CAP_FOR_EACH_U32(i) {
1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1202 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204 kernel_cap_t *perm = &name->fcap.permitted;
1205 kernel_cap_t *inh = &name->fcap.inheritable;
1208 if (!cap_isclear(*perm)) {
1209 audit_log_cap(ab, "cap_fp", perm);
1212 if (!cap_isclear(*inh)) {
1213 audit_log_cap(ab, "cap_fi", inh);
1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1221 static void show_special(struct audit_context *context, int *call_panic)
1223 struct audit_buffer *ab;
1226 ab = audit_log_start(context, GFP_KERNEL, context->type);
1230 switch (context->type) {
1231 case AUDIT_SOCKETCALL: {
1232 int nargs = context->socketcall.nargs;
1233 audit_log_format(ab, "nargs=%d", nargs);
1234 for (i = 0; i < nargs; i++)
1235 audit_log_format(ab, " a%d=%lx", i,
1236 context->socketcall.args[i]);
1239 u32 osid = context->ipc.osid;
1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1246 if (security_secid_to_secctx(osid, &ctx, &len)) {
1247 audit_log_format(ab, " osid=%u", osid);
1250 audit_log_format(ab, " obj=%s", ctx);
1251 security_release_secctx(ctx, len);
1254 if (context->ipc.has_perm) {
1256 ab = audit_log_start(context, GFP_KERNEL,
1257 AUDIT_IPC_SET_PERM);
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1268 case AUDIT_MQ_NOTIFY: {
1269 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270 context->mq_notify.mqdes,
1271 context->mq_notify.sigev_signo);
1273 case AUDIT_MQ_GETSETATTR: {
1274 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275 audit_log_format(ab,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 context->mq_getsetattr.mqdes,
1279 attr->mq_flags, attr->mq_maxmsg,
1280 attr->mq_msgsize, attr->mq_curmsgs);
1286 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1288 const struct cred *cred;
1289 int i, call_panic = 0;
1290 struct audit_buffer *ab;
1291 struct audit_aux_data *aux;
1294 /* tsk == current */
1295 context->pid = tsk->pid;
1297 context->ppid = sys_getppid();
1298 cred = current_cred();
1299 context->uid = cred->uid;
1300 context->gid = cred->gid;
1301 context->euid = cred->euid;
1302 context->suid = cred->suid;
1303 context->fsuid = cred->fsuid;
1304 context->egid = cred->egid;
1305 context->sgid = cred->sgid;
1306 context->fsgid = cred->fsgid;
1307 context->personality = tsk->personality;
1309 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1311 return; /* audit_panic has been called */
1312 audit_log_format(ab, "arch=%x syscall=%d",
1313 context->arch, context->major);
1314 if (context->personality != PER_LINUX)
1315 audit_log_format(ab, " per=%lx", context->personality);
1316 if (context->return_valid)
1317 audit_log_format(ab, " success=%s exit=%ld",
1318 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1319 context->return_code);
1321 spin_lock_irq(&tsk->sighand->siglock);
1322 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1323 tty = tsk->signal->tty->name;
1326 spin_unlock_irq(&tsk->sighand->siglock);
1328 audit_log_format(ab,
1329 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1330 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1331 " euid=%u suid=%u fsuid=%u"
1332 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1337 context->name_count,
1343 context->euid, context->suid, context->fsuid,
1344 context->egid, context->sgid, context->fsgid, tty,
1348 audit_log_task_info(ab, tsk);
1349 if (context->filterkey) {
1350 audit_log_format(ab, " key=");
1351 audit_log_untrustedstring(ab, context->filterkey);
1353 audit_log_format(ab, " key=(null)");
1356 for (aux = context->aux; aux; aux = aux->next) {
1358 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1360 continue; /* audit_panic has been called */
1362 switch (aux->type) {
1363 case AUDIT_MQ_OPEN: {
1364 struct audit_aux_data_mq_open *axi = (void *)aux;
1365 audit_log_format(ab,
1366 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1367 "mq_msgsize=%ld mq_curmsgs=%ld",
1368 axi->oflag, axi->mode, axi->attr.mq_flags,
1369 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1370 axi->attr.mq_curmsgs);
1373 case AUDIT_MQ_SENDRECV: {
1374 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1375 audit_log_format(ab,
1376 "mqdes=%d msg_len=%zd msg_prio=%u "
1377 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1378 axi->mqdes, axi->msg_len, axi->msg_prio,
1379 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1382 case AUDIT_EXECVE: {
1383 struct audit_aux_data_execve *axi = (void *)aux;
1384 audit_log_execve_info(context, &ab, axi);
1387 case AUDIT_FD_PAIR: {
1388 struct audit_aux_data_fd_pair *axs = (void *)aux;
1389 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1392 case AUDIT_BPRM_FCAPS: {
1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1406 case AUDIT_CAPSET: {
1407 struct audit_aux_data_capset *axs = (void *)aux;
1408 audit_log_format(ab, "pid=%d", axs->pid);
1409 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1410 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1411 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1419 show_special(context, &call_panic);
1421 if (context->sockaddr_len) {
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1424 audit_log_format(ab, "saddr=");
1425 audit_log_n_hex(ab, (void *)context->sockaddr,
1426 context->sockaddr_len);
1431 for (aux = context->aux_pids; aux; aux = aux->next) {
1432 struct audit_aux_data_pids *axs = (void *)aux;
1434 for (i = 0; i < axs->pid_count; i++)
1435 if (audit_log_pid_context(context, axs->target_pid[i],
1436 axs->target_auid[i],
1438 axs->target_sessionid[i],
1440 axs->target_comm[i]))
1444 if (context->target_pid &&
1445 audit_log_pid_context(context, context->target_pid,
1446 context->target_auid, context->target_uid,
1447 context->target_sessionid,
1448 context->target_sid, context->target_comm))
1451 if (context->pwd.dentry && context->pwd.mnt) {
1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1454 audit_log_d_path(ab, "cwd=", &context->pwd);
1458 for (i = 0; i < context->name_count; i++) {
1459 struct audit_names *n = &context->names[i];
1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1463 continue; /* audit_panic has been called */
1465 audit_log_format(ab, "item=%d", i);
1468 switch(n->name_len) {
1469 case AUDIT_NAME_FULL:
1470 /* log the full path */
1471 audit_log_format(ab, " name=");
1472 audit_log_untrustedstring(ab, n->name);
1475 /* name was specified as a relative path and the
1476 * directory component is the cwd */
1477 audit_log_d_path(ab, " name=", &context->pwd);
1480 /* log the name's directory component */
1481 audit_log_format(ab, " name=");
1482 audit_log_n_untrustedstring(ab, n->name,
1486 audit_log_format(ab, " name=(null)");
1488 if (n->ino != (unsigned long)-1) {
1489 audit_log_format(ab, " inode=%lu"
1490 " dev=%02x:%02x mode=%#o"
1491 " ouid=%u ogid=%u rdev=%02x:%02x",
1504 if (security_secid_to_secctx(
1505 n->osid, &ctx, &len)) {
1506 audit_log_format(ab, " osid=%u", n->osid);
1509 audit_log_format(ab, " obj=%s", ctx);
1510 security_release_secctx(ctx, len);
1514 audit_log_fcaps(ab, n);
1519 /* Send end of event record to help user space know we are finished */
1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1524 audit_panic("error converting sid to string");
1528 * audit_free - free a per-task audit context
1529 * @tsk: task whose audit context block to free
1531 * Called from copy_process and do_exit
1533 void audit_free(struct task_struct *tsk)
1535 struct audit_context *context;
1537 context = audit_get_context(tsk, 0, 0);
1538 if (likely(!context))
1541 /* Check for system calls that do not go through the exit
1542 * function (e.g., exit_group), then free context block.
1543 * We use GFP_ATOMIC here because we might be doing this
1544 * in the context of the idle thread */
1545 /* that can happen only if we are called from do_exit() */
1546 if (context->in_syscall && context->auditable)
1547 audit_log_exit(context, tsk);
1549 audit_free_context(context);
1553 * audit_syscall_entry - fill in an audit record at syscall entry
1554 * @arch: architecture type
1555 * @major: major syscall type (function)
1556 * @a1: additional syscall register 1
1557 * @a2: additional syscall register 2
1558 * @a3: additional syscall register 3
1559 * @a4: additional syscall register 4
1561 * Fill in audit context at syscall entry. This only happens if the
1562 * audit context was created when the task was created and the state or
1563 * filters demand the audit context be built. If the state from the
1564 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1565 * then the record will be written at syscall exit time (otherwise, it
1566 * will only be written if another part of the kernel requests that it
1569 void audit_syscall_entry(int arch, int major,
1570 unsigned long a1, unsigned long a2,
1571 unsigned long a3, unsigned long a4)
1573 struct task_struct *tsk = current;
1574 struct audit_context *context = tsk->audit_context;
1575 enum audit_state state;
1577 if (unlikely(!context))
1581 * This happens only on certain architectures that make system
1582 * calls in kernel_thread via the entry.S interface, instead of
1583 * with direct calls. (If you are porting to a new
1584 * architecture, hitting this condition can indicate that you
1585 * got the _exit/_leave calls backward in entry.S.)
1589 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1591 * This also happens with vm86 emulation in a non-nested manner
1592 * (entries without exits), so this case must be caught.
1594 if (context->in_syscall) {
1595 struct audit_context *newctx;
1599 "audit(:%d) pid=%d in syscall=%d;"
1600 " entering syscall=%d\n",
1601 context->serial, tsk->pid, context->major, major);
1603 newctx = audit_alloc_context(context->state);
1605 newctx->previous = context;
1607 tsk->audit_context = newctx;
1609 /* If we can't alloc a new context, the best we
1610 * can do is to leak memory (any pending putname
1611 * will be lost). The only other alternative is
1612 * to abandon auditing. */
1613 audit_zero_context(context, context->state);
1616 BUG_ON(context->in_syscall || context->name_count);
1621 context->arch = arch;
1622 context->major = major;
1623 context->argv[0] = a1;
1624 context->argv[1] = a2;
1625 context->argv[2] = a3;
1626 context->argv[3] = a4;
1628 state = context->state;
1629 context->dummy = !audit_n_rules;
1630 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1631 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1632 if (likely(state == AUDIT_DISABLED))
1635 context->serial = 0;
1636 context->ctime = CURRENT_TIME;
1637 context->in_syscall = 1;
1638 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1642 void audit_finish_fork(struct task_struct *child)
1644 struct audit_context *ctx = current->audit_context;
1645 struct audit_context *p = child->audit_context;
1646 if (!p || !ctx || !ctx->auditable)
1648 p->arch = ctx->arch;
1649 p->major = ctx->major;
1650 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1651 p->ctime = ctx->ctime;
1652 p->dummy = ctx->dummy;
1653 p->auditable = ctx->auditable;
1654 p->in_syscall = ctx->in_syscall;
1655 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1656 p->ppid = current->pid;
1660 * audit_syscall_exit - deallocate audit context after a system call
1661 * @valid: success/failure flag
1662 * @return_code: syscall return value
1664 * Tear down after system call. If the audit context has been marked as
1665 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1666 * filtering, or because some other part of the kernel write an audit
1667 * message), then write out the syscall information. In call cases,
1668 * free the names stored from getname().
1670 void audit_syscall_exit(int valid, long return_code)
1672 struct task_struct *tsk = current;
1673 struct audit_context *context;
1675 context = audit_get_context(tsk, valid, return_code);
1677 if (likely(!context))
1680 if (context->in_syscall && context->auditable)
1681 audit_log_exit(context, tsk);
1683 context->in_syscall = 0;
1684 context->auditable = 0;
1686 if (context->previous) {
1687 struct audit_context *new_context = context->previous;
1688 context->previous = NULL;
1689 audit_free_context(context);
1690 tsk->audit_context = new_context;
1692 audit_free_names(context);
1693 unroll_tree_refs(context, NULL, 0);
1694 audit_free_aux(context);
1695 context->aux = NULL;
1696 context->aux_pids = NULL;
1697 context->target_pid = 0;
1698 context->target_sid = 0;
1699 context->sockaddr_len = 0;
1701 kfree(context->filterkey);
1702 context->filterkey = NULL;
1703 tsk->audit_context = context;
1707 static inline void handle_one(const struct inode *inode)
1709 #ifdef CONFIG_AUDIT_TREE
1710 struct audit_context *context;
1711 struct audit_tree_refs *p;
1712 struct audit_chunk *chunk;
1714 if (likely(list_empty(&inode->inotify_watches)))
1716 context = current->audit_context;
1718 count = context->tree_count;
1720 chunk = audit_tree_lookup(inode);
1724 if (likely(put_tree_ref(context, chunk)))
1726 if (unlikely(!grow_tree_refs(context))) {
1727 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1728 audit_set_auditable(context);
1729 audit_put_chunk(chunk);
1730 unroll_tree_refs(context, p, count);
1733 put_tree_ref(context, chunk);
1737 static void handle_path(const struct dentry *dentry)
1739 #ifdef CONFIG_AUDIT_TREE
1740 struct audit_context *context;
1741 struct audit_tree_refs *p;
1742 const struct dentry *d, *parent;
1743 struct audit_chunk *drop;
1747 context = current->audit_context;
1749 count = context->tree_count;
1754 seq = read_seqbegin(&rename_lock);
1756 struct inode *inode = d->d_inode;
1757 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1758 struct audit_chunk *chunk;
1759 chunk = audit_tree_lookup(inode);
1761 if (unlikely(!put_tree_ref(context, chunk))) {
1767 parent = d->d_parent;
1772 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1775 /* just a race with rename */
1776 unroll_tree_refs(context, p, count);
1779 audit_put_chunk(drop);
1780 if (grow_tree_refs(context)) {
1781 /* OK, got more space */
1782 unroll_tree_refs(context, p, count);
1787 "out of memory, audit has lost a tree reference\n");
1788 unroll_tree_refs(context, p, count);
1789 audit_set_auditable(context);
1797 * audit_getname - add a name to the list
1798 * @name: name to add
1800 * Add a name to the list of audit names for this context.
1801 * Called from fs/namei.c:getname().
1803 void __audit_getname(const char *name)
1805 struct audit_context *context = current->audit_context;
1807 if (IS_ERR(name) || !name)
1810 if (!context->in_syscall) {
1811 #if AUDIT_DEBUG == 2
1812 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1813 __FILE__, __LINE__, context->serial, name);
1818 BUG_ON(context->name_count >= AUDIT_NAMES);
1819 context->names[context->name_count].name = name;
1820 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1821 context->names[context->name_count].name_put = 1;
1822 context->names[context->name_count].ino = (unsigned long)-1;
1823 context->names[context->name_count].osid = 0;
1824 ++context->name_count;
1825 if (!context->pwd.dentry) {
1826 read_lock(¤t->fs->lock);
1827 context->pwd = current->fs->pwd;
1828 path_get(¤t->fs->pwd);
1829 read_unlock(¤t->fs->lock);
1834 /* audit_putname - intercept a putname request
1835 * @name: name to intercept and delay for putname
1837 * If we have stored the name from getname in the audit context,
1838 * then we delay the putname until syscall exit.
1839 * Called from include/linux/fs.h:putname().
1841 void audit_putname(const char *name)
1843 struct audit_context *context = current->audit_context;
1846 if (!context->in_syscall) {
1847 #if AUDIT_DEBUG == 2
1848 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1849 __FILE__, __LINE__, context->serial, name);
1850 if (context->name_count) {
1852 for (i = 0; i < context->name_count; i++)
1853 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1854 context->names[i].name,
1855 context->names[i].name ?: "(null)");
1862 ++context->put_count;
1863 if (context->put_count > context->name_count) {
1864 printk(KERN_ERR "%s:%d(:%d): major=%d"
1865 " in_syscall=%d putname(%p) name_count=%d"
1868 context->serial, context->major,
1869 context->in_syscall, name, context->name_count,
1870 context->put_count);
1877 static int audit_inc_name_count(struct audit_context *context,
1878 const struct inode *inode)
1880 if (context->name_count >= AUDIT_NAMES) {
1882 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1883 "dev=%02x:%02x, inode=%lu\n",
1884 MAJOR(inode->i_sb->s_dev),
1885 MINOR(inode->i_sb->s_dev),
1889 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1892 context->name_count++;
1894 context->ino_count++;
1900 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1902 struct cpu_vfs_cap_data caps;
1905 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1906 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1913 rc = get_vfs_caps_from_disk(dentry, &caps);
1917 name->fcap.permitted = caps.permitted;
1918 name->fcap.inheritable = caps.inheritable;
1919 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1920 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1926 /* Copy inode data into an audit_names. */
1927 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1928 const struct inode *inode)
1930 name->ino = inode->i_ino;
1931 name->dev = inode->i_sb->s_dev;
1932 name->mode = inode->i_mode;
1933 name->uid = inode->i_uid;
1934 name->gid = inode->i_gid;
1935 name->rdev = inode->i_rdev;
1936 security_inode_getsecid(inode, &name->osid);
1937 audit_copy_fcaps(name, dentry);
1941 * audit_inode - store the inode and device from a lookup
1942 * @name: name being audited
1943 * @dentry: dentry being audited
1945 * Called from fs/namei.c:path_lookup().
1947 void __audit_inode(const char *name, const struct dentry *dentry)
1950 struct audit_context *context = current->audit_context;
1951 const struct inode *inode = dentry->d_inode;
1953 if (!context->in_syscall)
1955 if (context->name_count
1956 && context->names[context->name_count-1].name
1957 && context->names[context->name_count-1].name == name)
1958 idx = context->name_count - 1;
1959 else if (context->name_count > 1
1960 && context->names[context->name_count-2].name
1961 && context->names[context->name_count-2].name == name)
1962 idx = context->name_count - 2;
1964 /* FIXME: how much do we care about inodes that have no
1965 * associated name? */
1966 if (audit_inc_name_count(context, inode))
1968 idx = context->name_count - 1;
1969 context->names[idx].name = NULL;
1971 handle_path(dentry);
1972 audit_copy_inode(&context->names[idx], dentry, inode);
1976 * audit_inode_child - collect inode info for created/removed objects
1977 * @dname: inode's dentry name
1978 * @dentry: dentry being audited
1979 * @parent: inode of dentry parent
1981 * For syscalls that create or remove filesystem objects, audit_inode
1982 * can only collect information for the filesystem object's parent.
1983 * This call updates the audit context with the child's information.
1984 * Syscalls that create a new filesystem object must be hooked after
1985 * the object is created. Syscalls that remove a filesystem object
1986 * must be hooked prior, in order to capture the target inode during
1987 * unsuccessful attempts.
1989 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1990 const struct inode *parent)
1993 struct audit_context *context = current->audit_context;
1994 const char *found_parent = NULL, *found_child = NULL;
1995 const struct inode *inode = dentry->d_inode;
1998 if (!context->in_syscall)
2003 /* determine matching parent */
2007 /* parent is more likely, look for it first */
2008 for (idx = 0; idx < context->name_count; idx++) {
2009 struct audit_names *n = &context->names[idx];
2014 if (n->ino == parent->i_ino &&
2015 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2016 n->name_len = dirlen; /* update parent data in place */
2017 found_parent = n->name;
2022 /* no matching parent, look for matching child */
2023 for (idx = 0; idx < context->name_count; idx++) {
2024 struct audit_names *n = &context->names[idx];
2029 /* strcmp() is the more likely scenario */
2030 if (!strcmp(dname, n->name) ||
2031 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2033 audit_copy_inode(n, NULL, inode);
2035 n->ino = (unsigned long)-1;
2036 found_child = n->name;
2042 if (!found_parent) {
2043 if (audit_inc_name_count(context, parent))
2045 idx = context->name_count - 1;
2046 context->names[idx].name = NULL;
2047 audit_copy_inode(&context->names[idx], NULL, parent);
2051 if (audit_inc_name_count(context, inode))
2053 idx = context->name_count - 1;
2055 /* Re-use the name belonging to the slot for a matching parent
2056 * directory. All names for this context are relinquished in
2057 * audit_free_names() */
2059 context->names[idx].name = found_parent;
2060 context->names[idx].name_len = AUDIT_NAME_FULL;
2061 /* don't call __putname() */
2062 context->names[idx].name_put = 0;
2064 context->names[idx].name = NULL;
2068 audit_copy_inode(&context->names[idx], NULL, inode);
2070 context->names[idx].ino = (unsigned long)-1;
2073 EXPORT_SYMBOL_GPL(__audit_inode_child);
2076 * auditsc_get_stamp - get local copies of audit_context values
2077 * @ctx: audit_context for the task
2078 * @t: timespec to store time recorded in the audit_context
2079 * @serial: serial value that is recorded in the audit_context
2081 * Also sets the context as auditable.
2083 int auditsc_get_stamp(struct audit_context *ctx,
2084 struct timespec *t, unsigned int *serial)
2086 if (!ctx->in_syscall)
2089 ctx->serial = audit_serial();
2090 t->tv_sec = ctx->ctime.tv_sec;
2091 t->tv_nsec = ctx->ctime.tv_nsec;
2092 *serial = ctx->serial;
2097 /* global counter which is incremented every time something logs in */
2098 static atomic_t session_id = ATOMIC_INIT(0);
2101 * audit_set_loginuid - set a task's audit_context loginuid
2102 * @task: task whose audit context is being modified
2103 * @loginuid: loginuid value
2107 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2109 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2111 unsigned int sessionid = atomic_inc_return(&session_id);
2112 struct audit_context *context = task->audit_context;
2114 if (context && context->in_syscall) {
2115 struct audit_buffer *ab;
2117 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2119 audit_log_format(ab, "login pid=%d uid=%u "
2120 "old auid=%u new auid=%u"
2121 " old ses=%u new ses=%u",
2122 task->pid, task_uid(task),
2123 task->loginuid, loginuid,
2124 task->sessionid, sessionid);
2128 task->sessionid = sessionid;
2129 task->loginuid = loginuid;
2134 * __audit_mq_open - record audit data for a POSIX MQ open
2137 * @u_attr: queue attributes
2139 * Returns 0 for success or NULL context or < 0 on error.
2141 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2143 struct audit_aux_data_mq_open *ax;
2144 struct audit_context *context = current->audit_context;
2149 if (likely(!context))
2152 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2156 if (u_attr != NULL) {
2157 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2162 memset(&ax->attr, 0, sizeof(ax->attr));
2167 ax->d.type = AUDIT_MQ_OPEN;
2168 ax->d.next = context->aux;
2169 context->aux = (void *)ax;
2174 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2175 * @mqdes: MQ descriptor
2176 * @msg_len: Message length
2177 * @msg_prio: Message priority
2178 * @u_abs_timeout: Message timeout in absolute time
2180 * Returns 0 for success or NULL context or < 0 on error.
2182 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2183 const struct timespec __user *u_abs_timeout)
2185 struct audit_aux_data_mq_sendrecv *ax;
2186 struct audit_context *context = current->audit_context;
2191 if (likely(!context))
2194 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2198 if (u_abs_timeout != NULL) {
2199 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2204 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2207 ax->msg_len = msg_len;
2208 ax->msg_prio = msg_prio;
2210 ax->d.type = AUDIT_MQ_SENDRECV;
2211 ax->d.next = context->aux;
2212 context->aux = (void *)ax;
2217 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2218 * @mqdes: MQ descriptor
2219 * @msg_len: Message length
2220 * @u_msg_prio: Message priority
2221 * @u_abs_timeout: Message timeout in absolute time
2223 * Returns 0 for success or NULL context or < 0 on error.
2225 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2226 unsigned int __user *u_msg_prio,
2227 const struct timespec __user *u_abs_timeout)
2229 struct audit_aux_data_mq_sendrecv *ax;
2230 struct audit_context *context = current->audit_context;
2235 if (likely(!context))
2238 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2242 if (u_msg_prio != NULL) {
2243 if (get_user(ax->msg_prio, u_msg_prio)) {
2250 if (u_abs_timeout != NULL) {
2251 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2256 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2259 ax->msg_len = msg_len;
2261 ax->d.type = AUDIT_MQ_SENDRECV;
2262 ax->d.next = context->aux;
2263 context->aux = (void *)ax;
2268 * __audit_mq_notify - record audit data for a POSIX MQ notify
2269 * @mqdes: MQ descriptor
2270 * @u_notification: Notification event
2274 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2276 struct audit_context *context = current->audit_context;
2279 context->mq_notify.sigev_signo = notification->sigev_signo;
2281 context->mq_notify.sigev_signo = 0;
2283 context->mq_notify.mqdes = mqdes;
2284 context->type = AUDIT_MQ_NOTIFY;
2288 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2289 * @mqdes: MQ descriptor
2293 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2295 struct audit_context *context = current->audit_context;
2296 context->mq_getsetattr.mqdes = mqdes;
2297 context->mq_getsetattr.mqstat = *mqstat;
2298 context->type = AUDIT_MQ_GETSETATTR;
2302 * audit_ipc_obj - record audit data for ipc object
2303 * @ipcp: ipc permissions
2306 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2308 struct audit_context *context = current->audit_context;
2309 context->ipc.uid = ipcp->uid;
2310 context->ipc.gid = ipcp->gid;
2311 context->ipc.mode = ipcp->mode;
2312 context->ipc.has_perm = 0;
2313 security_ipc_getsecid(ipcp, &context->ipc.osid);
2314 context->type = AUDIT_IPC;
2318 * audit_ipc_set_perm - record audit data for new ipc permissions
2319 * @qbytes: msgq bytes
2320 * @uid: msgq user id
2321 * @gid: msgq group id
2322 * @mode: msgq mode (permissions)
2324 * Called only after audit_ipc_obj().
2326 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2328 struct audit_context *context = current->audit_context;
2330 context->ipc.qbytes = qbytes;
2331 context->ipc.perm_uid = uid;
2332 context->ipc.perm_gid = gid;
2333 context->ipc.perm_mode = mode;
2334 context->ipc.has_perm = 1;
2337 int audit_bprm(struct linux_binprm *bprm)
2339 struct audit_aux_data_execve *ax;
2340 struct audit_context *context = current->audit_context;
2342 if (likely(!audit_enabled || !context || context->dummy))
2345 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2349 ax->argc = bprm->argc;
2350 ax->envc = bprm->envc;
2352 ax->d.type = AUDIT_EXECVE;
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2360 * audit_socketcall - record audit data for sys_socketcall
2361 * @nargs: number of args
2365 void audit_socketcall(int nargs, unsigned long *args)
2367 struct audit_context *context = current->audit_context;
2369 if (likely(!context || context->dummy))
2372 context->type = AUDIT_SOCKETCALL;
2373 context->socketcall.nargs = nargs;
2374 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2378 * __audit_fd_pair - record audit data for pipe and socketpair
2379 * @fd1: the first file descriptor
2380 * @fd2: the second file descriptor
2382 * Returns 0 for success or NULL context or < 0 on error.
2384 int __audit_fd_pair(int fd1, int fd2)
2386 struct audit_context *context = current->audit_context;
2387 struct audit_aux_data_fd_pair *ax;
2389 if (likely(!context)) {
2393 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2401 ax->d.type = AUDIT_FD_PAIR;
2402 ax->d.next = context->aux;
2403 context->aux = (void *)ax;
2408 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2409 * @len: data length in user space
2410 * @a: data address in kernel space
2412 * Returns 0 for success or NULL context or < 0 on error.
2414 int audit_sockaddr(int len, void *a)
2416 struct audit_context *context = current->audit_context;
2418 if (likely(!context || context->dummy))
2421 if (!context->sockaddr) {
2422 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2425 context->sockaddr = p;
2428 context->sockaddr_len = len;
2429 memcpy(context->sockaddr, a, len);
2433 void __audit_ptrace(struct task_struct *t)
2435 struct audit_context *context = current->audit_context;
2437 context->target_pid = t->pid;
2438 context->target_auid = audit_get_loginuid(t);
2439 context->target_uid = task_uid(t);
2440 context->target_sessionid = audit_get_sessionid(t);
2441 security_task_getsecid(t, &context->target_sid);
2442 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2446 * audit_signal_info - record signal info for shutting down audit subsystem
2447 * @sig: signal value
2448 * @t: task being signaled
2450 * If the audit subsystem is being terminated, record the task (pid)
2451 * and uid that is doing that.
2453 int __audit_signal_info(int sig, struct task_struct *t)
2455 struct audit_aux_data_pids *axp;
2456 struct task_struct *tsk = current;
2457 struct audit_context *ctx = tsk->audit_context;
2458 uid_t uid = current_uid(), t_uid = task_uid(t);
2460 if (audit_pid && t->tgid == audit_pid) {
2461 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2462 audit_sig_pid = tsk->pid;
2463 if (tsk->loginuid != -1)
2464 audit_sig_uid = tsk->loginuid;
2466 audit_sig_uid = uid;
2467 security_task_getsecid(tsk, &audit_sig_sid);
2469 if (!audit_signals || audit_dummy_context())
2473 /* optimize the common case by putting first signal recipient directly
2474 * in audit_context */
2475 if (!ctx->target_pid) {
2476 ctx->target_pid = t->tgid;
2477 ctx->target_auid = audit_get_loginuid(t);
2478 ctx->target_uid = t_uid;
2479 ctx->target_sessionid = audit_get_sessionid(t);
2480 security_task_getsecid(t, &ctx->target_sid);
2481 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2485 axp = (void *)ctx->aux_pids;
2486 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2487 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2491 axp->d.type = AUDIT_OBJ_PID;
2492 axp->d.next = ctx->aux_pids;
2493 ctx->aux_pids = (void *)axp;
2495 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2497 axp->target_pid[axp->pid_count] = t->tgid;
2498 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2499 axp->target_uid[axp->pid_count] = t_uid;
2500 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2501 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2502 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2509 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2510 * @bprm: pointer to the bprm being processed
2511 * @new: the proposed new credentials
2512 * @old: the old credentials
2514 * Simply check if the proc already has the caps given by the file and if not
2515 * store the priv escalation info for later auditing at the end of the syscall
2519 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2520 const struct cred *new, const struct cred *old)
2522 struct audit_aux_data_bprm_fcaps *ax;
2523 struct audit_context *context = current->audit_context;
2524 struct cpu_vfs_cap_data vcaps;
2525 struct dentry *dentry;
2527 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2531 ax->d.type = AUDIT_BPRM_FCAPS;
2532 ax->d.next = context->aux;
2533 context->aux = (void *)ax;
2535 dentry = dget(bprm->file->f_dentry);
2536 get_vfs_caps_from_disk(dentry, &vcaps);
2539 ax->fcap.permitted = vcaps.permitted;
2540 ax->fcap.inheritable = vcaps.inheritable;
2541 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2542 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2544 ax->old_pcap.permitted = old->cap_permitted;
2545 ax->old_pcap.inheritable = old->cap_inheritable;
2546 ax->old_pcap.effective = old->cap_effective;
2548 ax->new_pcap.permitted = new->cap_permitted;
2549 ax->new_pcap.inheritable = new->cap_inheritable;
2550 ax->new_pcap.effective = new->cap_effective;
2555 * __audit_log_capset - store information about the arguments to the capset syscall
2556 * @pid: target pid of the capset call
2557 * @new: the new credentials
2558 * @old: the old (current) credentials
2560 * Record the aguments userspace sent to sys_capset for later printing by the
2561 * audit system if applicable
2563 int __audit_log_capset(pid_t pid,
2564 const struct cred *new, const struct cred *old)
2566 struct audit_aux_data_capset *ax;
2567 struct audit_context *context = current->audit_context;
2569 if (likely(!audit_enabled || !context || context->dummy))
2572 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2576 ax->d.type = AUDIT_CAPSET;
2577 ax->d.next = context->aux;
2578 context->aux = (void *)ax;
2581 ax->cap.effective = new->cap_effective;
2582 ax->cap.inheritable = new->cap_effective;
2583 ax->cap.permitted = new->cap_permitted;
2589 * audit_core_dumps - record information about processes that end abnormally
2590 * @signr: signal value
2592 * If a process ends with a core dump, something fishy is going on and we
2593 * should record the event for investigation.
2595 void audit_core_dumps(long signr)
2597 struct audit_buffer *ab;
2599 uid_t auid = audit_get_loginuid(current), uid;
2601 unsigned int sessionid = audit_get_sessionid(current);
2606 if (signr == SIGQUIT) /* don't care for those */
2609 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2610 current_uid_gid(&uid, &gid);
2611 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2612 auid, uid, gid, sessionid);
2613 security_task_getsecid(current, &sid);
2618 if (security_secid_to_secctx(sid, &ctx, &len))
2619 audit_log_format(ab, " ssid=%u", sid);
2621 audit_log_format(ab, " subj=%s", ctx);
2622 security_release_secctx(ctx, len);
2625 audit_log_format(ab, " pid=%d comm=", current->pid);
2626 audit_log_untrustedstring(ab, current->comm);
2627 audit_log_format(ab, " sig=%ld", signr);