2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <asm/semaphore.h>
47 * fib_map_alloc - allocate the fib objects
48 * @dev: Adapter to allocate for
50 * Allocate and map the shared PCI space for the FIB blocks used to
51 * talk to the Adaptec firmware.
54 static int fib_map_alloc(struct aac_dev *dev)
57 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
58 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
59 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
60 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
61 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
62 &dev->hw_fib_pa))==NULL)
68 * fib_map_free - free the fib objects
69 * @dev: Adapter to free
71 * Free the PCI mappings and the memory allocated for FIB blocks
75 void fib_map_free(struct aac_dev *dev)
77 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81 * fib_setup - setup the fibs
82 * @dev: Adapter to set up
84 * Allocate the PCI space for the fibs, map it and then intialise the
85 * fib area, the unmapped fib data and also the free list
88 int fib_setup(struct aac_dev * dev)
91 struct hw_fib *hw_fib_va;
95 while (((i = fib_map_alloc(dev)) == -ENOMEM)
96 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
97 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
98 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
103 hw_fib_va = dev->hw_fib_va;
104 hw_fib_pa = dev->hw_fib_pa;
105 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
107 * Initialise the fibs
109 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
112 fibptr->hw_fib = hw_fib_va;
113 fibptr->data = (void *) fibptr->hw_fib->data;
114 fibptr->next = fibptr+1; /* Forward chain the fibs */
115 init_MUTEX_LOCKED(&fibptr->event_wait);
116 spin_lock_init(&fibptr->event_lock);
117 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
118 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
119 fibptr->hw_fib_pa = hw_fib_pa;
120 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
121 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124 * Add the fib chain to the free list
126 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
128 * Enable this to debug out of queue space
130 dev->free_fib = &dev->fibs[0];
135 * fib_alloc - allocate a fib
136 * @dev: Adapter to allocate the fib for
138 * Allocate a fib from the adapter fib pool. If the pool is empty we
142 struct fib * fib_alloc(struct aac_dev *dev)
146 spin_lock_irqsave(&dev->fib_lock, flags);
147 fibptr = dev->free_fib;
149 spin_unlock_irqrestore(&dev->fib_lock, flags);
152 dev->free_fib = fibptr->next;
153 spin_unlock_irqrestore(&dev->fib_lock, flags);
155 * Set the proper node type code and node byte size
157 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
158 fibptr->size = sizeof(struct fib);
160 * Null out fields that depend on being zero at the start of
163 fibptr->hw_fib->header.XferState = 0;
164 fibptr->callback = NULL;
165 fibptr->callback_data = NULL;
171 * fib_free - free a fib
172 * @fibptr: fib to free up
174 * Frees up a fib and places it on the appropriate queue
175 * (either free or timed out)
178 void fib_free(struct fib * fibptr)
182 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
183 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
184 aac_config.fib_timeouts++;
185 fibptr->next = fibptr->dev->timeout_fib;
186 fibptr->dev->timeout_fib = fibptr;
188 if (fibptr->hw_fib->header.XferState != 0) {
189 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
191 le32_to_cpu(fibptr->hw_fib->header.XferState));
193 fibptr->next = fibptr->dev->free_fib;
194 fibptr->dev->free_fib = fibptr;
196 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200 * fib_init - initialise a fib
201 * @fibptr: The fib to initialize
203 * Set up the generic fib fields ready for use
206 void fib_init(struct fib *fibptr)
208 struct hw_fib *hw_fib = fibptr->hw_fib;
210 hw_fib->header.StructType = FIB_MAGIC;
211 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
212 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
213 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
214 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
215 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219 * fib_deallocate - deallocate a fib
220 * @fibptr: fib to deallocate
222 * Will deallocate and return to the free pool the FIB pointed to by the
226 static void fib_dealloc(struct fib * fibptr)
228 struct hw_fib *hw_fib = fibptr->hw_fib;
229 if(hw_fib->header.StructType != FIB_MAGIC)
231 hw_fib->header.XferState = 0;
235 * Commuication primitives define and support the queuing method we use to
236 * support host to adapter commuication. All queue accesses happen through
237 * these routines and are the only routines which have a knowledge of the
238 * how these queues are implemented.
242 * aac_get_entry - get a queue entry
245 * @entry: Entry return
246 * @index: Index return
247 * @nonotify: notification control
249 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
250 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
256 struct aac_queue * q;
259 * All of the queues wrap when they reach the end, so we check
260 * to see if they have reached the end and if they have we just
261 * set the index back to zero. This is a wrap. You could or off
262 * the high bits in all updates but this is a bit faster I think.
265 q = &dev->queues->queue[qid];
267 *index = le32_to_cpu(*(q->headers.producer));
268 if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
271 if (qid == AdapHighCmdQueue) {
272 if (*index >= ADAP_HIGH_CMD_ENTRIES)
274 } else if (qid == AdapNormCmdQueue) {
275 if (*index >= ADAP_NORM_CMD_ENTRIES)
276 *index = 0; /* Wrap to front of the Producer Queue. */
278 else if (qid == AdapHighRespQueue)
280 if (*index >= ADAP_HIGH_RESP_ENTRIES)
283 else if (qid == AdapNormRespQueue)
285 if (*index >= ADAP_NORM_RESP_ENTRIES)
286 *index = 0; /* Wrap to front of the Producer Queue. */
289 printk("aacraid: invalid qid\n");
293 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
298 *entry = q->base + *index;
304 * aac_queue_get - get the next free QE
306 * @index: Returned index
307 * @priority: Priority of fib
308 * @fib: Fib to associate with the queue entry
309 * @wait: Wait if queue full
310 * @fibptr: Driver fib object to go with fib
311 * @nonotify: Don't notify the adapter
313 * Gets the next free QE off the requested priorty adapter command
314 * queue and associates the Fib with the QE. The QE represented by
315 * index is ready to insert on the queue when this routine returns
319 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 struct aac_entry * entry = NULL;
323 struct aac_queue * q = &dev->queues->queue[qid];
325 spin_lock_irqsave(q->lock, q->SavedIrql);
327 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue)
329 /* if no entries wait for some if caller wants to */
330 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
332 printk(KERN_ERR "GetEntries failed\n");
335 * Setup queue entry with a command, status and fib mapped
337 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
340 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
342 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
344 /* if no entries wait for some if caller wants to */
347 * Setup queue entry with command, status and fib mapped
349 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
350 entry->addr = hw_fib->header.SenderFibAddress;
351 /* Restore adapters pointer to the FIB */
352 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
356 * If MapFib is true than we need to map the Fib and put pointers
357 * in the queue entry.
360 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
366 * aac_insert_entry - insert a queue entry
368 * @index: Index of entry to insert
370 * @nonotify: Suppress adapter notification
372 * Gets the next free QE off the requested priorty adapter command
373 * queue and associates the Fib with the QE. The QE represented by
374 * index is ready to insert on the queue when this routine returns
378 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
380 struct aac_queue * q = &dev->queues->queue[qid];
384 *(q->headers.producer) = cpu_to_le32(index + 1);
385 spin_unlock_irqrestore(q->lock, q->SavedIrql);
387 if (qid == AdapHighCmdQueue ||
388 qid == AdapNormCmdQueue ||
389 qid == AdapHighRespQueue ||
390 qid == AdapNormRespQueue)
393 aac_adapter_notify(dev, qid);
396 printk("Suprise insert!\n");
401 * Define the highest level of host to adapter communication routines.
402 * These routines will support host to adapter FS commuication. These
403 * routines have no knowledge of the commuication method used. This level
404 * sends and receives FIBs. This level has no knowledge of how these FIBs
405 * get passed back and forth.
409 * fib_send - send a fib to the adapter
410 * @command: Command to send
412 * @size: Size of fib data area
413 * @priority: Priority of Fib
414 * @wait: Async/sync select
415 * @reply: True if a reply is wanted
416 * @callback: Called with reply
417 * @callback_data: Passed to callback
419 * Sends the requested FIB to the adapter and optionally will wait for a
420 * response FIB. If the caller does not wish to wait for a response than
421 * an event to wait on must be supplied. This event will be set when a
422 * response FIB is received from the adapter.
425 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
429 struct aac_dev * dev = fibptr->dev;
430 unsigned long nointr = 0;
431 struct hw_fib * hw_fib = fibptr->hw_fib;
432 struct aac_queue * q;
433 unsigned long flags = 0;
434 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
437 * There are 5 cases with the wait and reponse requested flags.
438 * The only invalid cases are if the caller requests to wait and
439 * does not request a response and if the caller does not want a
440 * response and the Fib is not allocated from pool. If a response
441 * is not requesed the Fib will just be deallocaed by the DPC
442 * routine when the response comes back from the adapter. No
443 * further processing will be done besides deleting the Fib. We
444 * will have a debug mode where the adapter can notify the host
445 * it had a problem and the host can log that fact.
447 if (wait && !reply) {
449 } else if (!wait && reply) {
450 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
451 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
452 } else if (!wait && !reply) {
453 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
454 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
455 } else if (wait && reply) {
456 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
457 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
460 * Map the fib into 32bits by using the fib number
463 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
464 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
466 * Set FIB state to indicate where it came from and if we want a
467 * response from the adapter. Also load the command from the
470 * Map the hw fib pointer as a 32bit value
472 hw_fib->header.Command = cpu_to_le16(command);
473 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
474 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
476 * Set the size of the Fib we want to send to the adapter
478 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
479 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
483 * Get a queue entry connect the FIB to it and send an notify
484 * the adapter a command is ready.
486 if (priority == FsaHigh) {
487 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
488 qid = AdapHighCmdQueue;
490 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
491 qid = AdapNormCmdQueue;
493 q = &dev->queues->queue[qid];
496 spin_lock_irqsave(&fibptr->event_lock, flags);
497 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
499 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
500 dprintk((KERN_DEBUG "Fib contents:.\n"));
501 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
502 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
503 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
504 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
505 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
507 * Fill in the Callback and CallbackContext if we are not
511 fibptr->callback = callback;
512 fibptr->callback_data = callback_data;
514 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
515 list_add_tail(&fibptr->queue, &q->pendingq);
521 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
524 * If the caller wanted us to wait for response wait now.
528 spin_unlock_irqrestore(&fibptr->event_lock, flags);
529 down(&fibptr->event_wait);
530 if(fibptr->done == 0)
533 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
540 * If the user does not want a response than return success otherwise
550 * aac_consumer_get - get the top of the queue
553 * @entry: Return entry
555 * Will return a pointer to the entry on the top of the queue requested that
556 * we are a consumer of, and return the address of the queue entry. It does
557 * not change the state of the queue.
560 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
564 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
568 * The consumer index must be wrapped if we have reached
569 * the end of the queue, else we just use the entry
570 * pointed to by the header index
572 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
575 index = le32_to_cpu(*q->headers.consumer);
576 *entry = q->base + index;
583 * aac_consumer_free - free consumer entry
588 * Frees up the current top of the queue we are a consumer of. If the
589 * queue was full notify the producer that the queue is no longer full.
592 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
597 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
600 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
601 *q->headers.consumer = cpu_to_le32(1);
603 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
608 case HostNormCmdQueue:
609 notify = HostNormCmdNotFull;
611 case HostHighCmdQueue:
612 notify = HostHighCmdNotFull;
614 case HostNormRespQueue:
615 notify = HostNormRespNotFull;
617 case HostHighRespQueue:
618 notify = HostHighRespNotFull;
624 aac_adapter_notify(dev, notify);
629 * fib_adapter_complete - complete adapter issued fib
630 * @fibptr: fib to complete
633 * Will do all necessary work to complete a FIB that was sent from
637 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
639 struct hw_fib * hw_fib = fibptr->hw_fib;
640 struct aac_dev * dev = fibptr->dev;
641 unsigned long nointr = 0;
642 if (hw_fib->header.XferState == 0)
645 * If we plan to do anything check the structure type first.
647 if ( hw_fib->header.StructType != FIB_MAGIC ) {
651 * This block handles the case where the adapter had sent us a
652 * command and we have finished processing the command. We
653 * call completeFib when we are done processing the command
654 * and want to send a response back to the adapter. This will
655 * send the completed cdb to the adapter.
657 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
658 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
663 size += sizeof(struct aac_fibhdr);
664 if (size > le16_to_cpu(hw_fib->header.SenderSize))
666 hw_fib->header.Size = cpu_to_le16(size);
668 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
671 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
673 } else if (hw_fib->header.XferState &
674 cpu_to_le32(NormalPriority)) {
678 size += sizeof(struct aac_fibhdr);
679 if (size > le16_to_cpu(hw_fib->header.SenderSize))
681 hw_fib->header.Size = cpu_to_le16(size);
683 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
685 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
692 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
699 * fib_complete - fib completion handler
700 * @fib: FIB to complete
702 * Will do all necessary work to complete a FIB.
705 int fib_complete(struct fib * fibptr)
707 struct hw_fib * hw_fib = fibptr->hw_fib;
710 * Check for a fib which has already been completed
713 if (hw_fib->header.XferState == 0)
716 * If we plan to do anything check the structure type first.
719 if (hw_fib->header.StructType != FIB_MAGIC)
722 * This block completes a cdb which orginated on the host and we
723 * just need to deallocate the cdb or reinit it. At this point the
724 * command is complete that we had sent to the adapter and this
725 * cdb could be reused.
727 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
728 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
732 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
735 * This handles the case when the host has aborted the I/O
736 * to the adapter because the adapter is not responding
739 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
748 * aac_printf - handle printf from firmware
752 * Print a message passed to us by the controller firmware on the
756 void aac_printf(struct aac_dev *dev, u32 val)
758 char *cp = dev->printfbuf;
759 if (dev->printf_enabled)
761 int length = val & 0xffff;
762 int level = (val >> 16) & 0xffff;
765 * The size of the printfbuf is set in port.c
766 * There is no variable or define for it
772 if (level == LOG_AAC_HIGH_ERROR)
773 printk(KERN_WARNING "aacraid:%s", cp);
775 printk(KERN_INFO "aacraid:%s", cp);
781 * aac_command_thread - command processing thread
782 * @dev: Adapter to monitor
784 * Waits on the commandready event in it's queue. When the event gets set
785 * it will pull FIBs off it's queue. It will continue to pull FIBs off
786 * until the queue is empty. When the queue is empty it will wait for
790 int aac_command_thread(struct aac_dev * dev)
792 struct hw_fib *hw_fib, *hw_newfib;
793 struct fib *fib, *newfib;
794 struct aac_queue_block *queues = dev->queues;
795 struct aac_fib_context *fibctx;
797 DECLARE_WAITQUEUE(wait, current);
800 * We can only have one thread per adapter for AIF's.
805 * Set up the name that will appear in 'ps'
806 * stored in task_struct.comm[16].
808 daemonize("aacraid");
809 allow_signal(SIGKILL);
811 * Let the DPC know it has a place to send the AIF's to.
814 add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
815 set_current_state(TASK_INTERRUPTIBLE);
818 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
819 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
820 struct list_head *entry;
821 struct aac_aifcmd * aifcmd;
823 set_current_state(TASK_RUNNING);
825 entry = queues->queue[HostNormCmdQueue].cmdq.next;
828 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
829 fib = list_entry(entry, struct fib, fiblink);
831 * We will process the FIB here or pass it to a
832 * worker thread that is TBD. We Really can't
833 * do anything at this point since we don't have
834 * anything defined for this thread to do.
836 hw_fib = fib->hw_fib;
837 memset(fib, 0, sizeof(struct fib));
838 fib->type = FSAFS_NTC_FIB_CONTEXT;
839 fib->size = sizeof( struct fib );
840 fib->hw_fib = hw_fib;
841 fib->data = hw_fib->data;
844 * We only handle AifRequest fibs from the adapter.
846 aifcmd = (struct aac_aifcmd *) hw_fib->data;
847 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
848 /* Handle Driver Notify Events */
849 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
850 fib_adapter_complete(fib, (u16)sizeof(u32));
852 struct list_head *entry;
853 /* The u32 here is important and intended. We are using
854 32bit wrapping time to fit the adapter field */
856 u32 time_now, time_last;
859 time_now = jiffies/HZ;
861 spin_lock_irqsave(&dev->fib_lock, flagv);
862 entry = dev->fib_list.next;
864 * For each Context that is on the
865 * fibctxList, make a copy of the
866 * fib, and then set the event to wake up the
867 * thread that is waiting for it.
869 while (entry != &dev->fib_list) {
873 fibctx = list_entry(entry, struct aac_fib_context, next);
875 * Check if the queue is getting
878 if (fibctx->count > 20)
881 * It's *not* jiffies folks,
882 * but jiffies / HZ so do not
885 time_last = fibctx->jiffies;
887 * Has it been > 2 minutes
888 * since the last read off
891 if ((time_now - time_last) > 120) {
893 aac_close_fib_context(dev, fibctx);
898 * Warning: no sleep allowed while
901 hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
902 newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
903 if (newfib && hw_newfib) {
905 * Make the copy of the FIB
907 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
908 memcpy(newfib, fib, sizeof(struct fib));
909 newfib->hw_fib = hw_newfib;
911 * Put the FIB onto the
914 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
917 * Set the event to wake up the
918 * thread that will waiting.
920 up(&fibctx->wait_sem);
922 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
931 * Set the status of this FIB
933 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
934 fib_adapter_complete(fib, sizeof(u32));
935 spin_unlock_irqrestore(&dev->fib_lock, flagv);
937 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
941 * There are no more AIF's
943 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
946 if(signal_pending(current))
948 set_current_state(TASK_INTERRUPTIBLE);
950 remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
952 complete_and_exit(&dev->aif_completion, 0);