3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
31 #include "zd_netdev.h"
36 static struct usb_device_id usb_ids[] = {
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
69 /* "Driverless" devices that need ejecting */
70 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
76 MODULE_AUTHOR("Ulrich Kunitz");
77 MODULE_AUTHOR("Daniel Drake");
78 MODULE_VERSION("1.0");
79 MODULE_DEVICE_TABLE(usb, usb_ids);
81 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
82 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
84 /* USB device initialization */
86 static int request_fw_file(
87 const struct firmware **fw, const char *name, struct device *device)
91 dev_dbg_f(device, "fw name %s\n", name);
93 r = request_firmware(fw, name, device);
96 "Could not load firmware file %s. Error number %d\n",
101 static inline u16 get_bcdDevice(const struct usb_device *udev)
103 return le16_to_cpu(udev->descriptor.bcdDevice);
106 enum upload_code_flags {
110 /* Ensures that MAX_TRANSFER_SIZE is even. */
111 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
113 static int upload_code(struct usb_device *udev,
114 const u8 *data, size_t size, u16 code_offset, int flags)
119 /* USB request blocks need "kmalloced" buffers.
121 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
123 dev_err(&udev->dev, "out of memory\n");
130 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
131 size : MAX_TRANSFER_SIZE;
133 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
135 memcpy(p, data, transfer_size);
136 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
137 USB_REQ_FIRMWARE_DOWNLOAD,
138 USB_DIR_OUT | USB_TYPE_VENDOR,
139 code_offset, 0, p, transfer_size, 1000 /* ms */);
142 "USB control request for firmware upload"
143 " failed. Error number %d\n", r);
146 transfer_size = r & ~1;
148 size -= transfer_size;
149 data += transfer_size;
150 code_offset += transfer_size/sizeof(u16);
153 if (flags & REBOOT) {
156 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
157 USB_REQ_FIRMWARE_CONFIRM,
158 USB_DIR_IN | USB_TYPE_VENDOR,
159 0, 0, &ret, sizeof(ret), 5000 /* ms */);
160 if (r != sizeof(ret)) {
162 "control request firmeware confirmation failed."
163 " Return value %d\n", r);
170 "Internal error while downloading."
171 " Firmware confirm return value %#04x\n",
176 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
186 static u16 get_word(const void *data, u16 offset)
188 const __le16 *p = data;
189 return le16_to_cpu(p[offset]);
192 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
195 scnprintf(buffer, size, "%s%s",
196 device_type == DEVICE_ZD1211B ?
197 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
202 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
203 const struct firmware *ub_fw)
205 const struct firmware *ur_fw = NULL;
210 r = request_fw_file(&ur_fw,
211 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
216 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
220 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
221 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
222 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
224 /* At this point, the vendor driver downloads the whole firmware
225 * image, hacks around with version IDs, and uploads it again,
226 * completely overwriting the boot code. We do not do this here as
227 * it is not required on any tested devices, and it is suspected to
230 release_firmware(ur_fw);
234 static int upload_firmware(struct usb_device *udev, u8 device_type)
239 const struct firmware *ub_fw = NULL;
240 const struct firmware *uph_fw = NULL;
243 bcdDevice = get_bcdDevice(udev);
245 r = request_fw_file(&ub_fw,
246 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
251 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
253 if (fw_bcdDevice != bcdDevice) {
255 "firmware version %#06x and device bootcode version "
256 "%#06x differ\n", fw_bcdDevice, bcdDevice);
257 if (bcdDevice <= 0x4313)
258 dev_warn(&udev->dev, "device has old bootcode, please "
259 "report success or failure\n");
261 r = handle_version_mismatch(udev, device_type, ub_fw);
265 dev_dbg_f(&udev->dev,
266 "firmware device id %#06x is equal to the "
267 "actual device id\n", fw_bcdDevice);
271 r = request_fw_file(&uph_fw,
272 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
277 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
280 "Could not upload firmware code uph. Error number %d\n",
286 release_firmware(ub_fw);
287 release_firmware(uph_fw);
291 #define urb_dev(urb) (&(urb)->dev->dev)
293 static inline void handle_regs_int(struct urb *urb)
295 struct zd_usb *usb = urb->context;
296 struct zd_usb_interrupt *intr = &usb->intr;
299 ZD_ASSERT(in_interrupt());
300 spin_lock(&intr->lock);
302 if (intr->read_regs_enabled) {
303 intr->read_regs.length = len = urb->actual_length;
305 if (len > sizeof(intr->read_regs.buffer))
306 len = sizeof(intr->read_regs.buffer);
307 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
308 intr->read_regs_enabled = 0;
309 complete(&intr->read_regs.completion);
313 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
315 spin_unlock(&intr->lock);
318 static inline void handle_retry_failed_int(struct urb *urb)
320 struct zd_usb *usb = urb->context;
321 struct zd_mac *mac = zd_usb_to_mac(usb);
322 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
324 ieee->stats.tx_errors++;
325 ieee->ieee_stats.tx_retry_limit_exceeded++;
326 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
330 static void int_urb_complete(struct urb *urb)
333 struct usb_int_header *hdr;
335 switch (urb->status) {
349 if (urb->actual_length < sizeof(hdr)) {
350 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
354 hdr = urb->transfer_buffer;
355 if (hdr->type != USB_INT_TYPE) {
356 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
361 case USB_INT_ID_REGS:
362 handle_regs_int(urb);
364 case USB_INT_ID_RETRY_FAILED:
365 handle_retry_failed_int(urb);
368 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
369 (unsigned int)hdr->id);
374 r = usb_submit_urb(urb, GFP_ATOMIC);
376 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
381 kfree(urb->transfer_buffer);
384 static inline int int_urb_interval(struct usb_device *udev)
386 switch (udev->speed) {
397 static inline int usb_int_enabled(struct zd_usb *usb)
400 struct zd_usb_interrupt *intr = &usb->intr;
403 spin_lock_irqsave(&intr->lock, flags);
405 spin_unlock_irqrestore(&intr->lock, flags);
409 int zd_usb_enable_int(struct zd_usb *usb)
412 struct usb_device *udev;
413 struct zd_usb_interrupt *intr = &usb->intr;
414 void *transfer_buffer = NULL;
417 dev_dbg_f(zd_usb_dev(usb), "\n");
419 urb = usb_alloc_urb(0, GFP_KERNEL);
425 ZD_ASSERT(!irqs_disabled());
426 spin_lock_irq(&intr->lock);
428 spin_unlock_irq(&intr->lock);
433 spin_unlock_irq(&intr->lock);
435 /* TODO: make it a DMA buffer */
437 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
438 if (!transfer_buffer) {
439 dev_dbg_f(zd_usb_dev(usb),
440 "couldn't allocate transfer_buffer\n");
441 goto error_set_urb_null;
444 udev = zd_usb_to_usbdev(usb);
445 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
446 transfer_buffer, USB_MAX_EP_INT_BUFFER,
447 int_urb_complete, usb,
450 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
451 r = usb_submit_urb(urb, GFP_KERNEL);
453 dev_dbg_f(zd_usb_dev(usb),
454 "Couldn't submit urb. Error number %d\n", r);
460 kfree(transfer_buffer);
462 spin_lock_irq(&intr->lock);
464 spin_unlock_irq(&intr->lock);
471 void zd_usb_disable_int(struct zd_usb *usb)
474 struct zd_usb_interrupt *intr = &usb->intr;
477 spin_lock_irqsave(&intr->lock, flags);
480 spin_unlock_irqrestore(&intr->lock, flags);
484 spin_unlock_irqrestore(&intr->lock, flags);
487 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
491 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
495 struct zd_mac *mac = zd_usb_to_mac(usb);
496 const struct rx_length_info *length_info;
498 if (length < sizeof(struct rx_length_info)) {
499 /* It's not a complete packet anyhow. */
500 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
501 ieee->stats.rx_errors++;
502 ieee->stats.rx_length_errors++;
505 length_info = (struct rx_length_info *)
506 (buffer + length - sizeof(struct rx_length_info));
508 /* It might be that three frames are merged into a single URB
509 * transaction. We have to check for the length info tag.
511 * While testing we discovered that length_info might be unaligned,
512 * because if USB transactions are merged, the last packet will not
513 * be padded. Unaligned access might also happen if the length_info
514 * structure is not present.
516 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
518 unsigned int l, k, n;
519 for (i = 0, l = 0;; i++) {
520 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
526 zd_mac_rx_irq(mac, buffer+l, k);
532 zd_mac_rx_irq(mac, buffer, length);
536 static void rx_urb_complete(struct urb *urb)
539 struct zd_usb_rx *rx;
543 switch (urb->status) {
554 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
558 buffer = urb->transfer_buffer;
559 length = urb->actual_length;
563 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
564 /* If there is an old first fragment, we don't care. */
565 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
566 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
567 spin_lock(&rx->lock);
568 memcpy(rx->fragment, buffer, length);
569 rx->fragment_length = length;
570 spin_unlock(&rx->lock);
574 spin_lock(&rx->lock);
575 if (rx->fragment_length > 0) {
576 /* We are on a second fragment, we believe */
577 ZD_ASSERT(length + rx->fragment_length <=
578 ARRAY_SIZE(rx->fragment));
579 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
580 memcpy(rx->fragment+rx->fragment_length, buffer, length);
581 handle_rx_packet(usb, rx->fragment,
582 rx->fragment_length + length);
583 rx->fragment_length = 0;
584 spin_unlock(&rx->lock);
586 spin_unlock(&rx->lock);
587 handle_rx_packet(usb, buffer, length);
591 usb_submit_urb(urb, GFP_ATOMIC);
594 static struct urb *alloc_urb(struct zd_usb *usb)
596 struct usb_device *udev = zd_usb_to_usbdev(usb);
600 urb = usb_alloc_urb(0, GFP_KERNEL);
603 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
610 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
611 buffer, USB_MAX_RX_SIZE,
612 rx_urb_complete, usb);
613 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
618 static void free_urb(struct urb *urb)
622 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
623 urb->transfer_buffer, urb->transfer_dma);
627 int zd_usb_enable_rx(struct zd_usb *usb)
630 struct zd_usb_rx *rx = &usb->rx;
633 dev_dbg_f(zd_usb_dev(usb), "\n");
636 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
639 for (i = 0; i < URBS_COUNT; i++) {
640 urbs[i] = alloc_urb(usb);
645 ZD_ASSERT(!irqs_disabled());
646 spin_lock_irq(&rx->lock);
648 spin_unlock_irq(&rx->lock);
653 rx->urbs_count = URBS_COUNT;
654 spin_unlock_irq(&rx->lock);
656 for (i = 0; i < URBS_COUNT; i++) {
657 r = usb_submit_urb(urbs[i], GFP_KERNEL);
664 for (i = 0; i < URBS_COUNT; i++) {
665 usb_kill_urb(urbs[i]);
667 spin_lock_irq(&rx->lock);
670 spin_unlock_irq(&rx->lock);
673 for (i = 0; i < URBS_COUNT; i++)
679 void zd_usb_disable_rx(struct zd_usb *usb)
685 struct zd_usb_rx *rx = &usb->rx;
687 spin_lock_irqsave(&rx->lock, flags);
689 count = rx->urbs_count;
690 spin_unlock_irqrestore(&rx->lock, flags);
694 for (i = 0; i < count; i++) {
695 usb_kill_urb(urbs[i]);
700 spin_lock_irqsave(&rx->lock, flags);
703 spin_unlock_irqrestore(&rx->lock, flags);
706 static void tx_urb_complete(struct urb *urb)
710 switch (urb->status) {
719 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
722 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
726 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
727 urb->transfer_buffer, urb->transfer_dma);
731 r = usb_submit_urb(urb, GFP_ATOMIC);
733 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
738 /* Puts the frame on the USB endpoint. It doesn't wait for
739 * completion. The frame must contain the control set.
741 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
744 struct usb_device *udev = zd_usb_to_usbdev(usb);
748 urb = usb_alloc_urb(0, GFP_ATOMIC);
754 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
760 memcpy(buffer, frame, length);
762 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
763 buffer, length, tx_urb_complete, NULL);
764 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
766 r = usb_submit_urb(urb, GFP_ATOMIC);
771 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
779 static inline void init_usb_interrupt(struct zd_usb *usb)
781 struct zd_usb_interrupt *intr = &usb->intr;
783 spin_lock_init(&intr->lock);
784 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
785 init_completion(&intr->read_regs.completion);
786 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
789 static inline void init_usb_rx(struct zd_usb *usb)
791 struct zd_usb_rx *rx = &usb->rx;
792 spin_lock_init(&rx->lock);
793 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
794 rx->usb_packet_size = 512;
796 rx->usb_packet_size = 64;
798 ZD_ASSERT(rx->fragment_length == 0);
801 static inline void init_usb_tx(struct zd_usb *usb)
803 /* FIXME: at this point we will allocate a fixed number of urb's for
804 * use in a cyclic scheme */
807 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
808 struct usb_interface *intf)
810 memset(usb, 0, sizeof(*usb));
811 usb->intf = usb_get_intf(intf);
812 usb_set_intfdata(usb->intf, netdev);
813 init_usb_interrupt(usb);
818 void zd_usb_clear(struct zd_usb *usb)
820 usb_set_intfdata(usb->intf, NULL);
821 usb_put_intf(usb->intf);
822 ZD_MEMCLEAR(usb, sizeof(*usb));
823 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
826 static const char *speed(enum usb_device_speed speed)
836 return "unknown speed";
840 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
842 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
843 le16_to_cpu(udev->descriptor.idVendor),
844 le16_to_cpu(udev->descriptor.idProduct),
849 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
851 struct usb_device *udev = interface_to_usbdev(usb->intf);
852 return scnprint_id(udev, buffer, size);
856 static void print_id(struct usb_device *udev)
860 scnprint_id(udev, buffer, sizeof(buffer));
861 buffer[sizeof(buffer)-1] = 0;
862 dev_dbg_f(&udev->dev, "%s\n", buffer);
865 #define print_id(udev) do { } while (0)
868 static int eject_installer(struct usb_interface *intf)
870 struct usb_device *udev = interface_to_usbdev(intf);
871 struct usb_host_interface *iface_desc = &intf->altsetting[0];
872 struct usb_endpoint_descriptor *endpoint;
877 /* Find bulk out endpoint */
878 endpoint = &iface_desc->endpoint[1].desc;
879 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
880 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
881 USB_ENDPOINT_XFER_BULK) {
882 bulk_out_ep = endpoint->bEndpointAddress;
885 "zd1211rw: Could not find bulk out endpoint\n");
889 cmd = kzalloc(31, GFP_KERNEL);
893 /* USB bulk command block */
894 cmd[0] = 0x55; /* bulk command signature */
895 cmd[1] = 0x53; /* bulk command signature */
896 cmd[2] = 0x42; /* bulk command signature */
897 cmd[3] = 0x43; /* bulk command signature */
898 cmd[14] = 6; /* command length */
900 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
901 cmd[19] = 0x2; /* eject disc */
903 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
904 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
905 cmd, 31, NULL, 2000);
910 /* At this point, the device disconnects and reconnects with the real
913 usb_set_intfdata(intf, NULL);
917 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
920 struct usb_device *udev = interface_to_usbdev(intf);
921 struct net_device *netdev = NULL;
925 if (id->driver_info & DEVICE_INSTALLER)
926 return eject_installer(intf);
928 switch (udev->speed) {
934 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
939 usb_reset_device(interface_to_usbdev(intf));
941 netdev = zd_netdev_alloc(intf);
942 if (netdev == NULL) {
947 r = upload_firmware(udev, id->driver_info);
950 "couldn't load firmware. Error number %d\n", r);
954 r = usb_reset_configuration(udev);
956 dev_dbg_f(&intf->dev,
957 "couldn't reset configuration. Error number %d\n", r);
961 /* At this point the interrupt endpoint is not generally enabled. We
962 * save the USB bandwidth until the network device is opened. But
963 * notify that the initialization of the MAC will require the
964 * interrupts to be temporary enabled.
966 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
968 dev_dbg_f(&intf->dev,
969 "couldn't initialize mac. Error number %d\n", r);
973 r = register_netdev(netdev);
975 dev_dbg_f(&intf->dev,
976 "couldn't register netdev. Error number %d\n", r);
980 dev_dbg_f(&intf->dev, "successful\n");
981 dev_info(&intf->dev,"%s\n", netdev->name);
984 usb_reset_device(interface_to_usbdev(intf));
985 zd_netdev_free(netdev);
989 static void disconnect(struct usb_interface *intf)
991 struct net_device *netdev = zd_intf_to_netdev(intf);
992 struct zd_mac *mac = zd_netdev_mac(netdev);
993 struct zd_usb *usb = &mac->chip.usb;
995 /* Either something really bad happened, or we're just dealing with
996 * a DEVICE_INSTALLER. */
1000 dev_dbg_f(zd_usb_dev(usb), "\n");
1002 zd_netdev_disconnect(netdev);
1004 /* Just in case something has gone wrong! */
1005 zd_usb_disable_rx(usb);
1006 zd_usb_disable_int(usb);
1008 /* If the disconnect has been caused by a removal of the
1009 * driver module, the reset allows reloading of the driver. If the
1010 * reset will not be executed here, the upload of the firmware in the
1011 * probe function caused by the reloading of the driver will fail.
1013 usb_reset_device(interface_to_usbdev(intf));
1015 zd_netdev_free(netdev);
1016 dev_dbg(&intf->dev, "disconnected\n");
1019 static struct usb_driver driver = {
1021 .id_table = usb_ids,
1023 .disconnect = disconnect,
1026 struct workqueue_struct *zd_workqueue;
1028 static int __init usb_init(void)
1032 pr_debug("%s usb_init()\n", driver.name);
1034 zd_workqueue = create_singlethread_workqueue(driver.name);
1035 if (zd_workqueue == NULL) {
1036 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1040 r = usb_register(&driver);
1042 destroy_workqueue(zd_workqueue);
1043 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1048 pr_debug("%s initialized\n", driver.name);
1052 static void __exit usb_exit(void)
1054 pr_debug("%s usb_exit()\n", driver.name);
1055 usb_deregister(&driver);
1056 destroy_workqueue(zd_workqueue);
1059 module_init(usb_init);
1060 module_exit(usb_exit);
1062 static int usb_int_regs_length(unsigned int count)
1064 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1067 static void prepare_read_regs_int(struct zd_usb *usb)
1069 struct zd_usb_interrupt *intr = &usb->intr;
1071 spin_lock_irq(&intr->lock);
1072 intr->read_regs_enabled = 1;
1073 INIT_COMPLETION(intr->read_regs.completion);
1074 spin_unlock_irq(&intr->lock);
1077 static void disable_read_regs_int(struct zd_usb *usb)
1079 struct zd_usb_interrupt *intr = &usb->intr;
1081 spin_lock_irq(&intr->lock);
1082 intr->read_regs_enabled = 0;
1083 spin_unlock_irq(&intr->lock);
1086 static int get_results(struct zd_usb *usb, u16 *values,
1087 struct usb_req_read_regs *req, unsigned int count)
1091 struct zd_usb_interrupt *intr = &usb->intr;
1092 struct read_regs_int *rr = &intr->read_regs;
1093 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1095 spin_lock_irq(&intr->lock);
1098 /* The created block size seems to be larger than expected.
1099 * However results appear to be correct.
1101 if (rr->length < usb_int_regs_length(count)) {
1102 dev_dbg_f(zd_usb_dev(usb),
1103 "error: actual length %d less than expected %d\n",
1104 rr->length, usb_int_regs_length(count));
1107 if (rr->length > sizeof(rr->buffer)) {
1108 dev_dbg_f(zd_usb_dev(usb),
1109 "error: actual length %d exceeds buffer size %zu\n",
1110 rr->length, sizeof(rr->buffer));
1114 for (i = 0; i < count; i++) {
1115 struct reg_data *rd = ®s->regs[i];
1116 if (rd->addr != req->addr[i]) {
1117 dev_dbg_f(zd_usb_dev(usb),
1118 "rd[%d] addr %#06hx expected %#06hx\n", i,
1119 le16_to_cpu(rd->addr),
1120 le16_to_cpu(req->addr[i]));
1123 values[i] = le16_to_cpu(rd->value);
1128 spin_unlock_irq(&intr->lock);
1132 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1133 const zd_addr_t *addresses, unsigned int count)
1136 int i, req_len, actual_req_len;
1137 struct usb_device *udev;
1138 struct usb_req_read_regs *req = NULL;
1139 unsigned long timeout;
1142 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1145 if (count > USB_MAX_IOREAD16_COUNT) {
1146 dev_dbg_f(zd_usb_dev(usb),
1147 "error: count %u exceeds possible max %u\n",
1148 count, USB_MAX_IOREAD16_COUNT);
1152 dev_dbg_f(zd_usb_dev(usb),
1153 "error: io in atomic context not supported\n");
1154 return -EWOULDBLOCK;
1156 if (!usb_int_enabled(usb)) {
1157 dev_dbg_f(zd_usb_dev(usb),
1158 "error: usb interrupt not enabled\n");
1159 return -EWOULDBLOCK;
1162 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1163 req = kmalloc(req_len, GFP_KERNEL);
1166 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1167 for (i = 0; i < count; i++)
1168 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1170 udev = zd_usb_to_usbdev(usb);
1171 prepare_read_regs_int(usb);
1172 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1173 req, req_len, &actual_req_len, 1000 /* ms */);
1175 dev_dbg_f(zd_usb_dev(usb),
1176 "error in usb_bulk_msg(). Error number %d\n", r);
1179 if (req_len != actual_req_len) {
1180 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1181 " req_len %d != actual_req_len %d\n",
1182 req_len, actual_req_len);
1187 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1188 msecs_to_jiffies(1000));
1190 disable_read_regs_int(usb);
1191 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1196 r = get_results(usb, values, req, count);
1202 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1206 struct usb_device *udev;
1207 struct usb_req_write_regs *req = NULL;
1208 int i, req_len, actual_req_len;
1212 if (count > USB_MAX_IOWRITE16_COUNT) {
1213 dev_dbg_f(zd_usb_dev(usb),
1214 "error: count %u exceeds possible max %u\n",
1215 count, USB_MAX_IOWRITE16_COUNT);
1219 dev_dbg_f(zd_usb_dev(usb),
1220 "error: io in atomic context not supported\n");
1221 return -EWOULDBLOCK;
1224 req_len = sizeof(struct usb_req_write_regs) +
1225 count * sizeof(struct reg_data);
1226 req = kmalloc(req_len, GFP_KERNEL);
1230 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1231 for (i = 0; i < count; i++) {
1232 struct reg_data *rw = &req->reg_writes[i];
1233 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1234 rw->value = cpu_to_le16(ioreqs[i].value);
1237 udev = zd_usb_to_usbdev(usb);
1238 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1239 req, req_len, &actual_req_len, 1000 /* ms */);
1241 dev_dbg_f(zd_usb_dev(usb),
1242 "error in usb_bulk_msg(). Error number %d\n", r);
1245 if (req_len != actual_req_len) {
1246 dev_dbg_f(zd_usb_dev(usb),
1247 "error in usb_bulk_msg()"
1248 " req_len %d != actual_req_len %d\n",
1249 req_len, actual_req_len);
1254 /* FALL-THROUGH with r == 0 */
1260 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1263 struct usb_device *udev;
1264 struct usb_req_rfwrite *req = NULL;
1265 int i, req_len, actual_req_len;
1266 u16 bit_value_template;
1269 dev_dbg_f(zd_usb_dev(usb),
1270 "error: io in atomic context not supported\n");
1271 return -EWOULDBLOCK;
1273 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1274 dev_dbg_f(zd_usb_dev(usb),
1275 "error: bits %d are smaller than"
1276 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1277 bits, USB_MIN_RFWRITE_BIT_COUNT);
1280 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1281 dev_dbg_f(zd_usb_dev(usb),
1282 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1283 bits, USB_MAX_RFWRITE_BIT_COUNT);
1287 if (value & (~0UL << bits)) {
1288 dev_dbg_f(zd_usb_dev(usb),
1289 "error: value %#09x has bits >= %d set\n",
1295 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1297 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1299 dev_dbg_f(zd_usb_dev(usb),
1300 "error %d: Couldn't read CR203\n", r);
1303 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1305 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1306 req = kmalloc(req_len, GFP_KERNEL);
1310 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1311 /* 1: 3683a, but not used in ZYDAS driver */
1312 req->value = cpu_to_le16(2);
1313 req->bits = cpu_to_le16(bits);
1315 for (i = 0; i < bits; i++) {
1316 u16 bv = bit_value_template;
1317 if (value & (1 << (bits-1-i)))
1319 req->bit_values[i] = cpu_to_le16(bv);
1322 udev = zd_usb_to_usbdev(usb);
1323 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1324 req, req_len, &actual_req_len, 1000 /* ms */);
1326 dev_dbg_f(zd_usb_dev(usb),
1327 "error in usb_bulk_msg(). Error number %d\n", r);
1330 if (req_len != actual_req_len) {
1331 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1332 " req_len %d != actual_req_len %d\n",
1333 req_len, actual_req_len);
1338 /* FALL-THROUGH with r == 0 */