1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 struct ocfs2_extent_block *eb);
57 * Structures which describe a path through a btree, and functions to
60 * The idea here is to be as generic as possible with the tree
63 struct ocfs2_path_item {
64 struct buffer_head *bh;
65 struct ocfs2_extent_list *el;
68 #define OCFS2_MAX_PATH_DEPTH 5
72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
88 int i, start = 0, depth = 0;
89 struct ocfs2_path_item *node;
94 for(i = start; i < path_num_items(path); i++) {
95 node = &path->p_node[i];
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
110 path->p_tree_depth = depth;
113 static void ocfs2_free_path(struct ocfs2_path *path)
116 ocfs2_reinit_path(path, 0);
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
125 * Both paths should have the same root. Any non-root elements of dest
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
132 BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 BUG_ON(path_root_el(dest) != path_root_el(src));
135 ocfs2_reinit_path(dest, 1);
137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 dest->p_node[i].bh = src->p_node[i].bh;
139 dest->p_node[i].el = src->p_node[i].el;
141 if (dest->p_node[i].bh)
142 get_bh(dest->p_node[i].bh);
147 * Make the *dest path the same as src and re-initialize src path to
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
154 BUG_ON(path_root_bh(dest) != path_root_bh(src));
156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 brelse(dest->p_node[i].bh);
159 dest->p_node[i].bh = src->p_node[i].bh;
160 dest->p_node[i].el = src->p_node[i].el;
162 src->p_node[i].bh = NULL;
163 src->p_node[i].el = NULL;
168 * Insert an extent block at given index.
170 * This will not take an additional reference on eb_bh.
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 struct buffer_head *eb_bh)
175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
185 path->p_node[index].bh = eb_bh;
186 path->p_node[index].el = &eb->h_list;
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 struct ocfs2_extent_list *root_el)
192 struct ocfs2_path *path;
194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
196 path = kzalloc(sizeof(*path), GFP_NOFS);
198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
200 path_root_bh(path) = root_bh;
201 path_root_el(path) = root_el;
208 * Allocate and initialize a new path based on a disk inode tree.
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 struct ocfs2_extent_list *el = &di->id2.i_list;
215 return ocfs2_new_path(di_bh, el);
219 * Convenience function to journal all components in a path.
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 struct ocfs2_path *path)
229 for(i = 0; i < path_num_items(path); i++) {
230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 OCFS2_JOURNAL_ACCESS_WRITE);
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
246 * Should work fine on interior and exterior nodes.
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
252 struct ocfs2_extent_rec *rec;
253 u32 rec_end, rec_start, clusters;
255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 rec = &el->l_recs[i];
258 rec_start = le32_to_cpu(rec->e_cpos);
259 clusters = ocfs2_rec_clusters(el, rec);
261 rec_end = rec_start + clusters;
263 if (v_cluster >= rec_start && v_cluster < rec_end) {
272 enum ocfs2_contig_type {
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 struct ocfs2_extent_rec *ext,
288 u64 blk_end = le64_to_cpu(ext->e_blkno);
290 blk_end += ocfs2_clusters_to_blocks(sb,
291 le16_to_cpu(ext->e_leaf_clusters));
293 return blkno == blk_end;
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 struct ocfs2_extent_rec *right)
301 left_range = le32_to_cpu(left->e_cpos) +
302 le16_to_cpu(left->e_leaf_clusters);
304 return (left_range == le32_to_cpu(right->e_cpos));
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode *inode,
309 struct ocfs2_extent_rec *ext,
310 struct ocfs2_extent_rec *insert_rec)
312 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
319 if (ext->e_flags != insert_rec->e_flags)
322 if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
326 blkno = le64_to_cpu(ext->e_blkno);
327 if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
335 * NOTE: We can have pretty much any combination of contiguousness and
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
341 enum ocfs2_append_type {
346 enum ocfs2_split_type {
352 struct ocfs2_insert_type {
353 enum ocfs2_split_type ins_split;
354 enum ocfs2_append_type ins_appending;
355 enum ocfs2_contig_type ins_contig;
356 int ins_contig_index;
360 struct ocfs2_merge_ctxt {
361 enum ocfs2_contig_type c_contig_type;
362 int c_has_empty_extent;
363 int c_split_covers_rec;
367 * How many free extents have we got before we need more meta data?
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
371 struct ocfs2_dinode *fe)
374 struct ocfs2_extent_list *el;
375 struct ocfs2_extent_block *eb;
376 struct buffer_head *eb_bh = NULL;
380 if (!OCFS2_IS_VALID_DINODE(fe)) {
381 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
386 if (fe->i_last_eb_blk) {
387 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388 &eb_bh, OCFS2_BH_CACHED, inode);
393 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
396 el = &fe->id2.i_list;
398 BUG_ON(el->l_tree_depth != 0);
400 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
409 /* expects array to already be allocated
411 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
418 struct ocfs2_alloc_context *meta_ac,
419 struct buffer_head *bhs[])
421 int count, status, i;
422 u16 suballoc_bit_start;
425 struct ocfs2_extent_block *eb;
430 while (count < wanted) {
431 status = ocfs2_claim_metadata(osb,
443 for(i = count; i < (num_got + count); i++) {
444 bhs[i] = sb_getblk(osb->sb, first_blkno);
445 if (bhs[i] == NULL) {
450 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
452 status = ocfs2_journal_access(handle, inode, bhs[i],
453 OCFS2_JOURNAL_ACCESS_CREATE);
459 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461 /* Ok, setup the minimal stuff here. */
462 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463 eb->h_blkno = cpu_to_le64(first_blkno);
464 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
468 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
470 suballoc_bit_start++;
473 /* We'll also be dirtied by the caller, so
474 * this isn't absolutely necessary. */
475 status = ocfs2_journal_dirty(handle, bhs[i]);
488 for(i = 0; i < wanted; i++) {
499 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501 * Returns the sum of the rightmost extent rec logical offset and
504 * ocfs2_add_branch() uses this to determine what logical cluster
505 * value should be populated into the leftmost new branch records.
507 * ocfs2_shift_tree_depth() uses this to determine the # clusters
508 * value for the new topmost tree record.
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
514 i = le16_to_cpu(el->l_next_free_rec) - 1;
516 return le32_to_cpu(el->l_recs[i].e_cpos) +
517 ocfs2_rec_clusters(el, &el->l_recs[i]);
521 * Add an entire tree branch to our inode. eb_bh is the extent block
522 * to start at, if we don't want to start the branch at the dinode
525 * last_eb_bh is required as we have to update it's next_leaf pointer
526 * for the new last extent block.
528 * the new branch will be 'empty' in the sense that every block will
529 * contain a single record with cluster count == 0.
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
534 struct buffer_head *fe_bh,
535 struct buffer_head *eb_bh,
536 struct buffer_head **last_eb_bh,
537 struct ocfs2_alloc_context *meta_ac)
539 int status, new_blocks, i;
540 u64 next_blkno, new_last_eb_blk;
541 struct buffer_head *bh;
542 struct buffer_head **new_eb_bhs = NULL;
543 struct ocfs2_dinode *fe;
544 struct ocfs2_extent_block *eb;
545 struct ocfs2_extent_list *eb_el;
546 struct ocfs2_extent_list *el;
551 BUG_ON(!last_eb_bh || !*last_eb_bh);
553 fe = (struct ocfs2_dinode *) fe_bh->b_data;
556 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
559 el = &fe->id2.i_list;
561 /* we never add a branch to a leaf. */
562 BUG_ON(!el->l_tree_depth);
564 new_blocks = le16_to_cpu(el->l_tree_depth);
566 /* allocate the number of new eb blocks we need */
567 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
575 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576 meta_ac, new_eb_bhs);
582 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
585 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586 * linked with the rest of the tree.
587 * conversly, new_eb_bhs[0] is the new bottommost leaf.
589 * when we leave the loop, new_last_eb_blk will point to the
590 * newest leaf, and next_blkno will point to the topmost extent
592 next_blkno = new_last_eb_blk = 0;
593 for(i = 0; i < new_blocks; i++) {
595 eb = (struct ocfs2_extent_block *) bh->b_data;
596 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
603 status = ocfs2_journal_access(handle, inode, bh,
604 OCFS2_JOURNAL_ACCESS_CREATE);
610 eb->h_next_leaf_blk = 0;
611 eb_el->l_tree_depth = cpu_to_le16(i);
612 eb_el->l_next_free_rec = cpu_to_le16(1);
614 * This actually counts as an empty extent as
617 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
620 * eb_el isn't always an interior node, but even leaf
621 * nodes want a zero'd flags and reserved field so
622 * this gets the whole 32 bits regardless of use.
624 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625 if (!eb_el->l_tree_depth)
626 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
628 status = ocfs2_journal_dirty(handle, bh);
634 next_blkno = le64_to_cpu(eb->h_blkno);
637 /* This is a bit hairy. We want to update up to three blocks
638 * here without leaving any of them in an inconsistent state
639 * in case of error. We don't have to worry about
640 * journal_dirty erroring as it won't unless we've aborted the
641 * handle (in which case we would never be here) so reserving
642 * the write with journal_access is all we need to do. */
643 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644 OCFS2_JOURNAL_ACCESS_WRITE);
649 status = ocfs2_journal_access(handle, inode, fe_bh,
650 OCFS2_JOURNAL_ACCESS_WRITE);
656 status = ocfs2_journal_access(handle, inode, eb_bh,
657 OCFS2_JOURNAL_ACCESS_WRITE);
664 /* Link the new branch into the rest of the tree (el will
665 * either be on the fe, or the extent block passed in. */
666 i = le16_to_cpu(el->l_next_free_rec);
667 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669 el->l_recs[i].e_int_clusters = 0;
670 le16_add_cpu(&el->l_next_free_rec, 1);
672 /* fe needs a new last extent block pointer, as does the
673 * next_leaf on the previously last-extent-block. */
674 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
676 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
679 status = ocfs2_journal_dirty(handle, *last_eb_bh);
682 status = ocfs2_journal_dirty(handle, fe_bh);
686 status = ocfs2_journal_dirty(handle, eb_bh);
692 * Some callers want to track the rightmost leaf so pass it
696 get_bh(new_eb_bhs[0]);
697 *last_eb_bh = new_eb_bhs[0];
702 for (i = 0; i < new_blocks; i++)
704 brelse(new_eb_bhs[i]);
713 * adds another level to the allocation tree.
714 * returns back the new extent block so you can add a branch to it
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
720 struct buffer_head *fe_bh,
721 struct ocfs2_alloc_context *meta_ac,
722 struct buffer_head **ret_new_eb_bh)
726 struct buffer_head *new_eb_bh = NULL;
727 struct ocfs2_dinode *fe;
728 struct ocfs2_extent_block *eb;
729 struct ocfs2_extent_list *fe_el;
730 struct ocfs2_extent_list *eb_el;
734 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
741 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
749 fe = (struct ocfs2_dinode *) fe_bh->b_data;
750 fe_el = &fe->id2.i_list;
752 status = ocfs2_journal_access(handle, inode, new_eb_bh,
753 OCFS2_JOURNAL_ACCESS_CREATE);
759 /* copy the fe data into the new extent block */
760 eb_el->l_tree_depth = fe_el->l_tree_depth;
761 eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763 eb_el->l_recs[i] = fe_el->l_recs[i];
765 status = ocfs2_journal_dirty(handle, new_eb_bh);
771 status = ocfs2_journal_access(handle, inode, fe_bh,
772 OCFS2_JOURNAL_ACCESS_WRITE);
778 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
781 le16_add_cpu(&fe_el->l_tree_depth, 1);
782 fe_el->l_recs[0].e_cpos = 0;
783 fe_el->l_recs[0].e_blkno = eb->h_blkno;
784 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787 fe_el->l_next_free_rec = cpu_to_le16(1);
789 /* If this is our 1st tree depth shift, then last_eb_blk
790 * becomes the allocated extent block */
791 if (fe_el->l_tree_depth == cpu_to_le16(1))
792 fe->i_last_eb_blk = eb->h_blkno;
794 status = ocfs2_journal_dirty(handle, fe_bh);
800 *ret_new_eb_bh = new_eb_bh;
812 * Should only be called when there is no space left in any of the
813 * leaf nodes. What we want to do is find the lowest tree depth
814 * non-leaf extent block with room for new records. There are three
815 * valid results of this search:
817 * 1) a lowest extent block is found, then we pass it back in
818 * *lowest_eb_bh and return '0'
820 * 2) the search fails to find anything, but the dinode has room. We
821 * pass NULL back in *lowest_eb_bh, but still return '0'
823 * 3) the search fails to find anything AND the dinode is full, in
824 * which case we return > 0
826 * return status < 0 indicates an error.
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
830 struct buffer_head *fe_bh,
831 struct buffer_head **target_bh)
835 struct ocfs2_dinode *fe;
836 struct ocfs2_extent_block *eb;
837 struct ocfs2_extent_list *el;
838 struct buffer_head *bh = NULL;
839 struct buffer_head *lowest_bh = NULL;
845 fe = (struct ocfs2_dinode *) fe_bh->b_data;
846 el = &fe->id2.i_list;
848 while(le16_to_cpu(el->l_tree_depth) > 1) {
849 if (le16_to_cpu(el->l_next_free_rec) == 0) {
850 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851 "extent list (next_free_rec == 0)",
852 (unsigned long long)OCFS2_I(inode)->ip_blkno);
856 i = le16_to_cpu(el->l_next_free_rec) - 1;
857 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
859 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860 "list where extent # %d has no physical "
862 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
872 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
879 eb = (struct ocfs2_extent_block *) bh->b_data;
880 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
887 if (le16_to_cpu(el->l_next_free_rec) <
888 le16_to_cpu(el->l_count)) {
896 /* If we didn't find one and the fe doesn't have any room,
899 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
902 *target_bh = lowest_bh;
912 * Grow a b-tree so that it has more records.
914 * We might shift the tree depth in which case existing paths should
915 * be considered invalid.
917 * Tree depth after the grow is returned via *final_depth.
919 * *last_eb_bh will be updated by ocfs2_add_branch().
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922 struct buffer_head *di_bh, int *final_depth,
923 struct buffer_head **last_eb_bh,
924 struct ocfs2_alloc_context *meta_ac)
927 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930 struct buffer_head *bh = NULL;
932 BUG_ON(meta_ac == NULL);
934 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
941 /* We traveled all the way to the bottom of the allocation tree
942 * and didn't find room for any more extents - we need to add
943 * another tree level */
946 mlog(0, "need to shift tree depth (current = %d)\n", depth);
948 /* ocfs2_shift_tree_depth will return us a buffer with
949 * the new extent block (so we can pass that to
950 * ocfs2_add_branch). */
951 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
960 * Special case: we have room now if we shifted from
961 * tree_depth 0, so no more work needs to be done.
963 * We won't be calling add_branch, so pass
964 * back *last_eb_bh as the new leaf. At depth
965 * zero, it should always be null so there's
966 * no reason to brelse.
975 /* call ocfs2_add_branch to add the final part of the tree with
977 mlog(0, "add branch. bh = %p\n", bh);
978 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
987 *final_depth = depth;
993 * This function will discard the rightmost extent record.
995 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
997 int next_free = le16_to_cpu(el->l_next_free_rec);
998 int count = le16_to_cpu(el->l_count);
999 unsigned int num_bytes;
1002 /* This will cause us to go off the end of our extent list. */
1003 BUG_ON(next_free >= count);
1005 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1007 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1010 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1011 struct ocfs2_extent_rec *insert_rec)
1013 int i, insert_index, next_free, has_empty, num_bytes;
1014 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1015 struct ocfs2_extent_rec *rec;
1017 next_free = le16_to_cpu(el->l_next_free_rec);
1018 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1022 /* The tree code before us didn't allow enough room in the leaf. */
1023 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1026 * The easiest way to approach this is to just remove the
1027 * empty extent and temporarily decrement next_free.
1031 * If next_free was 1 (only an empty extent), this
1032 * loop won't execute, which is fine. We still want
1033 * the decrement above to happen.
1035 for(i = 0; i < (next_free - 1); i++)
1036 el->l_recs[i] = el->l_recs[i+1];
1042 * Figure out what the new record index should be.
1044 for(i = 0; i < next_free; i++) {
1045 rec = &el->l_recs[i];
1047 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1052 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1053 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1055 BUG_ON(insert_index < 0);
1056 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1057 BUG_ON(insert_index > next_free);
1060 * No need to memmove if we're just adding to the tail.
1062 if (insert_index != next_free) {
1063 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1065 num_bytes = next_free - insert_index;
1066 num_bytes *= sizeof(struct ocfs2_extent_rec);
1067 memmove(&el->l_recs[insert_index + 1],
1068 &el->l_recs[insert_index],
1073 * Either we had an empty extent, and need to re-increment or
1074 * there was no empty extent on a non full rightmost leaf node,
1075 * in which case we still need to increment.
1078 el->l_next_free_rec = cpu_to_le16(next_free);
1080 * Make sure none of the math above just messed up our tree.
1082 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1084 el->l_recs[insert_index] = *insert_rec;
1088 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1090 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1092 BUG_ON(num_recs == 0);
1094 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1096 size = num_recs * sizeof(struct ocfs2_extent_rec);
1097 memmove(&el->l_recs[0], &el->l_recs[1], size);
1098 memset(&el->l_recs[num_recs], 0,
1099 sizeof(struct ocfs2_extent_rec));
1100 el->l_next_free_rec = cpu_to_le16(num_recs);
1105 * Create an empty extent record .
1107 * l_next_free_rec may be updated.
1109 * If an empty extent already exists do nothing.
1111 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1113 int next_free = le16_to_cpu(el->l_next_free_rec);
1115 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1120 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1123 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1124 "Asked to create an empty extent in a full list:\n"
1125 "count = %u, tree depth = %u",
1126 le16_to_cpu(el->l_count),
1127 le16_to_cpu(el->l_tree_depth));
1129 ocfs2_shift_records_right(el);
1132 le16_add_cpu(&el->l_next_free_rec, 1);
1133 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1137 * For a rotation which involves two leaf nodes, the "root node" is
1138 * the lowest level tree node which contains a path to both leafs. This
1139 * resulting set of information can be used to form a complete "subtree"
1141 * This function is passed two full paths from the dinode down to a
1142 * pair of adjacent leaves. It's task is to figure out which path
1143 * index contains the subtree root - this can be the root index itself
1144 * in a worst-case rotation.
1146 * The array index of the subtree root is passed back.
1148 static int ocfs2_find_subtree_root(struct inode *inode,
1149 struct ocfs2_path *left,
1150 struct ocfs2_path *right)
1155 * Check that the caller passed in two paths from the same tree.
1157 BUG_ON(path_root_bh(left) != path_root_bh(right));
1163 * The caller didn't pass two adjacent paths.
1165 mlog_bug_on_msg(i > left->p_tree_depth,
1166 "Inode %lu, left depth %u, right depth %u\n"
1167 "left leaf blk %llu, right leaf blk %llu\n",
1168 inode->i_ino, left->p_tree_depth,
1169 right->p_tree_depth,
1170 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1171 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1172 } while (left->p_node[i].bh->b_blocknr ==
1173 right->p_node[i].bh->b_blocknr);
1178 typedef void (path_insert_t)(void *, struct buffer_head *);
1181 * Traverse a btree path in search of cpos, starting at root_el.
1183 * This code can be called with a cpos larger than the tree, in which
1184 * case it will return the rightmost path.
1186 static int __ocfs2_find_path(struct inode *inode,
1187 struct ocfs2_extent_list *root_el, u32 cpos,
1188 path_insert_t *func, void *data)
1193 struct buffer_head *bh = NULL;
1194 struct ocfs2_extent_block *eb;
1195 struct ocfs2_extent_list *el;
1196 struct ocfs2_extent_rec *rec;
1197 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1200 while (el->l_tree_depth) {
1201 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1202 ocfs2_error(inode->i_sb,
1203 "Inode %llu has empty extent list at "
1205 (unsigned long long)oi->ip_blkno,
1206 le16_to_cpu(el->l_tree_depth));
1212 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1213 rec = &el->l_recs[i];
1216 * In the case that cpos is off the allocation
1217 * tree, this should just wind up returning the
1220 range = le32_to_cpu(rec->e_cpos) +
1221 ocfs2_rec_clusters(el, rec);
1222 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1226 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1228 ocfs2_error(inode->i_sb,
1229 "Inode %llu has bad blkno in extent list "
1230 "at depth %u (index %d)\n",
1231 (unsigned long long)oi->ip_blkno,
1232 le16_to_cpu(el->l_tree_depth), i);
1239 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1240 &bh, OCFS2_BH_CACHED, inode);
1246 eb = (struct ocfs2_extent_block *) bh->b_data;
1248 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1249 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1254 if (le16_to_cpu(el->l_next_free_rec) >
1255 le16_to_cpu(el->l_count)) {
1256 ocfs2_error(inode->i_sb,
1257 "Inode %llu has bad count in extent list "
1258 "at block %llu (next free=%u, count=%u)\n",
1259 (unsigned long long)oi->ip_blkno,
1260 (unsigned long long)bh->b_blocknr,
1261 le16_to_cpu(el->l_next_free_rec),
1262 le16_to_cpu(el->l_count));
1273 * Catch any trailing bh that the loop didn't handle.
1281 * Given an initialized path (that is, it has a valid root extent
1282 * list), this function will traverse the btree in search of the path
1283 * which would contain cpos.
1285 * The path traveled is recorded in the path structure.
1287 * Note that this will not do any comparisons on leaf node extent
1288 * records, so it will work fine in the case that we just added a tree
1291 struct find_path_data {
1293 struct ocfs2_path *path;
1295 static void find_path_ins(void *data, struct buffer_head *bh)
1297 struct find_path_data *fp = data;
1300 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1303 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1306 struct find_path_data data;
1310 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1311 find_path_ins, &data);
1314 static void find_leaf_ins(void *data, struct buffer_head *bh)
1316 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1317 struct ocfs2_extent_list *el = &eb->h_list;
1318 struct buffer_head **ret = data;
1320 /* We want to retain only the leaf block. */
1321 if (le16_to_cpu(el->l_tree_depth) == 0) {
1327 * Find the leaf block in the tree which would contain cpos. No
1328 * checking of the actual leaf is done.
1330 * Some paths want to call this instead of allocating a path structure
1331 * and calling ocfs2_find_path().
1333 * This function doesn't handle non btree extent lists.
1335 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1336 u32 cpos, struct buffer_head **leaf_bh)
1339 struct buffer_head *bh = NULL;
1341 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1353 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1355 * Basically, we've moved stuff around at the bottom of the tree and
1356 * we need to fix up the extent records above the changes to reflect
1359 * left_rec: the record on the left.
1360 * left_child_el: is the child list pointed to by left_rec
1361 * right_rec: the record to the right of left_rec
1362 * right_child_el: is the child list pointed to by right_rec
1364 * By definition, this only works on interior nodes.
1366 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1367 struct ocfs2_extent_list *left_child_el,
1368 struct ocfs2_extent_rec *right_rec,
1369 struct ocfs2_extent_list *right_child_el)
1371 u32 left_clusters, right_end;
1374 * Interior nodes never have holes. Their cpos is the cpos of
1375 * the leftmost record in their child list. Their cluster
1376 * count covers the full theoretical range of their child list
1377 * - the range between their cpos and the cpos of the record
1378 * immediately to their right.
1380 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1381 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1382 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1383 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1385 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1386 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1389 * Calculate the rightmost cluster count boundary before
1390 * moving cpos - we will need to adjust clusters after
1391 * updating e_cpos to keep the same highest cluster count.
1393 right_end = le32_to_cpu(right_rec->e_cpos);
1394 right_end += le32_to_cpu(right_rec->e_int_clusters);
1396 right_rec->e_cpos = left_rec->e_cpos;
1397 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1399 right_end -= le32_to_cpu(right_rec->e_cpos);
1400 right_rec->e_int_clusters = cpu_to_le32(right_end);
1404 * Adjust the adjacent root node records involved in a
1405 * rotation. left_el_blkno is passed in as a key so that we can easily
1406 * find it's index in the root list.
1408 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1409 struct ocfs2_extent_list *left_el,
1410 struct ocfs2_extent_list *right_el,
1415 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1416 le16_to_cpu(left_el->l_tree_depth));
1418 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1419 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1424 * The path walking code should have never returned a root and
1425 * two paths which are not adjacent.
1427 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1429 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1430 &root_el->l_recs[i + 1], right_el);
1434 * We've changed a leaf block (in right_path) and need to reflect that
1435 * change back up the subtree.
1437 * This happens in multiple places:
1438 * - When we've moved an extent record from the left path leaf to the right
1439 * path leaf to make room for an empty extent in the left path leaf.
1440 * - When our insert into the right path leaf is at the leftmost edge
1441 * and requires an update of the path immediately to it's left. This
1442 * can occur at the end of some types of rotation and appending inserts.
1443 * - When we've adjusted the last extent record in the left path leaf and the
1444 * 1st extent record in the right path leaf during cross extent block merge.
1446 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1447 struct ocfs2_path *left_path,
1448 struct ocfs2_path *right_path,
1452 struct ocfs2_extent_list *el, *left_el, *right_el;
1453 struct ocfs2_extent_rec *left_rec, *right_rec;
1454 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1457 * Update the counts and position values within all the
1458 * interior nodes to reflect the leaf rotation we just did.
1460 * The root node is handled below the loop.
1462 * We begin the loop with right_el and left_el pointing to the
1463 * leaf lists and work our way up.
1465 * NOTE: within this loop, left_el and right_el always refer
1466 * to the *child* lists.
1468 left_el = path_leaf_el(left_path);
1469 right_el = path_leaf_el(right_path);
1470 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1471 mlog(0, "Adjust records at index %u\n", i);
1474 * One nice property of knowing that all of these
1475 * nodes are below the root is that we only deal with
1476 * the leftmost right node record and the rightmost
1479 el = left_path->p_node[i].el;
1480 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1481 left_rec = &el->l_recs[idx];
1483 el = right_path->p_node[i].el;
1484 right_rec = &el->l_recs[0];
1486 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1489 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1493 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1498 * Setup our list pointers now so that the current
1499 * parents become children in the next iteration.
1501 left_el = left_path->p_node[i].el;
1502 right_el = right_path->p_node[i].el;
1506 * At the root node, adjust the two adjacent records which
1507 * begin our path to the leaves.
1510 el = left_path->p_node[subtree_index].el;
1511 left_el = left_path->p_node[subtree_index + 1].el;
1512 right_el = right_path->p_node[subtree_index + 1].el;
1514 ocfs2_adjust_root_records(el, left_el, right_el,
1515 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1517 root_bh = left_path->p_node[subtree_index].bh;
1519 ret = ocfs2_journal_dirty(handle, root_bh);
1524 static int ocfs2_rotate_subtree_right(struct inode *inode,
1526 struct ocfs2_path *left_path,
1527 struct ocfs2_path *right_path,
1531 struct buffer_head *right_leaf_bh;
1532 struct buffer_head *left_leaf_bh = NULL;
1533 struct buffer_head *root_bh;
1534 struct ocfs2_extent_list *right_el, *left_el;
1535 struct ocfs2_extent_rec move_rec;
1537 left_leaf_bh = path_leaf_bh(left_path);
1538 left_el = path_leaf_el(left_path);
1540 if (left_el->l_next_free_rec != left_el->l_count) {
1541 ocfs2_error(inode->i_sb,
1542 "Inode %llu has non-full interior leaf node %llu"
1544 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1545 (unsigned long long)left_leaf_bh->b_blocknr,
1546 le16_to_cpu(left_el->l_next_free_rec));
1551 * This extent block may already have an empty record, so we
1552 * return early if so.
1554 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1557 root_bh = left_path->p_node[subtree_index].bh;
1558 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1560 ret = ocfs2_journal_access(handle, inode, root_bh,
1561 OCFS2_JOURNAL_ACCESS_WRITE);
1567 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1568 ret = ocfs2_journal_access(handle, inode,
1569 right_path->p_node[i].bh,
1570 OCFS2_JOURNAL_ACCESS_WRITE);
1576 ret = ocfs2_journal_access(handle, inode,
1577 left_path->p_node[i].bh,
1578 OCFS2_JOURNAL_ACCESS_WRITE);
1585 right_leaf_bh = path_leaf_bh(right_path);
1586 right_el = path_leaf_el(right_path);
1588 /* This is a code error, not a disk corruption. */
1589 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1590 "because rightmost leaf block %llu is empty\n",
1591 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1592 (unsigned long long)right_leaf_bh->b_blocknr);
1594 ocfs2_create_empty_extent(right_el);
1596 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1602 /* Do the copy now. */
1603 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1604 move_rec = left_el->l_recs[i];
1605 right_el->l_recs[0] = move_rec;
1608 * Clear out the record we just copied and shift everything
1609 * over, leaving an empty extent in the left leaf.
1611 * We temporarily subtract from next_free_rec so that the
1612 * shift will lose the tail record (which is now defunct).
1614 le16_add_cpu(&left_el->l_next_free_rec, -1);
1615 ocfs2_shift_records_right(left_el);
1616 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1617 le16_add_cpu(&left_el->l_next_free_rec, 1);
1619 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1625 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1633 * Given a full path, determine what cpos value would return us a path
1634 * containing the leaf immediately to the left of the current one.
1636 * Will return zero if the path passed in is already the leftmost path.
1638 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1639 struct ocfs2_path *path, u32 *cpos)
1643 struct ocfs2_extent_list *el;
1645 BUG_ON(path->p_tree_depth == 0);
1649 blkno = path_leaf_bh(path)->b_blocknr;
1651 /* Start at the tree node just above the leaf and work our way up. */
1652 i = path->p_tree_depth - 1;
1654 el = path->p_node[i].el;
1657 * Find the extent record just before the one in our
1660 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1661 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1665 * We've determined that the
1666 * path specified is already
1667 * the leftmost one - return a
1673 * The leftmost record points to our
1674 * leaf - we need to travel up the
1680 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1681 *cpos = *cpos + ocfs2_rec_clusters(el,
1682 &el->l_recs[j - 1]);
1689 * If we got here, we never found a valid node where
1690 * the tree indicated one should be.
1693 "Invalid extent tree at extent block %llu\n",
1694 (unsigned long long)blkno);
1699 blkno = path->p_node[i].bh->b_blocknr;
1708 * Extend the transaction by enough credits to complete the rotation,
1709 * and still leave at least the original number of credits allocated
1710 * to this transaction.
1712 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1714 struct ocfs2_path *path)
1716 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1718 if (handle->h_buffer_credits < credits)
1719 return ocfs2_extend_trans(handle, credits);
1725 * Trap the case where we're inserting into the theoretical range past
1726 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1727 * whose cpos is less than ours into the right leaf.
1729 * It's only necessary to look at the rightmost record of the left
1730 * leaf because the logic that calls us should ensure that the
1731 * theoretical ranges in the path components above the leaves are
1734 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1737 struct ocfs2_extent_list *left_el;
1738 struct ocfs2_extent_rec *rec;
1741 left_el = path_leaf_el(left_path);
1742 next_free = le16_to_cpu(left_el->l_next_free_rec);
1743 rec = &left_el->l_recs[next_free - 1];
1745 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1750 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1752 int next_free = le16_to_cpu(el->l_next_free_rec);
1754 struct ocfs2_extent_rec *rec;
1759 rec = &el->l_recs[0];
1760 if (ocfs2_is_empty_extent(rec)) {
1764 rec = &el->l_recs[1];
1767 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1768 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1774 * Rotate all the records in a btree right one record, starting at insert_cpos.
1776 * The path to the rightmost leaf should be passed in.
1778 * The array is assumed to be large enough to hold an entire path (tree depth).
1780 * Upon succesful return from this function:
1782 * - The 'right_path' array will contain a path to the leaf block
1783 * whose range contains e_cpos.
1784 * - That leaf block will have a single empty extent in list index 0.
1785 * - In the case that the rotation requires a post-insert update,
1786 * *ret_left_path will contain a valid path which can be passed to
1787 * ocfs2_insert_path().
1789 static int ocfs2_rotate_tree_right(struct inode *inode,
1791 enum ocfs2_split_type split,
1793 struct ocfs2_path *right_path,
1794 struct ocfs2_path **ret_left_path)
1796 int ret, start, orig_credits = handle->h_buffer_credits;
1798 struct ocfs2_path *left_path = NULL;
1800 *ret_left_path = NULL;
1802 left_path = ocfs2_new_path(path_root_bh(right_path),
1803 path_root_el(right_path));
1810 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1816 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1819 * What we want to do here is:
1821 * 1) Start with the rightmost path.
1823 * 2) Determine a path to the leaf block directly to the left
1826 * 3) Determine the 'subtree root' - the lowest level tree node
1827 * which contains a path to both leaves.
1829 * 4) Rotate the subtree.
1831 * 5) Find the next subtree by considering the left path to be
1832 * the new right path.
1834 * The check at the top of this while loop also accepts
1835 * insert_cpos == cpos because cpos is only a _theoretical_
1836 * value to get us the left path - insert_cpos might very well
1837 * be filling that hole.
1839 * Stop at a cpos of '0' because we either started at the
1840 * leftmost branch (i.e., a tree with one branch and a
1841 * rotation inside of it), or we've gone as far as we can in
1842 * rotating subtrees.
1844 while (cpos && insert_cpos <= cpos) {
1845 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1848 ret = ocfs2_find_path(inode, left_path, cpos);
1854 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1855 path_leaf_bh(right_path),
1856 "Inode %lu: error during insert of %u "
1857 "(left path cpos %u) results in two identical "
1858 "paths ending at %llu\n",
1859 inode->i_ino, insert_cpos, cpos,
1860 (unsigned long long)
1861 path_leaf_bh(left_path)->b_blocknr);
1863 if (split == SPLIT_NONE &&
1864 ocfs2_rotate_requires_path_adjustment(left_path,
1868 * We've rotated the tree as much as we
1869 * should. The rest is up to
1870 * ocfs2_insert_path() to complete, after the
1871 * record insertion. We indicate this
1872 * situation by returning the left path.
1874 * The reason we don't adjust the records here
1875 * before the record insert is that an error
1876 * later might break the rule where a parent
1877 * record e_cpos will reflect the actual
1878 * e_cpos of the 1st nonempty record of the
1881 *ret_left_path = left_path;
1885 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1887 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1889 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1890 right_path->p_tree_depth);
1892 ret = ocfs2_extend_rotate_transaction(handle, start,
1893 orig_credits, right_path);
1899 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1906 if (split != SPLIT_NONE &&
1907 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1910 * A rotate moves the rightmost left leaf
1911 * record over to the leftmost right leaf
1912 * slot. If we're doing an extent split
1913 * instead of a real insert, then we have to
1914 * check that the extent to be split wasn't
1915 * just moved over. If it was, then we can
1916 * exit here, passing left_path back -
1917 * ocfs2_split_extent() is smart enough to
1918 * search both leaves.
1920 *ret_left_path = left_path;
1925 * There is no need to re-read the next right path
1926 * as we know that it'll be our current left
1927 * path. Optimize by copying values instead.
1929 ocfs2_mv_path(right_path, left_path);
1931 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1940 ocfs2_free_path(left_path);
1946 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1947 struct ocfs2_path *path)
1950 struct ocfs2_extent_rec *rec;
1951 struct ocfs2_extent_list *el;
1952 struct ocfs2_extent_block *eb;
1955 /* Path should always be rightmost. */
1956 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1957 BUG_ON(eb->h_next_leaf_blk != 0ULL);
1960 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1961 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1962 rec = &el->l_recs[idx];
1963 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1965 for (i = 0; i < path->p_tree_depth; i++) {
1966 el = path->p_node[i].el;
1967 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1968 rec = &el->l_recs[idx];
1970 rec->e_int_clusters = cpu_to_le32(range);
1971 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1973 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1977 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1978 struct ocfs2_cached_dealloc_ctxt *dealloc,
1979 struct ocfs2_path *path, int unlink_start)
1982 struct ocfs2_extent_block *eb;
1983 struct ocfs2_extent_list *el;
1984 struct buffer_head *bh;
1986 for(i = unlink_start; i < path_num_items(path); i++) {
1987 bh = path->p_node[i].bh;
1989 eb = (struct ocfs2_extent_block *)bh->b_data;
1991 * Not all nodes might have had their final count
1992 * decremented by the caller - handle this here.
1995 if (le16_to_cpu(el->l_next_free_rec) > 1) {
1997 "Inode %llu, attempted to remove extent block "
1998 "%llu with %u records\n",
1999 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2000 (unsigned long long)le64_to_cpu(eb->h_blkno),
2001 le16_to_cpu(el->l_next_free_rec));
2003 ocfs2_journal_dirty(handle, bh);
2004 ocfs2_remove_from_cache(inode, bh);
2008 el->l_next_free_rec = 0;
2009 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2011 ocfs2_journal_dirty(handle, bh);
2013 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2017 ocfs2_remove_from_cache(inode, bh);
2021 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2022 struct ocfs2_path *left_path,
2023 struct ocfs2_path *right_path,
2025 struct ocfs2_cached_dealloc_ctxt *dealloc)
2028 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2029 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2030 struct ocfs2_extent_list *el;
2031 struct ocfs2_extent_block *eb;
2033 el = path_leaf_el(left_path);
2035 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2037 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2038 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2041 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2043 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2044 le16_add_cpu(&root_el->l_next_free_rec, -1);
2046 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2047 eb->h_next_leaf_blk = 0;
2049 ocfs2_journal_dirty(handle, root_bh);
2050 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2052 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2056 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2057 struct ocfs2_path *left_path,
2058 struct ocfs2_path *right_path,
2060 struct ocfs2_cached_dealloc_ctxt *dealloc,
2063 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2064 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2065 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2066 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2067 struct ocfs2_extent_block *eb;
2071 right_leaf_el = path_leaf_el(right_path);
2072 left_leaf_el = path_leaf_el(left_path);
2073 root_bh = left_path->p_node[subtree_index].bh;
2074 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2076 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2079 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2080 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2082 * It's legal for us to proceed if the right leaf is
2083 * the rightmost one and it has an empty extent. There
2084 * are two cases to handle - whether the leaf will be
2085 * empty after removal or not. If the leaf isn't empty
2086 * then just remove the empty extent up front. The
2087 * next block will handle empty leaves by flagging
2090 * Non rightmost leaves will throw -EAGAIN and the
2091 * caller can manually move the subtree and retry.
2094 if (eb->h_next_leaf_blk != 0ULL)
2097 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2098 ret = ocfs2_journal_access(handle, inode,
2099 path_leaf_bh(right_path),
2100 OCFS2_JOURNAL_ACCESS_WRITE);
2106 ocfs2_remove_empty_extent(right_leaf_el);
2108 right_has_empty = 1;
2111 if (eb->h_next_leaf_blk == 0ULL &&
2112 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2114 * We have to update i_last_eb_blk during the meta
2117 ret = ocfs2_journal_access(handle, inode, di_bh,
2118 OCFS2_JOURNAL_ACCESS_WRITE);
2124 del_right_subtree = 1;
2128 * Getting here with an empty extent in the right path implies
2129 * that it's the rightmost path and will be deleted.
2131 BUG_ON(right_has_empty && !del_right_subtree);
2133 ret = ocfs2_journal_access(handle, inode, root_bh,
2134 OCFS2_JOURNAL_ACCESS_WRITE);
2140 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2141 ret = ocfs2_journal_access(handle, inode,
2142 right_path->p_node[i].bh,
2143 OCFS2_JOURNAL_ACCESS_WRITE);
2149 ret = ocfs2_journal_access(handle, inode,
2150 left_path->p_node[i].bh,
2151 OCFS2_JOURNAL_ACCESS_WRITE);
2158 if (!right_has_empty) {
2160 * Only do this if we're moving a real
2161 * record. Otherwise, the action is delayed until
2162 * after removal of the right path in which case we
2163 * can do a simple shift to remove the empty extent.
2165 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2166 memset(&right_leaf_el->l_recs[0], 0,
2167 sizeof(struct ocfs2_extent_rec));
2169 if (eb->h_next_leaf_blk == 0ULL) {
2171 * Move recs over to get rid of empty extent, decrease
2172 * next_free. This is allowed to remove the last
2173 * extent in our leaf (setting l_next_free_rec to
2174 * zero) - the delete code below won't care.
2176 ocfs2_remove_empty_extent(right_leaf_el);
2179 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2182 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2186 if (del_right_subtree) {
2187 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2188 subtree_index, dealloc);
2189 ocfs2_update_edge_lengths(inode, handle, left_path);
2191 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2192 di->i_last_eb_blk = eb->h_blkno;
2195 * Removal of the extent in the left leaf was skipped
2196 * above so we could delete the right path
2199 if (right_has_empty)
2200 ocfs2_remove_empty_extent(left_leaf_el);
2202 ret = ocfs2_journal_dirty(handle, di_bh);
2208 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2216 * Given a full path, determine what cpos value would return us a path
2217 * containing the leaf immediately to the right of the current one.
2219 * Will return zero if the path passed in is already the rightmost path.
2221 * This looks similar, but is subtly different to
2222 * ocfs2_find_cpos_for_left_leaf().
2224 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2225 struct ocfs2_path *path, u32 *cpos)
2229 struct ocfs2_extent_list *el;
2233 if (path->p_tree_depth == 0)
2236 blkno = path_leaf_bh(path)->b_blocknr;
2238 /* Start at the tree node just above the leaf and work our way up. */
2239 i = path->p_tree_depth - 1;
2243 el = path->p_node[i].el;
2246 * Find the extent record just after the one in our
2249 next_free = le16_to_cpu(el->l_next_free_rec);
2250 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2251 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2252 if (j == (next_free - 1)) {
2255 * We've determined that the
2256 * path specified is already
2257 * the rightmost one - return a
2263 * The rightmost record points to our
2264 * leaf - we need to travel up the
2270 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2276 * If we got here, we never found a valid node where
2277 * the tree indicated one should be.
2280 "Invalid extent tree at extent block %llu\n",
2281 (unsigned long long)blkno);
2286 blkno = path->p_node[i].bh->b_blocknr;
2294 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2296 struct buffer_head *bh,
2297 struct ocfs2_extent_list *el)
2301 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2304 ret = ocfs2_journal_access(handle, inode, bh,
2305 OCFS2_JOURNAL_ACCESS_WRITE);
2311 ocfs2_remove_empty_extent(el);
2313 ret = ocfs2_journal_dirty(handle, bh);
2321 static int __ocfs2_rotate_tree_left(struct inode *inode,
2322 handle_t *handle, int orig_credits,
2323 struct ocfs2_path *path,
2324 struct ocfs2_cached_dealloc_ctxt *dealloc,
2325 struct ocfs2_path **empty_extent_path)
2327 int ret, subtree_root, deleted;
2329 struct ocfs2_path *left_path = NULL;
2330 struct ocfs2_path *right_path = NULL;
2332 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2334 *empty_extent_path = NULL;
2336 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2343 left_path = ocfs2_new_path(path_root_bh(path),
2344 path_root_el(path));
2351 ocfs2_cp_path(left_path, path);
2353 right_path = ocfs2_new_path(path_root_bh(path),
2354 path_root_el(path));
2361 while (right_cpos) {
2362 ret = ocfs2_find_path(inode, right_path, right_cpos);
2368 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2371 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2373 (unsigned long long)
2374 right_path->p_node[subtree_root].bh->b_blocknr,
2375 right_path->p_tree_depth);
2377 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2378 orig_credits, left_path);
2385 * Caller might still want to make changes to the
2386 * tree root, so re-add it to the journal here.
2388 ret = ocfs2_journal_access(handle, inode,
2389 path_root_bh(left_path),
2390 OCFS2_JOURNAL_ACCESS_WRITE);
2396 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2397 right_path, subtree_root,
2399 if (ret == -EAGAIN) {
2401 * The rotation has to temporarily stop due to
2402 * the right subtree having an empty
2403 * extent. Pass it back to the caller for a
2406 *empty_extent_path = right_path;
2416 * The subtree rotate might have removed records on
2417 * the rightmost edge. If so, then rotation is
2423 ocfs2_mv_path(left_path, right_path);
2425 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2434 ocfs2_free_path(right_path);
2435 ocfs2_free_path(left_path);
2440 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2441 struct ocfs2_path *path,
2442 struct ocfs2_cached_dealloc_ctxt *dealloc)
2444 int ret, subtree_index;
2446 struct ocfs2_path *left_path = NULL;
2447 struct ocfs2_dinode *di;
2448 struct ocfs2_extent_block *eb;
2449 struct ocfs2_extent_list *el;
2452 * XXX: This code assumes that the root is an inode, which is
2453 * true for now but may change as tree code gets generic.
2455 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2456 if (!OCFS2_IS_VALID_DINODE(di)) {
2458 ocfs2_error(inode->i_sb,
2459 "Inode %llu has invalid path root",
2460 (unsigned long long)OCFS2_I(inode)->ip_blkno);
2465 * There's two ways we handle this depending on
2466 * whether path is the only existing one.
2468 ret = ocfs2_extend_rotate_transaction(handle, 0,
2469 handle->h_buffer_credits,
2476 ret = ocfs2_journal_access_path(inode, handle, path);
2482 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2490 * We have a path to the left of this one - it needs
2493 left_path = ocfs2_new_path(path_root_bh(path),
2494 path_root_el(path));
2501 ret = ocfs2_find_path(inode, left_path, cpos);
2507 ret = ocfs2_journal_access_path(inode, handle, left_path);
2513 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2515 ocfs2_unlink_subtree(inode, handle, left_path, path,
2516 subtree_index, dealloc);
2517 ocfs2_update_edge_lengths(inode, handle, left_path);
2519 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2520 di->i_last_eb_blk = eb->h_blkno;
2523 * 'path' is also the leftmost path which
2524 * means it must be the only one. This gets
2525 * handled differently because we want to
2526 * revert the inode back to having extents
2529 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2531 el = &di->id2.i_list;
2532 el->l_tree_depth = 0;
2533 el->l_next_free_rec = 0;
2534 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2536 di->i_last_eb_blk = 0;
2539 ocfs2_journal_dirty(handle, path_root_bh(path));
2542 ocfs2_free_path(left_path);
2547 * Left rotation of btree records.
2549 * In many ways, this is (unsurprisingly) the opposite of right
2550 * rotation. We start at some non-rightmost path containing an empty
2551 * extent in the leaf block. The code works its way to the rightmost
2552 * path by rotating records to the left in every subtree.
2554 * This is used by any code which reduces the number of extent records
2555 * in a leaf. After removal, an empty record should be placed in the
2556 * leftmost list position.
2558 * This won't handle a length update of the rightmost path records if
2559 * the rightmost tree leaf record is removed so the caller is
2560 * responsible for detecting and correcting that.
2562 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2563 struct ocfs2_path *path,
2564 struct ocfs2_cached_dealloc_ctxt *dealloc)
2566 int ret, orig_credits = handle->h_buffer_credits;
2567 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2568 struct ocfs2_extent_block *eb;
2569 struct ocfs2_extent_list *el;
2571 el = path_leaf_el(path);
2572 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2575 if (path->p_tree_depth == 0) {
2576 rightmost_no_delete:
2578 * In-inode extents. This is trivially handled, so do
2581 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2583 path_leaf_el(path));
2590 * Handle rightmost branch now. There's several cases:
2591 * 1) simple rotation leaving records in there. That's trivial.
2592 * 2) rotation requiring a branch delete - there's no more
2593 * records left. Two cases of this:
2594 * a) There are branches to the left.
2595 * b) This is also the leftmost (the only) branch.
2597 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2598 * 2a) we need the left branch so that we can update it with the unlink
2599 * 2b) we need to bring the inode back to inline extents.
2602 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2604 if (eb->h_next_leaf_blk == 0) {
2606 * This gets a bit tricky if we're going to delete the
2607 * rightmost path. Get the other cases out of the way
2610 if (le16_to_cpu(el->l_next_free_rec) > 1)
2611 goto rightmost_no_delete;
2613 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2615 ocfs2_error(inode->i_sb,
2616 "Inode %llu has empty extent block at %llu",
2617 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2618 (unsigned long long)le64_to_cpu(eb->h_blkno));
2623 * XXX: The caller can not trust "path" any more after
2624 * this as it will have been deleted. What do we do?
2626 * In theory the rotate-for-merge code will never get
2627 * here because it'll always ask for a rotate in a
2631 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2639 * Now we can loop, remembering the path we get from -EAGAIN
2640 * and restarting from there.
2643 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2644 dealloc, &restart_path);
2645 if (ret && ret != -EAGAIN) {
2650 while (ret == -EAGAIN) {
2651 tmp_path = restart_path;
2652 restart_path = NULL;
2654 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2657 if (ret && ret != -EAGAIN) {
2662 ocfs2_free_path(tmp_path);
2670 ocfs2_free_path(tmp_path);
2671 ocfs2_free_path(restart_path);
2675 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2678 struct ocfs2_extent_rec *rec = &el->l_recs[index];
2681 if (rec->e_leaf_clusters == 0) {
2683 * We consumed all of the merged-from record. An empty
2684 * extent cannot exist anywhere but the 1st array
2685 * position, so move things over if the merged-from
2686 * record doesn't occupy that position.
2688 * This creates a new empty extent so the caller
2689 * should be smart enough to have removed any existing
2693 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2694 size = index * sizeof(struct ocfs2_extent_rec);
2695 memmove(&el->l_recs[1], &el->l_recs[0], size);
2699 * Always memset - the caller doesn't check whether it
2700 * created an empty extent, so there could be junk in
2703 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2707 static int ocfs2_get_right_path(struct inode *inode,
2708 struct ocfs2_path *left_path,
2709 struct ocfs2_path **ret_right_path)
2713 struct ocfs2_path *right_path = NULL;
2714 struct ocfs2_extent_list *left_el;
2716 *ret_right_path = NULL;
2718 /* This function shouldn't be called for non-trees. */
2719 BUG_ON(left_path->p_tree_depth == 0);
2721 left_el = path_leaf_el(left_path);
2722 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2724 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2731 /* This function shouldn't be called for the rightmost leaf. */
2732 BUG_ON(right_cpos == 0);
2734 right_path = ocfs2_new_path(path_root_bh(left_path),
2735 path_root_el(left_path));
2742 ret = ocfs2_find_path(inode, right_path, right_cpos);
2748 *ret_right_path = right_path;
2751 ocfs2_free_path(right_path);
2756 * Remove split_rec clusters from the record at index and merge them
2757 * onto the beginning of the record "next" to it.
2758 * For index < l_count - 1, the next means the extent rec at index + 1.
2759 * For index == l_count - 1, the "next" means the 1st extent rec of the
2760 * next extent block.
2762 static int ocfs2_merge_rec_right(struct inode *inode,
2763 struct ocfs2_path *left_path,
2765 struct ocfs2_extent_rec *split_rec,
2768 int ret, next_free, i;
2769 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2770 struct ocfs2_extent_rec *left_rec;
2771 struct ocfs2_extent_rec *right_rec;
2772 struct ocfs2_extent_list *right_el;
2773 struct ocfs2_path *right_path = NULL;
2774 int subtree_index = 0;
2775 struct ocfs2_extent_list *el = path_leaf_el(left_path);
2776 struct buffer_head *bh = path_leaf_bh(left_path);
2777 struct buffer_head *root_bh = NULL;
2779 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2780 left_rec = &el->l_recs[index];
2782 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
2783 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2784 /* we meet with a cross extent block merge. */
2785 ret = ocfs2_get_right_path(inode, left_path, &right_path);
2791 right_el = path_leaf_el(right_path);
2792 next_free = le16_to_cpu(right_el->l_next_free_rec);
2793 BUG_ON(next_free <= 0);
2794 right_rec = &right_el->l_recs[0];
2795 if (ocfs2_is_empty_extent(right_rec)) {
2796 BUG_ON(next_free <= 1);
2797 right_rec = &right_el->l_recs[1];
2800 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2801 le16_to_cpu(left_rec->e_leaf_clusters) !=
2802 le32_to_cpu(right_rec->e_cpos));
2804 subtree_index = ocfs2_find_subtree_root(inode,
2805 left_path, right_path);
2807 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2808 handle->h_buffer_credits,
2815 root_bh = left_path->p_node[subtree_index].bh;
2816 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2818 ret = ocfs2_journal_access(handle, inode, root_bh,
2819 OCFS2_JOURNAL_ACCESS_WRITE);
2825 for (i = subtree_index + 1;
2826 i < path_num_items(right_path); i++) {
2827 ret = ocfs2_journal_access(handle, inode,
2828 right_path->p_node[i].bh,
2829 OCFS2_JOURNAL_ACCESS_WRITE);
2835 ret = ocfs2_journal_access(handle, inode,
2836 left_path->p_node[i].bh,
2837 OCFS2_JOURNAL_ACCESS_WRITE);
2845 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2846 right_rec = &el->l_recs[index + 1];
2849 ret = ocfs2_journal_access(handle, inode, bh,
2850 OCFS2_JOURNAL_ACCESS_WRITE);
2856 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2858 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2859 le64_add_cpu(&right_rec->e_blkno,
2860 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2861 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2863 ocfs2_cleanup_merge(el, index);
2865 ret = ocfs2_journal_dirty(handle, bh);
2870 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2874 ocfs2_complete_edge_insert(inode, handle, left_path,
2875 right_path, subtree_index);
2879 ocfs2_free_path(right_path);
2883 static int ocfs2_get_left_path(struct inode *inode,
2884 struct ocfs2_path *right_path,
2885 struct ocfs2_path **ret_left_path)
2889 struct ocfs2_path *left_path = NULL;
2891 *ret_left_path = NULL;
2893 /* This function shouldn't be called for non-trees. */
2894 BUG_ON(right_path->p_tree_depth == 0);
2896 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2897 right_path, &left_cpos);
2903 /* This function shouldn't be called for the leftmost leaf. */
2904 BUG_ON(left_cpos == 0);
2906 left_path = ocfs2_new_path(path_root_bh(right_path),
2907 path_root_el(right_path));
2914 ret = ocfs2_find_path(inode, left_path, left_cpos);
2920 *ret_left_path = left_path;
2923 ocfs2_free_path(left_path);
2928 * Remove split_rec clusters from the record at index and merge them
2929 * onto the tail of the record "before" it.
2930 * For index > 0, the "before" means the extent rec at index - 1.
2932 * For index == 0, the "before" means the last record of the previous
2933 * extent block. And there is also a situation that we may need to
2934 * remove the rightmost leaf extent block in the right_path and change
2935 * the right path to indicate the new rightmost path.
2937 static int ocfs2_merge_rec_left(struct inode *inode,
2938 struct ocfs2_path *right_path,
2940 struct ocfs2_extent_rec *split_rec,
2941 struct ocfs2_cached_dealloc_ctxt *dealloc,
2944 int ret, i, subtree_index = 0, has_empty_extent = 0;
2945 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2946 struct ocfs2_extent_rec *left_rec;
2947 struct ocfs2_extent_rec *right_rec;
2948 struct ocfs2_extent_list *el = path_leaf_el(right_path);
2949 struct buffer_head *bh = path_leaf_bh(right_path);
2950 struct buffer_head *root_bh = NULL;
2951 struct ocfs2_path *left_path = NULL;
2952 struct ocfs2_extent_list *left_el;
2956 right_rec = &el->l_recs[index];
2958 /* we meet with a cross extent block merge. */
2959 ret = ocfs2_get_left_path(inode, right_path, &left_path);
2965 left_el = path_leaf_el(left_path);
2966 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2967 le16_to_cpu(left_el->l_count));
2969 left_rec = &left_el->l_recs[
2970 le16_to_cpu(left_el->l_next_free_rec) - 1];
2971 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2972 le16_to_cpu(left_rec->e_leaf_clusters) !=
2973 le32_to_cpu(split_rec->e_cpos));
2975 subtree_index = ocfs2_find_subtree_root(inode,
2976 left_path, right_path);
2978 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2979 handle->h_buffer_credits,
2986 root_bh = left_path->p_node[subtree_index].bh;
2987 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2989 ret = ocfs2_journal_access(handle, inode, root_bh,
2990 OCFS2_JOURNAL_ACCESS_WRITE);
2996 for (i = subtree_index + 1;
2997 i < path_num_items(right_path); i++) {
2998 ret = ocfs2_journal_access(handle, inode,
2999 right_path->p_node[i].bh,
3000 OCFS2_JOURNAL_ACCESS_WRITE);
3006 ret = ocfs2_journal_access(handle, inode,
3007 left_path->p_node[i].bh,
3008 OCFS2_JOURNAL_ACCESS_WRITE);
3015 left_rec = &el->l_recs[index - 1];
3016 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3017 has_empty_extent = 1;
3020 ret = ocfs2_journal_access(handle, inode, bh,
3021 OCFS2_JOURNAL_ACCESS_WRITE);
3027 if (has_empty_extent && index == 1) {
3029 * The easy case - we can just plop the record right in.
3031 *left_rec = *split_rec;
3033 has_empty_extent = 0;
3035 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3037 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3038 le64_add_cpu(&right_rec->e_blkno,
3039 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3040 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3042 ocfs2_cleanup_merge(el, index);
3044 ret = ocfs2_journal_dirty(handle, bh);
3049 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3054 * In the situation that the right_rec is empty and the extent
3055 * block is empty also, ocfs2_complete_edge_insert can't handle
3056 * it and we need to delete the right extent block.
3058 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3059 le16_to_cpu(el->l_next_free_rec) == 1) {
3061 ret = ocfs2_remove_rightmost_path(inode, handle,
3062 right_path, dealloc);
3068 /* Now the rightmost extent block has been deleted.
3069 * So we use the new rightmost path.
3071 ocfs2_mv_path(right_path, left_path);
3074 ocfs2_complete_edge_insert(inode, handle, left_path,
3075 right_path, subtree_index);
3079 ocfs2_free_path(left_path);
3083 static int ocfs2_try_to_merge_extent(struct inode *inode,
3085 struct ocfs2_path *path,
3087 struct ocfs2_extent_rec *split_rec,
3088 struct ocfs2_cached_dealloc_ctxt *dealloc,
3089 struct ocfs2_merge_ctxt *ctxt)
3093 struct ocfs2_extent_list *el = path_leaf_el(path);
3094 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3096 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3098 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3100 * The merge code will need to create an empty
3101 * extent to take the place of the newly
3102 * emptied slot. Remove any pre-existing empty
3103 * extents - having more than one in a leaf is
3106 ret = ocfs2_rotate_tree_left(inode, handle, path,
3113 rec = &el->l_recs[split_index];
3116 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3118 * Left-right contig implies this.
3120 BUG_ON(!ctxt->c_split_covers_rec);
3123 * Since the leftright insert always covers the entire
3124 * extent, this call will delete the insert record
3125 * entirely, resulting in an empty extent record added to
3128 * Since the adding of an empty extent shifts
3129 * everything back to the right, there's no need to
3130 * update split_index here.
3132 * When the split_index is zero, we need to merge it to the
3133 * prevoius extent block. It is more efficient and easier
3134 * if we do merge_right first and merge_left later.
3136 ret = ocfs2_merge_rec_right(inode, path,
3145 * We can only get this from logic error above.
3147 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3149 /* The merge left us with an empty extent, remove it. */
3150 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3156 rec = &el->l_recs[split_index];
3159 * Note that we don't pass split_rec here on purpose -
3160 * we've merged it into the rec already.
3162 ret = ocfs2_merge_rec_left(inode, path,
3172 ret = ocfs2_rotate_tree_left(inode, handle, path,
3175 * Error from this last rotate is not critical, so
3176 * print but don't bubble it up.
3183 * Merge a record to the left or right.
3185 * 'contig_type' is relative to the existing record,
3186 * so for example, if we're "right contig", it's to
3187 * the record on the left (hence the left merge).
3189 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3190 ret = ocfs2_merge_rec_left(inode,
3200 ret = ocfs2_merge_rec_right(inode,
3210 if (ctxt->c_split_covers_rec) {
3212 * The merge may have left an empty extent in
3213 * our leaf. Try to rotate it away.
3215 ret = ocfs2_rotate_tree_left(inode, handle, path,
3227 static void ocfs2_subtract_from_rec(struct super_block *sb,
3228 enum ocfs2_split_type split,
3229 struct ocfs2_extent_rec *rec,
3230 struct ocfs2_extent_rec *split_rec)
3234 len_blocks = ocfs2_clusters_to_blocks(sb,
3235 le16_to_cpu(split_rec->e_leaf_clusters));
3237 if (split == SPLIT_LEFT) {
3239 * Region is on the left edge of the existing
3242 le32_add_cpu(&rec->e_cpos,
3243 le16_to_cpu(split_rec->e_leaf_clusters));
3244 le64_add_cpu(&rec->e_blkno, len_blocks);
3245 le16_add_cpu(&rec->e_leaf_clusters,
3246 -le16_to_cpu(split_rec->e_leaf_clusters));
3249 * Region is on the right edge of the existing
3252 le16_add_cpu(&rec->e_leaf_clusters,
3253 -le16_to_cpu(split_rec->e_leaf_clusters));
3258 * Do the final bits of extent record insertion at the target leaf
3259 * list. If this leaf is part of an allocation tree, it is assumed
3260 * that the tree above has been prepared.
3262 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3263 struct ocfs2_extent_list *el,
3264 struct ocfs2_insert_type *insert,
3265 struct inode *inode)
3267 int i = insert->ins_contig_index;
3269 struct ocfs2_extent_rec *rec;
3271 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3273 if (insert->ins_split != SPLIT_NONE) {
3274 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3276 rec = &el->l_recs[i];
3277 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3283 * Contiguous insert - either left or right.
3285 if (insert->ins_contig != CONTIG_NONE) {
3286 rec = &el->l_recs[i];
3287 if (insert->ins_contig == CONTIG_LEFT) {
3288 rec->e_blkno = insert_rec->e_blkno;
3289 rec->e_cpos = insert_rec->e_cpos;
3291 le16_add_cpu(&rec->e_leaf_clusters,
3292 le16_to_cpu(insert_rec->e_leaf_clusters));
3297 * Handle insert into an empty leaf.
3299 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3300 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3301 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3302 el->l_recs[0] = *insert_rec;
3303 el->l_next_free_rec = cpu_to_le16(1);
3310 if (insert->ins_appending == APPEND_TAIL) {
3311 i = le16_to_cpu(el->l_next_free_rec) - 1;
3312 rec = &el->l_recs[i];
3313 range = le32_to_cpu(rec->e_cpos)
3314 + le16_to_cpu(rec->e_leaf_clusters);
3315 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3317 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3318 le16_to_cpu(el->l_count),
3319 "inode %lu, depth %u, count %u, next free %u, "
3320 "rec.cpos %u, rec.clusters %u, "
3321 "insert.cpos %u, insert.clusters %u\n",
3323 le16_to_cpu(el->l_tree_depth),
3324 le16_to_cpu(el->l_count),
3325 le16_to_cpu(el->l_next_free_rec),
3326 le32_to_cpu(el->l_recs[i].e_cpos),
3327 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3328 le32_to_cpu(insert_rec->e_cpos),
3329 le16_to_cpu(insert_rec->e_leaf_clusters));
3331 el->l_recs[i] = *insert_rec;
3332 le16_add_cpu(&el->l_next_free_rec, 1);
3338 * Ok, we have to rotate.
3340 * At this point, it is safe to assume that inserting into an
3341 * empty leaf and appending to a leaf have both been handled
3344 * This leaf needs to have space, either by the empty 1st
3345 * extent record, or by virtue of an l_next_rec < l_count.
3347 ocfs2_rotate_leaf(el, insert_rec);
3350 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3351 struct ocfs2_dinode *di,
3354 le32_add_cpu(&di->i_clusters, clusters);
3355 spin_lock(&OCFS2_I(inode)->ip_lock);
3356 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3357 spin_unlock(&OCFS2_I(inode)->ip_lock);
3360 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3362 struct ocfs2_path *path,
3363 struct ocfs2_extent_rec *insert_rec)
3365 int ret, i, next_free;
3366 struct buffer_head *bh;
3367 struct ocfs2_extent_list *el;
3368 struct ocfs2_extent_rec *rec;
3371 * Update everything except the leaf block.
3373 for (i = 0; i < path->p_tree_depth; i++) {
3374 bh = path->p_node[i].bh;
3375 el = path->p_node[i].el;
3377 next_free = le16_to_cpu(el->l_next_free_rec);
3378 if (next_free == 0) {
3379 ocfs2_error(inode->i_sb,
3380 "Dinode %llu has a bad extent list",
3381 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3386 rec = &el->l_recs[next_free - 1];
3388 rec->e_int_clusters = insert_rec->e_cpos;
3389 le32_add_cpu(&rec->e_int_clusters,
3390 le16_to_cpu(insert_rec->e_leaf_clusters));
3391 le32_add_cpu(&rec->e_int_clusters,
3392 -le32_to_cpu(rec->e_cpos));
3394 ret = ocfs2_journal_dirty(handle, bh);
3401 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3402 struct ocfs2_extent_rec *insert_rec,
3403 struct ocfs2_path *right_path,
3404 struct ocfs2_path **ret_left_path)
3407 struct ocfs2_extent_list *el;
3408 struct ocfs2_path *left_path = NULL;
3410 *ret_left_path = NULL;
3413 * This shouldn't happen for non-trees. The extent rec cluster
3414 * count manipulation below only works for interior nodes.
3416 BUG_ON(right_path->p_tree_depth == 0);
3419 * If our appending insert is at the leftmost edge of a leaf,
3420 * then we might need to update the rightmost records of the
3423 el = path_leaf_el(right_path);
3424 next_free = le16_to_cpu(el->l_next_free_rec);
3425 if (next_free == 0 ||
3426 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3429 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3436 mlog(0, "Append may need a left path update. cpos: %u, "
3437 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3441 * No need to worry if the append is already in the
3445 left_path = ocfs2_new_path(path_root_bh(right_path),
3446 path_root_el(right_path));
3453 ret = ocfs2_find_path(inode, left_path, left_cpos);
3460 * ocfs2_insert_path() will pass the left_path to the
3466 ret = ocfs2_journal_access_path(inode, handle, right_path);
3472 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3474 *ret_left_path = left_path;
3478 ocfs2_free_path(left_path);
3483 static void ocfs2_split_record(struct inode *inode,
3484 struct ocfs2_path *left_path,
3485 struct ocfs2_path *right_path,
3486 struct ocfs2_extent_rec *split_rec,
3487 enum ocfs2_split_type split)
3490 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3491 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3492 struct ocfs2_extent_rec *rec, *tmprec;
3494 right_el = path_leaf_el(right_path);;
3496 left_el = path_leaf_el(left_path);
3499 insert_el = right_el;
3500 index = ocfs2_search_extent_list(el, cpos);
3502 if (index == 0 && left_path) {
3503 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3506 * This typically means that the record
3507 * started in the left path but moved to the
3508 * right as a result of rotation. We either
3509 * move the existing record to the left, or we
3510 * do the later insert there.
3512 * In this case, the left path should always
3513 * exist as the rotate code will have passed
3514 * it back for a post-insert update.
3517 if (split == SPLIT_LEFT) {
3519 * It's a left split. Since we know
3520 * that the rotate code gave us an
3521 * empty extent in the left path, we
3522 * can just do the insert there.
3524 insert_el = left_el;
3527 * Right split - we have to move the
3528 * existing record over to the left
3529 * leaf. The insert will be into the
3530 * newly created empty extent in the
3533 tmprec = &right_el->l_recs[index];
3534 ocfs2_rotate_leaf(left_el, tmprec);
3537 memset(tmprec, 0, sizeof(*tmprec));
3538 index = ocfs2_search_extent_list(left_el, cpos);
3539 BUG_ON(index == -1);
3544 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3546 * Left path is easy - we can just allow the insert to
3550 insert_el = left_el;
3551 index = ocfs2_search_extent_list(el, cpos);
3552 BUG_ON(index == -1);
3555 rec = &el->l_recs[index];
3556 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3557 ocfs2_rotate_leaf(insert_el, split_rec);
3561 * This function only does inserts on an allocation b-tree. For dinode
3562 * lists, ocfs2_insert_at_leaf() is called directly.
3564 * right_path is the path we want to do the actual insert
3565 * in. left_path should only be passed in if we need to update that
3566 * portion of the tree after an edge insert.
3568 static int ocfs2_insert_path(struct inode *inode,
3570 struct ocfs2_path *left_path,
3571 struct ocfs2_path *right_path,
3572 struct ocfs2_extent_rec *insert_rec,
3573 struct ocfs2_insert_type *insert)
3575 int ret, subtree_index;
3576 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3579 int credits = handle->h_buffer_credits;
3582 * There's a chance that left_path got passed back to
3583 * us without being accounted for in the
3584 * journal. Extend our transaction here to be sure we
3585 * can change those blocks.
3587 credits += left_path->p_tree_depth;
3589 ret = ocfs2_extend_trans(handle, credits);
3595 ret = ocfs2_journal_access_path(inode, handle, left_path);
3603 * Pass both paths to the journal. The majority of inserts
3604 * will be touching all components anyway.
3606 ret = ocfs2_journal_access_path(inode, handle, right_path);
3612 if (insert->ins_split != SPLIT_NONE) {
3614 * We could call ocfs2_insert_at_leaf() for some types
3615 * of splits, but it's easier to just let one separate
3616 * function sort it all out.
3618 ocfs2_split_record(inode, left_path, right_path,
3619 insert_rec, insert->ins_split);
3622 * Split might have modified either leaf and we don't
3623 * have a guarantee that the later edge insert will
3624 * dirty this for us.
3627 ret = ocfs2_journal_dirty(handle,
3628 path_leaf_bh(left_path));
3632 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3635 ret = ocfs2_journal_dirty(handle, leaf_bh);
3641 * The rotate code has indicated that we need to fix
3642 * up portions of the tree after the insert.
3644 * XXX: Should we extend the transaction here?
3646 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3648 ocfs2_complete_edge_insert(inode, handle, left_path,
3649 right_path, subtree_index);
3657 static int ocfs2_do_insert_extent(struct inode *inode,
3659 struct buffer_head *di_bh,
3660 struct ocfs2_extent_rec *insert_rec,
3661 struct ocfs2_insert_type *type)
3663 int ret, rotate = 0;
3665 struct ocfs2_path *right_path = NULL;
3666 struct ocfs2_path *left_path = NULL;
3667 struct ocfs2_dinode *di;
3668 struct ocfs2_extent_list *el;
3670 di = (struct ocfs2_dinode *) di_bh->b_data;
3671 el = &di->id2.i_list;
3673 ret = ocfs2_journal_access(handle, inode, di_bh,
3674 OCFS2_JOURNAL_ACCESS_WRITE);
3680 if (le16_to_cpu(el->l_tree_depth) == 0) {
3681 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3682 goto out_update_clusters;
3685 right_path = ocfs2_new_inode_path(di_bh);
3693 * Determine the path to start with. Rotations need the
3694 * rightmost path, everything else can go directly to the
3697 cpos = le32_to_cpu(insert_rec->e_cpos);
3698 if (type->ins_appending == APPEND_NONE &&
3699 type->ins_contig == CONTIG_NONE) {
3704 ret = ocfs2_find_path(inode, right_path, cpos);
3711 * Rotations and appends need special treatment - they modify
3712 * parts of the tree's above them.
3714 * Both might pass back a path immediate to the left of the
3715 * one being inserted to. This will be cause
3716 * ocfs2_insert_path() to modify the rightmost records of
3717 * left_path to account for an edge insert.
3719 * XXX: When modifying this code, keep in mind that an insert
3720 * can wind up skipping both of these two special cases...
3723 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3724 le32_to_cpu(insert_rec->e_cpos),
3725 right_path, &left_path);
3732 * ocfs2_rotate_tree_right() might have extended the
3733 * transaction without re-journaling our tree root.
3735 ret = ocfs2_journal_access(handle, inode, di_bh,
3736 OCFS2_JOURNAL_ACCESS_WRITE);
3741 } else if (type->ins_appending == APPEND_TAIL
3742 && type->ins_contig != CONTIG_LEFT) {
3743 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3744 right_path, &left_path);
3751 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3758 out_update_clusters:
3759 if (type->ins_split == SPLIT_NONE)
3760 ocfs2_update_dinode_clusters(inode, di,
3761 le16_to_cpu(insert_rec->e_leaf_clusters));
3763 ret = ocfs2_journal_dirty(handle, di_bh);
3768 ocfs2_free_path(left_path);
3769 ocfs2_free_path(right_path);
3774 static enum ocfs2_contig_type
3775 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3776 struct ocfs2_extent_list *el, int index,
3777 struct ocfs2_extent_rec *split_rec)
3780 enum ocfs2_contig_type ret = CONTIG_NONE;
3781 u32 left_cpos, right_cpos;
3782 struct ocfs2_extent_rec *rec = NULL;
3783 struct ocfs2_extent_list *new_el;
3784 struct ocfs2_path *left_path = NULL, *right_path = NULL;
3785 struct buffer_head *bh;
3786 struct ocfs2_extent_block *eb;
3789 rec = &el->l_recs[index - 1];
3790 } else if (path->p_tree_depth > 0) {
3791 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3796 if (left_cpos != 0) {
3797 left_path = ocfs2_new_path(path_root_bh(path),
3798 path_root_el(path));
3802 status = ocfs2_find_path(inode, left_path, left_cpos);
3806 new_el = path_leaf_el(left_path);
3808 if (le16_to_cpu(new_el->l_next_free_rec) !=
3809 le16_to_cpu(new_el->l_count)) {
3810 bh = path_leaf_bh(left_path);
3811 eb = (struct ocfs2_extent_block *)bh->b_data;
3812 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3816 rec = &new_el->l_recs[
3817 le16_to_cpu(new_el->l_next_free_rec) - 1];
3822 * We're careful to check for an empty extent record here -
3823 * the merge code will know what to do if it sees one.
3826 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3827 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3830 ret = ocfs2_extent_contig(inode, rec, split_rec);
3835 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3836 rec = &el->l_recs[index + 1];
3837 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3838 path->p_tree_depth > 0) {
3839 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3844 if (right_cpos == 0)
3847 right_path = ocfs2_new_path(path_root_bh(path),
3848 path_root_el(path));
3852 status = ocfs2_find_path(inode, right_path, right_cpos);
3856 new_el = path_leaf_el(right_path);
3857 rec = &new_el->l_recs[0];
3858 if (ocfs2_is_empty_extent(rec)) {
3859 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3860 bh = path_leaf_bh(right_path);
3861 eb = (struct ocfs2_extent_block *)bh->b_data;
3862 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3866 rec = &new_el->l_recs[1];
3871 enum ocfs2_contig_type contig_type;
3873 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3875 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3876 ret = CONTIG_LEFTRIGHT;
3877 else if (ret == CONTIG_NONE)
3883 ocfs2_free_path(left_path);
3885 ocfs2_free_path(right_path);
3890 static void ocfs2_figure_contig_type(struct inode *inode,
3891 struct ocfs2_insert_type *insert,
3892 struct ocfs2_extent_list *el,
3893 struct ocfs2_extent_rec *insert_rec)
3896 enum ocfs2_contig_type contig_type = CONTIG_NONE;
3898 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3900 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3901 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3903 if (contig_type != CONTIG_NONE) {
3904 insert->ins_contig_index = i;
3908 insert->ins_contig = contig_type;
3912 * This should only be called against the righmost leaf extent list.
3914 * ocfs2_figure_appending_type() will figure out whether we'll have to
3915 * insert at the tail of the rightmost leaf.
3917 * This should also work against the dinode list for tree's with 0
3918 * depth. If we consider the dinode list to be the rightmost leaf node
3919 * then the logic here makes sense.
3921 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3922 struct ocfs2_extent_list *el,
3923 struct ocfs2_extent_rec *insert_rec)
3926 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3927 struct ocfs2_extent_rec *rec;
3929 insert->ins_appending = APPEND_NONE;
3931 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3933 if (!el->l_next_free_rec)
3934 goto set_tail_append;
3936 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3937 /* Were all records empty? */
3938 if (le16_to_cpu(el->l_next_free_rec) == 1)
3939 goto set_tail_append;
3942 i = le16_to_cpu(el->l_next_free_rec) - 1;
3943 rec = &el->l_recs[i];
3946 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3947 goto set_tail_append;
3952 insert->ins_appending = APPEND_TAIL;
3956 * Helper function called at the begining of an insert.
3958 * This computes a few things that are commonly used in the process of
3959 * inserting into the btree:
3960 * - Whether the new extent is contiguous with an existing one.
3961 * - The current tree depth.
3962 * - Whether the insert is an appending one.
3963 * - The total # of free records in the tree.
3965 * All of the information is stored on the ocfs2_insert_type
3968 static int ocfs2_figure_insert_type(struct inode *inode,
3969 struct buffer_head *di_bh,
3970 struct buffer_head **last_eb_bh,
3971 struct ocfs2_extent_rec *insert_rec,
3973 struct ocfs2_insert_type *insert)
3976 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3977 struct ocfs2_extent_block *eb;
3978 struct ocfs2_extent_list *el;
3979 struct ocfs2_path *path = NULL;
3980 struct buffer_head *bh = NULL;
3982 insert->ins_split = SPLIT_NONE;
3984 el = &di->id2.i_list;
3985 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3987 if (el->l_tree_depth) {
3989 * If we have tree depth, we read in the
3990 * rightmost extent block ahead of time as
3991 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3992 * may want it later.
3994 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3995 le64_to_cpu(di->i_last_eb_blk), &bh,
3996 OCFS2_BH_CACHED, inode);
4001 eb = (struct ocfs2_extent_block *) bh->b_data;
4006 * Unless we have a contiguous insert, we'll need to know if
4007 * there is room left in our allocation tree for another
4010 * XXX: This test is simplistic, we can search for empty
4011 * extent records too.
4013 *free_records = le16_to_cpu(el->l_count) -
4014 le16_to_cpu(el->l_next_free_rec);
4016 if (!insert->ins_tree_depth) {
4017 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4018 ocfs2_figure_appending_type(insert, el, insert_rec);
4022 path = ocfs2_new_inode_path(di_bh);
4030 * In the case that we're inserting past what the tree
4031 * currently accounts for, ocfs2_find_path() will return for
4032 * us the rightmost tree path. This is accounted for below in
4033 * the appending code.
4035 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4041 el = path_leaf_el(path);
4044 * Now that we have the path, there's two things we want to determine:
4045 * 1) Contiguousness (also set contig_index if this is so)
4047 * 2) Are we doing an append? We can trivially break this up
4048 * into two types of appends: simple record append, or a
4049 * rotate inside the tail leaf.
4051 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4054 * The insert code isn't quite ready to deal with all cases of
4055 * left contiguousness. Specifically, if it's an insert into
4056 * the 1st record in a leaf, it will require the adjustment of
4057 * cluster count on the last record of the path directly to it's
4058 * left. For now, just catch that case and fool the layers
4059 * above us. This works just fine for tree_depth == 0, which
4060 * is why we allow that above.
4062 if (insert->ins_contig == CONTIG_LEFT &&
4063 insert->ins_contig_index == 0)
4064 insert->ins_contig = CONTIG_NONE;
4067 * Ok, so we can simply compare against last_eb to figure out
4068 * whether the path doesn't exist. This will only happen in
4069 * the case that we're doing a tail append, so maybe we can
4070 * take advantage of that information somehow.
4072 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4074 * Ok, ocfs2_find_path() returned us the rightmost
4075 * tree path. This might be an appending insert. There are
4077 * 1) We're doing a true append at the tail:
4078 * -This might even be off the end of the leaf
4079 * 2) We're "appending" by rotating in the tail
4081 ocfs2_figure_appending_type(insert, el, insert_rec);
4085 ocfs2_free_path(path);
4095 * Insert an extent into an inode btree.
4097 * The caller needs to update fe->i_clusters
4099 int ocfs2_insert_extent(struct ocfs2_super *osb,
4101 struct inode *inode,
4102 struct buffer_head *fe_bh,
4107 struct ocfs2_alloc_context *meta_ac)
4110 int uninitialized_var(free_records);
4111 struct buffer_head *last_eb_bh = NULL;
4112 struct ocfs2_insert_type insert = {0, };
4113 struct ocfs2_extent_rec rec;
4115 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4117 mlog(0, "add %u clusters at position %u to inode %llu\n",
4118 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4120 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4121 (OCFS2_I(inode)->ip_clusters != cpos),
4122 "Device %s, asking for sparse allocation: inode %llu, "
4123 "cpos %u, clusters %u\n",
4125 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4126 OCFS2_I(inode)->ip_clusters);
4128 memset(&rec, 0, sizeof(rec));
4129 rec.e_cpos = cpu_to_le32(cpos);
4130 rec.e_blkno = cpu_to_le64(start_blk);
4131 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4132 rec.e_flags = flags;
4134 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4135 &free_records, &insert);
4141 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4142 "Insert.contig_index: %d, Insert.free_records: %d, "
4143 "Insert.tree_depth: %d\n",
4144 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4145 free_records, insert.ins_tree_depth);
4147 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4148 status = ocfs2_grow_tree(inode, handle, fe_bh,
4149 &insert.ins_tree_depth, &last_eb_bh,
4157 /* Finally, we can add clusters. This might rotate the tree for us. */
4158 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4162 ocfs2_extent_map_insert_rec(inode, &rec);
4172 static void ocfs2_make_right_split_rec(struct super_block *sb,
4173 struct ocfs2_extent_rec *split_rec,
4175 struct ocfs2_extent_rec *rec)
4177 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4178 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4180 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4182 split_rec->e_cpos = cpu_to_le32(cpos);
4183 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4185 split_rec->e_blkno = rec->e_blkno;
4186 le64_add_cpu(&split_rec->e_blkno,
4187 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4189 split_rec->e_flags = rec->e_flags;
4192 static int ocfs2_split_and_insert(struct inode *inode,
4194 struct ocfs2_path *path,
4195 struct buffer_head *di_bh,
4196 struct buffer_head **last_eb_bh,
4198 struct ocfs2_extent_rec *orig_split_rec,
4199 struct ocfs2_alloc_context *meta_ac)
4202 unsigned int insert_range, rec_range, do_leftright = 0;
4203 struct ocfs2_extent_rec tmprec;
4204 struct ocfs2_extent_list *rightmost_el;
4205 struct ocfs2_extent_rec rec;
4206 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4207 struct ocfs2_insert_type insert;
4208 struct ocfs2_extent_block *eb;
4209 struct ocfs2_dinode *di;
4213 * Store a copy of the record on the stack - it might move
4214 * around as the tree is manipulated below.
4216 rec = path_leaf_el(path)->l_recs[split_index];
4218 di = (struct ocfs2_dinode *)di_bh->b_data;
4219 rightmost_el = &di->id2.i_list;
4221 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4223 BUG_ON(!(*last_eb_bh));
4224 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4225 rightmost_el = &eb->h_list;
4228 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4229 le16_to_cpu(rightmost_el->l_count)) {
4230 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4238 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4239 insert.ins_appending = APPEND_NONE;
4240 insert.ins_contig = CONTIG_NONE;
4241 insert.ins_tree_depth = depth;
4243 insert_range = le32_to_cpu(split_rec.e_cpos) +
4244 le16_to_cpu(split_rec.e_leaf_clusters);
4245 rec_range = le32_to_cpu(rec.e_cpos) +
4246 le16_to_cpu(rec.e_leaf_clusters);
4248 if (split_rec.e_cpos == rec.e_cpos) {
4249 insert.ins_split = SPLIT_LEFT;
4250 } else if (insert_range == rec_range) {
4251 insert.ins_split = SPLIT_RIGHT;
4254 * Left/right split. We fake this as a right split
4255 * first and then make a second pass as a left split.
4257 insert.ins_split = SPLIT_RIGHT;
4259 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4264 BUG_ON(do_leftright);
4268 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4275 if (do_leftright == 1) {
4277 struct ocfs2_extent_list *el;
4280 split_rec = *orig_split_rec;
4282 ocfs2_reinit_path(path, 1);
4284 cpos = le32_to_cpu(split_rec.e_cpos);
4285 ret = ocfs2_find_path(inode, path, cpos);
4291 el = path_leaf_el(path);
4292 split_index = ocfs2_search_extent_list(el, cpos);
4301 * Mark part or all of the extent record at split_index in the leaf
4302 * pointed to by path as written. This removes the unwritten
4305 * Care is taken to handle contiguousness so as to not grow the tree.
4307 * meta_ac is not strictly necessary - we only truly need it if growth
4308 * of the tree is required. All other cases will degrade into a less
4309 * optimal tree layout.
4311 * last_eb_bh should be the rightmost leaf block for any inode with a
4312 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4314 * This code is optimized for readability - several passes might be
4315 * made over certain portions of the tree. All of those blocks will
4316 * have been brought into cache (and pinned via the journal), so the
4317 * extra overhead is not expressed in terms of disk reads.
4319 static int __ocfs2_mark_extent_written(struct inode *inode,
4320 struct buffer_head *di_bh,
4322 struct ocfs2_path *path,
4324 struct ocfs2_extent_rec *split_rec,
4325 struct ocfs2_alloc_context *meta_ac,
4326 struct ocfs2_cached_dealloc_ctxt *dealloc)
4329 struct ocfs2_extent_list *el = path_leaf_el(path);
4330 struct buffer_head *last_eb_bh = NULL;
4331 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4332 struct ocfs2_merge_ctxt ctxt;
4333 struct ocfs2_extent_list *rightmost_el;
4335 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4341 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4342 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4343 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4349 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4354 * The core merge / split code wants to know how much room is
4355 * left in this inodes allocation tree, so we pass the
4356 * rightmost extent list.
4358 if (path->p_tree_depth) {
4359 struct ocfs2_extent_block *eb;
4360 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4362 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4363 le64_to_cpu(di->i_last_eb_blk),
4364 &last_eb_bh, OCFS2_BH_CACHED, inode);
4370 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4371 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4372 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4377 rightmost_el = &eb->h_list;
4379 rightmost_el = path_root_el(path);
4381 if (rec->e_cpos == split_rec->e_cpos &&
4382 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4383 ctxt.c_split_covers_rec = 1;
4385 ctxt.c_split_covers_rec = 0;
4387 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4389 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4390 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4391 ctxt.c_split_covers_rec);
4393 if (ctxt.c_contig_type == CONTIG_NONE) {
4394 if (ctxt.c_split_covers_rec)
4395 el->l_recs[split_index] = *split_rec;
4397 ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4398 &last_eb_bh, split_index,
4399 split_rec, meta_ac);
4403 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4404 split_index, split_rec,
4416 * Mark the already-existing extent at cpos as written for len clusters.
4418 * If the existing extent is larger than the request, initiate a
4419 * split. An attempt will be made at merging with adjacent extents.
4421 * The caller is responsible for passing down meta_ac if we'll need it.
4423 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4424 handle_t *handle, u32 cpos, u32 len, u32 phys,
4425 struct ocfs2_alloc_context *meta_ac,
4426 struct ocfs2_cached_dealloc_ctxt *dealloc)
4429 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4430 struct ocfs2_extent_rec split_rec;
4431 struct ocfs2_path *left_path = NULL;
4432 struct ocfs2_extent_list *el;
4434 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4435 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4437 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4438 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4439 "that are being written to, but the feature bit "
4440 "is not set in the super block.",
4441 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4447 * XXX: This should be fixed up so that we just re-insert the
4448 * next extent records.
4450 ocfs2_extent_map_trunc(inode, 0);
4452 left_path = ocfs2_new_inode_path(di_bh);
4459 ret = ocfs2_find_path(inode, left_path, cpos);
4464 el = path_leaf_el(left_path);
4466 index = ocfs2_search_extent_list(el, cpos);
4467 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4468 ocfs2_error(inode->i_sb,
4469 "Inode %llu has an extent at cpos %u which can no "
4470 "longer be found.\n",
4471 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4476 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4477 split_rec.e_cpos = cpu_to_le32(cpos);
4478 split_rec.e_leaf_clusters = cpu_to_le16(len);
4479 split_rec.e_blkno = cpu_to_le64(start_blkno);
4480 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4481 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4483 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4484 index, &split_rec, meta_ac, dealloc);
4489 ocfs2_free_path(left_path);
4493 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4494 handle_t *handle, struct ocfs2_path *path,
4495 int index, u32 new_range,
4496 struct ocfs2_alloc_context *meta_ac)
4498 int ret, depth, credits = handle->h_buffer_credits;
4499 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4500 struct buffer_head *last_eb_bh = NULL;
4501 struct ocfs2_extent_block *eb;
4502 struct ocfs2_extent_list *rightmost_el, *el;
4503 struct ocfs2_extent_rec split_rec;
4504 struct ocfs2_extent_rec *rec;
4505 struct ocfs2_insert_type insert;
4508 * Setup the record to split before we grow the tree.
4510 el = path_leaf_el(path);
4511 rec = &el->l_recs[index];
4512 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4514 depth = path->p_tree_depth;
4516 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4517 le64_to_cpu(di->i_last_eb_blk),
4518 &last_eb_bh, OCFS2_BH_CACHED, inode);
4524 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4525 rightmost_el = &eb->h_list;
4527 rightmost_el = path_leaf_el(path);
4529 credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4530 ret = ocfs2_extend_trans(handle, credits);
4536 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4537 le16_to_cpu(rightmost_el->l_count)) {
4538 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4546 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4547 insert.ins_appending = APPEND_NONE;
4548 insert.ins_contig = CONTIG_NONE;
4549 insert.ins_split = SPLIT_RIGHT;
4550 insert.ins_tree_depth = depth;
4552 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4561 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4562 struct ocfs2_path *path, int index,
4563 struct ocfs2_cached_dealloc_ctxt *dealloc,
4567 u32 left_cpos, rec_range, trunc_range;
4568 int wants_rotate = 0, is_rightmost_tree_rec = 0;
4569 struct super_block *sb = inode->i_sb;
4570 struct ocfs2_path *left_path = NULL;
4571 struct ocfs2_extent_list *el = path_leaf_el(path);
4572 struct ocfs2_extent_rec *rec;
4573 struct ocfs2_extent_block *eb;
4575 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4576 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4585 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4586 path->p_tree_depth) {
4588 * Check whether this is the rightmost tree record. If
4589 * we remove all of this record or part of its right
4590 * edge then an update of the record lengths above it
4593 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4594 if (eb->h_next_leaf_blk == 0)
4595 is_rightmost_tree_rec = 1;
4598 rec = &el->l_recs[index];
4599 if (index == 0 && path->p_tree_depth &&
4600 le32_to_cpu(rec->e_cpos) == cpos) {
4602 * Changing the leftmost offset (via partial or whole
4603 * record truncate) of an interior (or rightmost) path
4604 * means we have to update the subtree that is formed
4605 * by this leaf and the one to it's left.
4607 * There are two cases we can skip:
4608 * 1) Path is the leftmost one in our inode tree.
4609 * 2) The leaf is rightmost and will be empty after
4610 * we remove the extent record - the rotate code
4611 * knows how to update the newly formed edge.
4614 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4621 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4622 left_path = ocfs2_new_path(path_root_bh(path),
4623 path_root_el(path));
4630 ret = ocfs2_find_path(inode, left_path, left_cpos);
4638 ret = ocfs2_extend_rotate_transaction(handle, 0,
4639 handle->h_buffer_credits,
4646 ret = ocfs2_journal_access_path(inode, handle, path);
4652 ret = ocfs2_journal_access_path(inode, handle, left_path);
4658 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4659 trunc_range = cpos + len;
4661 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4664 memset(rec, 0, sizeof(*rec));
4665 ocfs2_cleanup_merge(el, index);
4668 next_free = le16_to_cpu(el->l_next_free_rec);
4669 if (is_rightmost_tree_rec && next_free > 1) {
4671 * We skip the edge update if this path will
4672 * be deleted by the rotate code.
4674 rec = &el->l_recs[next_free - 1];
4675 ocfs2_adjust_rightmost_records(inode, handle, path,
4678 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4679 /* Remove leftmost portion of the record. */
4680 le32_add_cpu(&rec->e_cpos, len);
4681 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4682 le16_add_cpu(&rec->e_leaf_clusters, -len);
4683 } else if (rec_range == trunc_range) {
4684 /* Remove rightmost portion of the record */
4685 le16_add_cpu(&rec->e_leaf_clusters, -len);
4686 if (is_rightmost_tree_rec)
4687 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4689 /* Caller should have trapped this. */
4690 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4691 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4692 le32_to_cpu(rec->e_cpos),
4693 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4700 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4701 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4705 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4707 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4714 ocfs2_free_path(left_path);
4718 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4719 u32 cpos, u32 len, handle_t *handle,
4720 struct ocfs2_alloc_context *meta_ac,
4721 struct ocfs2_cached_dealloc_ctxt *dealloc)
4724 u32 rec_range, trunc_range;
4725 struct ocfs2_extent_rec *rec;
4726 struct ocfs2_extent_list *el;
4727 struct ocfs2_path *path;
4729 ocfs2_extent_map_trunc(inode, 0);
4731 path = ocfs2_new_inode_path(di_bh);
4738 ret = ocfs2_find_path(inode, path, cpos);
4744 el = path_leaf_el(path);
4745 index = ocfs2_search_extent_list(el, cpos);
4746 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4747 ocfs2_error(inode->i_sb,
4748 "Inode %llu has an extent at cpos %u which can no "
4749 "longer be found.\n",
4750 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4756 * We have 3 cases of extent removal:
4757 * 1) Range covers the entire extent rec
4758 * 2) Range begins or ends on one edge of the extent rec
4759 * 3) Range is in the middle of the extent rec (no shared edges)
4761 * For case 1 we remove the extent rec and left rotate to
4764 * For case 2 we just shrink the existing extent rec, with a
4765 * tree update if the shrinking edge is also the edge of an
4768 * For case 3 we do a right split to turn the extent rec into
4769 * something case 2 can handle.
4771 rec = &el->l_recs[index];
4772 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4773 trunc_range = cpos + len;
4775 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4777 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4778 "(cpos %u, len %u)\n",
4779 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4780 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4782 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4783 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4790 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4791 trunc_range, meta_ac);
4798 * The split could have manipulated the tree enough to
4799 * move the record location, so we have to look for it again.
4801 ocfs2_reinit_path(path, 1);
4803 ret = ocfs2_find_path(inode, path, cpos);
4809 el = path_leaf_el(path);
4810 index = ocfs2_search_extent_list(el, cpos);
4811 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4812 ocfs2_error(inode->i_sb,
4813 "Inode %llu: split at cpos %u lost record.",
4814 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4821 * Double check our values here. If anything is fishy,
4822 * it's easier to catch it at the top level.
4824 rec = &el->l_recs[index];
4825 rec_range = le32_to_cpu(rec->e_cpos) +
4826 ocfs2_rec_clusters(el, rec);
4827 if (rec_range != trunc_range) {
4828 ocfs2_error(inode->i_sb,
4829 "Inode %llu: error after split at cpos %u"
4830 "trunc len %u, existing record is (%u,%u)",
4831 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4832 cpos, len, le32_to_cpu(rec->e_cpos),
4833 ocfs2_rec_clusters(el, rec));
4838 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4847 ocfs2_free_path(path);
4851 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4853 struct buffer_head *tl_bh = osb->osb_tl_bh;
4854 struct ocfs2_dinode *di;
4855 struct ocfs2_truncate_log *tl;
4857 di = (struct ocfs2_dinode *) tl_bh->b_data;
4858 tl = &di->id2.i_dealloc;
4860 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4861 "slot %d, invalid truncate log parameters: used = "
4862 "%u, count = %u\n", osb->slot_num,
4863 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4864 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4867 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4868 unsigned int new_start)
4870 unsigned int tail_index;
4871 unsigned int current_tail;
4873 /* No records, nothing to coalesce */
4874 if (!le16_to_cpu(tl->tl_used))
4877 tail_index = le16_to_cpu(tl->tl_used) - 1;
4878 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4879 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4881 return current_tail == new_start;
4884 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4887 unsigned int num_clusters)
4890 unsigned int start_cluster, tl_count;
4891 struct inode *tl_inode = osb->osb_tl_inode;
4892 struct buffer_head *tl_bh = osb->osb_tl_bh;
4893 struct ocfs2_dinode *di;
4894 struct ocfs2_truncate_log *tl;
4896 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4897 (unsigned long long)start_blk, num_clusters);
4899 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4901 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4903 di = (struct ocfs2_dinode *) tl_bh->b_data;
4904 tl = &di->id2.i_dealloc;
4905 if (!OCFS2_IS_VALID_DINODE(di)) {
4906 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4911 tl_count = le16_to_cpu(tl->tl_count);
4912 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4914 "Truncate record count on #%llu invalid "
4915 "wanted %u, actual %u\n",
4916 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4917 ocfs2_truncate_recs_per_inode(osb->sb),
4918 le16_to_cpu(tl->tl_count));
4920 /* Caller should have known to flush before calling us. */
4921 index = le16_to_cpu(tl->tl_used);
4922 if (index >= tl_count) {
4928 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4929 OCFS2_JOURNAL_ACCESS_WRITE);
4935 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4936 "%llu (index = %d)\n", num_clusters, start_cluster,
4937 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4939 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4941 * Move index back to the record we are coalescing with.
4942 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4946 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4947 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4948 index, le32_to_cpu(tl->tl_recs[index].t_start),
4951 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4952 tl->tl_used = cpu_to_le16(index + 1);
4954 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4956 status = ocfs2_journal_dirty(handle, tl_bh);
4967 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4969 struct inode *data_alloc_inode,
4970 struct buffer_head *data_alloc_bh)
4974 unsigned int num_clusters;
4976 struct ocfs2_truncate_rec rec;
4977 struct ocfs2_dinode *di;
4978 struct ocfs2_truncate_log *tl;
4979 struct inode *tl_inode = osb->osb_tl_inode;
4980 struct buffer_head *tl_bh = osb->osb_tl_bh;
4984 di = (struct ocfs2_dinode *) tl_bh->b_data;
4985 tl = &di->id2.i_dealloc;
4986 i = le16_to_cpu(tl->tl_used) - 1;
4988 /* Caller has given us at least enough credits to
4989 * update the truncate log dinode */
4990 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4991 OCFS2_JOURNAL_ACCESS_WRITE);
4997 tl->tl_used = cpu_to_le16(i);
4999 status = ocfs2_journal_dirty(handle, tl_bh);
5005 /* TODO: Perhaps we can calculate the bulk of the
5006 * credits up front rather than extending like
5008 status = ocfs2_extend_trans(handle,
5009 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5015 rec = tl->tl_recs[i];
5016 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5017 le32_to_cpu(rec.t_start));
5018 num_clusters = le32_to_cpu(rec.t_clusters);
5020 /* if start_blk is not set, we ignore the record as
5023 mlog(0, "free record %d, start = %u, clusters = %u\n",
5024 i, le32_to_cpu(rec.t_start), num_clusters);
5026 status = ocfs2_free_clusters(handle, data_alloc_inode,
5027 data_alloc_bh, start_blk,
5042 /* Expects you to already be holding tl_inode->i_mutex */
5043 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5046 unsigned int num_to_flush;
5048 struct inode *tl_inode = osb->osb_tl_inode;
5049 struct inode *data_alloc_inode = NULL;
5050 struct buffer_head *tl_bh = osb->osb_tl_bh;
5051 struct buffer_head *data_alloc_bh = NULL;
5052 struct ocfs2_dinode *di;
5053 struct ocfs2_truncate_log *tl;
5057 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5059 di = (struct ocfs2_dinode *) tl_bh->b_data;
5060 tl = &di->id2.i_dealloc;
5061 if (!OCFS2_IS_VALID_DINODE(di)) {
5062 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5067 num_to_flush = le16_to_cpu(tl->tl_used);
5068 mlog(0, "Flush %u records from truncate log #%llu\n",
5069 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5070 if (!num_to_flush) {
5075 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5076 GLOBAL_BITMAP_SYSTEM_INODE,
5077 OCFS2_INVALID_SLOT);
5078 if (!data_alloc_inode) {
5080 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5084 mutex_lock(&data_alloc_inode->i_mutex);
5086 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5092 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5093 if (IS_ERR(handle)) {
5094 status = PTR_ERR(handle);
5099 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5104 ocfs2_commit_trans(osb, handle);
5107 brelse(data_alloc_bh);
5108 ocfs2_inode_unlock(data_alloc_inode, 1);
5111 mutex_unlock(&data_alloc_inode->i_mutex);
5112 iput(data_alloc_inode);
5119 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5122 struct inode *tl_inode = osb->osb_tl_inode;
5124 mutex_lock(&tl_inode->i_mutex);
5125 status = __ocfs2_flush_truncate_log(osb);
5126 mutex_unlock(&tl_inode->i_mutex);
5131 static void ocfs2_truncate_log_worker(struct work_struct *work)
5134 struct ocfs2_super *osb =
5135 container_of(work, struct ocfs2_super,
5136 osb_truncate_log_wq.work);
5140 status = ocfs2_flush_truncate_log(osb);
5144 ocfs2_init_inode_steal_slot(osb);
5149 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5150 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5153 if (osb->osb_tl_inode) {
5154 /* We want to push off log flushes while truncates are
5157 cancel_delayed_work(&osb->osb_truncate_log_wq);
5159 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5160 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5164 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5166 struct inode **tl_inode,
5167 struct buffer_head **tl_bh)
5170 struct inode *inode = NULL;
5171 struct buffer_head *bh = NULL;
5173 inode = ocfs2_get_system_file_inode(osb,
5174 TRUNCATE_LOG_SYSTEM_INODE,
5178 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5182 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5183 OCFS2_BH_CACHED, inode);
5197 /* called during the 1st stage of node recovery. we stamp a clean
5198 * truncate log and pass back a copy for processing later. if the
5199 * truncate log does not require processing, a *tl_copy is set to
5201 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5203 struct ocfs2_dinode **tl_copy)
5206 struct inode *tl_inode = NULL;
5207 struct buffer_head *tl_bh = NULL;
5208 struct ocfs2_dinode *di;
5209 struct ocfs2_truncate_log *tl;
5213 mlog(0, "recover truncate log from slot %d\n", slot_num);
5215 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5221 di = (struct ocfs2_dinode *) tl_bh->b_data;
5222 tl = &di->id2.i_dealloc;
5223 if (!OCFS2_IS_VALID_DINODE(di)) {
5224 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5229 if (le16_to_cpu(tl->tl_used)) {
5230 mlog(0, "We'll have %u logs to recover\n",
5231 le16_to_cpu(tl->tl_used));
5233 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5240 /* Assuming the write-out below goes well, this copy
5241 * will be passed back to recovery for processing. */
5242 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5244 /* All we need to do to clear the truncate log is set
5248 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5261 if (status < 0 && (*tl_copy)) {
5270 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5271 struct ocfs2_dinode *tl_copy)
5275 unsigned int clusters, num_recs, start_cluster;
5278 struct inode *tl_inode = osb->osb_tl_inode;
5279 struct ocfs2_truncate_log *tl;
5283 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5284 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5288 tl = &tl_copy->id2.i_dealloc;
5289 num_recs = le16_to_cpu(tl->tl_used);
5290 mlog(0, "cleanup %u records from %llu\n", num_recs,
5291 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5293 mutex_lock(&tl_inode->i_mutex);
5294 for(i = 0; i < num_recs; i++) {
5295 if (ocfs2_truncate_log_needs_flush(osb)) {
5296 status = __ocfs2_flush_truncate_log(osb);
5303 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5304 if (IS_ERR(handle)) {
5305 status = PTR_ERR(handle);
5310 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5311 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5312 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5314 status = ocfs2_truncate_log_append(osb, handle,
5315 start_blk, clusters);
5316 ocfs2_commit_trans(osb, handle);
5324 mutex_unlock(&tl_inode->i_mutex);
5330 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5333 struct inode *tl_inode = osb->osb_tl_inode;
5338 cancel_delayed_work(&osb->osb_truncate_log_wq);
5339 flush_workqueue(ocfs2_wq);
5341 status = ocfs2_flush_truncate_log(osb);
5345 brelse(osb->osb_tl_bh);
5346 iput(osb->osb_tl_inode);
5352 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5355 struct inode *tl_inode = NULL;
5356 struct buffer_head *tl_bh = NULL;
5360 status = ocfs2_get_truncate_log_info(osb,
5367 /* ocfs2_truncate_log_shutdown keys on the existence of
5368 * osb->osb_tl_inode so we don't set any of the osb variables
5369 * until we're sure all is well. */
5370 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5371 ocfs2_truncate_log_worker);
5372 osb->osb_tl_bh = tl_bh;
5373 osb->osb_tl_inode = tl_inode;
5380 * Delayed de-allocation of suballocator blocks.
5382 * Some sets of block de-allocations might involve multiple suballocator inodes.
5384 * The locking for this can get extremely complicated, especially when
5385 * the suballocator inodes to delete from aren't known until deep
5386 * within an unrelated codepath.
5388 * ocfs2_extent_block structures are a good example of this - an inode
5389 * btree could have been grown by any number of nodes each allocating
5390 * out of their own suballoc inode.
5392 * These structures allow the delay of block de-allocation until a
5393 * later time, when locking of multiple cluster inodes won't cause
5398 * Describes a single block free from a suballocator
5400 struct ocfs2_cached_block_free {
5401 struct ocfs2_cached_block_free *free_next;
5403 unsigned int free_bit;
5406 struct ocfs2_per_slot_free_list {
5407 struct ocfs2_per_slot_free_list *f_next_suballocator;
5410 struct ocfs2_cached_block_free *f_first;
5413 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5416 struct ocfs2_cached_block_free *head)
5421 struct inode *inode;
5422 struct buffer_head *di_bh = NULL;
5423 struct ocfs2_cached_block_free *tmp;
5425 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5432 mutex_lock(&inode->i_mutex);
5434 ret = ocfs2_inode_lock(inode, &di_bh, 1);
5440 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5441 if (IS_ERR(handle)) {
5442 ret = PTR_ERR(handle);
5448 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5450 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5451 head->free_bit, (unsigned long long)head->free_blk);
5453 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5454 head->free_bit, bg_blkno, 1);
5460 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5467 head = head->free_next;
5472 ocfs2_commit_trans(osb, handle);
5475 ocfs2_inode_unlock(inode, 1);
5478 mutex_unlock(&inode->i_mutex);
5482 /* Premature exit may have left some dangling items. */
5484 head = head->free_next;
5491 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5492 struct ocfs2_cached_dealloc_ctxt *ctxt)
5495 struct ocfs2_per_slot_free_list *fl;
5500 while (ctxt->c_first_suballocator) {
5501 fl = ctxt->c_first_suballocator;
5504 mlog(0, "Free items: (type %u, slot %d)\n",
5505 fl->f_inode_type, fl->f_slot);
5506 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5507 fl->f_slot, fl->f_first);
5514 ctxt->c_first_suballocator = fl->f_next_suballocator;
5521 static struct ocfs2_per_slot_free_list *
5522 ocfs2_find_per_slot_free_list(int type,
5524 struct ocfs2_cached_dealloc_ctxt *ctxt)
5526 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5529 if (fl->f_inode_type == type && fl->f_slot == slot)
5532 fl = fl->f_next_suballocator;
5535 fl = kmalloc(sizeof(*fl), GFP_NOFS);
5537 fl->f_inode_type = type;
5540 fl->f_next_suballocator = ctxt->c_first_suballocator;
5542 ctxt->c_first_suballocator = fl;
5547 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5548 int type, int slot, u64 blkno,
5552 struct ocfs2_per_slot_free_list *fl;
5553 struct ocfs2_cached_block_free *item;
5555 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5562 item = kmalloc(sizeof(*item), GFP_NOFS);
5569 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5570 type, slot, bit, (unsigned long long)blkno);
5572 item->free_blk = blkno;
5573 item->free_bit = bit;
5574 item->free_next = fl->f_first;
5583 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5584 struct ocfs2_extent_block *eb)
5586 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5587 le16_to_cpu(eb->h_suballoc_slot),
5588 le64_to_cpu(eb->h_blkno),
5589 le16_to_cpu(eb->h_suballoc_bit));
5592 /* This function will figure out whether the currently last extent
5593 * block will be deleted, and if it will, what the new last extent
5594 * block will be so we can update his h_next_leaf_blk field, as well
5595 * as the dinodes i_last_eb_blk */
5596 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5597 unsigned int clusters_to_del,
5598 struct ocfs2_path *path,
5599 struct buffer_head **new_last_eb)
5601 int next_free, ret = 0;
5603 struct ocfs2_extent_rec *rec;
5604 struct ocfs2_extent_block *eb;
5605 struct ocfs2_extent_list *el;
5606 struct buffer_head *bh = NULL;
5608 *new_last_eb = NULL;
5610 /* we have no tree, so of course, no last_eb. */
5611 if (!path->p_tree_depth)
5614 /* trunc to zero special case - this makes tree_depth = 0
5615 * regardless of what it is. */
5616 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5619 el = path_leaf_el(path);
5620 BUG_ON(!el->l_next_free_rec);
5623 * Make sure that this extent list will actually be empty
5624 * after we clear away the data. We can shortcut out if
5625 * there's more than one non-empty extent in the
5626 * list. Otherwise, a check of the remaining extent is
5629 next_free = le16_to_cpu(el->l_next_free_rec);
5631 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5635 /* We may have a valid extent in index 1, check it. */
5637 rec = &el->l_recs[1];
5640 * Fall through - no more nonempty extents, so we want
5641 * to delete this leaf.
5647 rec = &el->l_recs[0];
5652 * Check it we'll only be trimming off the end of this
5655 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5659 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5665 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5671 eb = (struct ocfs2_extent_block *) bh->b_data;
5673 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5674 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5680 get_bh(*new_last_eb);
5681 mlog(0, "returning block %llu, (cpos: %u)\n",
5682 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5690 * Trim some clusters off the rightmost edge of a tree. Only called
5693 * The caller needs to:
5694 * - start journaling of each path component.
5695 * - compute and fully set up any new last ext block
5697 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5698 handle_t *handle, struct ocfs2_truncate_context *tc,
5699 u32 clusters_to_del, u64 *delete_start)
5701 int ret, i, index = path->p_tree_depth;
5704 struct buffer_head *bh;
5705 struct ocfs2_extent_list *el;
5706 struct ocfs2_extent_rec *rec;
5710 while (index >= 0) {
5711 bh = path->p_node[index].bh;
5712 el = path->p_node[index].el;
5714 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5715 index, (unsigned long long)bh->b_blocknr);
5717 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5720 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5721 ocfs2_error(inode->i_sb,
5722 "Inode %lu has invalid ext. block %llu",
5724 (unsigned long long)bh->b_blocknr);
5730 i = le16_to_cpu(el->l_next_free_rec) - 1;
5731 rec = &el->l_recs[i];
5733 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5734 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5735 ocfs2_rec_clusters(el, rec),
5736 (unsigned long long)le64_to_cpu(rec->e_blkno),
5737 le16_to_cpu(el->l_next_free_rec));
5739 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5741 if (le16_to_cpu(el->l_tree_depth) == 0) {
5743 * If the leaf block contains a single empty
5744 * extent and no records, we can just remove
5747 if (i == 0 && ocfs2_is_empty_extent(rec)) {
5749 sizeof(struct ocfs2_extent_rec));
5750 el->l_next_free_rec = cpu_to_le16(0);
5756 * Remove any empty extents by shifting things
5757 * left. That should make life much easier on
5758 * the code below. This condition is rare
5759 * enough that we shouldn't see a performance
5762 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5763 le16_add_cpu(&el->l_next_free_rec, -1);
5766 i < le16_to_cpu(el->l_next_free_rec); i++)
5767 el->l_recs[i] = el->l_recs[i + 1];
5769 memset(&el->l_recs[i], 0,
5770 sizeof(struct ocfs2_extent_rec));
5773 * We've modified our extent list. The
5774 * simplest way to handle this change
5775 * is to being the search from the
5778 goto find_tail_record;
5781 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5784 * We'll use "new_edge" on our way back up the
5785 * tree to know what our rightmost cpos is.
5787 new_edge = le16_to_cpu(rec->e_leaf_clusters);
5788 new_edge += le32_to_cpu(rec->e_cpos);
5791 * The caller will use this to delete data blocks.
5793 *delete_start = le64_to_cpu(rec->e_blkno)
5794 + ocfs2_clusters_to_blocks(inode->i_sb,
5795 le16_to_cpu(rec->e_leaf_clusters));
5798 * If it's now empty, remove this record.
5800 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5802 sizeof(struct ocfs2_extent_rec));
5803 le16_add_cpu(&el->l_next_free_rec, -1);
5806 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5808 sizeof(struct ocfs2_extent_rec));
5809 le16_add_cpu(&el->l_next_free_rec, -1);
5814 /* Can this actually happen? */
5815 if (le16_to_cpu(el->l_next_free_rec) == 0)
5819 * We never actually deleted any clusters
5820 * because our leaf was empty. There's no
5821 * reason to adjust the rightmost edge then.
5826 rec->e_int_clusters = cpu_to_le32(new_edge);
5827 le32_add_cpu(&rec->e_int_clusters,
5828 -le32_to_cpu(rec->e_cpos));
5831 * A deleted child record should have been
5834 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5838 ret = ocfs2_journal_dirty(handle, bh);
5844 mlog(0, "extent list container %llu, after: record %d: "
5845 "(%u, %u, %llu), next = %u.\n",
5846 (unsigned long long)bh->b_blocknr, i,
5847 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5848 (unsigned long long)le64_to_cpu(rec->e_blkno),
5849 le16_to_cpu(el->l_next_free_rec));
5852 * We must be careful to only attempt delete of an
5853 * extent block (and not the root inode block).
5855 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5856 struct ocfs2_extent_block *eb =
5857 (struct ocfs2_extent_block *)bh->b_data;
5860 * Save this for use when processing the
5863 deleted_eb = le64_to_cpu(eb->h_blkno);
5865 mlog(0, "deleting this extent block.\n");
5867 ocfs2_remove_from_cache(inode, bh);
5869 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5870 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5871 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5873 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5874 /* An error here is not fatal. */
5889 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5890 unsigned int clusters_to_del,
5891 struct inode *inode,
5892 struct buffer_head *fe_bh,
5894 struct ocfs2_truncate_context *tc,
5895 struct ocfs2_path *path)
5898 struct ocfs2_dinode *fe;
5899 struct ocfs2_extent_block *last_eb = NULL;
5900 struct ocfs2_extent_list *el;
5901 struct buffer_head *last_eb_bh = NULL;
5904 fe = (struct ocfs2_dinode *) fe_bh->b_data;
5906 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5914 * Each component will be touched, so we might as well journal
5915 * here to avoid having to handle errors later.
5917 status = ocfs2_journal_access_path(inode, handle, path);
5924 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5925 OCFS2_JOURNAL_ACCESS_WRITE);
5931 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5934 el = &(fe->id2.i_list);
5937 * Lower levels depend on this never happening, but it's best
5938 * to check it up here before changing the tree.
5940 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5941 ocfs2_error(inode->i_sb,
5942 "Inode %lu has an empty extent record, depth %u\n",
5943 inode->i_ino, le16_to_cpu(el->l_tree_depth));
5948 spin_lock(&OCFS2_I(inode)->ip_lock);
5949 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5951 spin_unlock(&OCFS2_I(inode)->ip_lock);
5952 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5953 inode->i_blocks = ocfs2_inode_sector_count(inode);
5955 status = ocfs2_trim_tree(inode, path, handle, tc,
5956 clusters_to_del, &delete_blk);
5962 if (le32_to_cpu(fe->i_clusters) == 0) {
5963 /* trunc to zero is a special case. */
5964 el->l_tree_depth = 0;
5965 fe->i_last_eb_blk = 0;
5967 fe->i_last_eb_blk = last_eb->h_blkno;
5969 status = ocfs2_journal_dirty(handle, fe_bh);
5976 /* If there will be a new last extent block, then by
5977 * definition, there cannot be any leaves to the right of
5979 last_eb->h_next_leaf_blk = 0;
5980 status = ocfs2_journal_dirty(handle, last_eb_bh);
5988 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6002 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6004 set_buffer_uptodate(bh);
6005 mark_buffer_dirty(bh);
6009 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6011 set_buffer_uptodate(bh);
6012 mark_buffer_dirty(bh);
6013 return ocfs2_journal_dirty_data(handle, bh);
6016 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6017 unsigned int from, unsigned int to,
6018 struct page *page, int zero, u64 *phys)
6020 int ret, partial = 0;
6022 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6027 zero_user_segment(page, from, to);
6030 * Need to set the buffers we zero'd into uptodate
6031 * here if they aren't - ocfs2_map_page_blocks()
6032 * might've skipped some
6034 if (ocfs2_should_order_data(inode)) {
6035 ret = walk_page_buffers(handle,
6038 ocfs2_ordered_zero_func);
6042 ret = walk_page_buffers(handle, page_buffers(page),
6044 ocfs2_writeback_zero_func);
6050 SetPageUptodate(page);
6052 flush_dcache_page(page);
6055 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6056 loff_t end, struct page **pages,
6057 int numpages, u64 phys, handle_t *handle)
6061 unsigned int from, to = PAGE_CACHE_SIZE;
6062 struct super_block *sb = inode->i_sb;
6064 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6069 to = PAGE_CACHE_SIZE;
6070 for(i = 0; i < numpages; i++) {
6073 from = start & (PAGE_CACHE_SIZE - 1);
6074 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6075 to = end & (PAGE_CACHE_SIZE - 1);
6077 BUG_ON(from > PAGE_CACHE_SIZE);
6078 BUG_ON(to > PAGE_CACHE_SIZE);
6080 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6083 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6087 ocfs2_unlock_and_free_pages(pages, numpages);
6090 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6091 struct page **pages, int *num)
6093 int numpages, ret = 0;
6094 struct super_block *sb = inode->i_sb;
6095 struct address_space *mapping = inode->i_mapping;
6096 unsigned long index;
6097 loff_t last_page_bytes;
6099 BUG_ON(start > end);
6101 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6102 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6105 last_page_bytes = PAGE_ALIGN(end);
6106 index = start >> PAGE_CACHE_SHIFT;
6108 pages[numpages] = grab_cache_page(mapping, index);
6109 if (!pages[numpages]) {
6117 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6122 ocfs2_unlock_and_free_pages(pages, numpages);
6132 * Zero the area past i_size but still within an allocated
6133 * cluster. This avoids exposing nonzero data on subsequent file
6136 * We need to call this before i_size is updated on the inode because
6137 * otherwise block_write_full_page() will skip writeout of pages past
6138 * i_size. The new_i_size parameter is passed for this reason.
6140 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6141 u64 range_start, u64 range_end)
6143 int ret = 0, numpages;
6144 struct page **pages = NULL;
6146 unsigned int ext_flags;
6147 struct super_block *sb = inode->i_sb;
6150 * File systems which don't support sparse files zero on every
6153 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6156 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6157 sizeof(struct page *), GFP_NOFS);
6158 if (pages == NULL) {
6164 if (range_start == range_end)
6167 ret = ocfs2_extent_map_get_blocks(inode,
6168 range_start >> sb->s_blocksize_bits,
6169 &phys, NULL, &ext_flags);
6176 * Tail is a hole, or is marked unwritten. In either case, we
6177 * can count on read and write to return/push zero's.
6179 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6182 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6189 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6190 numpages, phys, handle);
6193 * Initiate writeout of the pages we zero'd here. We don't
6194 * wait on them - the truncate_inode_pages() call later will
6197 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6198 range_end - 1, SYNC_FILE_RANGE_WRITE);
6209 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6211 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6213 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6216 void ocfs2_dinode_new_extent_list(struct inode *inode,
6217 struct ocfs2_dinode *di)
6219 ocfs2_zero_dinode_id2(inode, di);
6220 di->id2.i_list.l_tree_depth = 0;
6221 di->id2.i_list.l_next_free_rec = 0;
6222 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6225 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6227 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6228 struct ocfs2_inline_data *idata = &di->id2.i_data;
6230 spin_lock(&oi->ip_lock);
6231 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6232 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6233 spin_unlock(&oi->ip_lock);
6236 * We clear the entire i_data structure here so that all
6237 * fields can be properly initialized.
6239 ocfs2_zero_dinode_id2(inode, di);
6241 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6244 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6245 struct buffer_head *di_bh)
6247 int ret, i, has_data, num_pages = 0;
6249 u64 uninitialized_var(block);
6250 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6251 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6252 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6253 struct ocfs2_alloc_context *data_ac = NULL;
6254 struct page **pages = NULL;
6255 loff_t end = osb->s_clustersize;
6257 has_data = i_size_read(inode) ? 1 : 0;
6260 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6261 sizeof(struct page *), GFP_NOFS);
6262 if (pages == NULL) {
6268 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6275 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6276 if (IS_ERR(handle)) {
6277 ret = PTR_ERR(handle);
6282 ret = ocfs2_journal_access(handle, inode, di_bh,
6283 OCFS2_JOURNAL_ACCESS_WRITE);
6291 unsigned int page_end;
6294 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6302 * Save two copies, one for insert, and one that can
6303 * be changed by ocfs2_map_and_dirty_page() below.
6305 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6308 * Non sparse file systems zero on extend, so no need
6311 if (!ocfs2_sparse_alloc(osb) &&
6312 PAGE_CACHE_SIZE < osb->s_clustersize)
6313 end = PAGE_CACHE_SIZE;
6315 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6322 * This should populate the 1st page for us and mark
6325 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6331 page_end = PAGE_CACHE_SIZE;
6332 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6333 page_end = osb->s_clustersize;
6335 for (i = 0; i < num_pages; i++)
6336 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6337 pages[i], i > 0, &phys);
6340 spin_lock(&oi->ip_lock);
6341 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6342 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6343 spin_unlock(&oi->ip_lock);
6345 ocfs2_dinode_new_extent_list(inode, di);
6347 ocfs2_journal_dirty(handle, di_bh);
6351 * An error at this point should be extremely rare. If
6352 * this proves to be false, we could always re-build
6353 * the in-inode data from our pages.
6355 ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6356 0, block, 1, 0, NULL);
6362 inode->i_blocks = ocfs2_inode_sector_count(inode);
6366 ocfs2_commit_trans(osb, handle);
6370 ocfs2_free_alloc_context(data_ac);
6374 ocfs2_unlock_and_free_pages(pages, num_pages);
6382 * It is expected, that by the time you call this function,
6383 * inode->i_size and fe->i_size have been adjusted.
6385 * WARNING: This will kfree the truncate context
6387 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6388 struct inode *inode,
6389 struct buffer_head *fe_bh,
6390 struct ocfs2_truncate_context *tc)
6392 int status, i, credits, tl_sem = 0;
6393 u32 clusters_to_del, new_highest_cpos, range;
6394 struct ocfs2_extent_list *el;
6395 handle_t *handle = NULL;
6396 struct inode *tl_inode = osb->osb_tl_inode;
6397 struct ocfs2_path *path = NULL;
6401 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6402 i_size_read(inode));
6404 path = ocfs2_new_inode_path(fe_bh);
6411 ocfs2_extent_map_trunc(inode, new_highest_cpos);
6415 * Check that we still have allocation to delete.
6417 if (OCFS2_I(inode)->ip_clusters == 0) {
6423 * Truncate always works against the rightmost tree branch.
6425 status = ocfs2_find_path(inode, path, UINT_MAX);
6431 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6432 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6435 * By now, el will point to the extent list on the bottom most
6436 * portion of this tree. Only the tail record is considered in
6439 * We handle the following cases, in order:
6440 * - empty extent: delete the remaining branch
6441 * - remove the entire record
6442 * - remove a partial record
6443 * - no record needs to be removed (truncate has completed)
6445 el = path_leaf_el(path);
6446 if (le16_to_cpu(el->l_next_free_rec) == 0) {
6447 ocfs2_error(inode->i_sb,
6448 "Inode %llu has empty extent block at %llu\n",
6449 (unsigned long long)OCFS2_I(inode)->ip_blkno,
6450 (unsigned long long)path_leaf_bh(path)->b_blocknr);
6455 i = le16_to_cpu(el->l_next_free_rec) - 1;
6456 range = le32_to_cpu(el->l_recs[i].e_cpos) +
6457 ocfs2_rec_clusters(el, &el->l_recs[i]);
6458 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6459 clusters_to_del = 0;
6460 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6461 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6462 } else if (range > new_highest_cpos) {
6463 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6464 le32_to_cpu(el->l_recs[i].e_cpos)) -
6471 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6472 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6474 mutex_lock(&tl_inode->i_mutex);
6476 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6477 * record is free for use. If there isn't any, we flush to get
6478 * an empty truncate log. */
6479 if (ocfs2_truncate_log_needs_flush(osb)) {
6480 status = __ocfs2_flush_truncate_log(osb);
6487 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6488 (struct ocfs2_dinode *)fe_bh->b_data,
6490 handle = ocfs2_start_trans(osb, credits);
6491 if (IS_ERR(handle)) {
6492 status = PTR_ERR(handle);
6498 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6505 mutex_unlock(&tl_inode->i_mutex);
6508 ocfs2_commit_trans(osb, handle);
6511 ocfs2_reinit_path(path, 1);
6514 * The check above will catch the case where we've truncated
6515 * away all allocation.
6521 ocfs2_schedule_truncate_log_flush(osb, 1);
6524 mutex_unlock(&tl_inode->i_mutex);
6527 ocfs2_commit_trans(osb, handle);
6529 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6531 ocfs2_free_path(path);
6533 /* This will drop the ext_alloc cluster lock for us */
6534 ocfs2_free_truncate_context(tc);
6541 * Expects the inode to already be locked.
6543 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6544 struct inode *inode,
6545 struct buffer_head *fe_bh,
6546 struct ocfs2_truncate_context **tc)
6549 unsigned int new_i_clusters;
6550 struct ocfs2_dinode *fe;
6551 struct ocfs2_extent_block *eb;
6552 struct buffer_head *last_eb_bh = NULL;
6558 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6559 i_size_read(inode));
6560 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6562 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6563 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6564 (unsigned long long)le64_to_cpu(fe->i_size));
6566 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6572 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6574 if (fe->id2.i_list.l_tree_depth) {
6575 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6576 &last_eb_bh, OCFS2_BH_CACHED, inode);
6581 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6582 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6583 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6591 (*tc)->tc_last_eb_bh = last_eb_bh;
6597 ocfs2_free_truncate_context(*tc);
6605 * 'start' is inclusive, 'end' is not.
6607 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6608 unsigned int start, unsigned int end, int trunc)
6611 unsigned int numbytes;
6613 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6614 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6615 struct ocfs2_inline_data *idata = &di->id2.i_data;
6617 if (end > i_size_read(inode))
6618 end = i_size_read(inode);
6620 BUG_ON(start >= end);
6622 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6623 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6624 !ocfs2_supports_inline_data(osb)) {
6625 ocfs2_error(inode->i_sb,
6626 "Inline data flags for inode %llu don't agree! "
6627 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6628 (unsigned long long)OCFS2_I(inode)->ip_blkno,
6629 le16_to_cpu(di->i_dyn_features),
6630 OCFS2_I(inode)->ip_dyn_features,
6631 osb->s_feature_incompat);
6636 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6637 if (IS_ERR(handle)) {
6638 ret = PTR_ERR(handle);
6643 ret = ocfs2_journal_access(handle, inode, di_bh,
6644 OCFS2_JOURNAL_ACCESS_WRITE);
6650 numbytes = end - start;
6651 memset(idata->id_data + start, 0, numbytes);
6654 * No need to worry about the data page here - it's been
6655 * truncated already and inline data doesn't need it for
6656 * pushing zero's to disk, so we'll let readpage pick it up
6660 i_size_write(inode, start);
6661 di->i_size = cpu_to_le64(start);
6664 inode->i_blocks = ocfs2_inode_sector_count(inode);
6665 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6667 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6668 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6670 ocfs2_journal_dirty(handle, di_bh);
6673 ocfs2_commit_trans(osb, handle);
6679 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6682 * The caller is responsible for completing deallocation
6683 * before freeing the context.
6685 if (tc->tc_dealloc.c_first_suballocator != NULL)
6687 "Truncate completion has non-empty dealloc context\n");
6689 if (tc->tc_last_eb_bh)
6690 brelse(tc->tc_last_eb_bh);