Merge Christoph's freeze cleanup patch
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR           (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE         32
34
35 struct scsi_host_sg_pool {
36         size_t          size;
37         char            *name; 
38         kmem_cache_t    *slab;
39         mempool_t       *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x } 
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48         SP(8),
49         SP(16),
50         SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52         SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54         SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56         SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };      
64 #undef SP
65
66
67 /*
68  * Function:    scsi_insert_special_req()
69  *
70  * Purpose:     Insert pre-formed request into request queue.
71  *
72  * Arguments:   sreq    - request that is ready to be queued.
73  *              at_head - boolean.  True if we should insert at head
74  *                        of queue, false if we should insert at tail.
75  *
76  * Lock status: Assumed that lock is not held upon entry.
77  *
78  * Returns:     Nothing
79  *
80  * Notes:       This function is called from character device and from
81  *              ioctl types of functions where the caller knows exactly
82  *              what SCSI command needs to be issued.   The idea is that
83  *              we merely inject the command into the queue (at the head
84  *              for now), and then call the queue request function to actually
85  *              process it.
86  */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89         /*
90          * Because users of this function are apt to reuse requests with no
91          * modification, we have to sanitise the request flags here
92          */
93         sreq->sr_request->flags &= ~REQ_DONTPREP;
94         blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95                            at_head, sreq);
96         return 0;
97 }
98
99 static void scsi_run_queue(struct request_queue *q);
100
101 /*
102  * Function:    scsi_queue_insert()
103  *
104  * Purpose:     Insert a command in the midlevel queue.
105  *
106  * Arguments:   cmd    - command that we are adding to queue.
107  *              reason - why we are inserting command to queue.
108  *
109  * Lock status: Assumed that lock is not held upon entry.
110  *
111  * Returns:     Nothing.
112  *
113  * Notes:       We do this for one of two cases.  Either the host is busy
114  *              and it cannot accept any more commands for the time being,
115  *              or the device returned QUEUE_FULL and can accept no more
116  *              commands.
117  * Notes:       This could be called either from an interrupt context or a
118  *              normal process context.
119  */
120 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121 {
122         struct Scsi_Host *host = cmd->device->host;
123         struct scsi_device *device = cmd->device;
124         struct request_queue *q = device->request_queue;
125         unsigned long flags;
126
127         SCSI_LOG_MLQUEUE(1,
128                  printk("Inserting command %p into mlqueue\n", cmd));
129
130         /*
131          * Set the appropriate busy bit for the device/host.
132          *
133          * If the host/device isn't busy, assume that something actually
134          * completed, and that we should be able to queue a command now.
135          *
136          * Note that the prior mid-layer assumption that any host could
137          * always queue at least one command is now broken.  The mid-layer
138          * will implement a user specifiable stall (see
139          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140          * if a command is requeued with no other commands outstanding
141          * either for the device or for the host.
142          */
143         if (reason == SCSI_MLQUEUE_HOST_BUSY)
144                 host->host_blocked = host->max_host_blocked;
145         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146                 device->device_blocked = device->max_device_blocked;
147
148         /*
149          * Register the fact that we own the thing for now.
150          */
151         cmd->state = SCSI_STATE_MLQUEUE;
152         cmd->owner = SCSI_OWNER_MIDLEVEL;
153
154         /*
155          * Decrement the counters, since these commands are no longer
156          * active on the host/device.
157          */
158         scsi_device_unbusy(device);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue.
163          *
164          * NOTE: there is magic here about the way the queue is plugged if
165          * we have no outstanding commands.
166          * 
167          * Although we *don't* plug the queue, we call the request
168          * function.  The SCSI request function detects the blocked condition
169          * and plugs the queue appropriately.
170          */
171         spin_lock_irqsave(q->queue_lock, flags);
172         blk_requeue_request(q, cmd->request);
173         spin_unlock_irqrestore(q->queue_lock, flags);
174
175         scsi_run_queue(q);
176
177         return 0;
178 }
179
180 /*
181  * Function:    scsi_do_req
182  *
183  * Purpose:     Queue a SCSI request
184  *
185  * Arguments:   sreq      - command descriptor.
186  *              cmnd      - actual SCSI command to be performed.
187  *              buffer    - data buffer.
188  *              bufflen   - size of data buffer.
189  *              done      - completion function to be run.
190  *              timeout   - how long to let it run before timeout.
191  *              retries   - number of retries we allow.
192  *
193  * Lock status: No locks held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       This function is only used for queueing requests for things
198  *              like ioctls and character device requests - this is because
199  *              we essentially just inject a request into the queue for the
200  *              device.
201  *
202  *              In order to support the scsi_device_quiesce function, we
203  *              now inject requests on the *head* of the device queue
204  *              rather than the tail.
205  */
206 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
207                  void *buffer, unsigned bufflen,
208                  void (*done)(struct scsi_cmnd *),
209                  int timeout, int retries)
210 {
211         /*
212          * If the upper level driver is reusing these things, then
213          * we should release the low-level block now.  Another one will
214          * be allocated later when this request is getting queued.
215          */
216         __scsi_release_request(sreq);
217
218         /*
219          * Our own function scsi_done (which marks the host as not busy,
220          * disables the timeout counter, etc) will be called by us or by the
221          * scsi_hosts[host].queuecommand() function needs to also call
222          * the completion function for the high level driver.
223          */
224         memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
225         sreq->sr_bufflen = bufflen;
226         sreq->sr_buffer = buffer;
227         sreq->sr_allowed = retries;
228         sreq->sr_done = done;
229         sreq->sr_timeout_per_command = timeout;
230
231         if (sreq->sr_cmd_len == 0)
232                 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
233
234         /*
235          * head injection *required* here otherwise quiesce won't work
236          */
237         scsi_insert_special_req(sreq, 1);
238 }
239 EXPORT_SYMBOL(scsi_do_req);
240
241 static void scsi_wait_done(struct scsi_cmnd *cmd)
242 {
243         struct request *req = cmd->request;
244         struct request_queue *q = cmd->device->request_queue;
245         unsigned long flags;
246
247         req->rq_status = RQ_SCSI_DONE;  /* Busy, but indicate request done */
248
249         spin_lock_irqsave(q->queue_lock, flags);
250         if (blk_rq_tagged(req))
251                 blk_queue_end_tag(q, req);
252         spin_unlock_irqrestore(q->queue_lock, flags);
253
254         if (req->waiting)
255                 complete(req->waiting);
256 }
257
258 /* This is the end routine we get to if a command was never attached
259  * to the request.  Simply complete the request without changing
260  * rq_status; this will cause a DRIVER_ERROR. */
261 static void scsi_wait_req_end_io(struct request *req)
262 {
263         BUG_ON(!req->waiting);
264
265         complete(req->waiting);
266 }
267
268 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
269                    unsigned bufflen, int timeout, int retries)
270 {
271         DECLARE_COMPLETION(wait);
272         
273         sreq->sr_request->waiting = &wait;
274         sreq->sr_request->rq_status = RQ_SCSI_BUSY;
275         sreq->sr_request->end_io = scsi_wait_req_end_io;
276         scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
277                         timeout, retries);
278         wait_for_completion(&wait);
279         sreq->sr_request->waiting = NULL;
280         if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
281                 sreq->sr_result |= (DRIVER_ERROR << 24);
282
283         __scsi_release_request(sreq);
284 }
285 EXPORT_SYMBOL(scsi_wait_req);
286
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd     - command that is ready to be queued.
293  *
294  * Returns:     Nothing
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
300 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302         cmd->owner = SCSI_OWNER_MIDLEVEL;
303         cmd->serial_number = 0;
304         cmd->abort_reason = 0;
305
306         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
307
308         if (cmd->cmd_len == 0)
309                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
310
311         /*
312          * We need saved copies of a number of fields - this is because
313          * error handling may need to overwrite these with different values
314          * to run different commands, and once error handling is complete,
315          * we will need to restore these values prior to running the actual
316          * command.
317          */
318         cmd->old_use_sg = cmd->use_sg;
319         cmd->old_cmd_len = cmd->cmd_len;
320         cmd->sc_old_data_direction = cmd->sc_data_direction;
321         cmd->old_underflow = cmd->underflow;
322         memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
323         cmd->buffer = cmd->request_buffer;
324         cmd->bufflen = cmd->request_bufflen;
325         cmd->abort_reason = 0;
326
327         return 1;
328 }
329
330 /*
331  * Function:   scsi_setup_cmd_retry()
332  *
333  * Purpose:    Restore the command state for a retry
334  *
335  * Arguments:  cmd      - command to be restored
336  *
337  * Returns:    Nothing
338  *
339  * Notes:      Immediately prior to retrying a command, we need
340  *             to restore certain fields that we saved above.
341  */
342 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
343 {
344         memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
345         cmd->request_buffer = cmd->buffer;
346         cmd->request_bufflen = cmd->bufflen;
347         cmd->use_sg = cmd->old_use_sg;
348         cmd->cmd_len = cmd->old_cmd_len;
349         cmd->sc_data_direction = cmd->sc_old_data_direction;
350         cmd->underflow = cmd->old_underflow;
351 }
352
353 void scsi_device_unbusy(struct scsi_device *sdev)
354 {
355         struct Scsi_Host *shost = sdev->host;
356         unsigned long flags;
357
358         spin_lock_irqsave(shost->host_lock, flags);
359         shost->host_busy--;
360         if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
361                      shost->host_failed))
362                 scsi_eh_wakeup(shost);
363         spin_unlock(shost->host_lock);
364         spin_lock(sdev->request_queue->queue_lock);
365         sdev->device_busy--;
366         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
367 }
368
369 /*
370  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
371  * and call blk_run_queue for all the scsi_devices on the target -
372  * including current_sdev first.
373  *
374  * Called with *no* scsi locks held.
375  */
376 static void scsi_single_lun_run(struct scsi_device *current_sdev)
377 {
378         struct Scsi_Host *shost = current_sdev->host;
379         struct scsi_device *sdev, *tmp;
380         struct scsi_target *starget = scsi_target(current_sdev);
381         unsigned long flags;
382
383         spin_lock_irqsave(shost->host_lock, flags);
384         starget->starget_sdev_user = NULL;
385         spin_unlock_irqrestore(shost->host_lock, flags);
386
387         /*
388          * Call blk_run_queue for all LUNs on the target, starting with
389          * current_sdev. We race with others (to set starget_sdev_user),
390          * but in most cases, we will be first. Ideally, each LU on the
391          * target would get some limited time or requests on the target.
392          */
393         blk_run_queue(current_sdev->request_queue);
394
395         spin_lock_irqsave(shost->host_lock, flags);
396         if (starget->starget_sdev_user)
397                 goto out;
398         list_for_each_entry_safe(sdev, tmp, &starget->devices,
399                         same_target_siblings) {
400                 if (sdev == current_sdev)
401                         continue;
402                 if (scsi_device_get(sdev))
403                         continue;
404
405                 spin_unlock_irqrestore(shost->host_lock, flags);
406                 blk_run_queue(sdev->request_queue);
407                 spin_lock_irqsave(shost->host_lock, flags);
408         
409                 scsi_device_put(sdev);
410         }
411  out:
412         spin_unlock_irqrestore(shost->host_lock, flags);
413 }
414
415 /*
416  * Function:    scsi_run_queue()
417  *
418  * Purpose:     Select a proper request queue to serve next
419  *
420  * Arguments:   q       - last request's queue
421  *
422  * Returns:     Nothing
423  *
424  * Notes:       The previous command was completely finished, start
425  *              a new one if possible.
426  */
427 static void scsi_run_queue(struct request_queue *q)
428 {
429         struct scsi_device *sdev = q->queuedata;
430         struct Scsi_Host *shost = sdev->host;
431         unsigned long flags;
432
433         if (sdev->single_lun)
434                 scsi_single_lun_run(sdev);
435
436         spin_lock_irqsave(shost->host_lock, flags);
437         while (!list_empty(&shost->starved_list) &&
438                !shost->host_blocked && !shost->host_self_blocked &&
439                 !((shost->can_queue > 0) &&
440                   (shost->host_busy >= shost->can_queue))) {
441                 /*
442                  * As long as shost is accepting commands and we have
443                  * starved queues, call blk_run_queue. scsi_request_fn
444                  * drops the queue_lock and can add us back to the
445                  * starved_list.
446                  *
447                  * host_lock protects the starved_list and starved_entry.
448                  * scsi_request_fn must get the host_lock before checking
449                  * or modifying starved_list or starved_entry.
450                  */
451                 sdev = list_entry(shost->starved_list.next,
452                                           struct scsi_device, starved_entry);
453                 list_del_init(&sdev->starved_entry);
454                 spin_unlock_irqrestore(shost->host_lock, flags);
455
456                 blk_run_queue(sdev->request_queue);
457
458                 spin_lock_irqsave(shost->host_lock, flags);
459                 if (unlikely(!list_empty(&sdev->starved_entry)))
460                         /*
461                          * sdev lost a race, and was put back on the
462                          * starved list. This is unlikely but without this
463                          * in theory we could loop forever.
464                          */
465                         break;
466         }
467         spin_unlock_irqrestore(shost->host_lock, flags);
468
469         blk_run_queue(q);
470 }
471
472 /*
473  * Function:    scsi_requeue_command()
474  *
475  * Purpose:     Handle post-processing of completed commands.
476  *
477  * Arguments:   q       - queue to operate on
478  *              cmd     - command that may need to be requeued.
479  *
480  * Returns:     Nothing
481  *
482  * Notes:       After command completion, there may be blocks left
483  *              over which weren't finished by the previous command
484  *              this can be for a number of reasons - the main one is
485  *              I/O errors in the middle of the request, in which case
486  *              we need to request the blocks that come after the bad
487  *              sector.
488  */
489 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
490 {
491         unsigned long flags;
492
493         cmd->request->flags &= ~REQ_DONTPREP;
494
495         spin_lock_irqsave(q->queue_lock, flags);
496         blk_requeue_request(q, cmd->request);
497         spin_unlock_irqrestore(q->queue_lock, flags);
498
499         scsi_run_queue(q);
500 }
501
502 void scsi_next_command(struct scsi_cmnd *cmd)
503 {
504         struct request_queue *q = cmd->device->request_queue;
505
506         scsi_put_command(cmd);
507         scsi_run_queue(q);
508 }
509
510 void scsi_run_host_queues(struct Scsi_Host *shost)
511 {
512         struct scsi_device *sdev;
513
514         shost_for_each_device(sdev, shost)
515                 scsi_run_queue(sdev->request_queue);
516 }
517
518 /*
519  * Function:    scsi_end_request()
520  *
521  * Purpose:     Post-processing of completed commands (usually invoked at end
522  *              of upper level post-processing and scsi_io_completion).
523  *
524  * Arguments:   cmd      - command that is complete.
525  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
526  *              bytes    - number of bytes of completed I/O
527  *              requeue  - indicates whether we should requeue leftovers.
528  *
529  * Lock status: Assumed that lock is not held upon entry.
530  *
531  * Returns:     cmd if requeue done or required, NULL otherwise
532  *
533  * Notes:       This is called for block device requests in order to
534  *              mark some number of sectors as complete.
535  * 
536  *              We are guaranteeing that the request queue will be goosed
537  *              at some point during this call.
538  */
539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
540                                           int bytes, int requeue)
541 {
542         request_queue_t *q = cmd->device->request_queue;
543         struct request *req = cmd->request;
544         unsigned long flags;
545
546         /*
547          * If there are blocks left over at the end, set up the command
548          * to queue the remainder of them.
549          */
550         if (end_that_request_chunk(req, uptodate, bytes)) {
551                 int leftover = (req->hard_nr_sectors << 9);
552
553                 if (blk_pc_request(req))
554                         leftover = req->data_len;
555
556                 /* kill remainder if no retrys */
557                 if (!uptodate && blk_noretry_request(req))
558                         end_that_request_chunk(req, 0, leftover);
559                 else {
560                         if (requeue)
561                                 /*
562                                  * Bleah.  Leftovers again.  Stick the
563                                  * leftovers in the front of the
564                                  * queue, and goose the queue again.
565                                  */
566                                 scsi_requeue_command(q, cmd);
567
568                         return cmd;
569                 }
570         }
571
572         add_disk_randomness(req->rq_disk);
573
574         spin_lock_irqsave(q->queue_lock, flags);
575         if (blk_rq_tagged(req))
576                 blk_queue_end_tag(q, req);
577         end_that_request_last(req);
578         spin_unlock_irqrestore(q->queue_lock, flags);
579
580         /*
581          * This will goose the queue request function at the end, so we don't
582          * need to worry about launching another command.
583          */
584         scsi_next_command(cmd);
585         return NULL;
586 }
587
588 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
589 {
590         struct scsi_host_sg_pool *sgp;
591         struct scatterlist *sgl;
592
593         BUG_ON(!cmd->use_sg);
594
595         switch (cmd->use_sg) {
596         case 1 ... 8:
597                 cmd->sglist_len = 0;
598                 break;
599         case 9 ... 16:
600                 cmd->sglist_len = 1;
601                 break;
602         case 17 ... 32:
603                 cmd->sglist_len = 2;
604                 break;
605 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
606         case 33 ... 64:
607                 cmd->sglist_len = 3;
608                 break;
609 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
610         case 65 ... 128:
611                 cmd->sglist_len = 4;
612                 break;
613 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
614         case 129 ... 256:
615                 cmd->sglist_len = 5;
616                 break;
617 #endif
618 #endif
619 #endif
620         default:
621                 return NULL;
622         }
623
624         sgp = scsi_sg_pools + cmd->sglist_len;
625         sgl = mempool_alloc(sgp->pool, gfp_mask);
626         if (sgl)
627                 memset(sgl, 0, sgp->size);
628         return sgl;
629 }
630
631 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
632 {
633         struct scsi_host_sg_pool *sgp;
634
635         BUG_ON(index > SG_MEMPOOL_NR);
636
637         sgp = scsi_sg_pools + index;
638         mempool_free(sgl, sgp->pool);
639 }
640
641 /*
642  * Function:    scsi_release_buffers()
643  *
644  * Purpose:     Completion processing for block device I/O requests.
645  *
646  * Arguments:   cmd     - command that we are bailing.
647  *
648  * Lock status: Assumed that no lock is held upon entry.
649  *
650  * Returns:     Nothing
651  *
652  * Notes:       In the event that an upper level driver rejects a
653  *              command, we must release resources allocated during
654  *              the __init_io() function.  Primarily this would involve
655  *              the scatter-gather table, and potentially any bounce
656  *              buffers.
657  */
658 static void scsi_release_buffers(struct scsi_cmnd *cmd)
659 {
660         struct request *req = cmd->request;
661
662         /*
663          * Free up any indirection buffers we allocated for DMA purposes. 
664          */
665         if (cmd->use_sg)
666                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
667         else if (cmd->request_buffer != req->buffer)
668                 kfree(cmd->request_buffer);
669
670         /*
671          * Zero these out.  They now point to freed memory, and it is
672          * dangerous to hang onto the pointers.
673          */
674         cmd->buffer  = NULL;
675         cmd->bufflen = 0;
676         cmd->request_buffer = NULL;
677         cmd->request_bufflen = 0;
678 }
679
680 /*
681  * Function:    scsi_io_completion()
682  *
683  * Purpose:     Completion processing for block device I/O requests.
684  *
685  * Arguments:   cmd   - command that is finished.
686  *
687  * Lock status: Assumed that no lock is held upon entry.
688  *
689  * Returns:     Nothing
690  *
691  * Notes:       This function is matched in terms of capabilities to
692  *              the function that created the scatter-gather list.
693  *              In other words, if there are no bounce buffers
694  *              (the normal case for most drivers), we don't need
695  *              the logic to deal with cleaning up afterwards.
696  *
697  *              We must do one of several things here:
698  *
699  *              a) Call scsi_end_request.  This will finish off the
700  *                 specified number of sectors.  If we are done, the
701  *                 command block will be released, and the queue
702  *                 function will be goosed.  If we are not done, then
703  *                 scsi_end_request will directly goose the queue.
704  *
705  *              b) We can just use scsi_requeue_command() here.  This would
706  *                 be used if we just wanted to retry, for example.
707  */
708 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
709                         unsigned int block_bytes)
710 {
711         int result = cmd->result;
712         int this_count = cmd->bufflen;
713         request_queue_t *q = cmd->device->request_queue;
714         struct request *req = cmd->request;
715         int clear_errors = 1;
716         struct scsi_sense_hdr sshdr;
717         int sense_valid = 0;
718         int sense_deferred = 0;
719
720         if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
721                 return;
722
723         /*
724          * Free up any indirection buffers we allocated for DMA purposes. 
725          * For the case of a READ, we need to copy the data out of the
726          * bounce buffer and into the real buffer.
727          */
728         if (cmd->use_sg)
729                 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
730         else if (cmd->buffer != req->buffer) {
731                 if (rq_data_dir(req) == READ) {
732                         unsigned long flags;
733                         char *to = bio_kmap_irq(req->bio, &flags);
734                         memcpy(to, cmd->buffer, cmd->bufflen);
735                         bio_kunmap_irq(to, &flags);
736                 }
737                 kfree(cmd->buffer);
738         }
739
740         if (result) {
741                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
742                 if (sense_valid)
743                         sense_deferred = scsi_sense_is_deferred(&sshdr);
744         }
745         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
746                 req->errors = result;
747                 if (result) {
748                         clear_errors = 0;
749                         if (sense_valid && req->sense) {
750                                 /*
751                                  * SG_IO wants current and deferred errors
752                                  */
753                                 int len = 8 + cmd->sense_buffer[7];
754
755                                 if (len > SCSI_SENSE_BUFFERSIZE)
756                                         len = SCSI_SENSE_BUFFERSIZE;
757                                 memcpy(req->sense, cmd->sense_buffer,  len);
758                                 req->sense_len = len;
759                         }
760                 } else
761                         req->data_len = cmd->resid;
762         }
763
764         /*
765          * Zero these out.  They now point to freed memory, and it is
766          * dangerous to hang onto the pointers.
767          */
768         cmd->buffer  = NULL;
769         cmd->bufflen = 0;
770         cmd->request_buffer = NULL;
771         cmd->request_bufflen = 0;
772
773         /*
774          * Next deal with any sectors which we were able to correctly
775          * handle.
776          */
777         if (good_bytes >= 0) {
778                 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
779                                               req->nr_sectors, good_bytes));
780                 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
781
782                 if (clear_errors)
783                         req->errors = 0;
784                 /*
785                  * If multiple sectors are requested in one buffer, then
786                  * they will have been finished off by the first command.
787                  * If not, then we have a multi-buffer command.
788                  *
789                  * If block_bytes != 0, it means we had a medium error
790                  * of some sort, and that we want to mark some number of
791                  * sectors as not uptodate.  Thus we want to inhibit
792                  * requeueing right here - we will requeue down below
793                  * when we handle the bad sectors.
794                  */
795                 cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
796
797                 /*
798                  * If the command completed without error, then either finish off the
799                  * rest of the command, or start a new one.
800                  */
801                 if (result == 0 || cmd == NULL ) {
802                         return;
803                 }
804         }
805         /*
806          * Now, if we were good little boys and girls, Santa left us a request
807          * sense buffer.  We can extract information from this, so we
808          * can choose a block to remap, etc.
809          */
810         if (sense_valid && !sense_deferred) {
811                 switch (sshdr.sense_key) {
812                 case UNIT_ATTENTION:
813                         if (cmd->device->removable) {
814                                 /* detected disc change.  set a bit 
815                                  * and quietly refuse further access.
816                                  */
817                                 cmd->device->changed = 1;
818                                 cmd = scsi_end_request(cmd, 0,
819                                                 this_count, 1);
820                                 return;
821                         } else {
822                                 /*
823                                 * Must have been a power glitch, or a
824                                 * bus reset.  Could not have been a
825                                 * media change, so we just retry the
826                                 * request and see what happens.  
827                                 */
828                                 scsi_requeue_command(q, cmd);
829                                 return;
830                         }
831                         break;
832                 case ILLEGAL_REQUEST:
833                         /*
834                         * If we had an ILLEGAL REQUEST returned, then we may
835                         * have performed an unsupported command.  The only
836                         * thing this should be would be a ten byte read where
837                         * only a six byte read was supported.  Also, on a
838                         * system where READ CAPACITY failed, we may have read
839                         * past the end of the disk.
840                         */
841                         if (cmd->device->use_10_for_rw &&
842                             (cmd->cmnd[0] == READ_10 ||
843                              cmd->cmnd[0] == WRITE_10)) {
844                                 cmd->device->use_10_for_rw = 0;
845                                 /*
846                                  * This will cause a retry with a 6-byte
847                                  * command.
848                                  */
849                                 scsi_requeue_command(q, cmd);
850                                 result = 0;
851                         } else {
852                                 cmd = scsi_end_request(cmd, 0, this_count, 1);
853                                 return;
854                         }
855                         break;
856                 case NOT_READY:
857                         /*
858                          * If the device is in the process of becoming ready,
859                          * retry.
860                          */
861                         if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
862                                 scsi_requeue_command(q, cmd);
863                                 return;
864                         }
865                         printk(KERN_INFO "Device %s not ready.\n",
866                                req->rq_disk ? req->rq_disk->disk_name : "");
867                         cmd = scsi_end_request(cmd, 0, this_count, 1);
868                         return;
869                 case VOLUME_OVERFLOW:
870                         printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
871                                cmd->device->host->host_no,
872                                (int)cmd->device->channel,
873                                (int)cmd->device->id, (int)cmd->device->lun);
874                         __scsi_print_command(cmd->data_cmnd);
875                         scsi_print_sense("", cmd);
876                         cmd = scsi_end_request(cmd, 0, block_bytes, 1);
877                         return;
878                 default:
879                         break;
880                 }
881         }                       /* driver byte != 0 */
882         if (host_byte(result) == DID_RESET) {
883                 /*
884                  * Third party bus reset or reset for error
885                  * recovery reasons.  Just retry the request
886                  * and see what happens.  
887                  */
888                 scsi_requeue_command(q, cmd);
889                 return;
890         }
891         if (result) {
892                 printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
893                        "= 0x%x\n", cmd->device->host->host_no,
894                        cmd->device->channel,
895                        cmd->device->id,
896                        cmd->device->lun, result);
897
898                 if (driver_byte(result) & DRIVER_SENSE)
899                         scsi_print_sense("", cmd);
900                 /*
901                  * Mark a single buffer as not uptodate.  Queue the remainder.
902                  * We sometimes get this cruft in the event that a medium error
903                  * isn't properly reported.
904                  */
905                 block_bytes = req->hard_cur_sectors << 9;
906                 if (!block_bytes)
907                         block_bytes = req->data_len;
908                 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
909         }
910 }
911 EXPORT_SYMBOL(scsi_io_completion);
912
913 /*
914  * Function:    scsi_init_io()
915  *
916  * Purpose:     SCSI I/O initialize function.
917  *
918  * Arguments:   cmd   - Command descriptor we wish to initialize
919  *
920  * Returns:     0 on success
921  *              BLKPREP_DEFER if the failure is retryable
922  *              BLKPREP_KILL if the failure is fatal
923  */
924 static int scsi_init_io(struct scsi_cmnd *cmd)
925 {
926         struct request     *req = cmd->request;
927         struct scatterlist *sgpnt;
928         int                count;
929
930         /*
931          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
932          */
933         if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
934                 cmd->request_bufflen = req->data_len;
935                 cmd->request_buffer = req->data;
936                 req->buffer = req->data;
937                 cmd->use_sg = 0;
938                 return 0;
939         }
940
941         /*
942          * we used to not use scatter-gather for single segment request,
943          * but now we do (it makes highmem I/O easier to support without
944          * kmapping pages)
945          */
946         cmd->use_sg = req->nr_phys_segments;
947
948         /*
949          * if sg table allocation fails, requeue request later.
950          */
951         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
952         if (unlikely(!sgpnt))
953                 return BLKPREP_DEFER;
954
955         cmd->request_buffer = (char *) sgpnt;
956         cmd->request_bufflen = req->nr_sectors << 9;
957         if (blk_pc_request(req))
958                 cmd->request_bufflen = req->data_len;
959         req->buffer = NULL;
960
961         /* 
962          * Next, walk the list, and fill in the addresses and sizes of
963          * each segment.
964          */
965         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
966
967         /*
968          * mapped well, send it off
969          */
970         if (likely(count <= cmd->use_sg)) {
971                 cmd->use_sg = count;
972                 return 0;
973         }
974
975         printk(KERN_ERR "Incorrect number of segments after building list\n");
976         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
977         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
978                         req->current_nr_sectors);
979
980         /* release the command and kill it */
981         scsi_release_buffers(cmd);
982         scsi_put_command(cmd);
983         return BLKPREP_KILL;
984 }
985
986 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
987 {
988         struct scsi_device *sdev = q->queuedata;
989         struct scsi_driver *drv;
990
991         if (sdev->sdev_state == SDEV_RUNNING) {
992                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
993
994                 if (drv->prepare_flush)
995                         return drv->prepare_flush(q, rq);
996         }
997
998         return 0;
999 }
1000
1001 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1002 {
1003         struct scsi_device *sdev = q->queuedata;
1004         struct request *flush_rq = rq->end_io_data;
1005         struct scsi_driver *drv;
1006
1007         if (flush_rq->errors) {
1008                 printk("scsi: barrier error, disabling flush support\n");
1009                 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1010         }
1011
1012         if (sdev->sdev_state == SDEV_RUNNING) {
1013                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1014                 drv->end_flush(q, rq);
1015         }
1016 }
1017
1018 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1019                                sector_t *error_sector)
1020 {
1021         struct scsi_device *sdev = q->queuedata;
1022         struct scsi_driver *drv;
1023
1024         if (sdev->sdev_state != SDEV_RUNNING)
1025                 return -ENXIO;
1026
1027         drv = *(struct scsi_driver **) disk->private_data;
1028         if (drv->issue_flush)
1029                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1030
1031         return -EOPNOTSUPP;
1032 }
1033
1034 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1035 {
1036         struct scsi_device *sdev = q->queuedata;
1037         struct scsi_cmnd *cmd;
1038         int specials_only = 0;
1039
1040         /*
1041          * Just check to see if the device is online.  If it isn't, we
1042          * refuse to process any commands.  The device must be brought
1043          * online before trying any recovery commands
1044          */
1045         if (unlikely(!scsi_device_online(sdev))) {
1046                 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1047                        sdev->host->host_no, sdev->id, sdev->lun);
1048                 return BLKPREP_KILL;
1049         }
1050         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1051                 /* OK, we're not in a running state don't prep
1052                  * user commands */
1053                 if (sdev->sdev_state == SDEV_DEL) {
1054                         /* Device is fully deleted, no commands
1055                          * at all allowed down */
1056                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1057                                sdev->host->host_no, sdev->id, sdev->lun);
1058                         return BLKPREP_KILL;
1059                 }
1060                 /* OK, we only allow special commands (i.e. not
1061                  * user initiated ones */
1062                 specials_only = sdev->sdev_state;
1063         }
1064
1065         /*
1066          * Find the actual device driver associated with this command.
1067          * The SPECIAL requests are things like character device or
1068          * ioctls, which did not originate from ll_rw_blk.  Note that
1069          * the special field is also used to indicate the cmd for
1070          * the remainder of a partially fulfilled request that can 
1071          * come up when there is a medium error.  We have to treat
1072          * these two cases differently.  We differentiate by looking
1073          * at request->cmd, as this tells us the real story.
1074          */
1075         if (req->flags & REQ_SPECIAL) {
1076                 struct scsi_request *sreq = req->special;
1077
1078                 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1079                         cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1080                         if (unlikely(!cmd))
1081                                 goto defer;
1082                         scsi_init_cmd_from_req(cmd, sreq);
1083                 } else
1084                         cmd = req->special;
1085         } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1086
1087                 if(unlikely(specials_only)) {
1088                         if(specials_only == SDEV_QUIESCE ||
1089                                         specials_only == SDEV_BLOCK)
1090                                 return BLKPREP_DEFER;
1091                         
1092                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1093                                sdev->host->host_no, sdev->id, sdev->lun);
1094                         return BLKPREP_KILL;
1095                 }
1096                         
1097                         
1098                 /*
1099                  * Now try and find a command block that we can use.
1100                  */
1101                 if (!req->special) {
1102                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1103                         if (unlikely(!cmd))
1104                                 goto defer;
1105                 } else
1106                         cmd = req->special;
1107                 
1108                 /* pull a tag out of the request if we have one */
1109                 cmd->tag = req->tag;
1110         } else {
1111                 blk_dump_rq_flags(req, "SCSI bad req");
1112                 return BLKPREP_KILL;
1113         }
1114         
1115         /* note the overloading of req->special.  When the tag
1116          * is active it always means cmd.  If the tag goes
1117          * back for re-queueing, it may be reset */
1118         req->special = cmd;
1119         cmd->request = req;
1120         
1121         /*
1122          * FIXME: drop the lock here because the functions below
1123          * expect to be called without the queue lock held.  Also,
1124          * previously, we dequeued the request before dropping the
1125          * lock.  We hope REQ_STARTED prevents anything untoward from
1126          * happening now.
1127          */
1128         if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1129                 struct scsi_driver *drv;
1130                 int ret;
1131
1132                 /*
1133                  * This will do a couple of things:
1134                  *  1) Fill in the actual SCSI command.
1135                  *  2) Fill in any other upper-level specific fields
1136                  * (timeout).
1137                  *
1138                  * If this returns 0, it means that the request failed
1139                  * (reading past end of disk, reading offline device,
1140                  * etc).   This won't actually talk to the device, but
1141                  * some kinds of consistency checking may cause the     
1142                  * request to be rejected immediately.
1143                  */
1144
1145                 /* 
1146                  * This sets up the scatter-gather table (allocating if
1147                  * required).
1148                  */
1149                 ret = scsi_init_io(cmd);
1150                 if (ret)        /* BLKPREP_KILL return also releases the command */
1151                         return ret;
1152                 
1153                 /*
1154                  * Initialize the actual SCSI command for this request.
1155                  */
1156                 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1157                 if (unlikely(!drv->init_command(cmd))) {
1158                         scsi_release_buffers(cmd);
1159                         scsi_put_command(cmd);
1160                         return BLKPREP_KILL;
1161                 }
1162         }
1163
1164         /*
1165          * The request is now prepped, no need to come back here
1166          */
1167         req->flags |= REQ_DONTPREP;
1168         return BLKPREP_OK;
1169
1170  defer:
1171         /* If we defer, the elv_next_request() returns NULL, but the
1172          * queue must be restarted, so we plug here if no returning
1173          * command will automatically do that. */
1174         if (sdev->device_busy == 0)
1175                 blk_plug_device(q);
1176         return BLKPREP_DEFER;
1177 }
1178
1179 /*
1180  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1181  * return 0.
1182  *
1183  * Called with the queue_lock held.
1184  */
1185 static inline int scsi_dev_queue_ready(struct request_queue *q,
1186                                   struct scsi_device *sdev)
1187 {
1188         if (sdev->device_busy >= sdev->queue_depth)
1189                 return 0;
1190         if (sdev->device_busy == 0 && sdev->device_blocked) {
1191                 /*
1192                  * unblock after device_blocked iterates to zero
1193                  */
1194                 if (--sdev->device_blocked == 0) {
1195                         SCSI_LOG_MLQUEUE(3,
1196                                 printk("scsi%d (%d:%d) unblocking device at"
1197                                        " zero depth\n", sdev->host->host_no,
1198                                        sdev->id, sdev->lun));
1199                 } else {
1200                         blk_plug_device(q);
1201                         return 0;
1202                 }
1203         }
1204         if (sdev->device_blocked)
1205                 return 0;
1206
1207         return 1;
1208 }
1209
1210 /*
1211  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1212  * return 0. We must end up running the queue again whenever 0 is
1213  * returned, else IO can hang.
1214  *
1215  * Called with host_lock held.
1216  */
1217 static inline int scsi_host_queue_ready(struct request_queue *q,
1218                                    struct Scsi_Host *shost,
1219                                    struct scsi_device *sdev)
1220 {
1221         if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1222                 return 0;
1223         if (shost->host_busy == 0 && shost->host_blocked) {
1224                 /*
1225                  * unblock after host_blocked iterates to zero
1226                  */
1227                 if (--shost->host_blocked == 0) {
1228                         SCSI_LOG_MLQUEUE(3,
1229                                 printk("scsi%d unblocking host at zero depth\n",
1230                                         shost->host_no));
1231                 } else {
1232                         blk_plug_device(q);
1233                         return 0;
1234                 }
1235         }
1236         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1237             shost->host_blocked || shost->host_self_blocked) {
1238                 if (list_empty(&sdev->starved_entry))
1239                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1240                 return 0;
1241         }
1242
1243         /* We're OK to process the command, so we can't be starved */
1244         if (!list_empty(&sdev->starved_entry))
1245                 list_del_init(&sdev->starved_entry);
1246
1247         return 1;
1248 }
1249
1250 /*
1251  * Kill requests for a dead device
1252  */
1253 static void scsi_kill_requests(request_queue_t *q)
1254 {
1255         struct request *req;
1256
1257         while ((req = elv_next_request(q)) != NULL) {
1258                 blkdev_dequeue_request(req);
1259                 req->flags |= REQ_QUIET;
1260                 while (end_that_request_first(req, 0, req->nr_sectors))
1261                         ;
1262                 end_that_request_last(req);
1263         }
1264 }
1265
1266 /*
1267  * Function:    scsi_request_fn()
1268  *
1269  * Purpose:     Main strategy routine for SCSI.
1270  *
1271  * Arguments:   q       - Pointer to actual queue.
1272  *
1273  * Returns:     Nothing
1274  *
1275  * Lock status: IO request lock assumed to be held when called.
1276  */
1277 static void scsi_request_fn(struct request_queue *q)
1278 {
1279         struct scsi_device *sdev = q->queuedata;
1280         struct Scsi_Host *shost;
1281         struct scsi_cmnd *cmd;
1282         struct request *req;
1283
1284         if (!sdev) {
1285                 printk("scsi: killing requests for dead queue\n");
1286                 scsi_kill_requests(q);
1287                 return;
1288         }
1289
1290         if(!get_device(&sdev->sdev_gendev))
1291                 /* We must be tearing the block queue down already */
1292                 return;
1293
1294         /*
1295          * To start with, we keep looping until the queue is empty, or until
1296          * the host is no longer able to accept any more requests.
1297          */
1298         shost = sdev->host;
1299         while (!blk_queue_plugged(q)) {
1300                 int rtn;
1301                 /*
1302                  * get next queueable request.  We do this early to make sure
1303                  * that the request is fully prepared even if we cannot 
1304                  * accept it.
1305                  */
1306                 req = elv_next_request(q);
1307                 if (!req || !scsi_dev_queue_ready(q, sdev))
1308                         break;
1309
1310                 if (unlikely(!scsi_device_online(sdev))) {
1311                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1312                                sdev->host->host_no, sdev->id, sdev->lun);
1313                         blkdev_dequeue_request(req);
1314                         req->flags |= REQ_QUIET;
1315                         while (end_that_request_first(req, 0, req->nr_sectors))
1316                                 ;
1317                         end_that_request_last(req);
1318                         continue;
1319                 }
1320
1321
1322                 /*
1323                  * Remove the request from the request list.
1324                  */
1325                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1326                         blkdev_dequeue_request(req);
1327                 sdev->device_busy++;
1328
1329                 spin_unlock(q->queue_lock);
1330                 spin_lock(shost->host_lock);
1331
1332                 if (!scsi_host_queue_ready(q, shost, sdev))
1333                         goto not_ready;
1334                 if (sdev->single_lun) {
1335                         if (scsi_target(sdev)->starget_sdev_user &&
1336                             scsi_target(sdev)->starget_sdev_user != sdev)
1337                                 goto not_ready;
1338                         scsi_target(sdev)->starget_sdev_user = sdev;
1339                 }
1340                 shost->host_busy++;
1341
1342                 /*
1343                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1344                  *              take the lock again.
1345                  */
1346                 spin_unlock_irq(shost->host_lock);
1347
1348                 cmd = req->special;
1349                 if (unlikely(cmd == NULL)) {
1350                         printk(KERN_CRIT "impossible request in %s.\n"
1351                                          "please mail a stack trace to "
1352                                          "linux-scsi@vger.kernel.org",
1353                                          __FUNCTION__);
1354                         BUG();
1355                 }
1356
1357                 /*
1358                  * Finally, initialize any error handling parameters, and set up
1359                  * the timers for timeouts.
1360                  */
1361                 scsi_init_cmd_errh(cmd);
1362
1363                 /*
1364                  * Dispatch the command to the low-level driver.
1365                  */
1366                 rtn = scsi_dispatch_cmd(cmd);
1367                 spin_lock_irq(q->queue_lock);
1368                 if(rtn) {
1369                         /* we're refusing the command; because of
1370                          * the way locks get dropped, we need to 
1371                          * check here if plugging is required */
1372                         if(sdev->device_busy == 0)
1373                                 blk_plug_device(q);
1374
1375                         break;
1376                 }
1377         }
1378
1379         goto out;
1380
1381  not_ready:
1382         spin_unlock_irq(shost->host_lock);
1383
1384         /*
1385          * lock q, handle tag, requeue req, and decrement device_busy. We
1386          * must return with queue_lock held.
1387          *
1388          * Decrementing device_busy without checking it is OK, as all such
1389          * cases (host limits or settings) should run the queue at some
1390          * later time.
1391          */
1392         spin_lock_irq(q->queue_lock);
1393         blk_requeue_request(q, req);
1394         sdev->device_busy--;
1395         if(sdev->device_busy == 0)
1396                 blk_plug_device(q);
1397  out:
1398         /* must be careful here...if we trigger the ->remove() function
1399          * we cannot be holding the q lock */
1400         spin_unlock_irq(q->queue_lock);
1401         put_device(&sdev->sdev_gendev);
1402         spin_lock_irq(q->queue_lock);
1403 }
1404
1405 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1406 {
1407         struct device *host_dev;
1408         u64 bounce_limit = 0xffffffff;
1409
1410         if (shost->unchecked_isa_dma)
1411                 return BLK_BOUNCE_ISA;
1412         /*
1413          * Platforms with virtual-DMA translation
1414          * hardware have no practical limit.
1415          */
1416         if (!PCI_DMA_BUS_IS_PHYS)
1417                 return BLK_BOUNCE_ANY;
1418
1419         host_dev = scsi_get_device(shost);
1420         if (host_dev && host_dev->dma_mask)
1421                 bounce_limit = *host_dev->dma_mask;
1422
1423         return bounce_limit;
1424 }
1425 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1426
1427 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1428 {
1429         struct Scsi_Host *shost = sdev->host;
1430         struct request_queue *q;
1431
1432         q = blk_init_queue(scsi_request_fn, NULL);
1433         if (!q)
1434                 return NULL;
1435
1436         blk_queue_prep_rq(q, scsi_prep_fn);
1437
1438         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1439         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1440         blk_queue_max_sectors(q, shost->max_sectors);
1441         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1442         blk_queue_segment_boundary(q, shost->dma_boundary);
1443         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1444
1445         /*
1446          * ordered tags are superior to flush ordering
1447          */
1448         if (shost->ordered_tag)
1449                 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1450         else if (shost->ordered_flush) {
1451                 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1452                 q->prepare_flush_fn = scsi_prepare_flush_fn;
1453                 q->end_flush_fn = scsi_end_flush_fn;
1454         }
1455
1456         if (!shost->use_clustering)
1457                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1458         return q;
1459 }
1460
1461 void scsi_free_queue(struct request_queue *q)
1462 {
1463         blk_cleanup_queue(q);
1464 }
1465
1466 /*
1467  * Function:    scsi_block_requests()
1468  *
1469  * Purpose:     Utility function used by low-level drivers to prevent further
1470  *              commands from being queued to the device.
1471  *
1472  * Arguments:   shost       - Host in question
1473  *
1474  * Returns:     Nothing
1475  *
1476  * Lock status: No locks are assumed held.
1477  *
1478  * Notes:       There is no timer nor any other means by which the requests
1479  *              get unblocked other than the low-level driver calling
1480  *              scsi_unblock_requests().
1481  */
1482 void scsi_block_requests(struct Scsi_Host *shost)
1483 {
1484         shost->host_self_blocked = 1;
1485 }
1486 EXPORT_SYMBOL(scsi_block_requests);
1487
1488 /*
1489  * Function:    scsi_unblock_requests()
1490  *
1491  * Purpose:     Utility function used by low-level drivers to allow further
1492  *              commands from being queued to the device.
1493  *
1494  * Arguments:   shost       - Host in question
1495  *
1496  * Returns:     Nothing
1497  *
1498  * Lock status: No locks are assumed held.
1499  *
1500  * Notes:       There is no timer nor any other means by which the requests
1501  *              get unblocked other than the low-level driver calling
1502  *              scsi_unblock_requests().
1503  *
1504  *              This is done as an API function so that changes to the
1505  *              internals of the scsi mid-layer won't require wholesale
1506  *              changes to drivers that use this feature.
1507  */
1508 void scsi_unblock_requests(struct Scsi_Host *shost)
1509 {
1510         shost->host_self_blocked = 0;
1511         scsi_run_host_queues(shost);
1512 }
1513 EXPORT_SYMBOL(scsi_unblock_requests);
1514
1515 int __init scsi_init_queue(void)
1516 {
1517         int i;
1518
1519         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1520                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1521                 int size = sgp->size * sizeof(struct scatterlist);
1522
1523                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1524                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1525                 if (!sgp->slab) {
1526                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1527                                         sgp->name);
1528                 }
1529
1530                 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1531                                 mempool_alloc_slab, mempool_free_slab,
1532                                 sgp->slab);
1533                 if (!sgp->pool) {
1534                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1535                                         sgp->name);
1536                 }
1537         }
1538
1539         return 0;
1540 }
1541
1542 void scsi_exit_queue(void)
1543 {
1544         int i;
1545
1546         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1547                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1548                 mempool_destroy(sgp->pool);
1549                 kmem_cache_destroy(sgp->slab);
1550         }
1551 }
1552 /**
1553  *      __scsi_mode_sense - issue a mode sense, falling back from 10 to 
1554  *              six bytes if necessary.
1555  *      @sreq:  SCSI request to fill in with the MODE_SENSE
1556  *      @dbd:   set if mode sense will allow block descriptors to be returned
1557  *      @modepage: mode page being requested
1558  *      @buffer: request buffer (may not be smaller than eight bytes)
1559  *      @len:   length of request buffer.
1560  *      @timeout: command timeout
1561  *      @retries: number of retries before failing
1562  *      @data: returns a structure abstracting the mode header data
1563  *
1564  *      Returns zero if unsuccessful, or the header offset (either 4
1565  *      or 8 depending on whether a six or ten byte command was
1566  *      issued) if successful.
1567  **/
1568 int
1569 __scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1570                   unsigned char *buffer, int len, int timeout, int retries,
1571                   struct scsi_mode_data *data) {
1572         unsigned char cmd[12];
1573         int use_10_for_ms;
1574         int header_length;
1575
1576         memset(data, 0, sizeof(*data));
1577         memset(&cmd[0], 0, 12);
1578         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1579         cmd[2] = modepage;
1580
1581  retry:
1582         use_10_for_ms = sreq->sr_device->use_10_for_ms;
1583
1584         if (use_10_for_ms) {
1585                 if (len < 8)
1586                         len = 8;
1587
1588                 cmd[0] = MODE_SENSE_10;
1589                 cmd[8] = len;
1590                 header_length = 8;
1591         } else {
1592                 if (len < 4)
1593                         len = 4;
1594
1595                 cmd[0] = MODE_SENSE;
1596                 cmd[4] = len;
1597                 header_length = 4;
1598         }
1599
1600         sreq->sr_cmd_len = 0;
1601         memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1602         sreq->sr_data_direction = DMA_FROM_DEVICE;
1603
1604         memset(buffer, 0, len);
1605
1606         scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1607
1608         /* This code looks awful: what it's doing is making sure an
1609          * ILLEGAL REQUEST sense return identifies the actual command
1610          * byte as the problem.  MODE_SENSE commands can return
1611          * ILLEGAL REQUEST if the code page isn't supported */
1612
1613         if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1614             (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1615                 struct scsi_sense_hdr sshdr;
1616
1617                 if (scsi_request_normalize_sense(sreq, &sshdr)) {
1618                         if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1619                             (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1620                                 /* 
1621                                  * Invalid command operation code
1622                                  */
1623                                 sreq->sr_device->use_10_for_ms = 0;
1624                                 goto retry;
1625                         }
1626                 }
1627         }
1628
1629         if(scsi_status_is_good(sreq->sr_result)) {
1630                 data->header_length = header_length;
1631                 if(use_10_for_ms) {
1632                         data->length = buffer[0]*256 + buffer[1] + 2;
1633                         data->medium_type = buffer[2];
1634                         data->device_specific = buffer[3];
1635                         data->longlba = buffer[4] & 0x01;
1636                         data->block_descriptor_length = buffer[6]*256
1637                                 + buffer[7];
1638                 } else {
1639                         data->length = buffer[0] + 1;
1640                         data->medium_type = buffer[1];
1641                         data->device_specific = buffer[2];
1642                         data->block_descriptor_length = buffer[3];
1643                 }
1644         }
1645
1646         return sreq->sr_result;
1647 }
1648 EXPORT_SYMBOL(__scsi_mode_sense);
1649
1650 /**
1651  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1652  *              six bytes if necessary.
1653  *      @sdev:  scsi device to send command to.
1654  *      @dbd:   set if mode sense will disable block descriptors in the return
1655  *      @modepage: mode page being requested
1656  *      @buffer: request buffer (may not be smaller than eight bytes)
1657  *      @len:   length of request buffer.
1658  *      @timeout: command timeout
1659  *      @retries: number of retries before failing
1660  *
1661  *      Returns zero if unsuccessful, or the header offset (either 4
1662  *      or 8 depending on whether a six or ten byte command was
1663  *      issued) if successful.
1664  **/
1665 int
1666 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1667                 unsigned char *buffer, int len, int timeout, int retries,
1668                 struct scsi_mode_data *data)
1669 {
1670         struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1671         int ret;
1672
1673         if (!sreq)
1674                 return -1;
1675
1676         ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1677                                 timeout, retries, data);
1678
1679         scsi_release_request(sreq);
1680
1681         return ret;
1682 }
1683 EXPORT_SYMBOL(scsi_mode_sense);
1684
1685 int
1686 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1687 {
1688         struct scsi_request *sreq;
1689         char cmd[] = {
1690                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1691         };
1692         int result;
1693         
1694         sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1695         if (!sreq)
1696                 return -ENOMEM;
1697
1698         sreq->sr_data_direction = DMA_NONE;
1699         scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1700
1701         if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1702                 struct scsi_sense_hdr sshdr;
1703
1704                 if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1705                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1706                      (sshdr.sense_key == NOT_READY))) {
1707                         sdev->changed = 1;
1708                         sreq->sr_result = 0;
1709                 }
1710         }
1711         result = sreq->sr_result;
1712         scsi_release_request(sreq);
1713         return result;
1714 }
1715 EXPORT_SYMBOL(scsi_test_unit_ready);
1716
1717 /**
1718  *      scsi_device_set_state - Take the given device through the device
1719  *              state model.
1720  *      @sdev:  scsi device to change the state of.
1721  *      @state: state to change to.
1722  *
1723  *      Returns zero if unsuccessful or an error if the requested 
1724  *      transition is illegal.
1725  **/
1726 int
1727 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1728 {
1729         enum scsi_device_state oldstate = sdev->sdev_state;
1730
1731         if (state == oldstate)
1732                 return 0;
1733
1734         switch (state) {
1735         case SDEV_CREATED:
1736                 /* There are no legal states that come back to
1737                  * created.  This is the manually initialised start
1738                  * state */
1739                 goto illegal;
1740                         
1741         case SDEV_RUNNING:
1742                 switch (oldstate) {
1743                 case SDEV_CREATED:
1744                 case SDEV_OFFLINE:
1745                 case SDEV_QUIESCE:
1746                 case SDEV_BLOCK:
1747                         break;
1748                 default:
1749                         goto illegal;
1750                 }
1751                 break;
1752
1753         case SDEV_QUIESCE:
1754                 switch (oldstate) {
1755                 case SDEV_RUNNING:
1756                 case SDEV_OFFLINE:
1757                         break;
1758                 default:
1759                         goto illegal;
1760                 }
1761                 break;
1762
1763         case SDEV_OFFLINE:
1764                 switch (oldstate) {
1765                 case SDEV_CREATED:
1766                 case SDEV_RUNNING:
1767                 case SDEV_QUIESCE:
1768                 case SDEV_BLOCK:
1769                         break;
1770                 default:
1771                         goto illegal;
1772                 }
1773                 break;
1774
1775         case SDEV_BLOCK:
1776                 switch (oldstate) {
1777                 case SDEV_CREATED:
1778                 case SDEV_RUNNING:
1779                         break;
1780                 default:
1781                         goto illegal;
1782                 }
1783                 break;
1784
1785         case SDEV_CANCEL:
1786                 switch (oldstate) {
1787                 case SDEV_CREATED:
1788                 case SDEV_RUNNING:
1789                 case SDEV_OFFLINE:
1790                 case SDEV_BLOCK:
1791                         break;
1792                 default:
1793                         goto illegal;
1794                 }
1795                 break;
1796
1797         case SDEV_DEL:
1798                 switch (oldstate) {
1799                 case SDEV_CANCEL:
1800                         break;
1801                 default:
1802                         goto illegal;
1803                 }
1804                 break;
1805
1806         }
1807         sdev->sdev_state = state;
1808         return 0;
1809
1810  illegal:
1811         SCSI_LOG_ERROR_RECOVERY(1, 
1812                                 dev_printk(KERN_ERR, &sdev->sdev_gendev,
1813                                            "Illegal state transition %s->%s\n",
1814                                            scsi_device_state_name(oldstate),
1815                                            scsi_device_state_name(state))
1816                                 );
1817         return -EINVAL;
1818 }
1819 EXPORT_SYMBOL(scsi_device_set_state);
1820
1821 /**
1822  *      scsi_device_quiesce - Block user issued commands.
1823  *      @sdev:  scsi device to quiesce.
1824  *
1825  *      This works by trying to transition to the SDEV_QUIESCE state
1826  *      (which must be a legal transition).  When the device is in this
1827  *      state, only special requests will be accepted, all others will
1828  *      be deferred.  Since special requests may also be requeued requests,
1829  *      a successful return doesn't guarantee the device will be 
1830  *      totally quiescent.
1831  *
1832  *      Must be called with user context, may sleep.
1833  *
1834  *      Returns zero if unsuccessful or an error if not.
1835  **/
1836 int
1837 scsi_device_quiesce(struct scsi_device *sdev)
1838 {
1839         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1840         if (err)
1841                 return err;
1842
1843         scsi_run_queue(sdev->request_queue);
1844         while (sdev->device_busy) {
1845                 msleep_interruptible(200);
1846                 scsi_run_queue(sdev->request_queue);
1847         }
1848         return 0;
1849 }
1850 EXPORT_SYMBOL(scsi_device_quiesce);
1851
1852 /**
1853  *      scsi_device_resume - Restart user issued commands to a quiesced device.
1854  *      @sdev:  scsi device to resume.
1855  *
1856  *      Moves the device from quiesced back to running and restarts the
1857  *      queues.
1858  *
1859  *      Must be called with user context, may sleep.
1860  **/
1861 void
1862 scsi_device_resume(struct scsi_device *sdev)
1863 {
1864         if(scsi_device_set_state(sdev, SDEV_RUNNING))
1865                 return;
1866         scsi_run_queue(sdev->request_queue);
1867 }
1868 EXPORT_SYMBOL(scsi_device_resume);
1869
1870 static void
1871 device_quiesce_fn(struct scsi_device *sdev, void *data)
1872 {
1873         scsi_device_quiesce(sdev);
1874 }
1875
1876 void
1877 scsi_target_quiesce(struct scsi_target *starget)
1878 {
1879         starget_for_each_device(starget, NULL, device_quiesce_fn);
1880 }
1881 EXPORT_SYMBOL(scsi_target_quiesce);
1882
1883 static void
1884 device_resume_fn(struct scsi_device *sdev, void *data)
1885 {
1886         scsi_device_resume(sdev);
1887 }
1888
1889 void
1890 scsi_target_resume(struct scsi_target *starget)
1891 {
1892         starget_for_each_device(starget, NULL, device_resume_fn);
1893 }
1894 EXPORT_SYMBOL(scsi_target_resume);
1895
1896 /**
1897  * scsi_internal_device_block - internal function to put a device
1898  *                              temporarily into the SDEV_BLOCK state
1899  * @sdev:       device to block
1900  *
1901  * Block request made by scsi lld's to temporarily stop all
1902  * scsi commands on the specified device.  Called from interrupt
1903  * or normal process context.
1904  *
1905  * Returns zero if successful or error if not
1906  *
1907  * Notes:       
1908  *      This routine transitions the device to the SDEV_BLOCK state
1909  *      (which must be a legal transition).  When the device is in this
1910  *      state, all commands are deferred until the scsi lld reenables
1911  *      the device with scsi_device_unblock or device_block_tmo fires.
1912  *      This routine assumes the host_lock is held on entry.
1913  **/
1914 int
1915 scsi_internal_device_block(struct scsi_device *sdev)
1916 {
1917         request_queue_t *q = sdev->request_queue;
1918         unsigned long flags;
1919         int err = 0;
1920
1921         err = scsi_device_set_state(sdev, SDEV_BLOCK);
1922         if (err)
1923                 return err;
1924
1925         /* 
1926          * The device has transitioned to SDEV_BLOCK.  Stop the
1927          * block layer from calling the midlayer with this device's
1928          * request queue. 
1929          */
1930         spin_lock_irqsave(q->queue_lock, flags);
1931         blk_stop_queue(q);
1932         spin_unlock_irqrestore(q->queue_lock, flags);
1933
1934         return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1937  
1938 /**
1939  * scsi_internal_device_unblock - resume a device after a block request
1940  * @sdev:       device to resume
1941  *
1942  * Called by scsi lld's or the midlayer to restart the device queue
1943  * for the previously suspended scsi device.  Called from interrupt or
1944  * normal process context.
1945  *
1946  * Returns zero if successful or error if not.
1947  *
1948  * Notes:       
1949  *      This routine transitions the device to the SDEV_RUNNING state
1950  *      (which must be a legal transition) allowing the midlayer to
1951  *      goose the queue for this device.  This routine assumes the 
1952  *      host_lock is held upon entry.
1953  **/
1954 int
1955 scsi_internal_device_unblock(struct scsi_device *sdev)
1956 {
1957         request_queue_t *q = sdev->request_queue; 
1958         int err;
1959         unsigned long flags;
1960         
1961         /* 
1962          * Try to transition the scsi device to SDEV_RUNNING
1963          * and goose the device queue if successful.  
1964          */
1965         err = scsi_device_set_state(sdev, SDEV_RUNNING);
1966         if (err)
1967                 return err;
1968
1969         spin_lock_irqsave(q->queue_lock, flags);
1970         blk_start_queue(q);
1971         spin_unlock_irqrestore(q->queue_lock, flags);
1972
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1976
1977 static void
1978 device_block(struct scsi_device *sdev, void *data)
1979 {
1980         scsi_internal_device_block(sdev);
1981 }
1982
1983 static int
1984 target_block(struct device *dev, void *data)
1985 {
1986         if (scsi_is_target_device(dev))
1987                 starget_for_each_device(to_scsi_target(dev), NULL,
1988                                         device_block);
1989         return 0;
1990 }
1991
1992 void
1993 scsi_target_block(struct device *dev)
1994 {
1995         if (scsi_is_target_device(dev))
1996                 starget_for_each_device(to_scsi_target(dev), NULL,
1997                                         device_block);
1998         else
1999                 device_for_each_child(dev, NULL, target_block);
2000 }
2001 EXPORT_SYMBOL_GPL(scsi_target_block);
2002
2003 static void
2004 device_unblock(struct scsi_device *sdev, void *data)
2005 {
2006         scsi_internal_device_unblock(sdev);
2007 }
2008
2009 static int
2010 target_unblock(struct device *dev, void *data)
2011 {
2012         if (scsi_is_target_device(dev))
2013                 starget_for_each_device(to_scsi_target(dev), NULL,
2014                                         device_unblock);
2015         return 0;
2016 }
2017
2018 void
2019 scsi_target_unblock(struct device *dev)
2020 {
2021         if (scsi_is_target_device(dev))
2022                 starget_for_each_device(to_scsi_target(dev), NULL,
2023                                         device_unblock);
2024         else
2025                 device_for_each_child(dev, NULL, target_unblock);
2026 }
2027 EXPORT_SYMBOL_GPL(scsi_target_unblock);