4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
67 blk_run_address_space(bd->bd_inode->i_mapping);
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head * bh)
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
97 __clear_page_buffers(struct page *page)
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
104 static void buffer_io_error(struct buffer_head *bh)
106 char b[BDEVNAME_SIZE];
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
120 set_buffer_uptodate(bh);
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 char b[BDEVNAME_SIZE];
134 set_buffer_uptodate(bh);
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138 printk(KERN_WARNING "lost page write due to "
140 bdevname(bh->b_bdev, b));
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
153 int sync_blockdev(struct block_device *bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
161 EXPORT_SYMBOL(sync_blockdev);
163 static void __fsync_super(struct super_block *sb)
165 sync_inodes_sb(sb, 0);
168 if (sb->s_dirt && sb->s_op->write_super)
169 sb->s_op->write_super(sb);
171 if (sb->s_op->sync_fs)
172 sb->s_op->sync_fs(sb, 1);
173 sync_blockdev(sb->s_bdev);
174 sync_inodes_sb(sb, 1);
178 * Write out and wait upon all dirty data associated with this
179 * superblock. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
182 int fsync_super(struct super_block *sb)
185 return sync_blockdev(sb->s_bdev);
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
193 int fsync_bdev(struct block_device *bdev)
195 struct super_block *sb = get_super(bdev);
197 int res = fsync_super(sb);
201 return sync_blockdev(bdev);
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
208 * This takes the block device bd_mount_mutex to make sure no new mounts
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
213 struct super_block *freeze_bdev(struct block_device *bdev)
215 struct super_block *sb;
217 mutex_lock(&bdev->bd_mount_mutex);
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
225 sb->s_frozen = SB_FREEZE_TRANS;
228 sync_blockdev(sb->s_bdev);
230 if (sb->s_op->write_super_lockfs)
231 sb->s_op->write_super_lockfs(sb);
235 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
237 EXPORT_SYMBOL(freeze_bdev);
240 * thaw_bdev -- unlock filesystem
241 * @bdev: blockdevice to unlock
242 * @sb: associated superblock
244 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
249 BUG_ON(sb->s_bdev != bdev);
251 if (sb->s_op->unlockfs)
252 sb->s_op->unlockfs(sb);
253 sb->s_frozen = SB_UNFROZEN;
255 wake_up(&sb->s_wait_unfrozen);
259 mutex_unlock(&bdev->bd_mount_mutex);
261 EXPORT_SYMBOL(thaw_bdev);
264 * sync everything. Start out by waking pdflush, because that writes back
265 * all queues in parallel.
267 static void do_sync(unsigned long wait)
270 sync_inodes(0); /* All mappings, inodes and their blockdevs */
272 sync_supers(); /* Write the superblocks */
273 sync_filesystems(0); /* Start syncing the filesystems */
274 sync_filesystems(wait); /* Waitingly sync the filesystems */
275 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
277 printk("Emergency Sync complete\n");
278 if (unlikely(laptop_mode))
279 laptop_sync_completion();
282 asmlinkage long sys_sync(void)
288 void emergency_sync(void)
290 pdflush_operation(do_sync, 0);
294 * Generic function to fsync a file.
296 * filp may be NULL if called via the msync of a vma.
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
301 struct inode * inode = dentry->d_inode;
302 struct super_block * sb;
305 /* sync the inode to buffers */
306 ret = write_inode_now(inode, 0);
308 /* sync the superblock to buffers */
311 if (sb->s_op->write_super)
312 sb->s_op->write_super(sb);
315 /* .. finally sync the buffers to disk */
316 err = sync_blockdev(sb->s_bdev);
322 long do_fsync(struct file *file, int datasync)
326 struct address_space *mapping = file->f_mapping;
328 if (!file->f_op || !file->f_op->fsync) {
329 /* Why? We can still call filemap_fdatawrite */
334 current->flags |= PF_SYNCWRITE;
335 ret = filemap_fdatawrite(mapping);
338 * We need to protect against concurrent writers, which could cause
339 * livelocks in fsync_buffers_list().
341 mutex_lock(&mapping->host->i_mutex);
342 err = file->f_op->fsync(file, file->f_dentry, datasync);
345 mutex_unlock(&mapping->host->i_mutex);
346 err = filemap_fdatawait(mapping);
349 current->flags &= ~PF_SYNCWRITE;
354 static long __do_fsync(unsigned int fd, int datasync)
361 ret = do_fsync(file, datasync);
367 asmlinkage long sys_fsync(unsigned int fd)
369 return __do_fsync(fd, 0);
372 asmlinkage long sys_fdatasync(unsigned int fd)
374 return __do_fsync(fd, 1);
378 * Various filesystems appear to want __find_get_block to be non-blocking.
379 * But it's the page lock which protects the buffers. To get around this,
380 * we get exclusion from try_to_free_buffers with the blockdev mapping's
383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384 * may be quite high. This code could TryLock the page, and if that
385 * succeeds, there is no need to take private_lock. (But if
386 * private_lock is contended then so is mapping->tree_lock).
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
391 struct inode *bd_inode = bdev->bd_inode;
392 struct address_space *bd_mapping = bd_inode->i_mapping;
393 struct buffer_head *ret = NULL;
395 struct buffer_head *bh;
396 struct buffer_head *head;
400 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401 page = find_get_page(bd_mapping, index);
405 spin_lock(&bd_mapping->private_lock);
406 if (!page_has_buffers(page))
408 head = page_buffers(page);
411 if (bh->b_blocknr == block) {
416 if (!buffer_mapped(bh))
418 bh = bh->b_this_page;
419 } while (bh != head);
421 /* we might be here because some of the buffers on this page are
422 * not mapped. This is due to various races between
423 * file io on the block device and getblk. It gets dealt with
424 * elsewhere, don't buffer_error if we had some unmapped buffers
427 printk("__find_get_block_slow() failed. "
428 "block=%llu, b_blocknr=%llu\n",
429 (unsigned long long)block,
430 (unsigned long long)bh->b_blocknr);
431 printk("b_state=0x%08lx, b_size=%zu\n",
432 bh->b_state, bh->b_size);
433 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
436 spin_unlock(&bd_mapping->private_lock);
437 page_cache_release(page);
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443 of fs corruption is going on. Trashing dirty data always imply losing
444 information that was supposed to be just stored on the physical layer
447 Thus invalidate_buffers in general usage is not allwowed to trash
448 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449 be preserved. These buffers are simply skipped.
451 We also skip buffers which are still in use. For example this can
452 happen if a userspace program is reading the block device.
454 NOTE: In the case where the user removed a removable-media-disk even if
455 there's still dirty data not synced on disk (due a bug in the device driver
456 or due an error of the user), by not destroying the dirty buffers we could
457 generate corruption also on the next media inserted, thus a parameter is
458 necessary to handle this case in the most safe way possible (trying
459 to not corrupt also the new disk inserted with the data belonging to
460 the old now corrupted disk). Also for the ramdisk the natural thing
461 to do in order to release the ramdisk memory is to destroy dirty buffers.
463 These are two special cases. Normal usage imply the device driver
464 to issue a sync on the device (without waiting I/O completion) and
465 then an invalidate_buffers call that doesn't trash dirty buffers.
467 For handling cache coherency with the blkdev pagecache the 'update' case
468 is been introduced. It is needed to re-read from disk any pinned
469 buffer. NOTE: re-reading from disk is destructive so we can do it only
470 when we assume nobody is changing the buffercache under our I/O and when
471 we think the disk contains more recent information than the buffercache.
472 The update == 1 pass marks the buffers we need to update, the update == 2
473 pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
476 invalidate_bh_lrus();
478 * FIXME: what about destroy_dirty_buffers?
479 * We really want to use invalidate_inode_pages2() for
480 * that, but not until that's cleaned up.
482 invalidate_inode_pages(bdev->bd_inode->i_mapping);
486 * Kick pdflush then try to free up some ZONE_NORMAL memory.
488 static void free_more_memory(void)
493 wakeup_pdflush(1024);
496 for_each_pgdat(pgdat) {
497 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
499 try_to_free_pages(zones, GFP_NOFS);
504 * I/O completion handler for block_read_full_page() - pages
505 * which come unlocked at the end of I/O.
507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
510 struct buffer_head *first;
511 struct buffer_head *tmp;
513 int page_uptodate = 1;
515 BUG_ON(!buffer_async_read(bh));
519 set_buffer_uptodate(bh);
521 clear_buffer_uptodate(bh);
522 if (printk_ratelimit())
528 * Be _very_ careful from here on. Bad things can happen if
529 * two buffer heads end IO at almost the same time and both
530 * decide that the page is now completely done.
532 first = page_buffers(page);
533 local_irq_save(flags);
534 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
535 clear_buffer_async_read(bh);
539 if (!buffer_uptodate(tmp))
541 if (buffer_async_read(tmp)) {
542 BUG_ON(!buffer_locked(tmp));
545 tmp = tmp->b_this_page;
547 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548 local_irq_restore(flags);
551 * If none of the buffers had errors and they are all
552 * uptodate then we can set the page uptodate.
554 if (page_uptodate && !PageError(page))
555 SetPageUptodate(page);
560 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561 local_irq_restore(flags);
566 * Completion handler for block_write_full_page() - pages which are unlocked
567 * during I/O, and which have PageWriteback cleared upon I/O completion.
569 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
571 char b[BDEVNAME_SIZE];
573 struct buffer_head *first;
574 struct buffer_head *tmp;
577 BUG_ON(!buffer_async_write(bh));
581 set_buffer_uptodate(bh);
583 if (printk_ratelimit()) {
585 printk(KERN_WARNING "lost page write due to "
587 bdevname(bh->b_bdev, b));
589 set_bit(AS_EIO, &page->mapping->flags);
590 clear_buffer_uptodate(bh);
594 first = page_buffers(page);
595 local_irq_save(flags);
596 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
598 clear_buffer_async_write(bh);
600 tmp = bh->b_this_page;
602 if (buffer_async_write(tmp)) {
603 BUG_ON(!buffer_locked(tmp));
606 tmp = tmp->b_this_page;
608 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609 local_irq_restore(flags);
610 end_page_writeback(page);
614 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615 local_irq_restore(flags);
620 * If a page's buffers are under async readin (end_buffer_async_read
621 * completion) then there is a possibility that another thread of
622 * control could lock one of the buffers after it has completed
623 * but while some of the other buffers have not completed. This
624 * locked buffer would confuse end_buffer_async_read() into not unlocking
625 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
626 * that this buffer is not under async I/O.
628 * The page comes unlocked when it has no locked buffer_async buffers
631 * PageLocked prevents anyone starting new async I/O reads any of
634 * PageWriteback is used to prevent simultaneous writeout of the same
637 * PageLocked prevents anyone from starting writeback of a page which is
638 * under read I/O (PageWriteback is only ever set against a locked page).
640 static void mark_buffer_async_read(struct buffer_head *bh)
642 bh->b_end_io = end_buffer_async_read;
643 set_buffer_async_read(bh);
646 void mark_buffer_async_write(struct buffer_head *bh)
648 bh->b_end_io = end_buffer_async_write;
649 set_buffer_async_write(bh);
651 EXPORT_SYMBOL(mark_buffer_async_write);
655 * fs/buffer.c contains helper functions for buffer-backed address space's
656 * fsync functions. A common requirement for buffer-based filesystems is
657 * that certain data from the backing blockdev needs to be written out for
658 * a successful fsync(). For example, ext2 indirect blocks need to be
659 * written back and waited upon before fsync() returns.
661 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663 * management of a list of dependent buffers at ->i_mapping->private_list.
665 * Locking is a little subtle: try_to_free_buffers() will remove buffers
666 * from their controlling inode's queue when they are being freed. But
667 * try_to_free_buffers() will be operating against the *blockdev* mapping
668 * at the time, not against the S_ISREG file which depends on those buffers.
669 * So the locking for private_list is via the private_lock in the address_space
670 * which backs the buffers. Which is different from the address_space
671 * against which the buffers are listed. So for a particular address_space,
672 * mapping->private_lock does *not* protect mapping->private_list! In fact,
673 * mapping->private_list will always be protected by the backing blockdev's
676 * Which introduces a requirement: all buffers on an address_space's
677 * ->private_list must be from the same address_space: the blockdev's.
679 * address_spaces which do not place buffers at ->private_list via these
680 * utility functions are free to use private_lock and private_list for
681 * whatever they want. The only requirement is that list_empty(private_list)
682 * be true at clear_inode() time.
684 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
685 * filesystems should do that. invalidate_inode_buffers() should just go
686 * BUG_ON(!list_empty).
688 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
689 * take an address_space, not an inode. And it should be called
690 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
693 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694 * list if it is already on a list. Because if the buffer is on a list,
695 * it *must* already be on the right one. If not, the filesystem is being
696 * silly. This will save a ton of locking. But first we have to ensure
697 * that buffers are taken *off* the old inode's list when they are freed
698 * (presumably in truncate). That requires careful auditing of all
699 * filesystems (do it inside bforget()). It could also be done by bringing
704 * The buffer's backing address_space's private_lock must be held
706 static inline void __remove_assoc_queue(struct buffer_head *bh)
708 list_del_init(&bh->b_assoc_buffers);
711 int inode_has_buffers(struct inode *inode)
713 return !list_empty(&inode->i_data.private_list);
717 * osync is designed to support O_SYNC io. It waits synchronously for
718 * all already-submitted IO to complete, but does not queue any new
719 * writes to the disk.
721 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722 * you dirty the buffers, and then use osync_inode_buffers to wait for
723 * completion. Any other dirty buffers which are not yet queued for
724 * write will not be flushed to disk by the osync.
726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
728 struct buffer_head *bh;
734 list_for_each_prev(p, list) {
736 if (buffer_locked(bh)) {
740 if (!buffer_uptodate(bh))
752 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
754 * @mapping: the mapping which wants those buffers written
756 * Starts I/O against the buffers at mapping->private_list, and waits upon
759 * Basically, this is a convenience function for fsync().
760 * @mapping is a file or directory which needs those buffers to be written for
761 * a successful fsync().
763 int sync_mapping_buffers(struct address_space *mapping)
765 struct address_space *buffer_mapping = mapping->assoc_mapping;
767 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
770 return fsync_buffers_list(&buffer_mapping->private_lock,
771 &mapping->private_list);
773 EXPORT_SYMBOL(sync_mapping_buffers);
776 * Called when we've recently written block `bblock', and it is known that
777 * `bblock' was for a buffer_boundary() buffer. This means that the block at
778 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
779 * dirty, schedule it for IO. So that indirects merge nicely with their data.
781 void write_boundary_block(struct block_device *bdev,
782 sector_t bblock, unsigned blocksize)
784 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
786 if (buffer_dirty(bh))
787 ll_rw_block(WRITE, 1, &bh);
792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
794 struct address_space *mapping = inode->i_mapping;
795 struct address_space *buffer_mapping = bh->b_page->mapping;
797 mark_buffer_dirty(bh);
798 if (!mapping->assoc_mapping) {
799 mapping->assoc_mapping = buffer_mapping;
801 if (mapping->assoc_mapping != buffer_mapping)
804 if (list_empty(&bh->b_assoc_buffers)) {
805 spin_lock(&buffer_mapping->private_lock);
806 list_move_tail(&bh->b_assoc_buffers,
807 &mapping->private_list);
808 spin_unlock(&buffer_mapping->private_lock);
811 EXPORT_SYMBOL(mark_buffer_dirty_inode);
814 * Add a page to the dirty page list.
816 * It is a sad fact of life that this function is called from several places
817 * deeply under spinlocking. It may not sleep.
819 * If the page has buffers, the uptodate buffers are set dirty, to preserve
820 * dirty-state coherency between the page and the buffers. It the page does
821 * not have buffers then when they are later attached they will all be set
824 * The buffers are dirtied before the page is dirtied. There's a small race
825 * window in which a writepage caller may see the page cleanness but not the
826 * buffer dirtiness. That's fine. If this code were to set the page dirty
827 * before the buffers, a concurrent writepage caller could clear the page dirty
828 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
829 * page on the dirty page list.
831 * We use private_lock to lock against try_to_free_buffers while using the
832 * page's buffer list. Also use this to protect against clean buffers being
833 * added to the page after it was set dirty.
835 * FIXME: may need to call ->reservepage here as well. That's rather up to the
836 * address_space though.
838 int __set_page_dirty_buffers(struct page *page)
840 struct address_space * const mapping = page->mapping;
842 spin_lock(&mapping->private_lock);
843 if (page_has_buffers(page)) {
844 struct buffer_head *head = page_buffers(page);
845 struct buffer_head *bh = head;
848 set_buffer_dirty(bh);
849 bh = bh->b_this_page;
850 } while (bh != head);
852 spin_unlock(&mapping->private_lock);
854 if (!TestSetPageDirty(page)) {
855 write_lock_irq(&mapping->tree_lock);
856 if (page->mapping) { /* Race with truncate? */
857 if (mapping_cap_account_dirty(mapping))
858 inc_page_state(nr_dirty);
859 radix_tree_tag_set(&mapping->page_tree,
861 PAGECACHE_TAG_DIRTY);
863 write_unlock_irq(&mapping->tree_lock);
864 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
869 EXPORT_SYMBOL(__set_page_dirty_buffers);
872 * Write out and wait upon a list of buffers.
874 * We have conflicting pressures: we want to make sure that all
875 * initially dirty buffers get waited on, but that any subsequently
876 * dirtied buffers don't. After all, we don't want fsync to last
877 * forever if somebody is actively writing to the file.
879 * Do this in two main stages: first we copy dirty buffers to a
880 * temporary inode list, queueing the writes as we go. Then we clean
881 * up, waiting for those writes to complete.
883 * During this second stage, any subsequent updates to the file may end
884 * up refiling the buffer on the original inode's dirty list again, so
885 * there is a chance we will end up with a buffer queued for write but
886 * not yet completed on that list. So, as a final cleanup we go through
887 * the osync code to catch these locked, dirty buffers without requeuing
888 * any newly dirty buffers for write.
890 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
892 struct buffer_head *bh;
893 struct list_head tmp;
896 INIT_LIST_HEAD(&tmp);
899 while (!list_empty(list)) {
900 bh = BH_ENTRY(list->next);
901 list_del_init(&bh->b_assoc_buffers);
902 if (buffer_dirty(bh) || buffer_locked(bh)) {
903 list_add(&bh->b_assoc_buffers, &tmp);
904 if (buffer_dirty(bh)) {
908 * Ensure any pending I/O completes so that
909 * ll_rw_block() actually writes the current
910 * contents - it is a noop if I/O is still in
911 * flight on potentially older contents.
913 ll_rw_block(SWRITE, 1, &bh);
920 while (!list_empty(&tmp)) {
921 bh = BH_ENTRY(tmp.prev);
922 __remove_assoc_queue(bh);
926 if (!buffer_uptodate(bh))
933 err2 = osync_buffers_list(lock, list);
941 * Invalidate any and all dirty buffers on a given inode. We are
942 * probably unmounting the fs, but that doesn't mean we have already
943 * done a sync(). Just drop the buffers from the inode list.
945 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
946 * assumes that all the buffers are against the blockdev. Not true
949 void invalidate_inode_buffers(struct inode *inode)
951 if (inode_has_buffers(inode)) {
952 struct address_space *mapping = &inode->i_data;
953 struct list_head *list = &mapping->private_list;
954 struct address_space *buffer_mapping = mapping->assoc_mapping;
956 spin_lock(&buffer_mapping->private_lock);
957 while (!list_empty(list))
958 __remove_assoc_queue(BH_ENTRY(list->next));
959 spin_unlock(&buffer_mapping->private_lock);
964 * Remove any clean buffers from the inode's buffer list. This is called
965 * when we're trying to free the inode itself. Those buffers can pin it.
967 * Returns true if all buffers were removed.
969 int remove_inode_buffers(struct inode *inode)
973 if (inode_has_buffers(inode)) {
974 struct address_space *mapping = &inode->i_data;
975 struct list_head *list = &mapping->private_list;
976 struct address_space *buffer_mapping = mapping->assoc_mapping;
978 spin_lock(&buffer_mapping->private_lock);
979 while (!list_empty(list)) {
980 struct buffer_head *bh = BH_ENTRY(list->next);
981 if (buffer_dirty(bh)) {
985 __remove_assoc_queue(bh);
987 spin_unlock(&buffer_mapping->private_lock);
993 * Create the appropriate buffers when given a page for data area and
994 * the size of each buffer.. Use the bh->b_this_page linked list to
995 * follow the buffers created. Return NULL if unable to create more
998 * The retry flag is used to differentiate async IO (paging, swapping)
999 * which may not fail from ordinary buffer allocations.
1001 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1004 struct buffer_head *bh, *head;
1010 while ((offset -= size) >= 0) {
1011 bh = alloc_buffer_head(GFP_NOFS);
1016 bh->b_this_page = head;
1021 atomic_set(&bh->b_count, 0);
1022 bh->b_private = NULL;
1025 /* Link the buffer to its page */
1026 set_bh_page(bh, page, offset);
1028 init_buffer(bh, NULL, NULL);
1032 * In case anything failed, we just free everything we got.
1038 head = head->b_this_page;
1039 free_buffer_head(bh);
1044 * Return failure for non-async IO requests. Async IO requests
1045 * are not allowed to fail, so we have to wait until buffer heads
1046 * become available. But we don't want tasks sleeping with
1047 * partially complete buffers, so all were released above.
1052 /* We're _really_ low on memory. Now we just
1053 * wait for old buffer heads to become free due to
1054 * finishing IO. Since this is an async request and
1055 * the reserve list is empty, we're sure there are
1056 * async buffer heads in use.
1061 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1064 link_dev_buffers(struct page *page, struct buffer_head *head)
1066 struct buffer_head *bh, *tail;
1071 bh = bh->b_this_page;
1073 tail->b_this_page = head;
1074 attach_page_buffers(page, head);
1078 * Initialise the state of a blockdev page's buffers.
1081 init_page_buffers(struct page *page, struct block_device *bdev,
1082 sector_t block, int size)
1084 struct buffer_head *head = page_buffers(page);
1085 struct buffer_head *bh = head;
1086 int uptodate = PageUptodate(page);
1089 if (!buffer_mapped(bh)) {
1090 init_buffer(bh, NULL, NULL);
1092 bh->b_blocknr = block;
1094 set_buffer_uptodate(bh);
1095 set_buffer_mapped(bh);
1098 bh = bh->b_this_page;
1099 } while (bh != head);
1103 * Create the page-cache page that contains the requested block.
1105 * This is user purely for blockdev mappings.
1107 static struct page *
1108 grow_dev_page(struct block_device *bdev, sector_t block,
1109 pgoff_t index, int size)
1111 struct inode *inode = bdev->bd_inode;
1113 struct buffer_head *bh;
1115 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1119 if (!PageLocked(page))
1122 if (page_has_buffers(page)) {
1123 bh = page_buffers(page);
1124 if (bh->b_size == size) {
1125 init_page_buffers(page, bdev, block, size);
1128 if (!try_to_free_buffers(page))
1133 * Allocate some buffers for this page
1135 bh = alloc_page_buffers(page, size, 0);
1140 * Link the page to the buffers and initialise them. Take the
1141 * lock to be atomic wrt __find_get_block(), which does not
1142 * run under the page lock.
1144 spin_lock(&inode->i_mapping->private_lock);
1145 link_dev_buffers(page, bh);
1146 init_page_buffers(page, bdev, block, size);
1147 spin_unlock(&inode->i_mapping->private_lock);
1153 page_cache_release(page);
1158 * Create buffers for the specified block device block's page. If
1159 * that page was dirty, the buffers are set dirty also.
1161 * Except that's a bug. Attaching dirty buffers to a dirty
1162 * blockdev's page can result in filesystem corruption, because
1163 * some of those buffers may be aliases of filesystem data.
1164 * grow_dev_page() will go BUG() if this happens.
1167 grow_buffers(struct block_device *bdev, sector_t block, int size)
1176 } while ((size << sizebits) < PAGE_SIZE);
1178 index = block >> sizebits;
1179 block = index << sizebits;
1181 /* Create a page with the proper size buffers.. */
1182 page = grow_dev_page(bdev, block, index, size);
1186 page_cache_release(page);
1190 static struct buffer_head *
1191 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1193 /* Size must be multiple of hard sectorsize */
1194 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195 (size < 512 || size > PAGE_SIZE))) {
1196 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1198 printk(KERN_ERR "hardsect size: %d\n",
1199 bdev_hardsect_size(bdev));
1206 struct buffer_head * bh;
1208 bh = __find_get_block(bdev, block, size);
1212 if (!grow_buffers(bdev, block, size))
1218 * The relationship between dirty buffers and dirty pages:
1220 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221 * the page is tagged dirty in its radix tree.
1223 * At all times, the dirtiness of the buffers represents the dirtiness of
1224 * subsections of the page. If the page has buffers, the page dirty bit is
1225 * merely a hint about the true dirty state.
1227 * When a page is set dirty in its entirety, all its buffers are marked dirty
1228 * (if the page has buffers).
1230 * When a buffer is marked dirty, its page is dirtied, but the page's other
1233 * Also. When blockdev buffers are explicitly read with bread(), they
1234 * individually become uptodate. But their backing page remains not
1235 * uptodate - even if all of its buffers are uptodate. A subsequent
1236 * block_read_full_page() against that page will discover all the uptodate
1237 * buffers, will set the page uptodate and will perform no I/O.
1241 * mark_buffer_dirty - mark a buffer_head as needing writeout
1242 * @bh: the buffer_head to mark dirty
1244 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245 * backing page dirty, then tag the page as dirty in its address_space's radix
1246 * tree and then attach the address_space's inode to its superblock's dirty
1249 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1250 * mapping->tree_lock and the global inode_lock.
1252 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1254 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255 __set_page_dirty_nobuffers(bh->b_page);
1259 * Decrement a buffer_head's reference count. If all buffers against a page
1260 * have zero reference count, are clean and unlocked, and if the page is clean
1261 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263 * a page but it ends up not being freed, and buffers may later be reattached).
1265 void __brelse(struct buffer_head * buf)
1267 if (atomic_read(&buf->b_count)) {
1271 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1276 * bforget() is like brelse(), except it discards any
1277 * potentially dirty data.
1279 void __bforget(struct buffer_head *bh)
1281 clear_buffer_dirty(bh);
1282 if (!list_empty(&bh->b_assoc_buffers)) {
1283 struct address_space *buffer_mapping = bh->b_page->mapping;
1285 spin_lock(&buffer_mapping->private_lock);
1286 list_del_init(&bh->b_assoc_buffers);
1287 spin_unlock(&buffer_mapping->private_lock);
1292 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1295 if (buffer_uptodate(bh)) {
1300 bh->b_end_io = end_buffer_read_sync;
1301 submit_bh(READ, bh);
1303 if (buffer_uptodate(bh))
1311 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1312 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1313 * refcount elevated by one when they're in an LRU. A buffer can only appear
1314 * once in a particular CPU's LRU. A single buffer can be present in multiple
1315 * CPU's LRUs at the same time.
1317 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318 * sb_find_get_block().
1320 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1321 * a local interrupt disable for that.
1324 #define BH_LRU_SIZE 8
1327 struct buffer_head *bhs[BH_LRU_SIZE];
1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1333 #define bh_lru_lock() local_irq_disable()
1334 #define bh_lru_unlock() local_irq_enable()
1336 #define bh_lru_lock() preempt_disable()
1337 #define bh_lru_unlock() preempt_enable()
1340 static inline void check_irqs_on(void)
1342 #ifdef irqs_disabled
1343 BUG_ON(irqs_disabled());
1348 * The LRU management algorithm is dopey-but-simple. Sorry.
1350 static void bh_lru_install(struct buffer_head *bh)
1352 struct buffer_head *evictee = NULL;
1357 lru = &__get_cpu_var(bh_lrus);
1358 if (lru->bhs[0] != bh) {
1359 struct buffer_head *bhs[BH_LRU_SIZE];
1365 for (in = 0; in < BH_LRU_SIZE; in++) {
1366 struct buffer_head *bh2 = lru->bhs[in];
1371 if (out >= BH_LRU_SIZE) {
1372 BUG_ON(evictee != NULL);
1379 while (out < BH_LRU_SIZE)
1381 memcpy(lru->bhs, bhs, sizeof(bhs));
1390 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1392 static struct buffer_head *
1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1395 struct buffer_head *ret = NULL;
1401 lru = &__get_cpu_var(bh_lrus);
1402 for (i = 0; i < BH_LRU_SIZE; i++) {
1403 struct buffer_head *bh = lru->bhs[i];
1405 if (bh && bh->b_bdev == bdev &&
1406 bh->b_blocknr == block && bh->b_size == size) {
1409 lru->bhs[i] = lru->bhs[i - 1];
1424 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1425 * it in the LRU and mark it as accessed. If it is not present then return
1428 struct buffer_head *
1429 __find_get_block(struct block_device *bdev, sector_t block, int size)
1431 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1434 bh = __find_get_block_slow(bdev, block);
1442 EXPORT_SYMBOL(__find_get_block);
1445 * __getblk will locate (and, if necessary, create) the buffer_head
1446 * which corresponds to the passed block_device, block and size. The
1447 * returned buffer has its reference count incremented.
1449 * __getblk() cannot fail - it just keeps trying. If you pass it an
1450 * illegal block number, __getblk() will happily return a buffer_head
1451 * which represents the non-existent block. Very weird.
1453 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454 * attempt is failing. FIXME, perhaps?
1456 struct buffer_head *
1457 __getblk(struct block_device *bdev, sector_t block, int size)
1459 struct buffer_head *bh = __find_get_block(bdev, block, size);
1463 bh = __getblk_slow(bdev, block, size);
1466 EXPORT_SYMBOL(__getblk);
1469 * Do async read-ahead on a buffer..
1471 void __breadahead(struct block_device *bdev, sector_t block, int size)
1473 struct buffer_head *bh = __getblk(bdev, block, size);
1475 ll_rw_block(READA, 1, &bh);
1479 EXPORT_SYMBOL(__breadahead);
1482 * __bread() - reads a specified block and returns the bh
1483 * @bdev: the block_device to read from
1484 * @block: number of block
1485 * @size: size (in bytes) to read
1487 * Reads a specified block, and returns buffer head that contains it.
1488 * It returns NULL if the block was unreadable.
1490 struct buffer_head *
1491 __bread(struct block_device *bdev, sector_t block, int size)
1493 struct buffer_head *bh = __getblk(bdev, block, size);
1495 if (likely(bh) && !buffer_uptodate(bh))
1496 bh = __bread_slow(bh);
1499 EXPORT_SYMBOL(__bread);
1502 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503 * This doesn't race because it runs in each cpu either in irq
1504 * or with preempt disabled.
1506 static void invalidate_bh_lru(void *arg)
1508 struct bh_lru *b = &get_cpu_var(bh_lrus);
1511 for (i = 0; i < BH_LRU_SIZE; i++) {
1515 put_cpu_var(bh_lrus);
1518 static void invalidate_bh_lrus(void)
1520 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1523 void set_bh_page(struct buffer_head *bh,
1524 struct page *page, unsigned long offset)
1527 if (offset >= PAGE_SIZE)
1529 if (PageHighMem(page))
1531 * This catches illegal uses and preserves the offset:
1533 bh->b_data = (char *)(0 + offset);
1535 bh->b_data = page_address(page) + offset;
1537 EXPORT_SYMBOL(set_bh_page);
1540 * Called when truncating a buffer on a page completely.
1542 static void discard_buffer(struct buffer_head * bh)
1545 clear_buffer_dirty(bh);
1547 clear_buffer_mapped(bh);
1548 clear_buffer_req(bh);
1549 clear_buffer_new(bh);
1550 clear_buffer_delay(bh);
1555 * try_to_release_page() - release old fs-specific metadata on a page
1557 * @page: the page which the kernel is trying to free
1558 * @gfp_mask: memory allocation flags (and I/O mode)
1560 * The address_space is to try to release any data against the page
1561 * (presumably at page->private). If the release was successful, return `1'.
1562 * Otherwise return zero.
1564 * The @gfp_mask argument specifies whether I/O may be performed to release
1565 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1567 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1569 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1571 struct address_space * const mapping = page->mapping;
1573 BUG_ON(!PageLocked(page));
1574 if (PageWriteback(page))
1577 if (mapping && mapping->a_ops->releasepage)
1578 return mapping->a_ops->releasepage(page, gfp_mask);
1579 return try_to_free_buffers(page);
1581 EXPORT_SYMBOL(try_to_release_page);
1584 * block_invalidatepage - invalidate part of all of a buffer-backed page
1586 * @page: the page which is affected
1587 * @offset: the index of the truncation point
1589 * block_invalidatepage() is called when all or part of the page has become
1590 * invalidatedby a truncate operation.
1592 * block_invalidatepage() does not have to release all buffers, but it must
1593 * ensure that no dirty buffer is left outside @offset and that no I/O
1594 * is underway against any of the blocks which are outside the truncation
1595 * point. Because the caller is about to free (and possibly reuse) those
1598 void block_invalidatepage(struct page *page, unsigned long offset)
1600 struct buffer_head *head, *bh, *next;
1601 unsigned int curr_off = 0;
1603 BUG_ON(!PageLocked(page));
1604 if (!page_has_buffers(page))
1607 head = page_buffers(page);
1610 unsigned int next_off = curr_off + bh->b_size;
1611 next = bh->b_this_page;
1614 * is this block fully invalidated?
1616 if (offset <= curr_off)
1618 curr_off = next_off;
1620 } while (bh != head);
1623 * We release buffers only if the entire page is being invalidated.
1624 * The get_block cached value has been unconditionally invalidated,
1625 * so real IO is not possible anymore.
1628 try_to_release_page(page, 0);
1632 EXPORT_SYMBOL(block_invalidatepage);
1634 void do_invalidatepage(struct page *page, unsigned long offset)
1636 void (*invalidatepage)(struct page *, unsigned long);
1637 invalidatepage = page->mapping->a_ops->invalidatepage ? :
1638 block_invalidatepage;
1639 (*invalidatepage)(page, offset);
1643 * We attach and possibly dirty the buffers atomically wrt
1644 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1645 * is already excluded via the page lock.
1647 void create_empty_buffers(struct page *page,
1648 unsigned long blocksize, unsigned long b_state)
1650 struct buffer_head *bh, *head, *tail;
1652 head = alloc_page_buffers(page, blocksize, 1);
1655 bh->b_state |= b_state;
1657 bh = bh->b_this_page;
1659 tail->b_this_page = head;
1661 spin_lock(&page->mapping->private_lock);
1662 if (PageUptodate(page) || PageDirty(page)) {
1665 if (PageDirty(page))
1666 set_buffer_dirty(bh);
1667 if (PageUptodate(page))
1668 set_buffer_uptodate(bh);
1669 bh = bh->b_this_page;
1670 } while (bh != head);
1672 attach_page_buffers(page, head);
1673 spin_unlock(&page->mapping->private_lock);
1675 EXPORT_SYMBOL(create_empty_buffers);
1678 * We are taking a block for data and we don't want any output from any
1679 * buffer-cache aliases starting from return from that function and
1680 * until the moment when something will explicitly mark the buffer
1681 * dirty (hopefully that will not happen until we will free that block ;-)
1682 * We don't even need to mark it not-uptodate - nobody can expect
1683 * anything from a newly allocated buffer anyway. We used to used
1684 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1685 * don't want to mark the alias unmapped, for example - it would confuse
1686 * anyone who might pick it with bread() afterwards...
1688 * Also.. Note that bforget() doesn't lock the buffer. So there can
1689 * be writeout I/O going on against recently-freed buffers. We don't
1690 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1691 * only if we really need to. That happens here.
1693 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1695 struct buffer_head *old_bh;
1699 old_bh = __find_get_block_slow(bdev, block);
1701 clear_buffer_dirty(old_bh);
1702 wait_on_buffer(old_bh);
1703 clear_buffer_req(old_bh);
1707 EXPORT_SYMBOL(unmap_underlying_metadata);
1710 * NOTE! All mapped/uptodate combinations are valid:
1712 * Mapped Uptodate Meaning
1714 * No No "unknown" - must do get_block()
1715 * No Yes "hole" - zero-filled
1716 * Yes No "allocated" - allocated on disk, not read in
1717 * Yes Yes "valid" - allocated and up-to-date in memory.
1719 * "Dirty" is valid only with the last case (mapped+uptodate).
1723 * While block_write_full_page is writing back the dirty buffers under
1724 * the page lock, whoever dirtied the buffers may decide to clean them
1725 * again at any time. We handle that by only looking at the buffer
1726 * state inside lock_buffer().
1728 * If block_write_full_page() is called for regular writeback
1729 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1730 * locked buffer. This only can happen if someone has written the buffer
1731 * directly, with submit_bh(). At the address_space level PageWriteback
1732 * prevents this contention from occurring.
1734 static int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc)
1739 sector_t last_block;
1740 struct buffer_head *bh, *head;
1741 int nr_underway = 0;
1743 BUG_ON(!PageLocked(page));
1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1747 if (!page_has_buffers(page)) {
1748 create_empty_buffers(page, 1 << inode->i_blkbits,
1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759 * handle that here by just cleaning them.
1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1763 head = page_buffers(page);
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1771 if (block > last_block) {
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1778 * The buffer was zeroed by block_write_full_page()
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783 err = get_block(inode, block, bh, 1);
1786 if (buffer_new(bh)) {
1787 /* blockdev mappings never come here */
1788 clear_buffer_new(bh);
1789 unmap_underlying_metadata(bh->b_bdev,
1793 bh = bh->b_this_page;
1795 } while (bh != head);
1798 if (!buffer_mapped(bh))
1801 * If it's a fully non-blocking write attempt and we cannot
1802 * lock the buffer then redirty the page. Note that this can
1803 * potentially cause a busy-wait loop from pdflush and kswapd
1804 * activity, but those code paths have their own higher-level
1807 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1809 } else if (test_set_buffer_locked(bh)) {
1810 redirty_page_for_writepage(wbc, page);
1813 if (test_clear_buffer_dirty(bh)) {
1814 mark_buffer_async_write(bh);
1818 } while ((bh = bh->b_this_page) != head);
1821 * The page and its buffers are protected by PageWriteback(), so we can
1822 * drop the bh refcounts early.
1824 BUG_ON(PageWriteback(page));
1825 set_page_writeback(page);
1828 struct buffer_head *next = bh->b_this_page;
1829 if (buffer_async_write(bh)) {
1830 submit_bh(WRITE, bh);
1834 } while (bh != head);
1839 if (nr_underway == 0) {
1841 * The page was marked dirty, but the buffers were
1842 * clean. Someone wrote them back by hand with
1843 * ll_rw_block/submit_bh. A rare case.
1847 if (!buffer_uptodate(bh)) {
1851 bh = bh->b_this_page;
1852 } while (bh != head);
1854 SetPageUptodate(page);
1855 end_page_writeback(page);
1857 * The page and buffer_heads can be released at any time from
1860 wbc->pages_skipped++; /* We didn't write this page */
1866 * ENOSPC, or some other error. We may already have added some
1867 * blocks to the file, so we need to write these out to avoid
1868 * exposing stale data.
1869 * The page is currently locked and not marked for writeback
1872 /* Recovery: lock and submit the mapped buffers */
1874 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1876 mark_buffer_async_write(bh);
1879 * The buffer may have been set dirty during
1880 * attachment to a dirty page.
1882 clear_buffer_dirty(bh);
1884 } while ((bh = bh->b_this_page) != head);
1886 BUG_ON(PageWriteback(page));
1887 set_page_writeback(page);
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 clear_buffer_dirty(bh);
1893 submit_bh(WRITE, bh);
1897 } while (bh != head);
1901 static int __block_prepare_write(struct inode *inode, struct page *page,
1902 unsigned from, unsigned to, get_block_t *get_block)
1904 unsigned block_start, block_end;
1907 unsigned blocksize, bbits;
1908 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1910 BUG_ON(!PageLocked(page));
1911 BUG_ON(from > PAGE_CACHE_SIZE);
1912 BUG_ON(to > PAGE_CACHE_SIZE);
1915 blocksize = 1 << inode->i_blkbits;
1916 if (!page_has_buffers(page))
1917 create_empty_buffers(page, blocksize, 0);
1918 head = page_buffers(page);
1920 bbits = inode->i_blkbits;
1921 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1923 for(bh = head, block_start = 0; bh != head || !block_start;
1924 block++, block_start=block_end, bh = bh->b_this_page) {
1925 block_end = block_start + blocksize;
1926 if (block_end <= from || block_start >= to) {
1927 if (PageUptodate(page)) {
1928 if (!buffer_uptodate(bh))
1929 set_buffer_uptodate(bh);
1934 clear_buffer_new(bh);
1935 if (!buffer_mapped(bh)) {
1936 err = get_block(inode, block, bh, 1);
1939 if (buffer_new(bh)) {
1940 unmap_underlying_metadata(bh->b_bdev,
1942 if (PageUptodate(page)) {
1943 set_buffer_uptodate(bh);
1946 if (block_end > to || block_start < from) {
1949 kaddr = kmap_atomic(page, KM_USER0);
1953 if (block_start < from)
1954 memset(kaddr+block_start,
1955 0, from-block_start);
1956 flush_dcache_page(page);
1957 kunmap_atomic(kaddr, KM_USER0);
1962 if (PageUptodate(page)) {
1963 if (!buffer_uptodate(bh))
1964 set_buffer_uptodate(bh);
1967 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1968 (block_start < from || block_end > to)) {
1969 ll_rw_block(READ, 1, &bh);
1974 * If we issued read requests - let them complete.
1976 while(wait_bh > wait) {
1977 wait_on_buffer(*--wait_bh);
1978 if (!buffer_uptodate(*wait_bh))
1985 clear_buffer_new(bh);
1986 } while ((bh = bh->b_this_page) != head);
1991 * Zero out any newly allocated blocks to avoid exposing stale
1992 * data. If BH_New is set, we know that the block was newly
1993 * allocated in the above loop.
1998 block_end = block_start+blocksize;
1999 if (block_end <= from)
2001 if (block_start >= to)
2003 if (buffer_new(bh)) {
2006 clear_buffer_new(bh);
2007 kaddr = kmap_atomic(page, KM_USER0);
2008 memset(kaddr+block_start, 0, bh->b_size);
2009 kunmap_atomic(kaddr, KM_USER0);
2010 set_buffer_uptodate(bh);
2011 mark_buffer_dirty(bh);
2014 block_start = block_end;
2015 bh = bh->b_this_page;
2016 } while (bh != head);
2020 static int __block_commit_write(struct inode *inode, struct page *page,
2021 unsigned from, unsigned to)
2023 unsigned block_start, block_end;
2026 struct buffer_head *bh, *head;
2028 blocksize = 1 << inode->i_blkbits;
2030 for(bh = head = page_buffers(page), block_start = 0;
2031 bh != head || !block_start;
2032 block_start=block_end, bh = bh->b_this_page) {
2033 block_end = block_start + blocksize;
2034 if (block_end <= from || block_start >= to) {
2035 if (!buffer_uptodate(bh))
2038 set_buffer_uptodate(bh);
2039 mark_buffer_dirty(bh);
2044 * If this is a partial write which happened to make all buffers
2045 * uptodate then we can optimize away a bogus readpage() for
2046 * the next read(). Here we 'discover' whether the page went
2047 * uptodate as a result of this (potentially partial) write.
2050 SetPageUptodate(page);
2055 * Generic "read page" function for block devices that have the normal
2056 * get_block functionality. This is most of the block device filesystems.
2057 * Reads the page asynchronously --- the unlock_buffer() and
2058 * set/clear_buffer_uptodate() functions propagate buffer state into the
2059 * page struct once IO has completed.
2061 int block_read_full_page(struct page *page, get_block_t *get_block)
2063 struct inode *inode = page->mapping->host;
2064 sector_t iblock, lblock;
2065 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2066 unsigned int blocksize;
2068 int fully_mapped = 1;
2070 BUG_ON(!PageLocked(page));
2071 blocksize = 1 << inode->i_blkbits;
2072 if (!page_has_buffers(page))
2073 create_empty_buffers(page, blocksize, 0);
2074 head = page_buffers(page);
2076 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2083 if (buffer_uptodate(bh))
2086 if (!buffer_mapped(bh)) {
2090 if (iblock < lblock) {
2091 err = get_block(inode, iblock, bh, 0);
2095 if (!buffer_mapped(bh)) {
2096 void *kaddr = kmap_atomic(page, KM_USER0);
2097 memset(kaddr + i * blocksize, 0, blocksize);
2098 flush_dcache_page(page);
2099 kunmap_atomic(kaddr, KM_USER0);
2101 set_buffer_uptodate(bh);
2105 * get_block() might have updated the buffer
2108 if (buffer_uptodate(bh))
2112 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2115 SetPageMappedToDisk(page);
2119 * All buffers are uptodate - we can set the page uptodate
2120 * as well. But not if get_block() returned an error.
2122 if (!PageError(page))
2123 SetPageUptodate(page);
2128 /* Stage two: lock the buffers */
2129 for (i = 0; i < nr; i++) {
2132 mark_buffer_async_read(bh);
2136 * Stage 3: start the IO. Check for uptodateness
2137 * inside the buffer lock in case another process reading
2138 * the underlying blockdev brought it uptodate (the sct fix).
2140 for (i = 0; i < nr; i++) {
2142 if (buffer_uptodate(bh))
2143 end_buffer_async_read(bh, 1);
2145 submit_bh(READ, bh);
2150 /* utility function for filesystems that need to do work on expanding
2151 * truncates. Uses prepare/commit_write to allow the filesystem to
2152 * deal with the hole.
2154 static int __generic_cont_expand(struct inode *inode, loff_t size,
2155 pgoff_t index, unsigned int offset)
2157 struct address_space *mapping = inode->i_mapping;
2159 unsigned long limit;
2163 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2164 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2165 send_sig(SIGXFSZ, current, 0);
2168 if (size > inode->i_sb->s_maxbytes)
2172 page = grab_cache_page(mapping, index);
2175 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2178 * ->prepare_write() may have instantiated a few blocks
2179 * outside i_size. Trim these off again.
2182 page_cache_release(page);
2183 vmtruncate(inode, inode->i_size);
2187 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2190 page_cache_release(page);
2197 int generic_cont_expand(struct inode *inode, loff_t size)
2200 unsigned int offset;
2202 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2204 /* ugh. in prepare/commit_write, if from==to==start of block, we
2205 ** skip the prepare. make sure we never send an offset for the start
2208 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2209 /* caller must handle this extra byte. */
2212 index = size >> PAGE_CACHE_SHIFT;
2214 return __generic_cont_expand(inode, size, index, offset);
2217 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2219 loff_t pos = size - 1;
2220 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2221 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2223 /* prepare/commit_write can handle even if from==to==start of block. */
2224 return __generic_cont_expand(inode, size, index, offset);
2228 * For moronic filesystems that do not allow holes in file.
2229 * We may have to extend the file.
2232 int cont_prepare_write(struct page *page, unsigned offset,
2233 unsigned to, get_block_t *get_block, loff_t *bytes)
2235 struct address_space *mapping = page->mapping;
2236 struct inode *inode = mapping->host;
2237 struct page *new_page;
2241 unsigned blocksize = 1 << inode->i_blkbits;
2244 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2246 new_page = grab_cache_page(mapping, pgpos);
2249 /* we might sleep */
2250 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2251 unlock_page(new_page);
2252 page_cache_release(new_page);
2255 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2256 if (zerofrom & (blocksize-1)) {
2257 *bytes |= (blocksize-1);
2260 status = __block_prepare_write(inode, new_page, zerofrom,
2261 PAGE_CACHE_SIZE, get_block);
2264 kaddr = kmap_atomic(new_page, KM_USER0);
2265 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2266 flush_dcache_page(new_page);
2267 kunmap_atomic(kaddr, KM_USER0);
2268 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2269 unlock_page(new_page);
2270 page_cache_release(new_page);
2273 if (page->index < pgpos) {
2274 /* completely inside the area */
2277 /* page covers the boundary, find the boundary offset */
2278 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2280 /* if we will expand the thing last block will be filled */
2281 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2282 *bytes |= (blocksize-1);
2286 /* starting below the boundary? Nothing to zero out */
2287 if (offset <= zerofrom)
2290 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2293 if (zerofrom < offset) {
2294 kaddr = kmap_atomic(page, KM_USER0);
2295 memset(kaddr+zerofrom, 0, offset-zerofrom);
2296 flush_dcache_page(page);
2297 kunmap_atomic(kaddr, KM_USER0);
2298 __block_commit_write(inode, page, zerofrom, offset);
2302 ClearPageUptodate(page);
2306 ClearPageUptodate(new_page);
2307 unlock_page(new_page);
2308 page_cache_release(new_page);
2313 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2314 get_block_t *get_block)
2316 struct inode *inode = page->mapping->host;
2317 int err = __block_prepare_write(inode, page, from, to, get_block);
2319 ClearPageUptodate(page);
2323 int block_commit_write(struct page *page, unsigned from, unsigned to)
2325 struct inode *inode = page->mapping->host;
2326 __block_commit_write(inode,page,from,to);
2330 int generic_commit_write(struct file *file, struct page *page,
2331 unsigned from, unsigned to)
2333 struct inode *inode = page->mapping->host;
2334 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2335 __block_commit_write(inode,page,from,to);
2337 * No need to use i_size_read() here, the i_size
2338 * cannot change under us because we hold i_mutex.
2340 if (pos > inode->i_size) {
2341 i_size_write(inode, pos);
2342 mark_inode_dirty(inode);
2349 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2350 * immediately, while under the page lock. So it needs a special end_io
2351 * handler which does not touch the bh after unlocking it.
2353 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2354 * a race there is benign: unlock_buffer() only use the bh's address for
2355 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2358 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2361 set_buffer_uptodate(bh);
2363 /* This happens, due to failed READA attempts. */
2364 clear_buffer_uptodate(bh);
2370 * On entry, the page is fully not uptodate.
2371 * On exit the page is fully uptodate in the areas outside (from,to)
2373 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2374 get_block_t *get_block)
2376 struct inode *inode = page->mapping->host;
2377 const unsigned blkbits = inode->i_blkbits;
2378 const unsigned blocksize = 1 << blkbits;
2379 struct buffer_head map_bh;
2380 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2381 unsigned block_in_page;
2382 unsigned block_start;
2383 sector_t block_in_file;
2388 int is_mapped_to_disk = 1;
2391 if (PageMappedToDisk(page))
2394 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2395 map_bh.b_page = page;
2398 * We loop across all blocks in the page, whether or not they are
2399 * part of the affected region. This is so we can discover if the
2400 * page is fully mapped-to-disk.
2402 for (block_start = 0, block_in_page = 0;
2403 block_start < PAGE_CACHE_SIZE;
2404 block_in_page++, block_start += blocksize) {
2405 unsigned block_end = block_start + blocksize;
2410 if (block_start >= to)
2412 ret = get_block(inode, block_in_file + block_in_page,
2416 if (!buffer_mapped(&map_bh))
2417 is_mapped_to_disk = 0;
2418 if (buffer_new(&map_bh))
2419 unmap_underlying_metadata(map_bh.b_bdev,
2421 if (PageUptodate(page))
2423 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2424 kaddr = kmap_atomic(page, KM_USER0);
2425 if (block_start < from) {
2426 memset(kaddr+block_start, 0, from-block_start);
2429 if (block_end > to) {
2430 memset(kaddr + to, 0, block_end - to);
2433 flush_dcache_page(page);
2434 kunmap_atomic(kaddr, KM_USER0);
2437 if (buffer_uptodate(&map_bh))
2438 continue; /* reiserfs does this */
2439 if (block_start < from || block_end > to) {
2440 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2446 bh->b_state = map_bh.b_state;
2447 atomic_set(&bh->b_count, 0);
2448 bh->b_this_page = NULL;
2450 bh->b_blocknr = map_bh.b_blocknr;
2451 bh->b_size = blocksize;
2452 bh->b_data = (char *)(long)block_start;
2453 bh->b_bdev = map_bh.b_bdev;
2454 bh->b_private = NULL;
2455 read_bh[nr_reads++] = bh;
2460 struct buffer_head *bh;
2463 * The page is locked, so these buffers are protected from
2464 * any VM or truncate activity. Hence we don't need to care
2465 * for the buffer_head refcounts.
2467 for (i = 0; i < nr_reads; i++) {
2470 bh->b_end_io = end_buffer_read_nobh;
2471 submit_bh(READ, bh);
2473 for (i = 0; i < nr_reads; i++) {
2476 if (!buffer_uptodate(bh))
2478 free_buffer_head(bh);
2485 if (is_mapped_to_disk)
2486 SetPageMappedToDisk(page);
2487 SetPageUptodate(page);
2490 * Setting the page dirty here isn't necessary for the prepare_write
2491 * function - commit_write will do that. But if/when this function is
2492 * used within the pagefault handler to ensure that all mmapped pages
2493 * have backing space in the filesystem, we will need to dirty the page
2494 * if its contents were altered.
2497 set_page_dirty(page);
2502 for (i = 0; i < nr_reads; i++) {
2504 free_buffer_head(read_bh[i]);
2508 * Error recovery is pretty slack. Clear the page and mark it dirty
2509 * so we'll later zero out any blocks which _were_ allocated.
2511 kaddr = kmap_atomic(page, KM_USER0);
2512 memset(kaddr, 0, PAGE_CACHE_SIZE);
2513 kunmap_atomic(kaddr, KM_USER0);
2514 SetPageUptodate(page);
2515 set_page_dirty(page);
2518 EXPORT_SYMBOL(nobh_prepare_write);
2520 int nobh_commit_write(struct file *file, struct page *page,
2521 unsigned from, unsigned to)
2523 struct inode *inode = page->mapping->host;
2524 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2526 set_page_dirty(page);
2527 if (pos > inode->i_size) {
2528 i_size_write(inode, pos);
2529 mark_inode_dirty(inode);
2533 EXPORT_SYMBOL(nobh_commit_write);
2536 * nobh_writepage() - based on block_full_write_page() except
2537 * that it tries to operate without attaching bufferheads to
2540 int nobh_writepage(struct page *page, get_block_t *get_block,
2541 struct writeback_control *wbc)
2543 struct inode * const inode = page->mapping->host;
2544 loff_t i_size = i_size_read(inode);
2545 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2550 /* Is the page fully inside i_size? */
2551 if (page->index < end_index)
2554 /* Is the page fully outside i_size? (truncate in progress) */
2555 offset = i_size & (PAGE_CACHE_SIZE-1);
2556 if (page->index >= end_index+1 || !offset) {
2558 * The page may have dirty, unmapped buffers. For example,
2559 * they may have been added in ext3_writepage(). Make them
2560 * freeable here, so the page does not leak.
2563 /* Not really sure about this - do we need this ? */
2564 if (page->mapping->a_ops->invalidatepage)
2565 page->mapping->a_ops->invalidatepage(page, offset);
2568 return 0; /* don't care */
2572 * The page straddles i_size. It must be zeroed out on each and every
2573 * writepage invocation because it may be mmapped. "A file is mapped
2574 * in multiples of the page size. For a file that is not a multiple of
2575 * the page size, the remaining memory is zeroed when mapped, and
2576 * writes to that region are not written out to the file."
2578 kaddr = kmap_atomic(page, KM_USER0);
2579 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2580 flush_dcache_page(page);
2581 kunmap_atomic(kaddr, KM_USER0);
2583 ret = mpage_writepage(page, get_block, wbc);
2585 ret = __block_write_full_page(inode, page, get_block, wbc);
2588 EXPORT_SYMBOL(nobh_writepage);
2591 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2593 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2595 struct inode *inode = mapping->host;
2596 unsigned blocksize = 1 << inode->i_blkbits;
2597 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2598 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2601 struct address_space_operations *a_ops = mapping->a_ops;
2605 if ((offset & (blocksize - 1)) == 0)
2609 page = grab_cache_page(mapping, index);
2613 to = (offset + blocksize) & ~(blocksize - 1);
2614 ret = a_ops->prepare_write(NULL, page, offset, to);
2616 kaddr = kmap_atomic(page, KM_USER0);
2617 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2618 flush_dcache_page(page);
2619 kunmap_atomic(kaddr, KM_USER0);
2620 set_page_dirty(page);
2623 page_cache_release(page);
2627 EXPORT_SYMBOL(nobh_truncate_page);
2629 int block_truncate_page(struct address_space *mapping,
2630 loff_t from, get_block_t *get_block)
2632 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2633 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2636 unsigned length, pos;
2637 struct inode *inode = mapping->host;
2639 struct buffer_head *bh;
2643 blocksize = 1 << inode->i_blkbits;
2644 length = offset & (blocksize - 1);
2646 /* Block boundary? Nothing to do */
2650 length = blocksize - length;
2651 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2653 page = grab_cache_page(mapping, index);
2658 if (!page_has_buffers(page))
2659 create_empty_buffers(page, blocksize, 0);
2661 /* Find the buffer that contains "offset" */
2662 bh = page_buffers(page);
2664 while (offset >= pos) {
2665 bh = bh->b_this_page;
2671 if (!buffer_mapped(bh)) {
2672 err = get_block(inode, iblock, bh, 0);
2675 /* unmapped? It's a hole - nothing to do */
2676 if (!buffer_mapped(bh))
2680 /* Ok, it's mapped. Make sure it's up-to-date */
2681 if (PageUptodate(page))
2682 set_buffer_uptodate(bh);
2684 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2686 ll_rw_block(READ, 1, &bh);
2688 /* Uhhuh. Read error. Complain and punt. */
2689 if (!buffer_uptodate(bh))
2693 kaddr = kmap_atomic(page, KM_USER0);
2694 memset(kaddr + offset, 0, length);
2695 flush_dcache_page(page);
2696 kunmap_atomic(kaddr, KM_USER0);
2698 mark_buffer_dirty(bh);
2703 page_cache_release(page);
2709 * The generic ->writepage function for buffer-backed address_spaces
2711 int block_write_full_page(struct page *page, get_block_t *get_block,
2712 struct writeback_control *wbc)
2714 struct inode * const inode = page->mapping->host;
2715 loff_t i_size = i_size_read(inode);
2716 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2720 /* Is the page fully inside i_size? */
2721 if (page->index < end_index)
2722 return __block_write_full_page(inode, page, get_block, wbc);
2724 /* Is the page fully outside i_size? (truncate in progress) */
2725 offset = i_size & (PAGE_CACHE_SIZE-1);
2726 if (page->index >= end_index+1 || !offset) {
2728 * The page may have dirty, unmapped buffers. For example,
2729 * they may have been added in ext3_writepage(). Make them
2730 * freeable here, so the page does not leak.
2732 do_invalidatepage(page, 0);
2734 return 0; /* don't care */
2738 * The page straddles i_size. It must be zeroed out on each and every
2739 * writepage invokation because it may be mmapped. "A file is mapped
2740 * in multiples of the page size. For a file that is not a multiple of
2741 * the page size, the remaining memory is zeroed when mapped, and
2742 * writes to that region are not written out to the file."
2744 kaddr = kmap_atomic(page, KM_USER0);
2745 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2746 flush_dcache_page(page);
2747 kunmap_atomic(kaddr, KM_USER0);
2748 return __block_write_full_page(inode, page, get_block, wbc);
2751 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2752 get_block_t *get_block)
2754 struct buffer_head tmp;
2755 struct inode *inode = mapping->host;
2758 get_block(inode, block, &tmp, 0);
2759 return tmp.b_blocknr;
2762 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2764 struct buffer_head *bh = bio->bi_private;
2769 if (err == -EOPNOTSUPP) {
2770 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2771 set_bit(BH_Eopnotsupp, &bh->b_state);
2774 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2779 int submit_bh(int rw, struct buffer_head * bh)
2784 BUG_ON(!buffer_locked(bh));
2785 BUG_ON(!buffer_mapped(bh));
2786 BUG_ON(!bh->b_end_io);
2788 if (buffer_ordered(bh) && (rw == WRITE))
2792 * Only clear out a write error when rewriting, should this
2793 * include WRITE_SYNC as well?
2795 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2796 clear_buffer_write_io_error(bh);
2799 * from here on down, it's all bio -- do the initial mapping,
2800 * submit_bio -> generic_make_request may further map this bio around
2802 bio = bio_alloc(GFP_NOIO, 1);
2804 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2805 bio->bi_bdev = bh->b_bdev;
2806 bio->bi_io_vec[0].bv_page = bh->b_page;
2807 bio->bi_io_vec[0].bv_len = bh->b_size;
2808 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2812 bio->bi_size = bh->b_size;
2814 bio->bi_end_io = end_bio_bh_io_sync;
2815 bio->bi_private = bh;
2818 submit_bio(rw, bio);
2820 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2828 * ll_rw_block: low-level access to block devices (DEPRECATED)
2829 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2830 * @nr: number of &struct buffer_heads in the array
2831 * @bhs: array of pointers to &struct buffer_head
2833 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2834 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2835 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2836 * are sent to disk. The fourth %READA option is described in the documentation
2837 * for generic_make_request() which ll_rw_block() calls.
2839 * This function drops any buffer that it cannot get a lock on (with the
2840 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2841 * clean when doing a write request, and any buffer that appears to be
2842 * up-to-date when doing read request. Further it marks as clean buffers that
2843 * are processed for writing (the buffer cache won't assume that they are
2844 * actually clean until the buffer gets unlocked).
2846 * ll_rw_block sets b_end_io to simple completion handler that marks
2847 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2850 * All of the buffers must be for the same device, and must also be a
2851 * multiple of the current approved size for the device.
2853 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2857 for (i = 0; i < nr; i++) {
2858 struct buffer_head *bh = bhs[i];
2862 else if (test_set_buffer_locked(bh))
2865 if (rw == WRITE || rw == SWRITE) {
2866 if (test_clear_buffer_dirty(bh)) {
2867 bh->b_end_io = end_buffer_write_sync;
2869 submit_bh(WRITE, bh);
2873 if (!buffer_uptodate(bh)) {
2874 bh->b_end_io = end_buffer_read_sync;
2885 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2886 * and then start new I/O and then wait upon it. The caller must have a ref on
2889 int sync_dirty_buffer(struct buffer_head *bh)
2893 WARN_ON(atomic_read(&bh->b_count) < 1);
2895 if (test_clear_buffer_dirty(bh)) {
2897 bh->b_end_io = end_buffer_write_sync;
2898 ret = submit_bh(WRITE, bh);
2900 if (buffer_eopnotsupp(bh)) {
2901 clear_buffer_eopnotsupp(bh);
2904 if (!ret && !buffer_uptodate(bh))
2913 * try_to_free_buffers() checks if all the buffers on this particular page
2914 * are unused, and releases them if so.
2916 * Exclusion against try_to_free_buffers may be obtained by either
2917 * locking the page or by holding its mapping's private_lock.
2919 * If the page is dirty but all the buffers are clean then we need to
2920 * be sure to mark the page clean as well. This is because the page
2921 * may be against a block device, and a later reattachment of buffers
2922 * to a dirty page will set *all* buffers dirty. Which would corrupt
2923 * filesystem data on the same device.
2925 * The same applies to regular filesystem pages: if all the buffers are
2926 * clean then we set the page clean and proceed. To do that, we require
2927 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2930 * try_to_free_buffers() is non-blocking.
2932 static inline int buffer_busy(struct buffer_head *bh)
2934 return atomic_read(&bh->b_count) |
2935 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2939 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2941 struct buffer_head *head = page_buffers(page);
2942 struct buffer_head *bh;
2946 if (buffer_write_io_error(bh) && page->mapping)
2947 set_bit(AS_EIO, &page->mapping->flags);
2948 if (buffer_busy(bh))
2950 bh = bh->b_this_page;
2951 } while (bh != head);
2954 struct buffer_head *next = bh->b_this_page;
2956 if (!list_empty(&bh->b_assoc_buffers))
2957 __remove_assoc_queue(bh);
2959 } while (bh != head);
2960 *buffers_to_free = head;
2961 __clear_page_buffers(page);
2967 int try_to_free_buffers(struct page *page)
2969 struct address_space * const mapping = page->mapping;
2970 struct buffer_head *buffers_to_free = NULL;
2973 BUG_ON(!PageLocked(page));
2974 if (PageWriteback(page))
2977 if (mapping == NULL) { /* can this still happen? */
2978 ret = drop_buffers(page, &buffers_to_free);
2982 spin_lock(&mapping->private_lock);
2983 ret = drop_buffers(page, &buffers_to_free);
2986 * If the filesystem writes its buffers by hand (eg ext3)
2987 * then we can have clean buffers against a dirty page. We
2988 * clean the page here; otherwise later reattachment of buffers
2989 * could encounter a non-uptodate page, which is unresolvable.
2990 * This only applies in the rare case where try_to_free_buffers
2991 * succeeds but the page is not freed.
2993 clear_page_dirty(page);
2995 spin_unlock(&mapping->private_lock);
2997 if (buffers_to_free) {
2998 struct buffer_head *bh = buffers_to_free;
3001 struct buffer_head *next = bh->b_this_page;
3002 free_buffer_head(bh);
3004 } while (bh != buffers_to_free);
3008 EXPORT_SYMBOL(try_to_free_buffers);
3010 void block_sync_page(struct page *page)
3012 struct address_space *mapping;
3015 mapping = page_mapping(page);
3017 blk_run_backing_dev(mapping->backing_dev_info, page);
3021 * There are no bdflush tunables left. But distributions are
3022 * still running obsolete flush daemons, so we terminate them here.
3024 * Use of bdflush() is deprecated and will be removed in a future kernel.
3025 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3027 asmlinkage long sys_bdflush(int func, long data)
3029 static int msg_count;
3031 if (!capable(CAP_SYS_ADMIN))
3034 if (msg_count < 5) {
3037 "warning: process `%s' used the obsolete bdflush"
3038 " system call\n", current->comm);
3039 printk(KERN_INFO "Fix your initscripts?\n");
3048 * Buffer-head allocation
3050 static kmem_cache_t *bh_cachep;
3053 * Once the number of bh's in the machine exceeds this level, we start
3054 * stripping them in writeback.
3056 static int max_buffer_heads;
3058 int buffer_heads_over_limit;
3060 struct bh_accounting {
3061 int nr; /* Number of live bh's */
3062 int ratelimit; /* Limit cacheline bouncing */
3065 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3067 static void recalc_bh_state(void)
3072 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3074 __get_cpu_var(bh_accounting).ratelimit = 0;
3075 for_each_online_cpu(i)
3076 tot += per_cpu(bh_accounting, i).nr;
3077 buffer_heads_over_limit = (tot > max_buffer_heads);
3080 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3082 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3084 get_cpu_var(bh_accounting).nr++;
3086 put_cpu_var(bh_accounting);
3090 EXPORT_SYMBOL(alloc_buffer_head);
3092 void free_buffer_head(struct buffer_head *bh)
3094 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3095 kmem_cache_free(bh_cachep, bh);
3096 get_cpu_var(bh_accounting).nr--;
3098 put_cpu_var(bh_accounting);
3100 EXPORT_SYMBOL(free_buffer_head);
3103 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3105 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3106 SLAB_CTOR_CONSTRUCTOR) {
3107 struct buffer_head * bh = (struct buffer_head *)data;
3109 memset(bh, 0, sizeof(*bh));
3110 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3114 #ifdef CONFIG_HOTPLUG_CPU
3115 static void buffer_exit_cpu(int cpu)
3118 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3120 for (i = 0; i < BH_LRU_SIZE; i++) {
3124 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3125 per_cpu(bh_accounting, cpu).nr = 0;
3126 put_cpu_var(bh_accounting);
3129 static int buffer_cpu_notify(struct notifier_block *self,
3130 unsigned long action, void *hcpu)
3132 if (action == CPU_DEAD)
3133 buffer_exit_cpu((unsigned long)hcpu);
3136 #endif /* CONFIG_HOTPLUG_CPU */
3138 void __init buffer_init(void)
3142 bh_cachep = kmem_cache_create("buffer_head",
3143 sizeof(struct buffer_head), 0,
3144 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3150 * Limit the bh occupancy to 10% of ZONE_NORMAL
3152 nrpages = (nr_free_buffer_pages() * 10) / 100;
3153 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3154 hotcpu_notifier(buffer_cpu_notify, 0);
3157 EXPORT_SYMBOL(__bforget);
3158 EXPORT_SYMBOL(__brelse);
3159 EXPORT_SYMBOL(__wait_on_buffer);
3160 EXPORT_SYMBOL(block_commit_write);
3161 EXPORT_SYMBOL(block_prepare_write);
3162 EXPORT_SYMBOL(block_read_full_page);
3163 EXPORT_SYMBOL(block_sync_page);
3164 EXPORT_SYMBOL(block_truncate_page);
3165 EXPORT_SYMBOL(block_write_full_page);
3166 EXPORT_SYMBOL(cont_prepare_write);
3167 EXPORT_SYMBOL(end_buffer_async_write);
3168 EXPORT_SYMBOL(end_buffer_read_sync);
3169 EXPORT_SYMBOL(end_buffer_write_sync);
3170 EXPORT_SYMBOL(file_fsync);
3171 EXPORT_SYMBOL(fsync_bdev);
3172 EXPORT_SYMBOL(generic_block_bmap);
3173 EXPORT_SYMBOL(generic_commit_write);
3174 EXPORT_SYMBOL(generic_cont_expand);
3175 EXPORT_SYMBOL(generic_cont_expand_simple);
3176 EXPORT_SYMBOL(init_buffer);
3177 EXPORT_SYMBOL(invalidate_bdev);
3178 EXPORT_SYMBOL(ll_rw_block);
3179 EXPORT_SYMBOL(mark_buffer_dirty);
3180 EXPORT_SYMBOL(submit_bh);
3181 EXPORT_SYMBOL(sync_dirty_buffer);
3182 EXPORT_SYMBOL(unlock_buffer);