Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / arch / mips / kernel / time.c
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/clockchips.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/profile.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/smp.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/kallsyms.h>
29
30 #include <asm/bootinfo.h>
31 #include <asm/cache.h>
32 #include <asm/compiler.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu-features.h>
35 #include <asm/div64.h>
36 #include <asm/sections.h>
37 #include <asm/smtc_ipi.h>
38 #include <asm/time.h>
39
40 #include <irq.h>
41
42 /*
43  * forward reference
44  */
45 DEFINE_SPINLOCK(rtc_lock);
46 EXPORT_SYMBOL(rtc_lock);
47
48 int __weak rtc_mips_set_time(unsigned long sec)
49 {
50         return 0;
51 }
52 EXPORT_SYMBOL(rtc_mips_set_time);
53
54 int __weak rtc_mips_set_mmss(unsigned long nowtime)
55 {
56         return rtc_mips_set_time(nowtime);
57 }
58
59 int update_persistent_clock(struct timespec now)
60 {
61         return rtc_mips_set_mmss(now.tv_sec);
62 }
63
64 /*
65  * Null high precision timer functions for systems lacking one.
66  */
67 static cycle_t null_hpt_read(void)
68 {
69         return 0;
70 }
71
72 /*
73  * High precision timer functions for a R4k-compatible timer.
74  */
75 static cycle_t c0_hpt_read(void)
76 {
77         return read_c0_count();
78 }
79
80 int (*mips_timer_state)(void);
81
82 /*
83  * local_timer_interrupt() does profiling and process accounting
84  * on a per-CPU basis.
85  *
86  * In UP mode, it is invoked from the (global) timer_interrupt.
87  *
88  * In SMP mode, it might invoked by per-CPU timer interrupt, or
89  * a broadcasted inter-processor interrupt which itself is triggered
90  * by the global timer interrupt.
91  */
92 void local_timer_interrupt(int irq, void *dev_id)
93 {
94         profile_tick(CPU_PROFILING);
95         update_process_times(user_mode(get_irq_regs()));
96 }
97
98 int null_perf_irq(void)
99 {
100         return 0;
101 }
102
103 EXPORT_SYMBOL(null_perf_irq);
104
105 int (*perf_irq)(void) = null_perf_irq;
106
107 EXPORT_SYMBOL(perf_irq);
108
109 /*
110  * time_init() - it does the following things.
111  *
112  * 1) plat_time_init() -
113  *      a) (optional) set up RTC routines,
114  *      b) (optional) calibrate and set the mips_hpt_frequency
115  *          (only needed if you intended to use cpu counter as timer interrupt
116  *           source)
117  * 2) calculate a couple of cached variables for later usage
118  * 3) plat_timer_setup() -
119  *      a) (optional) over-write any choices made above by time_init().
120  *      b) machine specific code should setup the timer irqaction.
121  *      c) enable the timer interrupt
122  */
123
124 unsigned int mips_hpt_frequency;
125
126 static unsigned int __init calibrate_hpt(void)
127 {
128         cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
129
130         const int loops = HZ / 10;
131         int log_2_loops = 0;
132         int i;
133
134         /*
135          * We want to calibrate for 0.1s, but to avoid a 64-bit
136          * division we round the number of loops up to the nearest
137          * power of 2.
138          */
139         while (loops > 1 << log_2_loops)
140                 log_2_loops++;
141         i = 1 << log_2_loops;
142
143         /*
144          * Wait for a rising edge of the timer interrupt.
145          */
146         while (mips_timer_state());
147         while (!mips_timer_state());
148
149         /*
150          * Now see how many high precision timer ticks happen
151          * during the calculated number of periods between timer
152          * interrupts.
153          */
154         hpt_start = clocksource_mips.read();
155         do {
156                 while (mips_timer_state());
157                 while (!mips_timer_state());
158         } while (--i);
159         hpt_end = clocksource_mips.read();
160
161         hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
162         hz = HZ;
163         frequency = hpt_count * hz;
164
165         return frequency >> log_2_loops;
166 }
167
168 struct clocksource clocksource_mips = {
169         .name           = "MIPS",
170         .mask           = CLOCKSOURCE_MASK(32),
171         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
172 };
173
174 void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock)
175 {
176         u64 temp;
177         u32 shift;
178
179         /* Find a shift value */
180         for (shift = 32; shift > 0; shift--) {
181                 temp = (u64) NSEC_PER_SEC << shift;
182                 do_div(temp, clock);
183                 if ((temp >> 32) == 0)
184                         break;
185         }
186         cs->shift = shift;
187         cs->mult = (u32) temp;
188 }
189
190 void __cpuinit clockevent_set_clock(struct clock_event_device *cd,
191         unsigned int clock)
192 {
193         u64 temp;
194         u32 shift;
195
196         /* Find a shift value */
197         for (shift = 32; shift > 0; shift--) {
198                 temp = (u64) clock << shift;
199                 do_div(temp, NSEC_PER_SEC);
200                 if ((temp >> 32) == 0)
201                         break;
202         }
203         cd->shift = shift;
204         cd->mult = (u32) temp;
205 }
206
207 static void __init init_mips_clocksource(void)
208 {
209         if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
210                 return;
211
212         /* Calclate a somewhat reasonable rating value */
213         clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
214
215         clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
216
217         clocksource_register(&clocksource_mips);
218 }
219
220 void __init __weak plat_time_init(void)
221 {
222 }
223
224 void __init __weak plat_timer_setup(struct irqaction *irq)
225 {
226 }
227
228 void __init time_init(void)
229 {
230         plat_time_init();
231
232         /* Choose appropriate high precision timer routines.  */
233         if (!cpu_has_counter && !clocksource_mips.read)
234                 /* No high precision timer -- sorry.  */
235                 clocksource_mips.read = null_hpt_read;
236         else if (!mips_hpt_frequency && !mips_timer_state) {
237                 /* A high precision timer of unknown frequency.  */
238                 if (!clocksource_mips.read)
239                         /* No external high precision timer -- use R4k.  */
240                         clocksource_mips.read = c0_hpt_read;
241         } else {
242                 /* We know counter frequency.  Or we can get it.  */
243                 if (!clocksource_mips.read) {
244                         /* No external high precision timer -- use R4k.  */
245                         clocksource_mips.read = c0_hpt_read;
246                 }
247                 if (!mips_hpt_frequency)
248                         mips_hpt_frequency = calibrate_hpt();
249
250                 /* Report the high precision timer rate for a reference.  */
251                 printk("Using %u.%03u MHz high precision timer.\n",
252                        ((mips_hpt_frequency + 500) / 1000) / 1000,
253                        ((mips_hpt_frequency + 500) / 1000) % 1000);
254         }
255
256         init_mips_clocksource();
257         mips_clockevent_init();
258 }