3 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
25 #include <linux/errno.h>
26 #include <linux/threads.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/signal.h>
29 #include <linux/sched.h>
30 #include <linux/ioport.h>
31 #include <linux/interrupt.h>
32 #include <linux/timex.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/irq.h>
38 #include <linux/random.h>
39 #include <linux/sysrq.h>
40 #include <linux/bitops.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
45 #include <asm/pgtable.h>
47 #include <asm/cache.h>
49 #include <asm/ptrace.h>
50 #include <asm/iSeries/LparData.h>
51 #include <asm/machdep.h>
53 #include <asm/ppcdebug.h>
55 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
56 static DEFINE_SPINLOCK(ras_log_buf_lock);
58 char mce_data_buf[RTAS_ERROR_LOG_MAX]
60 /* This is true if we are using the firmware NMI handler (typically LPAR) */
61 extern int fwnmi_active;
63 extern void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr);
65 static int ras_get_sensor_state_token;
66 static int ras_check_exception_token;
68 #define EPOW_SENSOR_TOKEN 9
69 #define EPOW_SENSOR_INDEX 0
70 #define RAS_VECTOR_OFFSET 0x500
72 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id,
73 struct pt_regs * regs);
74 static irqreturn_t ras_error_interrupt(int irq, void *dev_id,
75 struct pt_regs * regs);
79 static void request_ras_irqs(struct device_node *np, char *propname,
80 irqreturn_t (*handler)(int, void *, struct pt_regs *),
83 unsigned int *ireg, len, i;
86 ireg = (unsigned int *)get_property(np, propname, &len);
89 n_intr = prom_n_intr_cells(np);
90 len /= n_intr * sizeof(*ireg);
92 for (i = 0; i < len; i++) {
93 virq = virt_irq_create_mapping(*ireg);
95 printk(KERN_ERR "Unable to allocate interrupt "
96 "number for %s\n", np->full_name);
99 if (request_irq(irq_offset_up(virq), handler, 0, name, NULL)) {
100 printk(KERN_ERR "Unable to request interrupt %d for "
101 "%s\n", irq_offset_up(virq), np->full_name);
109 * Initialize handlers for the set of interrupts caused by hardware errors
110 * and power system events.
112 static int __init init_ras_IRQ(void)
114 struct device_node *np;
116 ras_get_sensor_state_token = rtas_token("get-sensor-state");
117 ras_check_exception_token = rtas_token("check-exception");
119 /* Internal Errors */
120 np = of_find_node_by_path("/event-sources/internal-errors");
122 request_ras_irqs(np, "open-pic-interrupt", ras_error_interrupt,
124 request_ras_irqs(np, "interrupts", ras_error_interrupt,
130 np = of_find_node_by_path("/event-sources/epow-events");
132 request_ras_irqs(np, "open-pic-interrupt", ras_epow_interrupt,
134 request_ras_irqs(np, "interrupts", ras_epow_interrupt,
141 __initcall(init_ras_IRQ);
144 * Handle power subsystem events (EPOW).
146 * Presently we just log the event has occurred. This should be fixed
147 * to examine the type of power failure and take appropriate action where
148 * the time horizon permits something useful to be done.
151 ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs)
153 int status = 0xdeadbeef;
157 status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
158 EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
161 critical = 1; /* Time Critical */
165 spin_lock(&ras_log_buf_lock);
167 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
169 virt_irq_to_real(irq_offset_down(irq)),
170 RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
171 critical, __pa(&ras_log_buf),
172 rtas_get_error_log_max());
174 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
175 *((unsigned long *)&ras_log_buf), status, state);
176 printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
177 *((unsigned long *)&ras_log_buf), status, state);
179 /* format and print the extended information */
180 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
182 spin_unlock(&ras_log_buf_lock);
187 * Handle hardware error interrupts.
189 * RTAS check-exception is called to collect data on the exception. If
190 * the error is deemed recoverable, we log a warning and return.
191 * For nonrecoverable errors, an error is logged and we stop all processing
192 * as quickly as possible in order to prevent propagation of the failure.
195 ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs)
197 struct rtas_error_log *rtas_elog;
198 int status = 0xdeadbeef;
201 spin_lock(&ras_log_buf_lock);
203 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
205 virt_irq_to_real(irq_offset_down(irq)),
206 RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
208 rtas_get_error_log_max());
210 rtas_elog = (struct rtas_error_log *)ras_log_buf;
212 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
217 /* format and print the extended information */
218 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
221 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
222 *((unsigned long *)&ras_log_buf), status);
223 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
224 *((unsigned long *)&ras_log_buf), status);
227 /* Don't actually power off when debugging so we can test
228 * without actually failing while injecting errors.
229 * Error data will not be logged to syslog.
234 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
235 *((unsigned long *)&ras_log_buf), status);
237 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
238 *((unsigned long *)&ras_log_buf), status);
241 spin_unlock(&ras_log_buf_lock);
245 /* Get the error information for errors coming through the
246 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
247 * the actual r3 if possible, and a ptr to the error log entry
248 * will be returned if found.
250 * The mce_data_buf does not have any locks or protection around it,
251 * if a second machine check comes in, or a system reset is done
252 * before we have logged the error, then we will get corruption in the
253 * error log. This is preferable over holding off on calling
254 * ibm,nmi-interlock which would result in us checkstopping if a
255 * second machine check did come in.
257 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
259 unsigned long errdata = regs->gpr[3];
260 struct rtas_error_log *errhdr = NULL;
261 unsigned long *savep;
263 if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
264 (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
265 savep = __va(errdata);
266 regs->gpr[3] = savep[0]; /* restore original r3 */
267 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
268 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
269 errhdr = (struct rtas_error_log *)mce_data_buf;
271 printk("FWNMI: corrupt r3\n");
276 /* Call this when done with the data returned by FWNMI_get_errinfo.
277 * It will release the saved data area for other CPUs in the
278 * partition to receive FWNMI errors.
280 static void fwnmi_release_errinfo(void)
282 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
284 printk("FWNMI: nmi-interlock failed: %d\n", ret);
287 void pSeries_system_reset_exception(struct pt_regs *regs)
290 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
292 /* XXX Should look at FWNMI information */
294 fwnmi_release_errinfo();
299 * See if we can recover from a machine check exception.
300 * This is only called on power4 (or above) and only via
301 * the Firmware Non-Maskable Interrupts (fwnmi) handler
302 * which provides the error analysis for us.
304 * Return 1 if corrected (or delivered a signal).
305 * Return 0 if there is nothing we can do.
307 static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
311 if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
312 /* Platform corrected itself */
314 } else if ((regs->msr & MSR_RI) &&
316 err->severity == RTAS_SEVERITY_ERROR_SYNC &&
317 err->disposition == RTAS_DISP_NOT_RECOVERED &&
318 err->target == RTAS_TARGET_MEMORY &&
319 err->type == RTAS_TYPE_ECC_UNCORR &&
320 !(current->pid == 0 || current->pid == 1)) {
321 /* Kill off a user process with an ECC error */
322 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
324 /* XXX something better for ECC error? */
325 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
329 log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
335 * Handle a machine check.
337 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
338 * should be present. If so the handler which called us tells us if the
339 * error was recovered (never true if RI=0).
341 * On hardware prior to Power 4 these exceptions were asynchronous which
342 * means we can't tell exactly where it occurred and so we can't recover.
344 int pSeries_machine_check_exception(struct pt_regs *regs)
346 struct rtas_error_log *errp;
349 errp = fwnmi_get_errinfo(regs);
350 fwnmi_release_errinfo();
351 if (errp && recover_mce(regs, errp))