Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
38
39 #define DESCRIPTOR_OUTPUT_MORE          0
40 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
43 #define DESCRIPTOR_STATUS               (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
45 #define DESCRIPTOR_PING                 (1 << 7)
46 #define DESCRIPTOR_YY                   (1 << 6)
47 #define DESCRIPTOR_NO_IRQ               (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
51 #define DESCRIPTOR_WAIT                 (3 << 0)
52
53 struct descriptor {
54         __le16 req_count;
55         __le16 control;
56         __le32 data_address;
57         __le32 branch_address;
58         __le16 res_count;
59         __le16 transfer_status;
60 } __attribute__((aligned(16)));
61
62 struct db_descriptor {
63         __le16 first_size;
64         __le16 control;
65         __le16 second_req_count;
66         __le16 first_req_count;
67         __le32 branch_address;
68         __le16 second_res_count;
69         __le16 first_res_count;
70         __le32 reserved0;
71         __le32 first_buffer;
72         __le32 second_buffer;
73         __le32 reserved1;
74 } __attribute__((aligned(16)));
75
76 #define CONTROL_SET(regs)       (regs)
77 #define CONTROL_CLEAR(regs)     ((regs) + 4)
78 #define COMMAND_PTR(regs)       ((regs) + 12)
79 #define CONTEXT_MATCH(regs)     ((regs) + 16)
80
81 struct ar_buffer {
82         struct descriptor descriptor;
83         struct ar_buffer *next;
84         __le32 data[0];
85 };
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct ar_buffer *current_buffer;
90         struct ar_buffer *last_buffer;
91         void *pointer;
92         u32 regs;
93         struct tasklet_struct tasklet;
94 };
95
96 struct context;
97
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99                                      struct descriptor *d,
100                                      struct descriptor *last);
101 struct context {
102         struct fw_ohci *ohci;
103         u32 regs;
104
105         struct descriptor *buffer;
106         dma_addr_t buffer_bus;
107         size_t buffer_size;
108         struct descriptor *head_descriptor;
109         struct descriptor *tail_descriptor;
110         struct descriptor *tail_descriptor_last;
111         struct descriptor *prev_descriptor;
112
113         descriptor_callback_t callback;
114
115         struct tasklet_struct tasklet;
116 };
117
118 #define IT_HEADER_SY(v)          ((v) <<  0)
119 #define IT_HEADER_TCODE(v)       ((v) <<  4)
120 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
121 #define IT_HEADER_TAG(v)         ((v) << 14)
122 #define IT_HEADER_SPEED(v)       ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124
125 struct iso_context {
126         struct fw_iso_context base;
127         struct context context;
128         void *header;
129         size_t header_length;
130 };
131
132 #define CONFIG_ROM_SIZE 1024
133
134 struct fw_ohci {
135         struct fw_card card;
136
137         u32 version;
138         __iomem char *registers;
139         dma_addr_t self_id_bus;
140         __le32 *self_id_cpu;
141         struct tasklet_struct bus_reset_tasklet;
142         int node_id;
143         int generation;
144         int request_generation;
145         u32 bus_seconds;
146
147         /*
148          * Spinlock for accessing fw_ohci data.  Never call out of
149          * this driver with this lock held.
150          */
151         spinlock_t lock;
152         u32 self_id_buffer[512];
153
154         /* Config rom buffers */
155         __be32 *config_rom;
156         dma_addr_t config_rom_bus;
157         __be32 *next_config_rom;
158         dma_addr_t next_config_rom_bus;
159         u32 next_header;
160
161         struct ar_context ar_request_ctx;
162         struct ar_context ar_response_ctx;
163         struct context at_request_ctx;
164         struct context at_response_ctx;
165
166         u32 it_context_mask;
167         struct iso_context *it_context_list;
168         u32 ir_context_mask;
169         struct iso_context *ir_context_list;
170 };
171
172 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
173 {
174         return container_of(card, struct fw_ohci, card);
175 }
176
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
178 #define IR_CONTEXT_BUFFER_FILL          0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
183
184 #define CONTEXT_RUN     0x8000
185 #define CONTEXT_WAKE    0x1000
186 #define CONTEXT_DEAD    0x0800
187 #define CONTEXT_ACTIVE  0x0400
188
189 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
192
193 #define FW_OHCI_MAJOR                   240
194 #define OHCI1394_REGISTER_SIZE          0x800
195 #define OHCI_LOOP_COUNT                 500
196 #define OHCI1394_PCI_HCI_Control        0x40
197 #define SELF_ID_BUF_SIZE                0x800
198 #define OHCI_TCODE_PHY_PACKET           0x0e
199 #define OHCI_VERSION_1_1                0x010010
200 #define ISO_BUFFER_SIZE                 (64 * 1024)
201 #define AT_BUFFER_SIZE                  4096
202
203 static char ohci_driver_name[] = KBUILD_MODNAME;
204
205 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
206 {
207         writel(data, ohci->registers + offset);
208 }
209
210 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
211 {
212         return readl(ohci->registers + offset);
213 }
214
215 static inline void flush_writes(const struct fw_ohci *ohci)
216 {
217         /* Do a dummy read to flush writes. */
218         reg_read(ohci, OHCI1394_Version);
219 }
220
221 static int
222 ohci_update_phy_reg(struct fw_card *card, int addr,
223                     int clear_bits, int set_bits)
224 {
225         struct fw_ohci *ohci = fw_ohci(card);
226         u32 val, old;
227
228         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229         flush_writes(ohci);
230         msleep(2);
231         val = reg_read(ohci, OHCI1394_PhyControl);
232         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233                 fw_error("failed to set phy reg bits.\n");
234                 return -EBUSY;
235         }
236
237         old = OHCI1394_PhyControl_ReadData(val);
238         old = (old & ~clear_bits) | set_bits;
239         reg_write(ohci, OHCI1394_PhyControl,
240                   OHCI1394_PhyControl_Write(addr, old));
241
242         return 0;
243 }
244
245 static int ar_context_add_page(struct ar_context *ctx)
246 {
247         struct device *dev = ctx->ohci->card.device;
248         struct ar_buffer *ab;
249         dma_addr_t ab_bus;
250         size_t offset;
251
252         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
253         if (ab == NULL)
254                 return -ENOMEM;
255
256         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257         if (dma_mapping_error(ab_bus)) {
258                 free_page((unsigned long) ab);
259                 return -ENOMEM;
260         }
261
262         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
264                                                     DESCRIPTOR_STATUS |
265                                                     DESCRIPTOR_BRANCH_ALWAYS);
266         offset = offsetof(struct ar_buffer, data);
267         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
268         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
269         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
270         ab->descriptor.branch_address = 0;
271
272         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
273
274         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275         ctx->last_buffer->next = ab;
276         ctx->last_buffer = ab;
277
278         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279         flush_writes(ctx->ohci);
280
281         return 0;
282 }
283
284 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
285 {
286         struct fw_ohci *ohci = ctx->ohci;
287         struct fw_packet p;
288         u32 status, length, tcode;
289
290         p.header[0] = le32_to_cpu(buffer[0]);
291         p.header[1] = le32_to_cpu(buffer[1]);
292         p.header[2] = le32_to_cpu(buffer[2]);
293
294         tcode = (p.header[0] >> 4) & 0x0f;
295         switch (tcode) {
296         case TCODE_WRITE_QUADLET_REQUEST:
297         case TCODE_READ_QUADLET_RESPONSE:
298                 p.header[3] = (__force __u32) buffer[3];
299                 p.header_length = 16;
300                 p.payload_length = 0;
301                 break;
302
303         case TCODE_READ_BLOCK_REQUEST :
304                 p.header[3] = le32_to_cpu(buffer[3]);
305                 p.header_length = 16;
306                 p.payload_length = 0;
307                 break;
308
309         case TCODE_WRITE_BLOCK_REQUEST:
310         case TCODE_READ_BLOCK_RESPONSE:
311         case TCODE_LOCK_REQUEST:
312         case TCODE_LOCK_RESPONSE:
313                 p.header[3] = le32_to_cpu(buffer[3]);
314                 p.header_length = 16;
315                 p.payload_length = p.header[3] >> 16;
316                 break;
317
318         case TCODE_WRITE_RESPONSE:
319         case TCODE_READ_QUADLET_REQUEST:
320         case OHCI_TCODE_PHY_PACKET:
321                 p.header_length = 12;
322                 p.payload_length = 0;
323                 break;
324         }
325
326         p.payload = (void *) buffer + p.header_length;
327
328         /* FIXME: What to do about evt_* errors? */
329         length = (p.header_length + p.payload_length + 3) / 4;
330         status = le32_to_cpu(buffer[length]);
331
332         p.ack        = ((status >> 16) & 0x1f) - 16;
333         p.speed      = (status >> 21) & 0x7;
334         p.timestamp  = status & 0xffff;
335         p.generation = ohci->request_generation;
336
337         /*
338          * The OHCI bus reset handler synthesizes a phy packet with
339          * the new generation number when a bus reset happens (see
340          * section 8.4.2.3).  This helps us determine when a request
341          * was received and make sure we send the response in the same
342          * generation.  We only need this for requests; for responses
343          * we use the unique tlabel for finding the matching
344          * request.
345          */
346
347         if (p.ack + 16 == 0x09)
348                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
349         else if (ctx == &ohci->ar_request_ctx)
350                 fw_core_handle_request(&ohci->card, &p);
351         else
352                 fw_core_handle_response(&ohci->card, &p);
353
354         return buffer + length + 1;
355 }
356
357 static void ar_context_tasklet(unsigned long data)
358 {
359         struct ar_context *ctx = (struct ar_context *)data;
360         struct fw_ohci *ohci = ctx->ohci;
361         struct ar_buffer *ab;
362         struct descriptor *d;
363         void *buffer, *end;
364
365         ab = ctx->current_buffer;
366         d = &ab->descriptor;
367
368         if (d->res_count == 0) {
369                 size_t size, rest, offset;
370
371                 /*
372                  * This descriptor is finished and we may have a
373                  * packet split across this and the next buffer. We
374                  * reuse the page for reassembling the split packet.
375                  */
376
377                 offset = offsetof(struct ar_buffer, data);
378                 dma_unmap_single(ohci->card.device,
379                         le32_to_cpu(ab->descriptor.data_address) - offset,
380                         PAGE_SIZE, DMA_BIDIRECTIONAL);
381
382                 buffer = ab;
383                 ab = ab->next;
384                 d = &ab->descriptor;
385                 size = buffer + PAGE_SIZE - ctx->pointer;
386                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387                 memmove(buffer, ctx->pointer, size);
388                 memcpy(buffer + size, ab->data, rest);
389                 ctx->current_buffer = ab;
390                 ctx->pointer = (void *) ab->data + rest;
391                 end = buffer + size + rest;
392
393                 while (buffer < end)
394                         buffer = handle_ar_packet(ctx, buffer);
395
396                 free_page((unsigned long)buffer);
397                 ar_context_add_page(ctx);
398         } else {
399                 buffer = ctx->pointer;
400                 ctx->pointer = end =
401                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
402
403                 while (buffer < end)
404                         buffer = handle_ar_packet(ctx, buffer);
405         }
406 }
407
408 static int
409 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
410 {
411         struct ar_buffer ab;
412
413         ctx->regs        = regs;
414         ctx->ohci        = ohci;
415         ctx->last_buffer = &ab;
416         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
417
418         ar_context_add_page(ctx);
419         ar_context_add_page(ctx);
420         ctx->current_buffer = ab.next;
421         ctx->pointer = ctx->current_buffer->data;
422
423         return 0;
424 }
425
426 static void ar_context_run(struct ar_context *ctx)
427 {
428         struct ar_buffer *ab = ctx->current_buffer;
429         dma_addr_t ab_bus;
430         size_t offset;
431
432         offset = offsetof(struct ar_buffer, data);
433         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
434
435         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437         flush_writes(ctx->ohci);
438 }
439
440 static void context_tasklet(unsigned long data)
441 {
442         struct context *ctx = (struct context *) data;
443         struct fw_ohci *ohci = ctx->ohci;
444         struct descriptor *d, *last;
445         u32 address;
446         int z;
447
448         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
449                                 ctx->buffer_size, DMA_TO_DEVICE);
450
451         d    = ctx->tail_descriptor;
452         last = ctx->tail_descriptor_last;
453
454         while (last->branch_address != 0) {
455                 address = le32_to_cpu(last->branch_address);
456                 z = address & 0xf;
457                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
458                 last = (z == 2) ? d : d + z - 1;
459
460                 if (!ctx->callback(ctx, d, last))
461                         break;
462
463                 ctx->tail_descriptor      = d;
464                 ctx->tail_descriptor_last = last;
465         }
466 }
467
468 static int
469 context_init(struct context *ctx, struct fw_ohci *ohci,
470              size_t buffer_size, u32 regs,
471              descriptor_callback_t callback)
472 {
473         ctx->ohci = ohci;
474         ctx->regs = regs;
475         ctx->buffer_size = buffer_size;
476         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
477         if (ctx->buffer == NULL)
478                 return -ENOMEM;
479
480         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
481         ctx->callback = callback;
482
483         ctx->buffer_bus =
484                 dma_map_single(ohci->card.device, ctx->buffer,
485                                buffer_size, DMA_TO_DEVICE);
486         if (dma_mapping_error(ctx->buffer_bus)) {
487                 kfree(ctx->buffer);
488                 return -ENOMEM;
489         }
490
491         ctx->head_descriptor      = ctx->buffer;
492         ctx->prev_descriptor      = ctx->buffer;
493         ctx->tail_descriptor      = ctx->buffer;
494         ctx->tail_descriptor_last = ctx->buffer;
495
496         /*
497          * We put a dummy descriptor in the buffer that has a NULL
498          * branch address and looks like it's been sent.  That way we
499          * have a descriptor to append DMA programs to.  Also, the
500          * ring buffer invariant is that it always has at least one
501          * element so that head == tail means buffer full.
502          */
503
504         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
505         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
506         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
507         ctx->head_descriptor++;
508
509         return 0;
510 }
511
512 static void
513 context_release(struct context *ctx)
514 {
515         struct fw_card *card = &ctx->ohci->card;
516
517         dma_unmap_single(card->device, ctx->buffer_bus,
518                          ctx->buffer_size, DMA_TO_DEVICE);
519         kfree(ctx->buffer);
520 }
521
522 static struct descriptor *
523 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
524 {
525         struct descriptor *d, *tail, *end;
526
527         d = ctx->head_descriptor;
528         tail = ctx->tail_descriptor;
529         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
530
531         if (d + z <= tail) {
532                 goto has_space;
533         } else if (d > tail && d + z <= end) {
534                 goto has_space;
535         } else if (d > tail && ctx->buffer + z <= tail) {
536                 d = ctx->buffer;
537                 goto has_space;
538         }
539
540         return NULL;
541
542  has_space:
543         memset(d, 0, z * sizeof(*d));
544         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
545
546         return d;
547 }
548
549 static void context_run(struct context *ctx, u32 extra)
550 {
551         struct fw_ohci *ohci = ctx->ohci;
552
553         reg_write(ohci, COMMAND_PTR(ctx->regs),
554                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
555         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
556         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
557         flush_writes(ohci);
558 }
559
560 static void context_append(struct context *ctx,
561                            struct descriptor *d, int z, int extra)
562 {
563         dma_addr_t d_bus;
564
565         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
566
567         ctx->head_descriptor = d + z + extra;
568         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
569         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
570
571         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
572                                    ctx->buffer_size, DMA_TO_DEVICE);
573
574         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
575         flush_writes(ctx->ohci);
576 }
577
578 static void context_stop(struct context *ctx)
579 {
580         u32 reg;
581         int i;
582
583         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
584         flush_writes(ctx->ohci);
585
586         for (i = 0; i < 10; i++) {
587                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
588                 if ((reg & CONTEXT_ACTIVE) == 0)
589                         break;
590
591                 fw_notify("context_stop: still active (0x%08x)\n", reg);
592                 mdelay(1);
593         }
594 }
595
596 struct driver_data {
597         struct fw_packet *packet;
598 };
599
600 /*
601  * This function apppends a packet to the DMA queue for transmission.
602  * Must always be called with the ochi->lock held to ensure proper
603  * generation handling and locking around packet queue manipulation.
604  */
605 static int
606 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
607 {
608         struct fw_ohci *ohci = ctx->ohci;
609         dma_addr_t d_bus, uninitialized_var(payload_bus);
610         struct driver_data *driver_data;
611         struct descriptor *d, *last;
612         __le32 *header;
613         int z, tcode;
614         u32 reg;
615
616         d = context_get_descriptors(ctx, 4, &d_bus);
617         if (d == NULL) {
618                 packet->ack = RCODE_SEND_ERROR;
619                 return -1;
620         }
621
622         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
623         d[0].res_count = cpu_to_le16(packet->timestamp);
624
625         /*
626          * The DMA format for asyncronous link packets is different
627          * from the IEEE1394 layout, so shift the fields around
628          * accordingly.  If header_length is 8, it's a PHY packet, to
629          * which we need to prepend an extra quadlet.
630          */
631
632         header = (__le32 *) &d[1];
633         if (packet->header_length > 8) {
634                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
635                                         (packet->speed << 16));
636                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
637                                         (packet->header[0] & 0xffff0000));
638                 header[2] = cpu_to_le32(packet->header[2]);
639
640                 tcode = (packet->header[0] >> 4) & 0x0f;
641                 if (TCODE_IS_BLOCK_PACKET(tcode))
642                         header[3] = cpu_to_le32(packet->header[3]);
643                 else
644                         header[3] = (__force __le32) packet->header[3];
645
646                 d[0].req_count = cpu_to_le16(packet->header_length);
647         } else {
648                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
649                                         (packet->speed << 16));
650                 header[1] = cpu_to_le32(packet->header[0]);
651                 header[2] = cpu_to_le32(packet->header[1]);
652                 d[0].req_count = cpu_to_le16(12);
653         }
654
655         driver_data = (struct driver_data *) &d[3];
656         driver_data->packet = packet;
657         packet->driver_data = driver_data;
658         
659         if (packet->payload_length > 0) {
660                 payload_bus =
661                         dma_map_single(ohci->card.device, packet->payload,
662                                        packet->payload_length, DMA_TO_DEVICE);
663                 if (dma_mapping_error(payload_bus)) {
664                         packet->ack = RCODE_SEND_ERROR;
665                         return -1;
666                 }
667
668                 d[2].req_count    = cpu_to_le16(packet->payload_length);
669                 d[2].data_address = cpu_to_le32(payload_bus);
670                 last = &d[2];
671                 z = 3;
672         } else {
673                 last = &d[0];
674                 z = 2;
675         }
676
677         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
678                                      DESCRIPTOR_IRQ_ALWAYS |
679                                      DESCRIPTOR_BRANCH_ALWAYS);
680
681         /* FIXME: Document how the locking works. */
682         if (ohci->generation != packet->generation) {
683                 if (packet->payload_length > 0)
684                         dma_unmap_single(ohci->card.device, payload_bus,
685                                          packet->payload_length, DMA_TO_DEVICE);
686                 packet->ack = RCODE_GENERATION;
687                 return -1;
688         }
689
690         context_append(ctx, d, z, 4 - z);
691
692         /* If the context isn't already running, start it up. */
693         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
694         if ((reg & CONTEXT_RUN) == 0)
695                 context_run(ctx, 0);
696
697         return 0;
698 }
699
700 static int handle_at_packet(struct context *context,
701                             struct descriptor *d,
702                             struct descriptor *last)
703 {
704         struct driver_data *driver_data;
705         struct fw_packet *packet;
706         struct fw_ohci *ohci = context->ohci;
707         dma_addr_t payload_bus;
708         int evt;
709
710         if (last->transfer_status == 0)
711                 /* This descriptor isn't done yet, stop iteration. */
712                 return 0;
713
714         driver_data = (struct driver_data *) &d[3];
715         packet = driver_data->packet;
716         if (packet == NULL)
717                 /* This packet was cancelled, just continue. */
718                 return 1;
719
720         payload_bus = le32_to_cpu(last->data_address);
721         if (payload_bus != 0)
722                 dma_unmap_single(ohci->card.device, payload_bus,
723                                  packet->payload_length, DMA_TO_DEVICE);
724
725         evt = le16_to_cpu(last->transfer_status) & 0x1f;
726         packet->timestamp = le16_to_cpu(last->res_count);
727
728         switch (evt) {
729         case OHCI1394_evt_timeout:
730                 /* Async response transmit timed out. */
731                 packet->ack = RCODE_CANCELLED;
732                 break;
733
734         case OHCI1394_evt_flushed:
735                 /*
736                  * The packet was flushed should give same error as
737                  * when we try to use a stale generation count.
738                  */
739                 packet->ack = RCODE_GENERATION;
740                 break;
741
742         case OHCI1394_evt_missing_ack:
743                 /*
744                  * Using a valid (current) generation count, but the
745                  * node is not on the bus or not sending acks.
746                  */
747                 packet->ack = RCODE_NO_ACK;
748                 break;
749
750         case ACK_COMPLETE + 0x10:
751         case ACK_PENDING + 0x10:
752         case ACK_BUSY_X + 0x10:
753         case ACK_BUSY_A + 0x10:
754         case ACK_BUSY_B + 0x10:
755         case ACK_DATA_ERROR + 0x10:
756         case ACK_TYPE_ERROR + 0x10:
757                 packet->ack = evt - 0x10;
758                 break;
759
760         default:
761                 packet->ack = RCODE_SEND_ERROR;
762                 break;
763         }
764
765         packet->callback(packet, &ohci->card, packet->ack);
766
767         return 1;
768 }
769
770 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
771 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
772 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
773 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
774 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
775
776 static void
777 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
778 {
779         struct fw_packet response;
780         int tcode, length, i;
781
782         tcode = HEADER_GET_TCODE(packet->header[0]);
783         if (TCODE_IS_BLOCK_PACKET(tcode))
784                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
785         else
786                 length = 4;
787
788         i = csr - CSR_CONFIG_ROM;
789         if (i + length > CONFIG_ROM_SIZE) {
790                 fw_fill_response(&response, packet->header,
791                                  RCODE_ADDRESS_ERROR, NULL, 0);
792         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
793                 fw_fill_response(&response, packet->header,
794                                  RCODE_TYPE_ERROR, NULL, 0);
795         } else {
796                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
797                                  (void *) ohci->config_rom + i, length);
798         }
799
800         fw_core_handle_response(&ohci->card, &response);
801 }
802
803 static void
804 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
805 {
806         struct fw_packet response;
807         int tcode, length, ext_tcode, sel;
808         __be32 *payload, lock_old;
809         u32 lock_arg, lock_data;
810
811         tcode = HEADER_GET_TCODE(packet->header[0]);
812         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
813         payload = packet->payload;
814         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
815
816         if (tcode == TCODE_LOCK_REQUEST &&
817             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
818                 lock_arg = be32_to_cpu(payload[0]);
819                 lock_data = be32_to_cpu(payload[1]);
820         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
821                 lock_arg = 0;
822                 lock_data = 0;
823         } else {
824                 fw_fill_response(&response, packet->header,
825                                  RCODE_TYPE_ERROR, NULL, 0);
826                 goto out;
827         }
828
829         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
830         reg_write(ohci, OHCI1394_CSRData, lock_data);
831         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
832         reg_write(ohci, OHCI1394_CSRControl, sel);
833
834         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
835                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
836         else
837                 fw_notify("swap not done yet\n");
838
839         fw_fill_response(&response, packet->header,
840                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
841  out:
842         fw_core_handle_response(&ohci->card, &response);
843 }
844
845 static void
846 handle_local_request(struct context *ctx, struct fw_packet *packet)
847 {
848         u64 offset;
849         u32 csr;
850
851         if (ctx == &ctx->ohci->at_request_ctx) {
852                 packet->ack = ACK_PENDING;
853                 packet->callback(packet, &ctx->ohci->card, packet->ack);
854         }
855
856         offset =
857                 ((unsigned long long)
858                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
859                 packet->header[2];
860         csr = offset - CSR_REGISTER_BASE;
861
862         /* Handle config rom reads. */
863         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
864                 handle_local_rom(ctx->ohci, packet, csr);
865         else switch (csr) {
866         case CSR_BUS_MANAGER_ID:
867         case CSR_BANDWIDTH_AVAILABLE:
868         case CSR_CHANNELS_AVAILABLE_HI:
869         case CSR_CHANNELS_AVAILABLE_LO:
870                 handle_local_lock(ctx->ohci, packet, csr);
871                 break;
872         default:
873                 if (ctx == &ctx->ohci->at_request_ctx)
874                         fw_core_handle_request(&ctx->ohci->card, packet);
875                 else
876                         fw_core_handle_response(&ctx->ohci->card, packet);
877                 break;
878         }
879
880         if (ctx == &ctx->ohci->at_response_ctx) {
881                 packet->ack = ACK_COMPLETE;
882                 packet->callback(packet, &ctx->ohci->card, packet->ack);
883         }
884 }
885
886 static void
887 at_context_transmit(struct context *ctx, struct fw_packet *packet)
888 {
889         unsigned long flags;
890         int retval;
891
892         spin_lock_irqsave(&ctx->ohci->lock, flags);
893
894         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
895             ctx->ohci->generation == packet->generation) {
896                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897                 handle_local_request(ctx, packet);
898                 return;
899         }
900
901         retval = at_context_queue_packet(ctx, packet);
902         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
903
904         if (retval < 0)
905                 packet->callback(packet, &ctx->ohci->card, packet->ack);
906         
907 }
908
909 static void bus_reset_tasklet(unsigned long data)
910 {
911         struct fw_ohci *ohci = (struct fw_ohci *)data;
912         int self_id_count, i, j, reg;
913         int generation, new_generation;
914         unsigned long flags;
915         void *free_rom = NULL;
916         dma_addr_t free_rom_bus = 0;
917
918         reg = reg_read(ohci, OHCI1394_NodeID);
919         if (!(reg & OHCI1394_NodeID_idValid)) {
920                 fw_notify("node ID not valid, new bus reset in progress\n");
921                 return;
922         }
923         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
924                 fw_notify("malconfigured bus\n");
925                 return;
926         }
927         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
928                                OHCI1394_NodeID_nodeNumber);
929
930         /*
931          * The count in the SelfIDCount register is the number of
932          * bytes in the self ID receive buffer.  Since we also receive
933          * the inverted quadlets and a header quadlet, we shift one
934          * bit extra to get the actual number of self IDs.
935          */
936
937         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
938         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
939         rmb();
940
941         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
942                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
943                         fw_error("inconsistent self IDs\n");
944                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
945         }
946         rmb();
947
948         /*
949          * Check the consistency of the self IDs we just read.  The
950          * problem we face is that a new bus reset can start while we
951          * read out the self IDs from the DMA buffer. If this happens,
952          * the DMA buffer will be overwritten with new self IDs and we
953          * will read out inconsistent data.  The OHCI specification
954          * (section 11.2) recommends a technique similar to
955          * linux/seqlock.h, where we remember the generation of the
956          * self IDs in the buffer before reading them out and compare
957          * it to the current generation after reading them out.  If
958          * the two generations match we know we have a consistent set
959          * of self IDs.
960          */
961
962         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
963         if (new_generation != generation) {
964                 fw_notify("recursive bus reset detected, "
965                           "discarding self ids\n");
966                 return;
967         }
968
969         /* FIXME: Document how the locking works. */
970         spin_lock_irqsave(&ohci->lock, flags);
971
972         ohci->generation = generation;
973         context_stop(&ohci->at_request_ctx);
974         context_stop(&ohci->at_response_ctx);
975         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
976
977         /*
978          * This next bit is unrelated to the AT context stuff but we
979          * have to do it under the spinlock also.  If a new config rom
980          * was set up before this reset, the old one is now no longer
981          * in use and we can free it. Update the config rom pointers
982          * to point to the current config rom and clear the
983          * next_config_rom pointer so a new udpate can take place.
984          */
985
986         if (ohci->next_config_rom != NULL) {
987                 free_rom     = ohci->config_rom;
988                 free_rom_bus = ohci->config_rom_bus;
989                 ohci->config_rom      = ohci->next_config_rom;
990                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
991                 ohci->next_config_rom = NULL;
992
993                 /*
994                  * Restore config_rom image and manually update
995                  * config_rom registers.  Writing the header quadlet
996                  * will indicate that the config rom is ready, so we
997                  * do that last.
998                  */
999                 reg_write(ohci, OHCI1394_BusOptions,
1000                           be32_to_cpu(ohci->config_rom[2]));
1001                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1002                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1003         }
1004
1005         spin_unlock_irqrestore(&ohci->lock, flags);
1006
1007         if (free_rom)
1008                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1009                                   free_rom, free_rom_bus);
1010
1011         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1012                                  self_id_count, ohci->self_id_buffer);
1013 }
1014
1015 static irqreturn_t irq_handler(int irq, void *data)
1016 {
1017         struct fw_ohci *ohci = data;
1018         u32 event, iso_event, cycle_time;
1019         int i;
1020
1021         event = reg_read(ohci, OHCI1394_IntEventClear);
1022
1023         if (!event || !~event)
1024                 return IRQ_NONE;
1025
1026         reg_write(ohci, OHCI1394_IntEventClear, event);
1027
1028         if (event & OHCI1394_selfIDComplete)
1029                 tasklet_schedule(&ohci->bus_reset_tasklet);
1030
1031         if (event & OHCI1394_RQPkt)
1032                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1033
1034         if (event & OHCI1394_RSPkt)
1035                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1036
1037         if (event & OHCI1394_reqTxComplete)
1038                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1039
1040         if (event & OHCI1394_respTxComplete)
1041                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1042
1043         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1044         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1045
1046         while (iso_event) {
1047                 i = ffs(iso_event) - 1;
1048                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1049                 iso_event &= ~(1 << i);
1050         }
1051
1052         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1053         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1054
1055         while (iso_event) {
1056                 i = ffs(iso_event) - 1;
1057                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1058                 iso_event &= ~(1 << i);
1059         }
1060
1061         if (unlikely(event & OHCI1394_postedWriteErr))
1062                 fw_error("PCI posted write error\n");
1063
1064         if (event & OHCI1394_cycle64Seconds) {
1065                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1066                 if ((cycle_time & 0x80000000) == 0)
1067                         ohci->bus_seconds++;
1068         }
1069
1070         return IRQ_HANDLED;
1071 }
1072
1073 static int software_reset(struct fw_ohci *ohci)
1074 {
1075         int i;
1076
1077         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1078
1079         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1080                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1081                      OHCI1394_HCControl_softReset) == 0)
1082                         return 0;
1083                 msleep(1);
1084         }
1085
1086         return -EBUSY;
1087 }
1088
1089 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1090 {
1091         struct fw_ohci *ohci = fw_ohci(card);
1092         struct pci_dev *dev = to_pci_dev(card->device);
1093
1094         if (software_reset(ohci)) {
1095                 fw_error("Failed to reset ohci card.\n");
1096                 return -EBUSY;
1097         }
1098
1099         /*
1100          * Now enable LPS, which we need in order to start accessing
1101          * most of the registers.  In fact, on some cards (ALI M5251),
1102          * accessing registers in the SClk domain without LPS enabled
1103          * will lock up the machine.  Wait 50msec to make sure we have
1104          * full link enabled.
1105          */
1106         reg_write(ohci, OHCI1394_HCControlSet,
1107                   OHCI1394_HCControl_LPS |
1108                   OHCI1394_HCControl_postedWriteEnable);
1109         flush_writes(ohci);
1110         msleep(50);
1111
1112         reg_write(ohci, OHCI1394_HCControlClear,
1113                   OHCI1394_HCControl_noByteSwapData);
1114
1115         reg_write(ohci, OHCI1394_LinkControlSet,
1116                   OHCI1394_LinkControl_rcvSelfID |
1117                   OHCI1394_LinkControl_cycleTimerEnable |
1118                   OHCI1394_LinkControl_cycleMaster);
1119
1120         reg_write(ohci, OHCI1394_ATRetries,
1121                   OHCI1394_MAX_AT_REQ_RETRIES |
1122                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1123                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1124
1125         ar_context_run(&ohci->ar_request_ctx);
1126         ar_context_run(&ohci->ar_response_ctx);
1127
1128         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1129         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1130         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1131         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1132         reg_write(ohci, OHCI1394_IntMaskSet,
1133                   OHCI1394_selfIDComplete |
1134                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1135                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1136                   OHCI1394_isochRx | OHCI1394_isochTx |
1137                   OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1138                   OHCI1394_masterIntEnable);
1139
1140         /* Activate link_on bit and contender bit in our self ID packets.*/
1141         if (ohci_update_phy_reg(card, 4, 0,
1142                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1143                 return -EIO;
1144
1145         /*
1146          * When the link is not yet enabled, the atomic config rom
1147          * update mechanism described below in ohci_set_config_rom()
1148          * is not active.  We have to update ConfigRomHeader and
1149          * BusOptions manually, and the write to ConfigROMmap takes
1150          * effect immediately.  We tie this to the enabling of the
1151          * link, so we have a valid config rom before enabling - the
1152          * OHCI requires that ConfigROMhdr and BusOptions have valid
1153          * values before enabling.
1154          *
1155          * However, when the ConfigROMmap is written, some controllers
1156          * always read back quadlets 0 and 2 from the config rom to
1157          * the ConfigRomHeader and BusOptions registers on bus reset.
1158          * They shouldn't do that in this initial case where the link
1159          * isn't enabled.  This means we have to use the same
1160          * workaround here, setting the bus header to 0 and then write
1161          * the right values in the bus reset tasklet.
1162          */
1163
1164         ohci->next_config_rom =
1165                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1166                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1167         if (ohci->next_config_rom == NULL)
1168                 return -ENOMEM;
1169
1170         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1171         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1172
1173         ohci->next_header = config_rom[0];
1174         ohci->next_config_rom[0] = 0;
1175         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1176         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1177         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1178
1179         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1180
1181         if (request_irq(dev->irq, irq_handler,
1182                         IRQF_SHARED, ohci_driver_name, ohci)) {
1183                 fw_error("Failed to allocate shared interrupt %d.\n",
1184                          dev->irq);
1185                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1186                                   ohci->config_rom, ohci->config_rom_bus);
1187                 return -EIO;
1188         }
1189
1190         reg_write(ohci, OHCI1394_HCControlSet,
1191                   OHCI1394_HCControl_linkEnable |
1192                   OHCI1394_HCControl_BIBimageValid);
1193         flush_writes(ohci);
1194
1195         /*
1196          * We are ready to go, initiate bus reset to finish the
1197          * initialization.
1198          */
1199
1200         fw_core_initiate_bus_reset(&ohci->card, 1);
1201
1202         return 0;
1203 }
1204
1205 static int
1206 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1207 {
1208         struct fw_ohci *ohci;
1209         unsigned long flags;
1210         int retval = -EBUSY;
1211         __be32 *next_config_rom;
1212         dma_addr_t next_config_rom_bus;
1213
1214         ohci = fw_ohci(card);
1215
1216         /*
1217          * When the OHCI controller is enabled, the config rom update
1218          * mechanism is a bit tricky, but easy enough to use.  See
1219          * section 5.5.6 in the OHCI specification.
1220          *
1221          * The OHCI controller caches the new config rom address in a
1222          * shadow register (ConfigROMmapNext) and needs a bus reset
1223          * for the changes to take place.  When the bus reset is
1224          * detected, the controller loads the new values for the
1225          * ConfigRomHeader and BusOptions registers from the specified
1226          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1227          * shadow register. All automatically and atomically.
1228          *
1229          * Now, there's a twist to this story.  The automatic load of
1230          * ConfigRomHeader and BusOptions doesn't honor the
1231          * noByteSwapData bit, so with a be32 config rom, the
1232          * controller will load be32 values in to these registers
1233          * during the atomic update, even on litte endian
1234          * architectures.  The workaround we use is to put a 0 in the
1235          * header quadlet; 0 is endian agnostic and means that the
1236          * config rom isn't ready yet.  In the bus reset tasklet we
1237          * then set up the real values for the two registers.
1238          *
1239          * We use ohci->lock to avoid racing with the code that sets
1240          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1241          */
1242
1243         next_config_rom =
1244                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1245                                    &next_config_rom_bus, GFP_KERNEL);
1246         if (next_config_rom == NULL)
1247                 return -ENOMEM;
1248
1249         spin_lock_irqsave(&ohci->lock, flags);
1250
1251         if (ohci->next_config_rom == NULL) {
1252                 ohci->next_config_rom = next_config_rom;
1253                 ohci->next_config_rom_bus = next_config_rom_bus;
1254
1255                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1256                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1257                                   length * 4);
1258
1259                 ohci->next_header = config_rom[0];
1260                 ohci->next_config_rom[0] = 0;
1261
1262                 reg_write(ohci, OHCI1394_ConfigROMmap,
1263                           ohci->next_config_rom_bus);
1264                 retval = 0;
1265         }
1266
1267         spin_unlock_irqrestore(&ohci->lock, flags);
1268
1269         /*
1270          * Now initiate a bus reset to have the changes take
1271          * effect. We clean up the old config rom memory and DMA
1272          * mappings in the bus reset tasklet, since the OHCI
1273          * controller could need to access it before the bus reset
1274          * takes effect.
1275          */
1276         if (retval == 0)
1277                 fw_core_initiate_bus_reset(&ohci->card, 1);
1278         else
1279                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1280                                   next_config_rom, next_config_rom_bus);
1281
1282         return retval;
1283 }
1284
1285 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1286 {
1287         struct fw_ohci *ohci = fw_ohci(card);
1288
1289         at_context_transmit(&ohci->at_request_ctx, packet);
1290 }
1291
1292 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1293 {
1294         struct fw_ohci *ohci = fw_ohci(card);
1295
1296         at_context_transmit(&ohci->at_response_ctx, packet);
1297 }
1298
1299 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1300 {
1301         struct fw_ohci *ohci = fw_ohci(card);
1302         struct context *ctx = &ohci->at_request_ctx;
1303         struct driver_data *driver_data = packet->driver_data;
1304         int retval = -ENOENT;
1305
1306         tasklet_disable(&ctx->tasklet);
1307
1308         if (packet->ack != 0)
1309                 goto out;
1310
1311         driver_data->packet = NULL;
1312         packet->ack = RCODE_CANCELLED;
1313         packet->callback(packet, &ohci->card, packet->ack);
1314         retval = 0;
1315
1316  out:
1317         tasklet_enable(&ctx->tasklet);
1318
1319         return retval;
1320 }
1321
1322 static int
1323 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1324 {
1325         struct fw_ohci *ohci = fw_ohci(card);
1326         unsigned long flags;
1327         int n, retval = 0;
1328
1329         /*
1330          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1331          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1332          */
1333
1334         spin_lock_irqsave(&ohci->lock, flags);
1335
1336         if (ohci->generation != generation) {
1337                 retval = -ESTALE;
1338                 goto out;
1339         }
1340
1341         /*
1342          * Note, if the node ID contains a non-local bus ID, physical DMA is
1343          * enabled for _all_ nodes on remote buses.
1344          */
1345
1346         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1347         if (n < 32)
1348                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1349         else
1350                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1351
1352         flush_writes(ohci);
1353  out:
1354         spin_unlock_irqrestore(&ohci->lock, flags);
1355         return retval;
1356 }
1357
1358 static u64
1359 ohci_get_bus_time(struct fw_card *card)
1360 {
1361         struct fw_ohci *ohci = fw_ohci(card);
1362         u32 cycle_time;
1363         u64 bus_time;
1364
1365         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1366         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1367
1368         return bus_time;
1369 }
1370
1371 static int handle_ir_dualbuffer_packet(struct context *context,
1372                                        struct descriptor *d,
1373                                        struct descriptor *last)
1374 {
1375         struct iso_context *ctx =
1376                 container_of(context, struct iso_context, context);
1377         struct db_descriptor *db = (struct db_descriptor *) d;
1378         __le32 *ir_header;
1379         size_t header_length;
1380         void *p, *end;
1381         int i;
1382
1383         if (db->first_res_count > 0 && db->second_res_count > 0)
1384                 /* This descriptor isn't done yet, stop iteration. */
1385                 return 0;
1386
1387         header_length = le16_to_cpu(db->first_req_count) -
1388                 le16_to_cpu(db->first_res_count);
1389
1390         i = ctx->header_length;
1391         p = db + 1;
1392         end = p + header_length;
1393         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1394                 /*
1395                  * The iso header is byteswapped to little endian by
1396                  * the controller, but the remaining header quadlets
1397                  * are big endian.  We want to present all the headers
1398                  * as big endian, so we have to swap the first
1399                  * quadlet.
1400                  */
1401                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1402                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1403                 i += ctx->base.header_size;
1404                 p += ctx->base.header_size + 4;
1405         }
1406
1407         ctx->header_length = i;
1408
1409         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1410                 ir_header = (__le32 *) (db + 1);
1411                 ctx->base.callback(&ctx->base,
1412                                    le32_to_cpu(ir_header[0]) & 0xffff,
1413                                    ctx->header_length, ctx->header,
1414                                    ctx->base.callback_data);
1415                 ctx->header_length = 0;
1416         }
1417
1418         return 1;
1419 }
1420
1421 static int handle_it_packet(struct context *context,
1422                             struct descriptor *d,
1423                             struct descriptor *last)
1424 {
1425         struct iso_context *ctx =
1426                 container_of(context, struct iso_context, context);
1427
1428         if (last->transfer_status == 0)
1429                 /* This descriptor isn't done yet, stop iteration. */
1430                 return 0;
1431
1432         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1433                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1434                                    0, NULL, ctx->base.callback_data);
1435
1436         return 1;
1437 }
1438
1439 static struct fw_iso_context *
1440 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1441 {
1442         struct fw_ohci *ohci = fw_ohci(card);
1443         struct iso_context *ctx, *list;
1444         descriptor_callback_t callback;
1445         u32 *mask, regs;
1446         unsigned long flags;
1447         int index, retval = -ENOMEM;
1448
1449         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1450                 mask = &ohci->it_context_mask;
1451                 list = ohci->it_context_list;
1452                 callback = handle_it_packet;
1453         } else {
1454                 mask = &ohci->ir_context_mask;
1455                 list = ohci->ir_context_list;
1456                 callback = handle_ir_dualbuffer_packet;
1457         }
1458
1459         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1460         if (callback == handle_ir_dualbuffer_packet &&
1461             ohci->version < OHCI_VERSION_1_1)
1462                 return ERR_PTR(-ENOSYS);
1463
1464         spin_lock_irqsave(&ohci->lock, flags);
1465         index = ffs(*mask) - 1;
1466         if (index >= 0)
1467                 *mask &= ~(1 << index);
1468         spin_unlock_irqrestore(&ohci->lock, flags);
1469
1470         if (index < 0)
1471                 return ERR_PTR(-EBUSY);
1472
1473         if (type == FW_ISO_CONTEXT_TRANSMIT)
1474                 regs = OHCI1394_IsoXmitContextBase(index);
1475         else
1476                 regs = OHCI1394_IsoRcvContextBase(index);
1477
1478         ctx = &list[index];
1479         memset(ctx, 0, sizeof(*ctx));
1480         ctx->header_length = 0;
1481         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1482         if (ctx->header == NULL)
1483                 goto out;
1484
1485         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1486                               regs, callback);
1487         if (retval < 0)
1488                 goto out_with_header;
1489
1490         return &ctx->base;
1491
1492  out_with_header:
1493         free_page((unsigned long)ctx->header);
1494  out:
1495         spin_lock_irqsave(&ohci->lock, flags);
1496         *mask |= 1 << index;
1497         spin_unlock_irqrestore(&ohci->lock, flags);
1498
1499         return ERR_PTR(retval);
1500 }
1501
1502 static int ohci_start_iso(struct fw_iso_context *base,
1503                           s32 cycle, u32 sync, u32 tags)
1504 {
1505         struct iso_context *ctx = container_of(base, struct iso_context, base);
1506         struct fw_ohci *ohci = ctx->context.ohci;
1507         u32 control, match;
1508         int index;
1509
1510         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1511                 index = ctx - ohci->it_context_list;
1512                 match = 0;
1513                 if (cycle >= 0)
1514                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1515                                 (cycle & 0x7fff) << 16;
1516
1517                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1518                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1519                 context_run(&ctx->context, match);
1520         } else {
1521                 index = ctx - ohci->ir_context_list;
1522                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1523                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1524                 if (cycle >= 0) {
1525                         match |= (cycle & 0x07fff) << 12;
1526                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1527                 }
1528
1529                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1530                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1531                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1532                 context_run(&ctx->context, control);
1533         }
1534
1535         return 0;
1536 }
1537
1538 static int ohci_stop_iso(struct fw_iso_context *base)
1539 {
1540         struct fw_ohci *ohci = fw_ohci(base->card);
1541         struct iso_context *ctx = container_of(base, struct iso_context, base);
1542         int index;
1543
1544         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1545                 index = ctx - ohci->it_context_list;
1546                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1547         } else {
1548                 index = ctx - ohci->ir_context_list;
1549                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1550         }
1551         flush_writes(ohci);
1552         context_stop(&ctx->context);
1553
1554         return 0;
1555 }
1556
1557 static void ohci_free_iso_context(struct fw_iso_context *base)
1558 {
1559         struct fw_ohci *ohci = fw_ohci(base->card);
1560         struct iso_context *ctx = container_of(base, struct iso_context, base);
1561         unsigned long flags;
1562         int index;
1563
1564         ohci_stop_iso(base);
1565         context_release(&ctx->context);
1566         free_page((unsigned long)ctx->header);
1567
1568         spin_lock_irqsave(&ohci->lock, flags);
1569
1570         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1571                 index = ctx - ohci->it_context_list;
1572                 ohci->it_context_mask |= 1 << index;
1573         } else {
1574                 index = ctx - ohci->ir_context_list;
1575                 ohci->ir_context_mask |= 1 << index;
1576         }
1577
1578         spin_unlock_irqrestore(&ohci->lock, flags);
1579 }
1580
1581 static int
1582 ohci_queue_iso_transmit(struct fw_iso_context *base,
1583                         struct fw_iso_packet *packet,
1584                         struct fw_iso_buffer *buffer,
1585                         unsigned long payload)
1586 {
1587         struct iso_context *ctx = container_of(base, struct iso_context, base);
1588         struct descriptor *d, *last, *pd;
1589         struct fw_iso_packet *p;
1590         __le32 *header;
1591         dma_addr_t d_bus, page_bus;
1592         u32 z, header_z, payload_z, irq;
1593         u32 payload_index, payload_end_index, next_page_index;
1594         int page, end_page, i, length, offset;
1595
1596         /*
1597          * FIXME: Cycle lost behavior should be configurable: lose
1598          * packet, retransmit or terminate..
1599          */
1600
1601         p = packet;
1602         payload_index = payload;
1603
1604         if (p->skip)
1605                 z = 1;
1606         else
1607                 z = 2;
1608         if (p->header_length > 0)
1609                 z++;
1610
1611         /* Determine the first page the payload isn't contained in. */
1612         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1613         if (p->payload_length > 0)
1614                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1615         else
1616                 payload_z = 0;
1617
1618         z += payload_z;
1619
1620         /* Get header size in number of descriptors. */
1621         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1622
1623         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1624         if (d == NULL)
1625                 return -ENOMEM;
1626
1627         if (!p->skip) {
1628                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1629                 d[0].req_count = cpu_to_le16(8);
1630
1631                 header = (__le32 *) &d[1];
1632                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1633                                         IT_HEADER_TAG(p->tag) |
1634                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1635                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1636                                         IT_HEADER_SPEED(ctx->base.speed));
1637                 header[1] =
1638                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1639                                                           p->payload_length));
1640         }
1641
1642         if (p->header_length > 0) {
1643                 d[2].req_count    = cpu_to_le16(p->header_length);
1644                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1645                 memcpy(&d[z], p->header, p->header_length);
1646         }
1647
1648         pd = d + z - payload_z;
1649         payload_end_index = payload_index + p->payload_length;
1650         for (i = 0; i < payload_z; i++) {
1651                 page               = payload_index >> PAGE_SHIFT;
1652                 offset             = payload_index & ~PAGE_MASK;
1653                 next_page_index    = (page + 1) << PAGE_SHIFT;
1654                 length             =
1655                         min(next_page_index, payload_end_index) - payload_index;
1656                 pd[i].req_count    = cpu_to_le16(length);
1657
1658                 page_bus = page_private(buffer->pages[page]);
1659                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1660
1661                 payload_index += length;
1662         }
1663
1664         if (p->interrupt)
1665                 irq = DESCRIPTOR_IRQ_ALWAYS;
1666         else
1667                 irq = DESCRIPTOR_NO_IRQ;
1668
1669         last = z == 2 ? d : d + z - 1;
1670         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1671                                      DESCRIPTOR_STATUS |
1672                                      DESCRIPTOR_BRANCH_ALWAYS |
1673                                      irq);
1674
1675         context_append(&ctx->context, d, z, header_z);
1676
1677         return 0;
1678 }
1679
1680 static int
1681 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1682                                   struct fw_iso_packet *packet,
1683                                   struct fw_iso_buffer *buffer,
1684                                   unsigned long payload)
1685 {
1686         struct iso_context *ctx = container_of(base, struct iso_context, base);
1687         struct db_descriptor *db = NULL;
1688         struct descriptor *d;
1689         struct fw_iso_packet *p;
1690         dma_addr_t d_bus, page_bus;
1691         u32 z, header_z, length, rest;
1692         int page, offset, packet_count, header_size;
1693
1694         /*
1695          * FIXME: Cycle lost behavior should be configurable: lose
1696          * packet, retransmit or terminate..
1697          */
1698
1699         if (packet->skip) {
1700                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1701                 if (d == NULL)
1702                         return -ENOMEM;
1703
1704                 db = (struct db_descriptor *) d;
1705                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1706                                           DESCRIPTOR_BRANCH_ALWAYS |
1707                                           DESCRIPTOR_WAIT);
1708                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1709                 context_append(&ctx->context, d, 2, 0);
1710         }
1711
1712         p = packet;
1713         z = 2;
1714
1715         /*
1716          * The OHCI controller puts the status word in the header
1717          * buffer too, so we need 4 extra bytes per packet.
1718          */
1719         packet_count = p->header_length / ctx->base.header_size;
1720         header_size = packet_count * (ctx->base.header_size + 4);
1721
1722         /* Get header size in number of descriptors. */
1723         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1724         page     = payload >> PAGE_SHIFT;
1725         offset   = payload & ~PAGE_MASK;
1726         rest     = p->payload_length;
1727
1728         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1729         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1730         while (rest > 0) {
1731                 d = context_get_descriptors(&ctx->context,
1732                                             z + header_z, &d_bus);
1733                 if (d == NULL)
1734                         return -ENOMEM;
1735
1736                 db = (struct db_descriptor *) d;
1737                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1738                                           DESCRIPTOR_BRANCH_ALWAYS);
1739                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1740                 db->first_req_count = cpu_to_le16(header_size);
1741                 db->first_res_count = db->first_req_count;
1742                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1743
1744                 if (offset + rest < PAGE_SIZE)
1745                         length = rest;
1746                 else
1747                         length = PAGE_SIZE - offset;
1748
1749                 db->second_req_count = cpu_to_le16(length);
1750                 db->second_res_count = db->second_req_count;
1751                 page_bus = page_private(buffer->pages[page]);
1752                 db->second_buffer = cpu_to_le32(page_bus + offset);
1753
1754                 if (p->interrupt && length == rest)
1755                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1756
1757                 context_append(&ctx->context, d, z, header_z);
1758                 offset = (offset + length) & ~PAGE_MASK;
1759                 rest -= length;
1760                 page++;
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int
1767 ohci_queue_iso(struct fw_iso_context *base,
1768                struct fw_iso_packet *packet,
1769                struct fw_iso_buffer *buffer,
1770                unsigned long payload)
1771 {
1772         struct iso_context *ctx = container_of(base, struct iso_context, base);
1773
1774         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1775                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1776         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1777                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1778                                                          buffer, payload);
1779         else
1780                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1781                 return -ENOSYS;
1782 }
1783
1784 static const struct fw_card_driver ohci_driver = {
1785         .name                   = ohci_driver_name,
1786         .enable                 = ohci_enable,
1787         .update_phy_reg         = ohci_update_phy_reg,
1788         .set_config_rom         = ohci_set_config_rom,
1789         .send_request           = ohci_send_request,
1790         .send_response          = ohci_send_response,
1791         .cancel_packet          = ohci_cancel_packet,
1792         .enable_phys_dma        = ohci_enable_phys_dma,
1793         .get_bus_time           = ohci_get_bus_time,
1794
1795         .allocate_iso_context   = ohci_allocate_iso_context,
1796         .free_iso_context       = ohci_free_iso_context,
1797         .queue_iso              = ohci_queue_iso,
1798         .start_iso              = ohci_start_iso,
1799         .stop_iso               = ohci_stop_iso,
1800 };
1801
1802 static int __devinit
1803 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1804 {
1805         struct fw_ohci *ohci;
1806         u32 bus_options, max_receive, link_speed;
1807         u64 guid;
1808         int err;
1809         size_t size;
1810
1811         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1812         if (ohci == NULL) {
1813                 fw_error("Could not malloc fw_ohci data.\n");
1814                 return -ENOMEM;
1815         }
1816
1817         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1818
1819         err = pci_enable_device(dev);
1820         if (err) {
1821                 fw_error("Failed to enable OHCI hardware.\n");
1822                 goto fail_put_card;
1823         }
1824
1825         pci_set_master(dev);
1826         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1827         pci_set_drvdata(dev, ohci);
1828
1829         spin_lock_init(&ohci->lock);
1830
1831         tasklet_init(&ohci->bus_reset_tasklet,
1832                      bus_reset_tasklet, (unsigned long)ohci);
1833
1834         err = pci_request_region(dev, 0, ohci_driver_name);
1835         if (err) {
1836                 fw_error("MMIO resource unavailable\n");
1837                 goto fail_disable;
1838         }
1839
1840         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1841         if (ohci->registers == NULL) {
1842                 fw_error("Failed to remap registers\n");
1843                 err = -ENXIO;
1844                 goto fail_iomem;
1845         }
1846
1847         ar_context_init(&ohci->ar_request_ctx, ohci,
1848                         OHCI1394_AsReqRcvContextControlSet);
1849
1850         ar_context_init(&ohci->ar_response_ctx, ohci,
1851                         OHCI1394_AsRspRcvContextControlSet);
1852
1853         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1854                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1855
1856         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1857                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1858
1859         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1860         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1861         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1862         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1863         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1864
1865         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1866         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1867         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1868         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1869         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1870
1871         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1872                 fw_error("Out of memory for it/ir contexts.\n");
1873                 err = -ENOMEM;
1874                 goto fail_registers;
1875         }
1876
1877         /* self-id dma buffer allocation */
1878         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1879                                                SELF_ID_BUF_SIZE,
1880                                                &ohci->self_id_bus,
1881                                                GFP_KERNEL);
1882         if (ohci->self_id_cpu == NULL) {
1883                 fw_error("Out of memory for self ID buffer.\n");
1884                 err = -ENOMEM;
1885                 goto fail_registers;
1886         }
1887
1888         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1889         max_receive = (bus_options >> 12) & 0xf;
1890         link_speed = bus_options & 0x7;
1891         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1892                 reg_read(ohci, OHCI1394_GUIDLo);
1893
1894         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1895         if (err < 0)
1896                 goto fail_self_id;
1897
1898         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1899         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1900                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1901         if (ohci->version < OHCI_VERSION_1_1) {
1902                 fw_notify("    Isochronous I/O is not yet implemented for "
1903                           "OHCI 1.0 chips.\n");
1904                 fw_notify("    Cameras, audio devices etc. won't work on "
1905                           "this controller with this driver version.\n");
1906         }
1907         return 0;
1908
1909  fail_self_id:
1910         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1911                           ohci->self_id_cpu, ohci->self_id_bus);
1912  fail_registers:
1913         kfree(ohci->it_context_list);
1914         kfree(ohci->ir_context_list);
1915         pci_iounmap(dev, ohci->registers);
1916  fail_iomem:
1917         pci_release_region(dev, 0);
1918  fail_disable:
1919         pci_disable_device(dev);
1920  fail_put_card:
1921         fw_card_put(&ohci->card);
1922
1923         return err;
1924 }
1925
1926 static void pci_remove(struct pci_dev *dev)
1927 {
1928         struct fw_ohci *ohci;
1929
1930         ohci = pci_get_drvdata(dev);
1931         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1932         flush_writes(ohci);
1933         fw_core_remove_card(&ohci->card);
1934
1935         /*
1936          * FIXME: Fail all pending packets here, now that the upper
1937          * layers can't queue any more.
1938          */
1939
1940         software_reset(ohci);
1941         free_irq(dev->irq, ohci);
1942         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1943                           ohci->self_id_cpu, ohci->self_id_bus);
1944         kfree(ohci->it_context_list);
1945         kfree(ohci->ir_context_list);
1946         pci_iounmap(dev, ohci->registers);
1947         pci_release_region(dev, 0);
1948         pci_disable_device(dev);
1949         fw_card_put(&ohci->card);
1950
1951         fw_notify("Removed fw-ohci device.\n");
1952 }
1953
1954 #ifdef CONFIG_PM
1955 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1956 {
1957         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1958         int err;
1959
1960         software_reset(ohci);
1961         free_irq(pdev->irq, ohci);
1962         err = pci_save_state(pdev);
1963         if (err) {
1964                 fw_error("pci_save_state failed\n");
1965                 return err;
1966         }
1967         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1968         if (err)
1969                 fw_error("pci_set_power_state failed with %d\n", err);
1970
1971         return 0;
1972 }
1973
1974 static int pci_resume(struct pci_dev *pdev)
1975 {
1976         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1977         int err;
1978
1979         pci_set_power_state(pdev, PCI_D0);
1980         pci_restore_state(pdev);
1981         err = pci_enable_device(pdev);
1982         if (err) {
1983                 fw_error("pci_enable_device failed\n");
1984                 return err;
1985         }
1986
1987         return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1988 }
1989 #endif
1990
1991 static struct pci_device_id pci_table[] = {
1992         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1993         { }
1994 };
1995
1996 MODULE_DEVICE_TABLE(pci, pci_table);
1997
1998 static struct pci_driver fw_ohci_pci_driver = {
1999         .name           = ohci_driver_name,
2000         .id_table       = pci_table,
2001         .probe          = pci_probe,
2002         .remove         = pci_remove,
2003 #ifdef CONFIG_PM
2004         .resume         = pci_resume,
2005         .suspend        = pci_suspend,
2006 #endif
2007 };
2008
2009 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2010 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2011 MODULE_LICENSE("GPL");
2012
2013 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2014 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2015 MODULE_ALIAS("ohci1394");
2016 #endif
2017
2018 static int __init fw_ohci_init(void)
2019 {
2020         return pci_register_driver(&fw_ohci_pci_driver);
2021 }
2022
2023 static void __exit fw_ohci_cleanup(void)
2024 {
2025         pci_unregister_driver(&fw_ohci_pci_driver);
2026 }
2027
2028 module_init(fw_ohci_init);
2029 module_exit(fw_ohci_cleanup);