[SCSI] aacraid: check buffer address in aac_internal_transfer
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59  
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85
86 /**
87  *      aac_fib_setup   -       setup the fibs
88  *      @dev: Adapter to set up
89  *
90  *      Allocate the PCI space for the fibs, map it and then intialise the
91  *      fib area, the unmapped fib data and also the free list
92  */
93
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96         struct fib *fibptr;
97         struct hw_fib *hw_fib;
98         dma_addr_t hw_fib_pa;
99         int i;
100
101         while (((i = fib_map_alloc(dev)) == -ENOMEM)
102          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105         }
106         if (i<0)
107                 return -ENOMEM;
108                 
109         hw_fib = dev->hw_fib_va;
110         hw_fib_pa = dev->hw_fib_pa;
111         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112         /*
113          *      Initialise the fibs
114          */
115         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
116         {
117                 fibptr->dev = dev;
118                 fibptr->hw_fib_va = hw_fib;
119                 fibptr->data = (void *) fibptr->hw_fib_va->data;
120                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
121                 init_MUTEX_LOCKED(&fibptr->event_wait);
122                 spin_lock_init(&fibptr->event_lock);
123                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
124                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125                 fibptr->hw_fib_pa = hw_fib_pa;
126                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
127                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128         }
129         /*
130          *      Add the fib chain to the free list
131          */
132         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133         /*
134          *      Enable this to debug out of queue space
135          */
136         dev->free_fib = &dev->fibs[0];
137         return 0;
138 }
139
140 /**
141  *      aac_fib_alloc   -       allocate a fib
142  *      @dev: Adapter to allocate the fib for
143  *
144  *      Allocate a fib from the adapter fib pool. If the pool is empty we
145  *      return NULL.
146  */
147  
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150         struct fib * fibptr;
151         unsigned long flags;
152         spin_lock_irqsave(&dev->fib_lock, flags);
153         fibptr = dev->free_fib; 
154         if(!fibptr){
155                 spin_unlock_irqrestore(&dev->fib_lock, flags);
156                 return fibptr;
157         }
158         dev->free_fib = fibptr->next;
159         spin_unlock_irqrestore(&dev->fib_lock, flags);
160         /*
161          *      Set the proper node type code and node byte size
162          */
163         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164         fibptr->size = sizeof(struct fib);
165         /*
166          *      Null out fields that depend on being zero at the start of
167          *      each I/O
168          */
169         fibptr->hw_fib_va->header.XferState = 0;
170         fibptr->callback = NULL;
171         fibptr->callback_data = NULL;
172
173         return fibptr;
174 }
175
176 /**
177  *      aac_fib_free    -       free a fib
178  *      @fibptr: fib to free up
179  *
180  *      Frees up a fib and places it on the appropriate queue
181  */
182  
183 void aac_fib_free(struct fib *fibptr)
184 {
185         unsigned long flags;
186
187         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
189                 aac_config.fib_timeouts++;
190         if (fibptr->hw_fib_va->header.XferState != 0) {
191                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192                          (void*)fibptr,
193                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
194         }
195         fibptr->next = fibptr->dev->free_fib;
196         fibptr->dev->free_fib = fibptr;
197         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
198 }
199
200 /**
201  *      aac_fib_init    -       initialise a fib
202  *      @fibptr: The fib to initialize
203  *      
204  *      Set up the generic fib fields ready for use
205  */
206  
207 void aac_fib_init(struct fib *fibptr)
208 {
209         struct hw_fib *hw_fib = fibptr->hw_fib_va;
210
211         hw_fib->header.StructType = FIB_MAGIC;
212         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
213         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
214         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
215         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
217 }
218
219 /**
220  *      fib_deallocate          -       deallocate a fib
221  *      @fibptr: fib to deallocate
222  *
223  *      Will deallocate and return to the free pool the FIB pointed to by the
224  *      caller.
225  */
226  
227 static void fib_dealloc(struct fib * fibptr)
228 {
229         struct hw_fib *hw_fib = fibptr->hw_fib_va;
230         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
231         hw_fib->header.XferState = 0;        
232 }
233
234 /*
235  *      Commuication primitives define and support the queuing method we use to
236  *      support host to adapter commuication. All queue accesses happen through
237  *      these routines and are the only routines which have a knowledge of the
238  *       how these queues are implemented.
239  */
240  
241 /**
242  *      aac_get_entry           -       get a queue entry
243  *      @dev: Adapter
244  *      @qid: Queue Number
245  *      @entry: Entry return
246  *      @index: Index return
247  *      @nonotify: notification control
248  *
249  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
250  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251  *      returned.
252  */
253  
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256         struct aac_queue * q;
257         unsigned long idx;
258
259         /*
260          *      All of the queues wrap when they reach the end, so we check
261          *      to see if they have reached the end and if they have we just
262          *      set the index back to zero. This is a wrap. You could or off
263          *      the high bits in all updates but this is a bit faster I think.
264          */
265
266         q = &dev->queues->queue[qid];
267
268         idx = *index = le32_to_cpu(*(q->headers.producer));
269         /* Interrupt Moderation, only interrupt for first two entries */
270         if (idx != le32_to_cpu(*(q->headers.consumer))) {
271                 if (--idx == 0) {
272                         if (qid == AdapNormCmdQueue)
273                                 idx = ADAP_NORM_CMD_ENTRIES;
274                         else
275                                 idx = ADAP_NORM_RESP_ENTRIES;
276                 }
277                 if (idx != le32_to_cpu(*(q->headers.consumer)))
278                         *nonotify = 1; 
279         }
280
281         if (qid == AdapNormCmdQueue) {
282                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
283                         *index = 0; /* Wrap to front of the Producer Queue. */
284         } else {
285                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
286                         *index = 0; /* Wrap to front of the Producer Queue. */
287         }
288
289         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
290                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
291                                 qid, q->numpending);
292                 return 0;
293         } else {
294                 *entry = q->base + *index;
295                 return 1;
296         }
297 }   
298
299 /**
300  *      aac_queue_get           -       get the next free QE
301  *      @dev: Adapter
302  *      @index: Returned index
303  *      @priority: Priority of fib
304  *      @fib: Fib to associate with the queue entry
305  *      @wait: Wait if queue full
306  *      @fibptr: Driver fib object to go with fib
307  *      @nonotify: Don't notify the adapter
308  *
309  *      Gets the next free QE off the requested priorty adapter command
310  *      queue and associates the Fib with the QE. The QE represented by
311  *      index is ready to insert on the queue when this routine returns
312  *      success.
313  */
314
315 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
316 {
317         struct aac_entry * entry = NULL;
318         int map = 0;
319             
320         if (qid == AdapNormCmdQueue) {
321                 /*  if no entries wait for some if caller wants to */
322                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
323                 {
324                         printk(KERN_ERR "GetEntries failed\n");
325                 }
326                 /*
327                  *      Setup queue entry with a command, status and fib mapped
328                  */
329                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
330                 map = 1;
331         } else {
332                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
333                 {
334                         /* if no entries wait for some if caller wants to */
335                 }
336                 /*
337                  *      Setup queue entry with command, status and fib mapped
338                  */
339                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
340                 entry->addr = hw_fib->header.SenderFibAddress;
341                         /* Restore adapters pointer to the FIB */
342                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
343                 map = 0;
344         }
345         /*
346          *      If MapFib is true than we need to map the Fib and put pointers
347          *      in the queue entry.
348          */
349         if (map)
350                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
351         return 0;
352 }
353
354 /*
355  *      Define the highest level of host to adapter communication routines. 
356  *      These routines will support host to adapter FS commuication. These 
357  *      routines have no knowledge of the commuication method used. This level
358  *      sends and receives FIBs. This level has no knowledge of how these FIBs
359  *      get passed back and forth.
360  */
361
362 /**
363  *      aac_fib_send    -       send a fib to the adapter
364  *      @command: Command to send
365  *      @fibptr: The fib
366  *      @size: Size of fib data area
367  *      @priority: Priority of Fib
368  *      @wait: Async/sync select
369  *      @reply: True if a reply is wanted
370  *      @callback: Called with reply
371  *      @callback_data: Passed to callback
372  *
373  *      Sends the requested FIB to the adapter and optionally will wait for a
374  *      response FIB. If the caller does not wish to wait for a response than
375  *      an event to wait on must be supplied. This event will be set when a
376  *      response FIB is received from the adapter.
377  */
378  
379 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
380                 int priority, int wait, int reply, fib_callback callback,
381                 void *callback_data)
382 {
383         struct aac_dev * dev = fibptr->dev;
384         struct hw_fib * hw_fib = fibptr->hw_fib_va;
385         unsigned long flags = 0;
386         unsigned long qflags;
387
388         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
389                 return -EBUSY;
390         /*
391          *      There are 5 cases with the wait and reponse requested flags. 
392          *      The only invalid cases are if the caller requests to wait and
393          *      does not request a response and if the caller does not want a
394          *      response and the Fib is not allocated from pool. If a response
395          *      is not requesed the Fib will just be deallocaed by the DPC
396          *      routine when the response comes back from the adapter. No
397          *      further processing will be done besides deleting the Fib. We 
398          *      will have a debug mode where the adapter can notify the host
399          *      it had a problem and the host can log that fact.
400          */
401         if (wait && !reply) {
402                 return -EINVAL;
403         } else if (!wait && reply) {
404                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
405                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
406         } else if (!wait && !reply) {
407                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
408                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
409         } else if (wait && reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
412         } 
413         /*
414          *      Map the fib into 32bits by using the fib number
415          */
416
417         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
418         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
419         /*
420          *      Set FIB state to indicate where it came from and if we want a
421          *      response from the adapter. Also load the command from the
422          *      caller.
423          *
424          *      Map the hw fib pointer as a 32bit value
425          */
426         hw_fib->header.Command = cpu_to_le16(command);
427         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
428         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
429         /*
430          *      Set the size of the Fib we want to send to the adapter
431          */
432         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
433         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
434                 return -EMSGSIZE;
435         }                
436         /*
437          *      Get a queue entry connect the FIB to it and send an notify
438          *      the adapter a command is ready.
439          */
440         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
441
442         /*
443          *      Fill in the Callback and CallbackContext if we are not
444          *      going to wait.
445          */
446         if (!wait) {
447                 fibptr->callback = callback;
448                 fibptr->callback_data = callback_data;
449         }
450
451         fibptr->done = 0;
452         fibptr->flags = 0;
453
454         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
455
456         dprintk((KERN_DEBUG "Fib contents:.\n"));
457         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
458         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
459         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
460         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
461         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
462         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
463
464         if (!dev->queues)
465                 return -EBUSY;
466
467         if(wait)
468                 spin_lock_irqsave(&fibptr->event_lock, flags);
469         aac_adapter_deliver(fibptr);
470
471         /*
472          *      If the caller wanted us to wait for response wait now. 
473          */
474     
475         if (wait) {
476                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
477                 /* Only set for first known interruptable command */
478                 if (wait < 0) {
479                         /*
480                          * *VERY* Dangerous to time out a command, the
481                          * assumption is made that we have no hope of
482                          * functioning because an interrupt routing or other
483                          * hardware failure has occurred.
484                          */
485                         unsigned long count = 36000000L; /* 3 minutes */
486                         while (down_trylock(&fibptr->event_wait)) {
487                                 int blink;
488                                 if (--count == 0) {
489                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
490                                         spin_lock_irqsave(q->lock, qflags);
491                                         q->numpending--;
492                                         spin_unlock_irqrestore(q->lock, qflags);
493                                         if (wait == -1) {
494                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
495                                                   "Usually a result of a PCI interrupt routing problem;\n"
496                                                   "update mother board BIOS or consider utilizing one of\n"
497                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
498                                         }
499                                         return -ETIMEDOUT;
500                                 }
501                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
502                                         if (wait == -1) {
503                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
504                                                   "Usually a result of a serious unrecoverable hardware problem\n",
505                                                   blink);
506                                         }
507                                         return -EFAULT;
508                                 }
509                                 udelay(5);
510                         }
511                 } else
512                         (void)down_interruptible(&fibptr->event_wait);
513                 spin_lock_irqsave(&fibptr->event_lock, flags);
514                 if (fibptr->done == 0) {
515                         fibptr->done = 2; /* Tell interrupt we aborted */
516                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
517                         return -EINTR;
518                 }
519                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
520                 BUG_ON(fibptr->done == 0);
521                         
522                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
523                         return -ETIMEDOUT;
524                 } else {
525                         return 0;
526                 }
527         }
528         /*
529          *      If the user does not want a response than return success otherwise
530          *      return pending
531          */
532         if (reply)
533                 return -EINPROGRESS;
534         else
535                 return 0;
536 }
537
538 /** 
539  *      aac_consumer_get        -       get the top of the queue
540  *      @dev: Adapter
541  *      @q: Queue
542  *      @entry: Return entry
543  *
544  *      Will return a pointer to the entry on the top of the queue requested that
545  *      we are a consumer of, and return the address of the queue entry. It does
546  *      not change the state of the queue. 
547  */
548
549 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
550 {
551         u32 index;
552         int status;
553         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
554                 status = 0;
555         } else {
556                 /*
557                  *      The consumer index must be wrapped if we have reached
558                  *      the end of the queue, else we just use the entry
559                  *      pointed to by the header index
560                  */
561                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
562                         index = 0;              
563                 else
564                         index = le32_to_cpu(*q->headers.consumer);
565                 *entry = q->base + index;
566                 status = 1;
567         }
568         return(status);
569 }
570
571 /**
572  *      aac_consumer_free       -       free consumer entry
573  *      @dev: Adapter
574  *      @q: Queue
575  *      @qid: Queue ident
576  *
577  *      Frees up the current top of the queue we are a consumer of. If the
578  *      queue was full notify the producer that the queue is no longer full.
579  */
580
581 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
582 {
583         int wasfull = 0;
584         u32 notify;
585
586         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
587                 wasfull = 1;
588         
589         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
590                 *q->headers.consumer = cpu_to_le32(1);
591         else
592                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
593         
594         if (wasfull) {
595                 switch (qid) {
596
597                 case HostNormCmdQueue:
598                         notify = HostNormCmdNotFull;
599                         break;
600                 case HostNormRespQueue:
601                         notify = HostNormRespNotFull;
602                         break;
603                 default:
604                         BUG();
605                         return;
606                 }
607                 aac_adapter_notify(dev, notify);
608         }
609 }        
610
611 /**
612  *      aac_fib_adapter_complete        -       complete adapter issued fib
613  *      @fibptr: fib to complete
614  *      @size: size of fib
615  *
616  *      Will do all necessary work to complete a FIB that was sent from
617  *      the adapter.
618  */
619
620 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
621 {
622         struct hw_fib * hw_fib = fibptr->hw_fib_va;
623         struct aac_dev * dev = fibptr->dev;
624         struct aac_queue * q;
625         unsigned long nointr = 0;
626         unsigned long qflags;
627
628         if (hw_fib->header.XferState == 0) {
629                 if (dev->comm_interface == AAC_COMM_MESSAGE)
630                         kfree (hw_fib);
631                 return 0;
632         }
633         /*
634          *      If we plan to do anything check the structure type first.
635          */ 
636         if ( hw_fib->header.StructType != FIB_MAGIC ) {
637                 if (dev->comm_interface == AAC_COMM_MESSAGE)
638                         kfree (hw_fib);
639                 return -EINVAL;
640         }
641         /*
642          *      This block handles the case where the adapter had sent us a
643          *      command and we have finished processing the command. We
644          *      call completeFib when we are done processing the command 
645          *      and want to send a response back to the adapter. This will 
646          *      send the completed cdb to the adapter.
647          */
648         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
649                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
650                         kfree (hw_fib);
651                 } else {
652                         u32 index;
653                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
654                         if (size) {
655                                 size += sizeof(struct aac_fibhdr);
656                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
657                                         return -EMSGSIZE;
658                                 hw_fib->header.Size = cpu_to_le16(size);
659                         }
660                         q = &dev->queues->queue[AdapNormRespQueue];
661                         spin_lock_irqsave(q->lock, qflags);
662                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
663                         *(q->headers.producer) = cpu_to_le32(index + 1);
664                         spin_unlock_irqrestore(q->lock, qflags);
665                         if (!(nointr & (int)aac_config.irq_mod))
666                                 aac_adapter_notify(dev, AdapNormRespQueue);
667                 }
668         }
669         else 
670         {
671                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
672                 BUG();
673         }   
674         return 0;
675 }
676
677 /**
678  *      aac_fib_complete        -       fib completion handler
679  *      @fib: FIB to complete
680  *
681  *      Will do all necessary work to complete a FIB.
682  */
683  
684 int aac_fib_complete(struct fib *fibptr)
685 {
686         struct hw_fib * hw_fib = fibptr->hw_fib_va;
687
688         /*
689          *      Check for a fib which has already been completed
690          */
691
692         if (hw_fib->header.XferState == 0)
693                 return 0;
694         /*
695          *      If we plan to do anything check the structure type first.
696          */ 
697
698         if (hw_fib->header.StructType != FIB_MAGIC)
699                 return -EINVAL;
700         /*
701          *      This block completes a cdb which orginated on the host and we 
702          *      just need to deallocate the cdb or reinit it. At this point the
703          *      command is complete that we had sent to the adapter and this
704          *      cdb could be reused.
705          */
706         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
707                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
708         {
709                 fib_dealloc(fibptr);
710         }
711         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
712         {
713                 /*
714                  *      This handles the case when the host has aborted the I/O
715                  *      to the adapter because the adapter is not responding
716                  */
717                 fib_dealloc(fibptr);
718         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
719                 fib_dealloc(fibptr);
720         } else {
721                 BUG();
722         }   
723         return 0;
724 }
725
726 /**
727  *      aac_printf      -       handle printf from firmware
728  *      @dev: Adapter
729  *      @val: Message info
730  *
731  *      Print a message passed to us by the controller firmware on the
732  *      Adaptec board
733  */
734
735 void aac_printf(struct aac_dev *dev, u32 val)
736 {
737         char *cp = dev->printfbuf;
738         if (dev->printf_enabled)
739         {
740                 int length = val & 0xffff;
741                 int level = (val >> 16) & 0xffff;
742                 
743                 /*
744                  *      The size of the printfbuf is set in port.c
745                  *      There is no variable or define for it
746                  */
747                 if (length > 255)
748                         length = 255;
749                 if (cp[length] != 0)
750                         cp[length] = 0;
751                 if (level == LOG_AAC_HIGH_ERROR)
752                         printk(KERN_WARNING "%s:%s", dev->name, cp);
753                 else
754                         printk(KERN_INFO "%s:%s", dev->name, cp);
755         }
756         memset(cp, 0,  256);
757 }
758
759
760 /**
761  *      aac_handle_aif          -       Handle a message from the firmware
762  *      @dev: Which adapter this fib is from
763  *      @fibptr: Pointer to fibptr from adapter
764  *
765  *      This routine handles a driver notify fib from the adapter and
766  *      dispatches it to the appropriate routine for handling.
767  */
768
769 #define AIF_SNIFF_TIMEOUT       (30*HZ)
770 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
771 {
772         struct hw_fib * hw_fib = fibptr->hw_fib_va;
773         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
774         u32 container;
775         struct scsi_device *device;
776         enum {
777                 NOTHING,
778                 DELETE,
779                 ADD,
780                 CHANGE
781         } device_config_needed;
782
783         /* Sniff for container changes */
784
785         if (!dev || !dev->fsa_dev)
786                 return;
787         container = (u32)-1;
788
789         /*
790          *      We have set this up to try and minimize the number of
791          * re-configures that take place. As a result of this when
792          * certain AIF's come in we will set a flag waiting for another
793          * type of AIF before setting the re-config flag.
794          */
795         switch (le32_to_cpu(aifcmd->command)) {
796         case AifCmdDriverNotify:
797                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
798                 /*
799                  *      Morph or Expand complete
800                  */
801                 case AifDenMorphComplete:
802                 case AifDenVolumeExtendComplete:
803                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
804                         if (container >= dev->maximum_num_containers)
805                                 break;
806
807                         /*
808                          *      Find the scsi_device associated with the SCSI
809                          * address. Make sure we have the right array, and if
810                          * so set the flag to initiate a new re-config once we
811                          * see an AifEnConfigChange AIF come through.
812                          */
813
814                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
815                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
816                                         CONTAINER_TO_CHANNEL(container), 
817                                         CONTAINER_TO_ID(container), 
818                                         CONTAINER_TO_LUN(container));
819                                 if (device) {
820                                         dev->fsa_dev[container].config_needed = CHANGE;
821                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
822                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
823                                         scsi_device_put(device);
824                                 }
825                         }
826                 }
827
828                 /*
829                  *      If we are waiting on something and this happens to be
830                  * that thing then set the re-configure flag.
831                  */
832                 if (container != (u32)-1) {
833                         if (container >= dev->maximum_num_containers)
834                                 break;
835                         if ((dev->fsa_dev[container].config_waiting_on ==
836                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
837                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
838                                 dev->fsa_dev[container].config_waiting_on = 0;
839                 } else for (container = 0;
840                     container < dev->maximum_num_containers; ++container) {
841                         if ((dev->fsa_dev[container].config_waiting_on ==
842                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
843                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844                                 dev->fsa_dev[container].config_waiting_on = 0;
845                 }
846                 break;
847
848         case AifCmdEventNotify:
849                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
850                 /*
851                  *      Add an Array.
852                  */
853                 case AifEnAddContainer:
854                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
855                         if (container >= dev->maximum_num_containers)
856                                 break;
857                         dev->fsa_dev[container].config_needed = ADD;
858                         dev->fsa_dev[container].config_waiting_on =
859                                 AifEnConfigChange;
860                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
861                         break;
862
863                 /*
864                  *      Delete an Array.
865                  */
866                 case AifEnDeleteContainer:
867                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
868                         if (container >= dev->maximum_num_containers)
869                                 break;
870                         dev->fsa_dev[container].config_needed = DELETE;
871                         dev->fsa_dev[container].config_waiting_on =
872                                 AifEnConfigChange;
873                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
874                         break;
875
876                 /*
877                  *      Container change detected. If we currently are not
878                  * waiting on something else, setup to wait on a Config Change.
879                  */
880                 case AifEnContainerChange:
881                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
882                         if (container >= dev->maximum_num_containers)
883                                 break;
884                         if (dev->fsa_dev[container].config_waiting_on &&
885                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
886                                 break;
887                         dev->fsa_dev[container].config_needed = CHANGE;
888                         dev->fsa_dev[container].config_waiting_on =
889                                 AifEnConfigChange;
890                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
891                         break;
892
893                 case AifEnConfigChange:
894                         break;
895
896                 }
897
898                 /*
899                  *      If we are waiting on something and this happens to be
900                  * that thing then set the re-configure flag.
901                  */
902                 if (container != (u32)-1) {
903                         if (container >= dev->maximum_num_containers)
904                                 break;
905                         if ((dev->fsa_dev[container].config_waiting_on ==
906                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
907                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
908                                 dev->fsa_dev[container].config_waiting_on = 0;
909                 } else for (container = 0;
910                     container < dev->maximum_num_containers; ++container) {
911                         if ((dev->fsa_dev[container].config_waiting_on ==
912                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
913                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
914                                 dev->fsa_dev[container].config_waiting_on = 0;
915                 }
916                 break;
917
918         case AifCmdJobProgress:
919                 /*
920                  *      These are job progress AIF's. When a Clear is being
921                  * done on a container it is initially created then hidden from
922                  * the OS. When the clear completes we don't get a config
923                  * change so we monitor the job status complete on a clear then
924                  * wait for a container change.
925                  */
926
927                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
928                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
929                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
930                         for (container = 0;
931                             container < dev->maximum_num_containers;
932                             ++container) {
933                                 /*
934                                  * Stomp on all config sequencing for all
935                                  * containers?
936                                  */
937                                 dev->fsa_dev[container].config_waiting_on =
938                                         AifEnContainerChange;
939                                 dev->fsa_dev[container].config_needed = ADD;
940                                 dev->fsa_dev[container].config_waiting_stamp =
941                                         jiffies;
942                         }
943                 }
944                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
945                  && (((u32 *)aifcmd->data)[6] == 0)
946                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
947                         for (container = 0;
948                             container < dev->maximum_num_containers;
949                             ++container) {
950                                 /*
951                                  * Stomp on all config sequencing for all
952                                  * containers?
953                                  */
954                                 dev->fsa_dev[container].config_waiting_on =
955                                         AifEnContainerChange;
956                                 dev->fsa_dev[container].config_needed = DELETE;
957                                 dev->fsa_dev[container].config_waiting_stamp =
958                                         jiffies;
959                         }
960                 }
961                 break;
962         }
963
964         device_config_needed = NOTHING;
965         for (container = 0; container < dev->maximum_num_containers;
966             ++container) {
967                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
968                         (dev->fsa_dev[container].config_needed != NOTHING) &&
969                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
970                         device_config_needed =
971                                 dev->fsa_dev[container].config_needed;
972                         dev->fsa_dev[container].config_needed = NOTHING;
973                         break;
974                 }
975         }
976         if (device_config_needed == NOTHING)
977                 return;
978
979         /*
980          *      If we decided that a re-configuration needs to be done,
981          * schedule it here on the way out the door, please close the door
982          * behind you.
983          */
984
985         /*
986          *      Find the scsi_device associated with the SCSI address,
987          * and mark it as changed, invalidating the cache. This deals
988          * with changes to existing device IDs.
989          */
990
991         if (!dev || !dev->scsi_host_ptr)
992                 return;
993         /*
994          * force reload of disk info via aac_probe_container
995          */
996         if ((device_config_needed == CHANGE)
997          && (dev->fsa_dev[container].valid == 1))
998                 dev->fsa_dev[container].valid = 2;
999         if ((device_config_needed == CHANGE) ||
1000                         (device_config_needed == ADD))
1001                 aac_probe_container(dev, container);
1002         device = scsi_device_lookup(dev->scsi_host_ptr, 
1003                 CONTAINER_TO_CHANNEL(container), 
1004                 CONTAINER_TO_ID(container), 
1005                 CONTAINER_TO_LUN(container));
1006         if (device) {
1007                 switch (device_config_needed) {
1008                 case DELETE:
1009                 case CHANGE:
1010                         scsi_rescan_device(&device->sdev_gendev);
1011
1012                 default:
1013                         break;
1014                 }
1015                 scsi_device_put(device);
1016         }
1017         if (device_config_needed == ADD) {
1018                 scsi_add_device(dev->scsi_host_ptr,
1019                   CONTAINER_TO_CHANNEL(container),
1020                   CONTAINER_TO_ID(container),
1021                   CONTAINER_TO_LUN(container));
1022         }
1023
1024 }
1025
1026 static int _aac_reset_adapter(struct aac_dev *aac)
1027 {
1028         int index, quirks;
1029         int retval;
1030         struct Scsi_Host *host;
1031         struct scsi_device *dev;
1032         struct scsi_cmnd *command;
1033         struct scsi_cmnd *command_list;
1034
1035         /*
1036          * Assumptions:
1037          *      - host is locked.
1038          *      - in_reset is asserted, so no new i/o is getting to the
1039          *        card.
1040          *      - The card is dead.
1041          */
1042         host = aac->scsi_host_ptr;
1043         scsi_block_requests(host);
1044         aac_adapter_disable_int(aac);
1045         spin_unlock_irq(host->host_lock);
1046         kthread_stop(aac->thread);
1047
1048         /*
1049          *      If a positive health, means in a known DEAD PANIC
1050          * state and the adapter could be reset to `try again'.
1051          */
1052         retval = aac_adapter_restart(aac, aac_adapter_check_health(aac));
1053
1054         if (retval)
1055                 goto out;
1056
1057         /*
1058          *      Loop through the fibs, close the synchronous FIBS
1059          */
1060         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1061                 struct fib *fib = &aac->fibs[index];
1062                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1063                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1064                         unsigned long flagv;
1065                         spin_lock_irqsave(&fib->event_lock, flagv);
1066                         up(&fib->event_wait);
1067                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1068                         schedule();
1069                         retval = 0;
1070                 }
1071         }
1072         /* Give some extra time for ioctls to complete. */
1073         if (retval == 0)
1074                 ssleep(2);
1075         index = aac->cardtype;
1076
1077         /*
1078          * Re-initialize the adapter, first free resources, then carefully
1079          * apply the initialization sequence to come back again. Only risk
1080          * is a change in Firmware dropping cache, it is assumed the caller
1081          * will ensure that i/o is queisced and the card is flushed in that
1082          * case.
1083          */
1084         aac_fib_map_free(aac);
1085         aac->hw_fib_va = NULL;
1086         aac->hw_fib_pa = 0;
1087         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1088         aac->comm_addr = NULL;
1089         aac->comm_phys = 0;
1090         kfree(aac->queues);
1091         aac->queues = NULL;
1092         free_irq(aac->pdev->irq, aac);
1093         kfree(aac->fsa_dev);
1094         aac->fsa_dev = NULL;
1095         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1096                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1097                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1098                         goto out;
1099         } else {
1100                 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1101                   ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1102                         goto out;
1103         }
1104         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1105                 goto out;
1106         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1107                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1108                         goto out;
1109         aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1110         if (IS_ERR(aac->thread)) {
1111                 retval = PTR_ERR(aac->thread);
1112                 goto out;
1113         }
1114         (void)aac_get_adapter_info(aac);
1115         quirks = aac_get_driver_ident(index)->quirks;
1116         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1117                 host->sg_tablesize = 34;
1118                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1119         }
1120         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1121                 host->sg_tablesize = 17;
1122                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1123         }
1124         aac_get_config_status(aac, 1);
1125         aac_get_containers(aac);
1126         /*
1127          * This is where the assumption that the Adapter is quiesced
1128          * is important.
1129          */
1130         command_list = NULL;
1131         __shost_for_each_device(dev, host) {
1132                 unsigned long flags;
1133                 spin_lock_irqsave(&dev->list_lock, flags);
1134                 list_for_each_entry(command, &dev->cmd_list, list)
1135                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1136                                 command->SCp.buffer = (struct scatterlist *)command_list;
1137                                 command_list = command;
1138                         }
1139                 spin_unlock_irqrestore(&dev->list_lock, flags);
1140         }
1141         while ((command = command_list)) {
1142                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1143                 command->SCp.buffer = NULL;
1144                 command->result = DID_OK << 16
1145                   | COMMAND_COMPLETE << 8
1146                   | SAM_STAT_TASK_SET_FULL;
1147                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1148                 command->scsi_done(command);
1149         }
1150         retval = 0;
1151
1152 out:
1153         aac->in_reset = 0;
1154         scsi_unblock_requests(host);
1155         spin_lock_irq(host->host_lock);
1156         return retval;
1157 }
1158
1159 int aac_check_health(struct aac_dev * aac)
1160 {
1161         int BlinkLED;
1162         unsigned long time_now, flagv = 0;
1163         struct list_head * entry;
1164         struct Scsi_Host * host;
1165
1166         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1167         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1168                 return 0;
1169
1170         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1171                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1172                 return 0; /* OK */
1173         }
1174
1175         aac->in_reset = 1;
1176
1177         /* Fake up an AIF:
1178          *      aac_aifcmd.command = AifCmdEventNotify = 1
1179          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1180          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1181          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1182          *      aac.aifcmd.data[2] = AifHighPriority = 3
1183          *      aac.aifcmd.data[3] = BlinkLED
1184          */
1185
1186         time_now = jiffies/HZ;
1187         entry = aac->fib_list.next;
1188
1189         /*
1190          * For each Context that is on the
1191          * fibctxList, make a copy of the
1192          * fib, and then set the event to wake up the
1193          * thread that is waiting for it.
1194          */
1195         while (entry != &aac->fib_list) {
1196                 /*
1197                  * Extract the fibctx
1198                  */
1199                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1200                 struct hw_fib * hw_fib;
1201                 struct fib * fib;
1202                 /*
1203                  * Check if the queue is getting
1204                  * backlogged
1205                  */
1206                 if (fibctx->count > 20) {
1207                         /*
1208                          * It's *not* jiffies folks,
1209                          * but jiffies / HZ, so do not
1210                          * panic ...
1211                          */
1212                         u32 time_last = fibctx->jiffies;
1213                         /*
1214                          * Has it been > 2 minutes
1215                          * since the last read off
1216                          * the queue?
1217                          */
1218                         if ((time_now - time_last) > aif_timeout) {
1219                                 entry = entry->next;
1220                                 aac_close_fib_context(aac, fibctx);
1221                                 continue;
1222                         }
1223                 }
1224                 /*
1225                  * Warning: no sleep allowed while
1226                  * holding spinlock
1227                  */
1228                 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1229                 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1230                 if (fib && hw_fib) {
1231                         struct aac_aifcmd * aif;
1232
1233                         memset(hw_fib, 0, sizeof(struct hw_fib));
1234                         memset(fib, 0, sizeof(struct fib));
1235                         fib->hw_fib_va = hw_fib;
1236                         fib->dev = aac;
1237                         aac_fib_init(fib);
1238                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1239                         fib->size = sizeof (struct fib);
1240                         fib->data = hw_fib->data;
1241                         aif = (struct aac_aifcmd *)hw_fib->data;
1242                         aif->command = cpu_to_le32(AifCmdEventNotify);
1243                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1244                         aif->data[0] = cpu_to_le32(AifEnExpEvent);
1245                         aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1246                         aif->data[2] = cpu_to_le32(AifHighPriority);
1247                         aif->data[3] = cpu_to_le32(BlinkLED);
1248
1249                         /*
1250                          * Put the FIB onto the
1251                          * fibctx's fibs
1252                          */
1253                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1254                         fibctx->count++;
1255                         /*
1256                          * Set the event to wake up the
1257                          * thread that will waiting.
1258                          */
1259                         up(&fibctx->wait_sem);
1260                 } else {
1261                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1262                         kfree(fib);
1263                         kfree(hw_fib);
1264                 }
1265                 entry = entry->next;
1266         }
1267
1268         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1269
1270         if (BlinkLED < 0) {
1271                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1272                 goto out;
1273         }
1274
1275         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1276
1277         host = aac->scsi_host_ptr;
1278         spin_lock_irqsave(host->host_lock, flagv);
1279         BlinkLED = _aac_reset_adapter(aac);
1280         spin_unlock_irqrestore(host->host_lock, flagv);
1281         return BlinkLED;
1282
1283 out:
1284         aac->in_reset = 0;
1285         return BlinkLED;
1286 }
1287
1288
1289 /**
1290  *      aac_command_thread      -       command processing thread
1291  *      @dev: Adapter to monitor
1292  *
1293  *      Waits on the commandready event in it's queue. When the event gets set
1294  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1295  *      until the queue is empty. When the queue is empty it will wait for
1296  *      more FIBs.
1297  */
1298  
1299 int aac_command_thread(void *data)
1300 {
1301         struct aac_dev *dev = data;
1302         struct hw_fib *hw_fib, *hw_newfib;
1303         struct fib *fib, *newfib;
1304         struct aac_fib_context *fibctx;
1305         unsigned long flags;
1306         DECLARE_WAITQUEUE(wait, current);
1307
1308         /*
1309          *      We can only have one thread per adapter for AIF's.
1310          */
1311         if (dev->aif_thread)
1312                 return -EINVAL;
1313
1314         /*
1315          *      Let the DPC know it has a place to send the AIF's to.
1316          */
1317         dev->aif_thread = 1;
1318         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1319         set_current_state(TASK_INTERRUPTIBLE);
1320         dprintk ((KERN_INFO "aac_command_thread start\n"));
1321         while(1) 
1322         {
1323                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1324                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1325                         struct list_head *entry;
1326                         struct aac_aifcmd * aifcmd;
1327
1328                         set_current_state(TASK_RUNNING);
1329         
1330                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1331                         list_del(entry);
1332                 
1333                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1334                         fib = list_entry(entry, struct fib, fiblink);
1335                         /*
1336                          *      We will process the FIB here or pass it to a 
1337                          *      worker thread that is TBD. We Really can't 
1338                          *      do anything at this point since we don't have
1339                          *      anything defined for this thread to do.
1340                          */
1341                         hw_fib = fib->hw_fib_va;
1342                         memset(fib, 0, sizeof(struct fib));
1343                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1344                         fib->size = sizeof( struct fib );
1345                         fib->hw_fib_va = hw_fib;
1346                         fib->data = hw_fib->data;
1347                         fib->dev = dev;
1348                         /*
1349                          *      We only handle AifRequest fibs from the adapter.
1350                          */
1351                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1352                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1353                                 /* Handle Driver Notify Events */
1354                                 aac_handle_aif(dev, fib);
1355                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1356                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1357                         } else {
1358                                 struct list_head *entry;
1359                                 /* The u32 here is important and intended. We are using
1360                                    32bit wrapping time to fit the adapter field */
1361                                    
1362                                 u32 time_now, time_last;
1363                                 unsigned long flagv;
1364                                 unsigned num;
1365                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1366                                 struct fib ** fib_pool, ** fib_p;
1367                         
1368                                 /* Sniff events */
1369                                 if ((aifcmd->command == 
1370                                      cpu_to_le32(AifCmdEventNotify)) ||
1371                                     (aifcmd->command == 
1372                                      cpu_to_le32(AifCmdJobProgress))) {
1373                                         aac_handle_aif(dev, fib);
1374                                 }
1375                                 
1376                                 time_now = jiffies/HZ;
1377
1378                                 /*
1379                                  * Warning: no sleep allowed while
1380                                  * holding spinlock. We take the estimate
1381                                  * and pre-allocate a set of fibs outside the
1382                                  * lock.
1383                                  */
1384                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1385                                     / sizeof(struct hw_fib); /* some extra */
1386                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1387                                 entry = dev->fib_list.next;
1388                                 while (entry != &dev->fib_list) {
1389                                         entry = entry->next;
1390                                         ++num;
1391                                 }
1392                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1393                                 hw_fib_pool = NULL;
1394                                 fib_pool = NULL;
1395                                 if (num
1396                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1397                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1398                                         hw_fib_p = hw_fib_pool;
1399                                         fib_p = fib_pool;
1400                                         while (hw_fib_p < &hw_fib_pool[num]) {
1401                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1402                                                         --hw_fib_p;
1403                                                         break;
1404                                                 }
1405                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1406                                                         kfree(*(--hw_fib_p));
1407                                                         break;
1408                                                 }
1409                                         }
1410                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1411                                                 kfree(fib_pool);
1412                                                 fib_pool = NULL;
1413                                                 kfree(hw_fib_pool);
1414                                                 hw_fib_pool = NULL;
1415                                         }
1416                                 } else {
1417                                         kfree(hw_fib_pool);
1418                                         hw_fib_pool = NULL;
1419                                 }
1420                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1421                                 entry = dev->fib_list.next;
1422                                 /*
1423                                  * For each Context that is on the 
1424                                  * fibctxList, make a copy of the
1425                                  * fib, and then set the event to wake up the
1426                                  * thread that is waiting for it.
1427                                  */
1428                                 hw_fib_p = hw_fib_pool;
1429                                 fib_p = fib_pool;
1430                                 while (entry != &dev->fib_list) {
1431                                         /*
1432                                          * Extract the fibctx
1433                                          */
1434                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1435                                         /*
1436                                          * Check if the queue is getting
1437                                          * backlogged
1438                                          */
1439                                         if (fibctx->count > 20)
1440                                         {
1441                                                 /*
1442                                                  * It's *not* jiffies folks,
1443                                                  * but jiffies / HZ so do not
1444                                                  * panic ...
1445                                                  */
1446                                                 time_last = fibctx->jiffies;
1447                                                 /*
1448                                                  * Has it been > 2 minutes 
1449                                                  * since the last read off
1450                                                  * the queue?
1451                                                  */
1452                                                 if ((time_now - time_last) > aif_timeout) {
1453                                                         entry = entry->next;
1454                                                         aac_close_fib_context(dev, fibctx);
1455                                                         continue;
1456                                                 }
1457                                         }
1458                                         /*
1459                                          * Warning: no sleep allowed while
1460                                          * holding spinlock
1461                                          */
1462                                         if (hw_fib_p < &hw_fib_pool[num]) {
1463                                                 hw_newfib = *hw_fib_p;
1464                                                 *(hw_fib_p++) = NULL;
1465                                                 newfib = *fib_p;
1466                                                 *(fib_p++) = NULL;
1467                                                 /*
1468                                                  * Make the copy of the FIB
1469                                                  */
1470                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1471                                                 memcpy(newfib, fib, sizeof(struct fib));
1472                                                 newfib->hw_fib_va = hw_newfib;
1473                                                 /*
1474                                                  * Put the FIB onto the
1475                                                  * fibctx's fibs
1476                                                  */
1477                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1478                                                 fibctx->count++;
1479                                                 /* 
1480                                                  * Set the event to wake up the
1481                                                  * thread that is waiting.
1482                                                  */
1483                                                 up(&fibctx->wait_sem);
1484                                         } else {
1485                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1486                                         }
1487                                         entry = entry->next;
1488                                 }
1489                                 /*
1490                                  *      Set the status of this FIB
1491                                  */
1492                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1493                                 aac_fib_adapter_complete(fib, sizeof(u32));
1494                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1495                                 /* Free up the remaining resources */
1496                                 hw_fib_p = hw_fib_pool;
1497                                 fib_p = fib_pool;
1498                                 while (hw_fib_p < &hw_fib_pool[num]) {
1499                                         kfree(*hw_fib_p);
1500                                         kfree(*fib_p);
1501                                         ++fib_p;
1502                                         ++hw_fib_p;
1503                                 }
1504                                 kfree(hw_fib_pool);
1505                                 kfree(fib_pool);
1506                         }
1507                         kfree(fib);
1508                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1509                 }
1510                 /*
1511                  *      There are no more AIF's
1512                  */
1513                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1514                 schedule();
1515
1516                 if (kthread_should_stop())
1517                         break;
1518                 set_current_state(TASK_INTERRUPTIBLE);
1519         }
1520         if (dev->queues)
1521                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1522         dev->aif_thread = 0;
1523         return 0;
1524 }