2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
43 * For the allocated request tables
45 static kmem_cache_t *request_cachep;
48 * For queue allocation
50 static kmem_cache_t *requestq_cachep;
53 * For io context allocations
55 static kmem_cache_t *iocontext_cachep;
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
63 * Controlling structure to kblockd
65 static struct workqueue_struct *kblockd_workqueue;
67 unsigned long blk_max_low_pfn, blk_max_pfn;
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 return q->nr_congestion_on;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 return q->nr_congestion_off;
96 static void blk_queue_congestion_threshold(struct request_queue *q)
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
103 q->nr_congestion_on = nr;
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 q->nr_congestion_off = nr;
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
116 static void clear_queue_congested(request_queue_t *q, int rw)
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
132 static void set_queue_congested(request_queue_t *q, int rw)
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
144 * Locates the passed device's request queue and returns the address of its
147 * Will return NULL if the request queue cannot be located.
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
155 ret = &q->backing_dev_info;
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
164 q->activity_data = data;
167 EXPORT_SYMBOL(blk_queue_activity_fn);
170 * blk_queue_prep_rq - set a prepare_request function for queue
172 * @pfn: prepare_request function
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 EXPORT_SYMBOL(blk_queue_prep_rq);
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
190 * @mbfn: merge_bvec_fn
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
205 q->merge_bvec_fn = mbfn;
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
237 q->nr_requests = BLKDEV_MAX_RQ;
238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
261 * by default assume old behaviour and bounce for any highmem page
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
265 blk_queue_activity_fn(q, NULL, NULL);
267 INIT_LIST_HEAD(&q->drain_list);
270 EXPORT_SYMBOL(blk_queue_make_request);
272 static inline void rq_init(request_queue_t *q, struct request *rq)
274 INIT_LIST_HEAD(&rq->queuelist);
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
287 rq->nr_phys_segments = 0;
290 rq->end_io_data = NULL;
294 * blk_queue_ordered - does this queue support ordered writes
295 * @q: the request queue
299 * For journalled file systems, doing ordered writes on a commit
300 * block instead of explicitly doing wait_on_buffer (which is bad
301 * for performance) can be a big win. Block drivers supporting this
302 * feature should call this function and indicate so.
305 void blk_queue_ordered(request_queue_t *q, int flag)
308 case QUEUE_ORDERED_NONE:
310 kmem_cache_free(request_cachep, q->flush_rq);
314 case QUEUE_ORDERED_TAG:
317 case QUEUE_ORDERED_FLUSH:
320 q->flush_rq = kmem_cache_alloc(request_cachep,
324 printk("blk_queue_ordered: bad value %d\n", flag);
329 EXPORT_SYMBOL(blk_queue_ordered);
332 * blk_queue_issue_flush_fn - set function for issuing a flush
333 * @q: the request queue
334 * @iff: the function to be called issuing the flush
337 * If a driver supports issuing a flush command, the support is notified
338 * to the block layer by defining it through this call.
341 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
343 q->issue_flush_fn = iff;
346 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
349 * Cache flushing for ordered writes handling
351 static void blk_pre_flush_end_io(struct request *flush_rq)
353 struct request *rq = flush_rq->end_io_data;
354 request_queue_t *q = rq->q;
356 rq->flags |= REQ_BAR_PREFLUSH;
358 if (!flush_rq->errors)
359 elv_requeue_request(q, rq);
361 q->end_flush_fn(q, flush_rq);
362 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
367 static void blk_post_flush_end_io(struct request *flush_rq)
369 struct request *rq = flush_rq->end_io_data;
370 request_queue_t *q = rq->q;
372 rq->flags |= REQ_BAR_POSTFLUSH;
374 q->end_flush_fn(q, flush_rq);
375 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
379 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
381 struct request *flush_rq = q->flush_rq;
383 BUG_ON(!blk_barrier_rq(rq));
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
388 rq_init(q, flush_rq);
389 flush_rq->elevator_private = NULL;
390 flush_rq->flags = REQ_BAR_FLUSH;
391 flush_rq->rq_disk = rq->rq_disk;
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
398 if (!q->prepare_flush_fn(q, flush_rq)) {
399 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
400 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
408 if (!list_empty(&rq->queuelist))
409 blkdev_dequeue_request(rq);
411 elv_deactivate_request(q, rq);
413 flush_rq->end_io_data = rq;
414 flush_rq->end_io = blk_pre_flush_end_io;
416 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
420 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
422 struct request *flush_rq = q->flush_rq;
424 BUG_ON(!blk_barrier_rq(rq));
426 rq_init(q, flush_rq);
427 flush_rq->elevator_private = NULL;
428 flush_rq->flags = REQ_BAR_FLUSH;
429 flush_rq->rq_disk = rq->rq_disk;
432 if (q->prepare_flush_fn(q, flush_rq)) {
433 flush_rq->end_io_data = rq;
434 flush_rq->end_io = blk_post_flush_end_io;
436 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
441 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
444 if (sectors > rq->nr_sectors)
445 sectors = rq->nr_sectors;
447 rq->nr_sectors -= sectors;
448 return rq->nr_sectors;
451 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
452 int sectors, int queue_locked)
454 if (q->ordered != QUEUE_ORDERED_FLUSH)
456 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
458 if (blk_barrier_postflush(rq))
461 if (!blk_check_end_barrier(q, rq, sectors)) {
462 unsigned long flags = 0;
465 spin_lock_irqsave(q->queue_lock, flags);
467 blk_start_post_flush(q, rq);
470 spin_unlock_irqrestore(q->queue_lock, flags);
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
480 * @sectors: number of sectors to complete
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
488 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
490 return __blk_complete_barrier_rq(q, rq, sectors, 0);
492 EXPORT_SYMBOL(blk_complete_barrier_rq);
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
498 * @sectors: number of sectors to complete
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
504 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
507 return __blk_complete_barrier_rq(q, rq, sectors, 1);
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
523 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
525 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
532 if (bounce_pfn < blk_max_low_pfn) {
533 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
534 init_emergency_isa_pool();
535 q->bounce_gfp = GFP_NOIO | GFP_DMA;
537 q->bounce_gfp = GFP_NOIO;
539 q->bounce_pfn = bounce_pfn;
542 EXPORT_SYMBOL(blk_queue_bounce_limit);
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
550 * Enables a low level driver to set an upper limit on the size of
553 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
555 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
556 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
560 q->max_sectors = q->max_hw_sectors = max_sectors;
563 EXPORT_SYMBOL(blk_queue_max_sectors);
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
575 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
579 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
582 q->max_phys_segments = max_segments;
585 EXPORT_SYMBOL(blk_queue_max_phys_segments);
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
598 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
602 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
605 q->max_hw_segments = max_segments;
608 EXPORT_SYMBOL(blk_queue_max_hw_segments);
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
616 * Enables a low level driver to set an upper limit on the size of a
619 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
621 if (max_size < PAGE_CACHE_SIZE) {
622 max_size = PAGE_CACHE_SIZE;
623 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
626 q->max_segment_size = max_size;
629 EXPORT_SYMBOL(blk_queue_max_segment_size);
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
642 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
644 q->hardsect_size = size;
647 EXPORT_SYMBOL(blk_queue_hardsect_size);
650 * Returns the minimum that is _not_ zero, unless both are zero.
652 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
659 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
661 /* zero is "infinity" */
662 t->max_sectors = t->max_hw_sectors =
663 min_not_zero(t->max_sectors,b->max_sectors);
665 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
666 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
667 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
668 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
671 EXPORT_SYMBOL(blk_queue_stack_limits);
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
678 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
680 if (mask < PAGE_CACHE_SIZE - 1) {
681 mask = PAGE_CACHE_SIZE - 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
685 q->seg_boundary_mask = mask;
688 EXPORT_SYMBOL(blk_queue_segment_boundary);
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
700 void blk_queue_dma_alignment(request_queue_t *q, int mask)
702 q->dma_alignment = mask;
705 EXPORT_SYMBOL(blk_queue_dma_alignment);
708 * blk_queue_find_tag - find a request by its tag and queue
710 * @q: The request queue for the device
711 * @tag: The tag of the request
714 * Should be used when a device returns a tag and you want to match
717 * no locks need be held.
719 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
721 struct blk_queue_tag *bqt = q->queue_tags;
723 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
726 return bqt->tag_index[tag];
729 EXPORT_SYMBOL(blk_queue_find_tag);
732 * __blk_queue_free_tags - release tag maintenance info
733 * @q: the request queue for the device
736 * blk_cleanup_queue() will take care of calling this function, if tagging
737 * has been used. So there's no need to call this directly.
739 static void __blk_queue_free_tags(request_queue_t *q)
741 struct blk_queue_tag *bqt = q->queue_tags;
746 if (atomic_dec_and_test(&bqt->refcnt)) {
748 BUG_ON(!list_empty(&bqt->busy_list));
750 kfree(bqt->tag_index);
751 bqt->tag_index = NULL;
759 q->queue_tags = NULL;
760 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
764 * blk_queue_free_tags - release tag maintenance info
765 * @q: the request queue for the device
768 * This is used to disabled tagged queuing to a device, yet leave
771 void blk_queue_free_tags(request_queue_t *q)
773 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
776 EXPORT_SYMBOL(blk_queue_free_tags);
779 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
781 struct request **tag_index;
782 unsigned long *tag_map;
785 if (depth > q->nr_requests * 2) {
786 depth = q->nr_requests * 2;
787 printk(KERN_ERR "%s: adjusted depth to %d\n",
788 __FUNCTION__, depth);
791 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
795 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
796 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
800 memset(tag_index, 0, depth * sizeof(struct request *));
801 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
802 tags->real_max_depth = depth;
803 tags->max_depth = depth;
804 tags->tag_index = tag_index;
805 tags->tag_map = tag_map;
814 * blk_queue_init_tags - initialize the queue tag info
815 * @q: the request queue for the device
816 * @depth: the maximum queue depth supported
817 * @tags: the tag to use
819 int blk_queue_init_tags(request_queue_t *q, int depth,
820 struct blk_queue_tag *tags)
824 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
826 if (!tags && !q->queue_tags) {
827 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
831 if (init_tag_map(q, tags, depth))
834 INIT_LIST_HEAD(&tags->busy_list);
836 atomic_set(&tags->refcnt, 1);
837 } else if (q->queue_tags) {
838 if ((rc = blk_queue_resize_tags(q, depth)))
840 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
843 atomic_inc(&tags->refcnt);
846 * assign it, all done
848 q->queue_tags = tags;
849 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
856 EXPORT_SYMBOL(blk_queue_init_tags);
859 * blk_queue_resize_tags - change the queueing depth
860 * @q: the request queue for the device
861 * @new_depth: the new max command queueing depth
864 * Must be called with the queue lock held.
866 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
868 struct blk_queue_tag *bqt = q->queue_tags;
869 struct request **tag_index;
870 unsigned long *tag_map;
871 int max_depth, nr_ulongs;
877 * if we already have large enough real_max_depth. just
878 * adjust max_depth. *NOTE* as requests with tag value
879 * between new_depth and real_max_depth can be in-flight, tag
880 * map can not be shrunk blindly here.
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
888 * save the old state info, so we can copy it back
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
892 max_depth = bqt->real_max_depth;
894 if (init_tag_map(q, bqt, new_depth))
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
899 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
906 EXPORT_SYMBOL(blk_queue_resize_tags);
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
920 * queue lock must be held.
922 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
924 struct blk_queue_tag *bqt = q->queue_tags;
929 if (unlikely(tag >= bqt->real_max_depth))
931 * This can happen after tag depth has been reduced.
932 * FIXME: how about a warning or info message here?
936 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
937 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
942 list_del_init(&rq->queuelist);
943 rq->flags &= ~REQ_QUEUED;
946 if (unlikely(bqt->tag_index[tag] == NULL))
947 printk(KERN_ERR "%s: tag %d is missing\n",
950 bqt->tag_index[tag] = NULL;
954 EXPORT_SYMBOL(blk_queue_end_tag);
957 * blk_queue_start_tag - find a free tag and assign it
958 * @q: the request queue for the device
959 * @rq: the block request that needs tagging
962 * This can either be used as a stand-alone helper, or possibly be
963 * assigned as the queue &prep_rq_fn (in which case &struct request
964 * automagically gets a tag assigned). Note that this function
965 * assumes that any type of request can be queued! if this is not
966 * true for your device, you must check the request type before
967 * calling this function. The request will also be removed from
968 * the request queue, so it's the drivers responsibility to readd
969 * it if it should need to be restarted for some reason.
972 * queue lock must be held.
974 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
976 struct blk_queue_tag *bqt = q->queue_tags;
979 if (unlikely((rq->flags & REQ_QUEUED))) {
981 "%s: request %p for device [%s] already tagged %d",
983 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
987 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
988 if (tag >= bqt->max_depth)
991 __set_bit(tag, bqt->tag_map);
993 rq->flags |= REQ_QUEUED;
995 bqt->tag_index[tag] = rq;
996 blkdev_dequeue_request(rq);
997 list_add(&rq->queuelist, &bqt->busy_list);
1002 EXPORT_SYMBOL(blk_queue_start_tag);
1005 * blk_queue_invalidate_tags - invalidate all pending tags
1006 * @q: the request queue for the device
1009 * Hardware conditions may dictate a need to stop all pending requests.
1010 * In this case, we will safely clear the block side of the tag queue and
1011 * readd all requests to the request queue in the right order.
1014 * queue lock must be held.
1016 void blk_queue_invalidate_tags(request_queue_t *q)
1018 struct blk_queue_tag *bqt = q->queue_tags;
1019 struct list_head *tmp, *n;
1022 list_for_each_safe(tmp, n, &bqt->busy_list) {
1023 rq = list_entry_rq(tmp);
1025 if (rq->tag == -1) {
1027 "%s: bad tag found on list\n", __FUNCTION__);
1028 list_del_init(&rq->queuelist);
1029 rq->flags &= ~REQ_QUEUED;
1031 blk_queue_end_tag(q, rq);
1033 rq->flags &= ~REQ_STARTED;
1034 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1038 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1040 static char *rq_flags[] = {
1058 "REQ_DRIVE_TASKFILE",
1065 void blk_dump_rq_flags(struct request *rq, char *msg)
1069 printk("%s: dev %s: flags = ", msg,
1070 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1073 if (rq->flags & (1 << bit))
1074 printk("%s ", rq_flags[bit]);
1076 } while (bit < __REQ_NR_BITS);
1078 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1080 rq->current_nr_sectors);
1081 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1083 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1085 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1086 printk("%02x ", rq->cmd[bit]);
1091 EXPORT_SYMBOL(blk_dump_rq_flags);
1093 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1095 struct bio_vec *bv, *bvprv = NULL;
1096 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1097 int high, highprv = 1;
1099 if (unlikely(!bio->bi_io_vec))
1102 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1103 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1104 bio_for_each_segment(bv, bio, i) {
1106 * the trick here is making sure that a high page is never
1107 * considered part of another segment, since that might
1108 * change with the bounce page.
1110 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1111 if (high || highprv)
1112 goto new_hw_segment;
1114 if (seg_size + bv->bv_len > q->max_segment_size)
1116 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1118 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1120 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1121 goto new_hw_segment;
1123 seg_size += bv->bv_len;
1124 hw_seg_size += bv->bv_len;
1129 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1130 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1131 hw_seg_size += bv->bv_len;
1134 if (hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1142 seg_size = bv->bv_len;
1145 if (hw_seg_size > bio->bi_hw_back_size)
1146 bio->bi_hw_back_size = hw_seg_size;
1147 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1148 bio->bi_hw_front_size = hw_seg_size;
1149 bio->bi_phys_segments = nr_phys_segs;
1150 bio->bi_hw_segments = nr_hw_segs;
1151 bio->bi_flags |= (1 << BIO_SEG_VALID);
1155 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1158 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1161 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1163 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1167 * bio and nxt are contigous in memory, check if the queue allows
1168 * these two to be merged into one
1170 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1176 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1179 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1180 blk_recount_segments(q, bio);
1181 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1182 blk_recount_segments(q, nxt);
1183 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1184 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1186 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1196 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198 struct bio_vec *bvec, *bvprv;
1200 int nsegs, i, cluster;
1203 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1206 * for each bio in rq
1209 rq_for_each_bio(bio, rq) {
1211 * for each segment in bio
1213 bio_for_each_segment(bvec, bio, i) {
1214 int nbytes = bvec->bv_len;
1216 if (bvprv && cluster) {
1217 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1222 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1225 sg[nsegs - 1].length += nbytes;
1228 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1229 sg[nsegs].page = bvec->bv_page;
1230 sg[nsegs].length = nbytes;
1231 sg[nsegs].offset = bvec->bv_offset;
1236 } /* segments in bio */
1242 EXPORT_SYMBOL(blk_rq_map_sg);
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1249 static inline int ll_new_mergeable(request_queue_t *q,
1250 struct request *req,
1253 int nr_phys_segs = bio_phys_segments(q, bio);
1255 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1256 req->flags |= REQ_NOMERGE;
1257 if (req == q->last_merge)
1258 q->last_merge = NULL;
1263 * A hw segment is just getting larger, bump just the phys
1266 req->nr_phys_segments += nr_phys_segs;
1270 static inline int ll_new_hw_segment(request_queue_t *q,
1271 struct request *req,
1274 int nr_hw_segs = bio_hw_segments(q, bio);
1275 int nr_phys_segs = bio_phys_segments(q, bio);
1277 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1278 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1279 req->flags |= REQ_NOMERGE;
1280 if (req == q->last_merge)
1281 q->last_merge = NULL;
1286 * This will form the start of a new hw segment. Bump both
1289 req->nr_hw_segments += nr_hw_segs;
1290 req->nr_phys_segments += nr_phys_segs;
1294 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1299 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1300 req->flags |= REQ_NOMERGE;
1301 if (req == q->last_merge)
1302 q->last_merge = NULL;
1305 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1306 blk_recount_segments(q, req->biotail);
1307 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1308 blk_recount_segments(q, bio);
1309 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len)) {
1312 int mergeable = ll_new_mergeable(q, req, bio);
1315 if (req->nr_hw_segments == 1)
1316 req->bio->bi_hw_front_size = len;
1317 if (bio->bi_hw_segments == 1)
1318 bio->bi_hw_back_size = len;
1323 return ll_new_hw_segment(q, req, bio);
1326 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1331 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1332 req->flags |= REQ_NOMERGE;
1333 if (req == q->last_merge)
1334 q->last_merge = NULL;
1337 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1338 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1339 blk_recount_segments(q, bio);
1340 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1341 blk_recount_segments(q, req->bio);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len)) {
1344 int mergeable = ll_new_mergeable(q, req, bio);
1347 if (bio->bi_hw_segments == 1)
1348 bio->bi_hw_front_size = len;
1349 if (req->nr_hw_segments == 1)
1350 req->biotail->bi_hw_back_size = len;
1355 return ll_new_hw_segment(q, req, bio);
1358 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1359 struct request *next)
1361 int total_phys_segments;
1362 int total_hw_segments;
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1368 if (req->special || next->special)
1372 * Will it become too large?
1374 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1377 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1378 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1379 total_phys_segments--;
1381 if (total_phys_segments > q->max_phys_segments)
1384 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1385 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1386 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388 * propagate the combined length to the end of the requests
1390 if (req->nr_hw_segments == 1)
1391 req->bio->bi_hw_front_size = len;
1392 if (next->nr_hw_segments == 1)
1393 next->biotail->bi_hw_back_size = len;
1394 total_hw_segments--;
1397 if (total_hw_segments > q->max_hw_segments)
1400 /* Merge is OK... */
1401 req->nr_phys_segments = total_phys_segments;
1402 req->nr_hw_segments = total_hw_segments;
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1414 void blk_plug_device(request_queue_t *q)
1416 WARN_ON(!irqs_disabled());
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1422 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1426 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1429 EXPORT_SYMBOL(blk_plug_device);
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1435 int blk_remove_plug(request_queue_t *q)
1437 WARN_ON(!irqs_disabled());
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1442 del_timer(&q->unplug_timer);
1446 EXPORT_SYMBOL(blk_remove_plug);
1449 * remove the plug and let it rip..
1451 void __generic_unplug_device(request_queue_t *q)
1453 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1456 if (!blk_remove_plug(q))
1461 EXPORT_SYMBOL(__generic_unplug_device);
1464 * generic_unplug_device - fire a request queue
1465 * @q: The &request_queue_t in question
1468 * Linux uses plugging to build bigger requests queues before letting
1469 * the device have at them. If a queue is plugged, the I/O scheduler
1470 * is still adding and merging requests on the queue. Once the queue
1471 * gets unplugged, the request_fn defined for the queue is invoked and
1472 * transfers started.
1474 void generic_unplug_device(request_queue_t *q)
1476 spin_lock_irq(q->queue_lock);
1477 __generic_unplug_device(q);
1478 spin_unlock_irq(q->queue_lock);
1480 EXPORT_SYMBOL(generic_unplug_device);
1482 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1485 request_queue_t *q = bdi->unplug_io_data;
1488 * devices don't necessarily have an ->unplug_fn defined
1494 static void blk_unplug_work(void *data)
1496 request_queue_t *q = data;
1501 static void blk_unplug_timeout(unsigned long data)
1503 request_queue_t *q = (request_queue_t *)data;
1505 kblockd_schedule_work(&q->unplug_work);
1509 * blk_start_queue - restart a previously stopped queue
1510 * @q: The &request_queue_t in question
1513 * blk_start_queue() will clear the stop flag on the queue, and call
1514 * the request_fn for the queue if it was in a stopped state when
1515 * entered. Also see blk_stop_queue(). Queue lock must be held.
1517 void blk_start_queue(request_queue_t *q)
1519 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1522 * one level of recursion is ok and is much faster than kicking
1523 * the unplug handling
1525 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1527 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1530 kblockd_schedule_work(&q->unplug_work);
1534 EXPORT_SYMBOL(blk_start_queue);
1537 * blk_stop_queue - stop a queue
1538 * @q: The &request_queue_t in question
1541 * The Linux block layer assumes that a block driver will consume all
1542 * entries on the request queue when the request_fn strategy is called.
1543 * Often this will not happen, because of hardware limitations (queue
1544 * depth settings). If a device driver gets a 'queue full' response,
1545 * or if it simply chooses not to queue more I/O at one point, it can
1546 * call this function to prevent the request_fn from being called until
1547 * the driver has signalled it's ready to go again. This happens by calling
1548 * blk_start_queue() to restart queue operations. Queue lock must be held.
1550 void blk_stop_queue(request_queue_t *q)
1553 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1555 EXPORT_SYMBOL(blk_stop_queue);
1558 * blk_sync_queue - cancel any pending callbacks on a queue
1562 * The block layer may perform asynchronous callback activity
1563 * on a queue, such as calling the unplug function after a timeout.
1564 * A block device may call blk_sync_queue to ensure that any
1565 * such activity is cancelled, thus allowing it to release resources
1566 * the the callbacks might use. The caller must already have made sure
1567 * that its ->make_request_fn will not re-add plugging prior to calling
1571 void blk_sync_queue(struct request_queue *q)
1573 del_timer_sync(&q->unplug_timer);
1576 EXPORT_SYMBOL(blk_sync_queue);
1579 * blk_run_queue - run a single device queue
1580 * @q: The queue to run
1582 void blk_run_queue(struct request_queue *q)
1584 unsigned long flags;
1586 spin_lock_irqsave(q->queue_lock, flags);
1588 if (!elv_queue_empty(q))
1590 spin_unlock_irqrestore(q->queue_lock, flags);
1592 EXPORT_SYMBOL(blk_run_queue);
1595 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1596 * @q: the request queue to be released
1599 * blk_cleanup_queue is the pair to blk_init_queue() or
1600 * blk_queue_make_request(). It should be called when a request queue is
1601 * being released; typically when a block device is being de-registered.
1602 * Currently, its primary task it to free all the &struct request
1603 * structures that were allocated to the queue and the queue itself.
1606 * Hopefully the low level driver will have finished any
1607 * outstanding requests first...
1609 void blk_cleanup_queue(request_queue_t * q)
1611 struct request_list *rl = &q->rq;
1613 if (!atomic_dec_and_test(&q->refcnt))
1617 elevator_exit(q->elevator);
1622 mempool_destroy(rl->rq_pool);
1625 __blk_queue_free_tags(q);
1627 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1629 kmem_cache_free(requestq_cachep, q);
1632 EXPORT_SYMBOL(blk_cleanup_queue);
1634 static int blk_init_free_list(request_queue_t *q)
1636 struct request_list *rl = &q->rq;
1638 rl->count[READ] = rl->count[WRITE] = 0;
1639 rl->starved[READ] = rl->starved[WRITE] = 0;
1640 init_waitqueue_head(&rl->wait[READ]);
1641 init_waitqueue_head(&rl->wait[WRITE]);
1642 init_waitqueue_head(&rl->drain);
1644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1645 mempool_free_slab, request_cachep, q->node);
1653 static int __make_request(request_queue_t *, struct bio *);
1655 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1657 return blk_alloc_queue_node(gfp_mask, -1);
1659 EXPORT_SYMBOL(blk_alloc_queue);
1661 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1665 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1669 memset(q, 0, sizeof(*q));
1670 init_timer(&q->unplug_timer);
1671 atomic_set(&q->refcnt, 1);
1673 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1674 q->backing_dev_info.unplug_io_data = q;
1678 EXPORT_SYMBOL(blk_alloc_queue_node);
1681 * blk_init_queue - prepare a request queue for use with a block device
1682 * @rfn: The function to be called to process requests that have been
1683 * placed on the queue.
1684 * @lock: Request queue spin lock
1687 * If a block device wishes to use the standard request handling procedures,
1688 * which sorts requests and coalesces adjacent requests, then it must
1689 * call blk_init_queue(). The function @rfn will be called when there
1690 * are requests on the queue that need to be processed. If the device
1691 * supports plugging, then @rfn may not be called immediately when requests
1692 * are available on the queue, but may be called at some time later instead.
1693 * Plugged queues are generally unplugged when a buffer belonging to one
1694 * of the requests on the queue is needed, or due to memory pressure.
1696 * @rfn is not required, or even expected, to remove all requests off the
1697 * queue, but only as many as it can handle at a time. If it does leave
1698 * requests on the queue, it is responsible for arranging that the requests
1699 * get dealt with eventually.
1701 * The queue spin lock must be held while manipulating the requests on the
1704 * Function returns a pointer to the initialized request queue, or NULL if
1705 * it didn't succeed.
1708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1709 * when the block device is deactivated (such as at module unload).
1712 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1714 return blk_init_queue_node(rfn, lock, -1);
1716 EXPORT_SYMBOL(blk_init_queue);
1719 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1721 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1727 if (blk_init_free_list(q))
1731 * if caller didn't supply a lock, they get per-queue locking with
1735 spin_lock_init(&q->__queue_lock);
1736 lock = &q->__queue_lock;
1739 q->request_fn = rfn;
1740 q->back_merge_fn = ll_back_merge_fn;
1741 q->front_merge_fn = ll_front_merge_fn;
1742 q->merge_requests_fn = ll_merge_requests_fn;
1743 q->prep_rq_fn = NULL;
1744 q->unplug_fn = generic_unplug_device;
1745 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1746 q->queue_lock = lock;
1748 blk_queue_segment_boundary(q, 0xffffffff);
1750 blk_queue_make_request(q, __make_request);
1751 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1753 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1754 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1759 if (!elevator_init(q, NULL)) {
1760 blk_queue_congestion_threshold(q);
1764 blk_cleanup_queue(q);
1766 kmem_cache_free(requestq_cachep, q);
1769 EXPORT_SYMBOL(blk_init_queue_node);
1771 int blk_get_queue(request_queue_t *q)
1773 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1774 atomic_inc(&q->refcnt);
1781 EXPORT_SYMBOL(blk_get_queue);
1783 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1785 elv_put_request(q, rq);
1786 mempool_free(rq, q->rq.rq_pool);
1789 static inline struct request *
1790 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, gfp_t gfp_mask)
1792 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1798 * first three bits are identical in rq->flags and bio->bi_rw,
1799 * see bio.h and blkdev.h
1803 if (!elv_set_request(q, rq, bio, gfp_mask))
1806 mempool_free(rq, q->rq.rq_pool);
1811 * ioc_batching returns true if the ioc is a valid batching request and
1812 * should be given priority access to a request.
1814 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1820 * Make sure the process is able to allocate at least 1 request
1821 * even if the batch times out, otherwise we could theoretically
1824 return ioc->nr_batch_requests == q->nr_batching ||
1825 (ioc->nr_batch_requests > 0
1826 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1831 * will cause the process to be a "batcher" on all queues in the system. This
1832 * is the behaviour we want though - once it gets a wakeup it should be given
1835 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1837 if (!ioc || ioc_batching(q, ioc))
1840 ioc->nr_batch_requests = q->nr_batching;
1841 ioc->last_waited = jiffies;
1844 static void __freed_request(request_queue_t *q, int rw)
1846 struct request_list *rl = &q->rq;
1848 if (rl->count[rw] < queue_congestion_off_threshold(q))
1849 clear_queue_congested(q, rw);
1851 if (rl->count[rw] + 1 <= q->nr_requests) {
1852 if (waitqueue_active(&rl->wait[rw]))
1853 wake_up(&rl->wait[rw]);
1855 blk_clear_queue_full(q, rw);
1860 * A request has just been released. Account for it, update the full and
1861 * congestion status, wake up any waiters. Called under q->queue_lock.
1863 static void freed_request(request_queue_t *q, int rw)
1865 struct request_list *rl = &q->rq;
1869 __freed_request(q, rw);
1871 if (unlikely(rl->starved[rw ^ 1]))
1872 __freed_request(q, rw ^ 1);
1874 if (!rl->count[READ] && !rl->count[WRITE]) {
1876 if (unlikely(waitqueue_active(&rl->drain)))
1877 wake_up(&rl->drain);
1881 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1883 * Get a free request, queue_lock must be held.
1884 * Returns NULL on failure, with queue_lock held.
1885 * Returns !NULL on success, with queue_lock *not held*.
1887 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1890 struct request *rq = NULL;
1891 struct request_list *rl = &q->rq;
1892 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1894 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1897 if (rl->count[rw]+1 >= q->nr_requests) {
1899 * The queue will fill after this allocation, so set it as
1900 * full, and mark this process as "batching". This process
1901 * will be allowed to complete a batch of requests, others
1904 if (!blk_queue_full(q, rw)) {
1905 ioc_set_batching(q, ioc);
1906 blk_set_queue_full(q, rw);
1910 switch (elv_may_queue(q, rw, bio)) {
1913 case ELV_MQUEUE_MAY:
1915 case ELV_MQUEUE_MUST:
1919 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1921 * The queue is full and the allocating process is not a
1922 * "batcher", and not exempted by the IO scheduler
1929 * Only allow batching queuers to allocate up to 50% over the defined
1930 * limit of requests, otherwise we could have thousands of requests
1931 * allocated with any setting of ->nr_requests
1933 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1937 rl->starved[rw] = 0;
1938 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1939 set_queue_congested(q, rw);
1940 spin_unlock_irq(q->queue_lock);
1942 rq = blk_alloc_request(q, rw, bio, gfp_mask);
1945 * Allocation failed presumably due to memory. Undo anything
1946 * we might have messed up.
1948 * Allocating task should really be put onto the front of the
1949 * wait queue, but this is pretty rare.
1951 spin_lock_irq(q->queue_lock);
1952 freed_request(q, rw);
1955 * in the very unlikely event that allocation failed and no
1956 * requests for this direction was pending, mark us starved
1957 * so that freeing of a request in the other direction will
1958 * notice us. another possible fix would be to split the
1959 * rq mempool into READ and WRITE
1962 if (unlikely(rl->count[rw] == 0))
1963 rl->starved[rw] = 1;
1968 if (ioc_batching(q, ioc))
1969 ioc->nr_batch_requests--;
1978 * No available requests for this queue, unplug the device and wait for some
1979 * requests to become available.
1981 * Called with q->queue_lock held, and returns with it unlocked.
1983 static struct request *get_request_wait(request_queue_t *q, int rw,
1988 rq = get_request(q, rw, bio, GFP_NOIO);
1991 struct request_list *rl = &q->rq;
1993 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1994 TASK_UNINTERRUPTIBLE);
1996 rq = get_request(q, rw, bio, GFP_NOIO);
1999 struct io_context *ioc;
2001 __generic_unplug_device(q);
2002 spin_unlock_irq(q->queue_lock);
2006 * After sleeping, we become a "batching" process and
2007 * will be able to allocate at least one request, and
2008 * up to a big batch of them for a small period time.
2009 * See ioc_batching, ioc_set_batching
2011 ioc = current_io_context(GFP_NOIO);
2012 ioc_set_batching(q, ioc);
2014 spin_lock_irq(q->queue_lock);
2016 finish_wait(&rl->wait[rw], &wait);
2022 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2026 BUG_ON(rw != READ && rw != WRITE);
2028 spin_lock_irq(q->queue_lock);
2029 if (gfp_mask & __GFP_WAIT) {
2030 rq = get_request_wait(q, rw, NULL);
2032 rq = get_request(q, rw, NULL, gfp_mask);
2034 spin_unlock_irq(q->queue_lock);
2036 /* q->queue_lock is unlocked at this point */
2040 EXPORT_SYMBOL(blk_get_request);
2043 * blk_requeue_request - put a request back on queue
2044 * @q: request queue where request should be inserted
2045 * @rq: request to be inserted
2048 * Drivers often keep queueing requests until the hardware cannot accept
2049 * more, when that condition happens we need to put the request back
2050 * on the queue. Must be called with queue lock held.
2052 void blk_requeue_request(request_queue_t *q, struct request *rq)
2054 if (blk_rq_tagged(rq))
2055 blk_queue_end_tag(q, rq);
2057 elv_requeue_request(q, rq);
2060 EXPORT_SYMBOL(blk_requeue_request);
2063 * blk_insert_request - insert a special request in to a request queue
2064 * @q: request queue where request should be inserted
2065 * @rq: request to be inserted
2066 * @at_head: insert request at head or tail of queue
2067 * @data: private data
2070 * Many block devices need to execute commands asynchronously, so they don't
2071 * block the whole kernel from preemption during request execution. This is
2072 * accomplished normally by inserting aritficial requests tagged as
2073 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2074 * scheduled for actual execution by the request queue.
2076 * We have the option of inserting the head or the tail of the queue.
2077 * Typically we use the tail for new ioctls and so forth. We use the head
2078 * of the queue for things like a QUEUE_FULL message from a device, or a
2079 * host that is unable to accept a particular command.
2081 void blk_insert_request(request_queue_t *q, struct request *rq,
2082 int at_head, void *data)
2084 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2085 unsigned long flags;
2088 * tell I/O scheduler that this isn't a regular read/write (ie it
2089 * must not attempt merges on this) and that it acts as a soft
2092 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2096 spin_lock_irqsave(q->queue_lock, flags);
2099 * If command is tagged, release the tag
2101 if (blk_rq_tagged(rq))
2102 blk_queue_end_tag(q, rq);
2104 drive_stat_acct(rq, rq->nr_sectors, 1);
2105 __elv_add_request(q, rq, where, 0);
2107 if (blk_queue_plugged(q))
2108 __generic_unplug_device(q);
2111 spin_unlock_irqrestore(q->queue_lock, flags);
2114 EXPORT_SYMBOL(blk_insert_request);
2117 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2118 * @q: request queue where request should be inserted
2119 * @rq: request structure to fill
2120 * @ubuf: the user buffer
2121 * @len: length of user data
2124 * Data will be mapped directly for zero copy io, if possible. Otherwise
2125 * a kernel bounce buffer is used.
2127 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2128 * still in process context.
2130 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2131 * before being submitted to the device, as pages mapped may be out of
2132 * reach. It's the callers responsibility to make sure this happens. The
2133 * original bio must be passed back in to blk_rq_unmap_user() for proper
2136 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2139 unsigned long uaddr;
2143 if (len > (q->max_sectors << 9))
2148 reading = rq_data_dir(rq) == READ;
2151 * if alignment requirement is satisfied, map in user pages for
2152 * direct dma. else, set up kernel bounce buffers
2154 uaddr = (unsigned long) ubuf;
2155 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2156 bio = bio_map_user(q, NULL, uaddr, len, reading);
2158 bio = bio_copy_user(q, uaddr, len, reading);
2161 rq->bio = rq->biotail = bio;
2162 blk_rq_bio_prep(q, rq, bio);
2164 rq->buffer = rq->data = NULL;
2170 * bio is the err-ptr
2172 return PTR_ERR(bio);
2175 EXPORT_SYMBOL(blk_rq_map_user);
2178 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2179 * @q: request queue where request should be inserted
2180 * @rq: request to map data to
2181 * @iov: pointer to the iovec
2182 * @iov_count: number of elements in the iovec
2185 * Data will be mapped directly for zero copy io, if possible. Otherwise
2186 * a kernel bounce buffer is used.
2188 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2189 * still in process context.
2191 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2192 * before being submitted to the device, as pages mapped may be out of
2193 * reach. It's the callers responsibility to make sure this happens. The
2194 * original bio must be passed back in to blk_rq_unmap_user() for proper
2197 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2198 struct sg_iovec *iov, int iov_count)
2202 if (!iov || iov_count <= 0)
2205 /* we don't allow misaligned data like bio_map_user() does. If the
2206 * user is using sg, they're expected to know the alignment constraints
2207 * and respect them accordingly */
2208 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2210 return PTR_ERR(bio);
2212 rq->bio = rq->biotail = bio;
2213 blk_rq_bio_prep(q, rq, bio);
2214 rq->buffer = rq->data = NULL;
2215 rq->data_len = bio->bi_size;
2219 EXPORT_SYMBOL(blk_rq_map_user_iov);
2222 * blk_rq_unmap_user - unmap a request with user data
2223 * @bio: bio to be unmapped
2224 * @ulen: length of user buffer
2227 * Unmap a bio previously mapped by blk_rq_map_user().
2229 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2234 if (bio_flagged(bio, BIO_USER_MAPPED))
2235 bio_unmap_user(bio);
2237 ret = bio_uncopy_user(bio);
2243 EXPORT_SYMBOL(blk_rq_unmap_user);
2246 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2247 * @q: request queue where request should be inserted
2248 * @rq: request to fill
2249 * @kbuf: the kernel buffer
2250 * @len: length of user data
2251 * @gfp_mask: memory allocation flags
2253 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2254 unsigned int len, gfp_t gfp_mask)
2258 if (len > (q->max_sectors << 9))
2263 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2265 return PTR_ERR(bio);
2267 if (rq_data_dir(rq) == WRITE)
2268 bio->bi_rw |= (1 << BIO_RW);
2270 rq->bio = rq->biotail = bio;
2271 blk_rq_bio_prep(q, rq, bio);
2273 rq->buffer = rq->data = NULL;
2278 EXPORT_SYMBOL(blk_rq_map_kern);
2281 * blk_execute_rq_nowait - insert a request into queue for execution
2282 * @q: queue to insert the request in
2283 * @bd_disk: matching gendisk
2284 * @rq: request to insert
2285 * @at_head: insert request at head or tail of queue
2286 * @done: I/O completion handler
2289 * Insert a fully prepared request at the back of the io scheduler queue
2290 * for execution. Don't wait for completion.
2292 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2293 struct request *rq, int at_head,
2294 void (*done)(struct request *))
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2298 rq->rq_disk = bd_disk;
2299 rq->flags |= REQ_NOMERGE;
2301 elv_add_request(q, rq, where, 1);
2302 generic_unplug_device(q);
2306 * blk_execute_rq - insert a request into queue for execution
2307 * @q: queue to insert the request in
2308 * @bd_disk: matching gendisk
2309 * @rq: request to insert
2310 * @at_head: insert request at head or tail of queue
2313 * Insert a fully prepared request at the back of the io scheduler queue
2314 * for execution and wait for completion.
2316 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2317 struct request *rq, int at_head)
2319 DECLARE_COMPLETION(wait);
2320 char sense[SCSI_SENSE_BUFFERSIZE];
2324 * we need an extra reference to the request, so we can look at
2325 * it after io completion
2330 memset(sense, 0, sizeof(sense));
2335 rq->waiting = &wait;
2336 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2337 wait_for_completion(&wait);
2346 EXPORT_SYMBOL(blk_execute_rq);
2349 * blkdev_issue_flush - queue a flush
2350 * @bdev: blockdev to issue flush for
2351 * @error_sector: error sector
2354 * Issue a flush for the block device in question. Caller can supply
2355 * room for storing the error offset in case of a flush error, if they
2356 * wish to. Caller must run wait_for_completion() on its own.
2358 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2362 if (bdev->bd_disk == NULL)
2365 q = bdev_get_queue(bdev);
2368 if (!q->issue_flush_fn)
2371 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2374 EXPORT_SYMBOL(blkdev_issue_flush);
2376 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2378 int rw = rq_data_dir(rq);
2380 if (!blk_fs_request(rq) || !rq->rq_disk)
2384 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2386 __disk_stat_inc(rq->rq_disk, read_merges);
2387 } else if (rw == WRITE) {
2388 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2390 __disk_stat_inc(rq->rq_disk, write_merges);
2393 disk_round_stats(rq->rq_disk);
2394 rq->rq_disk->in_flight++;
2399 * add-request adds a request to the linked list.
2400 * queue lock is held and interrupts disabled, as we muck with the
2401 * request queue list.
2403 static inline void add_request(request_queue_t * q, struct request * req)
2405 drive_stat_acct(req, req->nr_sectors, 1);
2408 q->activity_fn(q->activity_data, rq_data_dir(req));
2411 * elevator indicated where it wants this request to be
2412 * inserted at elevator_merge time
2414 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2418 * disk_round_stats() - Round off the performance stats on a struct
2421 * The average IO queue length and utilisation statistics are maintained
2422 * by observing the current state of the queue length and the amount of
2423 * time it has been in this state for.
2425 * Normally, that accounting is done on IO completion, but that can result
2426 * in more than a second's worth of IO being accounted for within any one
2427 * second, leading to >100% utilisation. To deal with that, we call this
2428 * function to do a round-off before returning the results when reading
2429 * /proc/diskstats. This accounts immediately for all queue usage up to
2430 * the current jiffies and restarts the counters again.
2432 void disk_round_stats(struct gendisk *disk)
2434 unsigned long now = jiffies;
2436 __disk_stat_add(disk, time_in_queue,
2437 disk->in_flight * (now - disk->stamp));
2440 if (disk->in_flight)
2441 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2442 disk->stamp_idle = now;
2446 * queue lock must be held
2448 static void __blk_put_request(request_queue_t *q, struct request *req)
2450 struct request_list *rl = req->rl;
2454 if (unlikely(--req->ref_count))
2457 req->rq_status = RQ_INACTIVE;
2461 * Request may not have originated from ll_rw_blk. if not,
2462 * it didn't come out of our reserved rq pools
2465 int rw = rq_data_dir(req);
2467 elv_completed_request(q, req);
2469 BUG_ON(!list_empty(&req->queuelist));
2471 blk_free_request(q, req);
2472 freed_request(q, rw);
2476 void blk_put_request(struct request *req)
2479 * if req->rl isn't set, this request didnt originate from the
2480 * block layer, so it's safe to just disregard it
2483 unsigned long flags;
2484 request_queue_t *q = req->q;
2486 spin_lock_irqsave(q->queue_lock, flags);
2487 __blk_put_request(q, req);
2488 spin_unlock_irqrestore(q->queue_lock, flags);
2492 EXPORT_SYMBOL(blk_put_request);
2495 * blk_end_sync_rq - executes a completion event on a request
2496 * @rq: request to complete
2498 void blk_end_sync_rq(struct request *rq)
2500 struct completion *waiting = rq->waiting;
2503 __blk_put_request(rq->q, rq);
2506 * complete last, if this is a stack request the process (and thus
2507 * the rq pointer) could be invalid right after this complete()
2511 EXPORT_SYMBOL(blk_end_sync_rq);
2514 * blk_congestion_wait - wait for a queue to become uncongested
2515 * @rw: READ or WRITE
2516 * @timeout: timeout in jiffies
2518 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2519 * If no queues are congested then just wait for the next request to be
2522 long blk_congestion_wait(int rw, long timeout)
2526 wait_queue_head_t *wqh = &congestion_wqh[rw];
2528 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2529 ret = io_schedule_timeout(timeout);
2530 finish_wait(wqh, &wait);
2534 EXPORT_SYMBOL(blk_congestion_wait);
2537 * Has to be called with the request spinlock acquired
2539 static int attempt_merge(request_queue_t *q, struct request *req,
2540 struct request *next)
2542 if (!rq_mergeable(req) || !rq_mergeable(next))
2548 if (req->sector + req->nr_sectors != next->sector)
2551 if (rq_data_dir(req) != rq_data_dir(next)
2552 || req->rq_disk != next->rq_disk
2553 || next->waiting || next->special)
2557 * If we are allowed to merge, then append bio list
2558 * from next to rq and release next. merge_requests_fn
2559 * will have updated segment counts, update sector
2562 if (!q->merge_requests_fn(q, req, next))
2566 * At this point we have either done a back merge
2567 * or front merge. We need the smaller start_time of
2568 * the merged requests to be the current request
2569 * for accounting purposes.
2571 if (time_after(req->start_time, next->start_time))
2572 req->start_time = next->start_time;
2574 req->biotail->bi_next = next->bio;
2575 req->biotail = next->biotail;
2577 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2579 elv_merge_requests(q, req, next);
2582 disk_round_stats(req->rq_disk);
2583 req->rq_disk->in_flight--;
2586 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2588 __blk_put_request(q, next);
2592 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2594 struct request *next = elv_latter_request(q, rq);
2597 return attempt_merge(q, rq, next);
2602 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2604 struct request *prev = elv_former_request(q, rq);
2607 return attempt_merge(q, prev, rq);
2613 * blk_attempt_remerge - attempt to remerge active head with next request
2614 * @q: The &request_queue_t belonging to the device
2615 * @rq: The head request (usually)
2618 * For head-active devices, the queue can easily be unplugged so quickly
2619 * that proper merging is not done on the front request. This may hurt
2620 * performance greatly for some devices. The block layer cannot safely
2621 * do merging on that first request for these queues, but the driver can
2622 * call this function and make it happen any way. Only the driver knows
2623 * when it is safe to do so.
2625 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2627 unsigned long flags;
2629 spin_lock_irqsave(q->queue_lock, flags);
2630 attempt_back_merge(q, rq);
2631 spin_unlock_irqrestore(q->queue_lock, flags);
2634 EXPORT_SYMBOL(blk_attempt_remerge);
2636 static int __make_request(request_queue_t *q, struct bio *bio)
2638 struct request *req;
2639 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2640 unsigned short prio;
2643 sector = bio->bi_sector;
2644 nr_sectors = bio_sectors(bio);
2645 cur_nr_sectors = bio_cur_sectors(bio);
2646 prio = bio_prio(bio);
2648 rw = bio_data_dir(bio);
2649 sync = bio_sync(bio);
2652 * low level driver can indicate that it wants pages above a
2653 * certain limit bounced to low memory (ie for highmem, or even
2654 * ISA dma in theory)
2656 blk_queue_bounce(q, &bio);
2658 spin_lock_prefetch(q->queue_lock);
2660 barrier = bio_barrier(bio);
2661 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2666 spin_lock_irq(q->queue_lock);
2668 if (unlikely(barrier) || elv_queue_empty(q))
2671 el_ret = elv_merge(q, &req, bio);
2673 case ELEVATOR_BACK_MERGE:
2674 BUG_ON(!rq_mergeable(req));
2676 if (!q->back_merge_fn(q, req, bio))
2679 req->biotail->bi_next = bio;
2681 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2682 req->ioprio = ioprio_best(req->ioprio, prio);
2683 drive_stat_acct(req, nr_sectors, 0);
2684 if (!attempt_back_merge(q, req))
2685 elv_merged_request(q, req);
2688 case ELEVATOR_FRONT_MERGE:
2689 BUG_ON(!rq_mergeable(req));
2691 if (!q->front_merge_fn(q, req, bio))
2694 bio->bi_next = req->bio;
2698 * may not be valid. if the low level driver said
2699 * it didn't need a bounce buffer then it better
2700 * not touch req->buffer either...
2702 req->buffer = bio_data(bio);
2703 req->current_nr_sectors = cur_nr_sectors;
2704 req->hard_cur_sectors = cur_nr_sectors;
2705 req->sector = req->hard_sector = sector;
2706 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2707 req->ioprio = ioprio_best(req->ioprio, prio);
2708 drive_stat_acct(req, nr_sectors, 0);
2709 if (!attempt_front_merge(q, req))
2710 elv_merged_request(q, req);
2713 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2720 * Grab a free request. This is might sleep but can not fail.
2721 * Returns with the queue unlocked.
2723 req = get_request_wait(q, rw, bio);
2726 * After dropping the lock and possibly sleeping here, our request
2727 * may now be mergeable after it had proven unmergeable (above).
2728 * We don't worry about that case for efficiency. It won't happen
2729 * often, and the elevators are able to handle it.
2732 req->flags |= REQ_CMD;
2735 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2737 if (bio_rw_ahead(bio) || bio_failfast(bio))
2738 req->flags |= REQ_FAILFAST;
2741 * REQ_BARRIER implies no merging, but lets make it explicit
2743 if (unlikely(barrier))
2744 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2747 req->hard_sector = req->sector = sector;
2748 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2749 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2750 req->nr_phys_segments = bio_phys_segments(q, bio);
2751 req->nr_hw_segments = bio_hw_segments(q, bio);
2752 req->buffer = bio_data(bio); /* see ->buffer comment above */
2753 req->waiting = NULL;
2754 req->bio = req->biotail = bio;
2756 req->rq_disk = bio->bi_bdev->bd_disk;
2757 req->start_time = jiffies;
2759 spin_lock_irq(q->queue_lock);
2760 if (elv_queue_empty(q))
2762 add_request(q, req);
2765 __generic_unplug_device(q);
2767 spin_unlock_irq(q->queue_lock);
2771 bio_endio(bio, nr_sectors << 9, err);
2776 * If bio->bi_dev is a partition, remap the location
2778 static inline void blk_partition_remap(struct bio *bio)
2780 struct block_device *bdev = bio->bi_bdev;
2782 if (bdev != bdev->bd_contains) {
2783 struct hd_struct *p = bdev->bd_part;
2785 switch (bio_data_dir(bio)) {
2787 p->read_sectors += bio_sectors(bio);
2791 p->write_sectors += bio_sectors(bio);
2795 bio->bi_sector += p->start_sect;
2796 bio->bi_bdev = bdev->bd_contains;
2800 void blk_finish_queue_drain(request_queue_t *q)
2802 struct request_list *rl = &q->rq;
2806 spin_lock_irq(q->queue_lock);
2807 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2809 while (!list_empty(&q->drain_list)) {
2810 rq = list_entry_rq(q->drain_list.next);
2812 list_del_init(&rq->queuelist);
2813 elv_requeue_request(q, rq);
2820 spin_unlock_irq(q->queue_lock);
2822 wake_up(&rl->wait[0]);
2823 wake_up(&rl->wait[1]);
2824 wake_up(&rl->drain);
2827 static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2829 int wait = rl->count[READ] + rl->count[WRITE];
2832 wait += !list_empty(&q->queue_head);
2838 * We rely on the fact that only requests allocated through blk_alloc_request()
2839 * have io scheduler private data structures associated with them. Any other
2840 * type of request (allocated on stack or through kmalloc()) should not go
2841 * to the io scheduler core, but be attached to the queue head instead.
2843 void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2845 struct request_list *rl = &q->rq;
2848 spin_lock_irq(q->queue_lock);
2849 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2851 while (wait_drain(q, rl, wait_dispatch)) {
2852 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2854 if (wait_drain(q, rl, wait_dispatch)) {
2855 __generic_unplug_device(q);
2856 spin_unlock_irq(q->queue_lock);
2858 spin_lock_irq(q->queue_lock);
2861 finish_wait(&rl->drain, &wait);
2864 spin_unlock_irq(q->queue_lock);
2868 * block waiting for the io scheduler being started again.
2870 static inline void block_wait_queue_running(request_queue_t *q)
2874 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
2875 struct request_list *rl = &q->rq;
2877 prepare_to_wait_exclusive(&rl->drain, &wait,
2878 TASK_UNINTERRUPTIBLE);
2881 * re-check the condition. avoids using prepare_to_wait()
2882 * in the fast path (queue is running)
2884 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2887 finish_wait(&rl->drain, &wait);
2891 static void handle_bad_sector(struct bio *bio)
2893 char b[BDEVNAME_SIZE];
2895 printk(KERN_INFO "attempt to access beyond end of device\n");
2896 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2897 bdevname(bio->bi_bdev, b),
2899 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2900 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2902 set_bit(BIO_EOF, &bio->bi_flags);
2906 * generic_make_request: hand a buffer to its device driver for I/O
2907 * @bio: The bio describing the location in memory and on the device.
2909 * generic_make_request() is used to make I/O requests of block
2910 * devices. It is passed a &struct bio, which describes the I/O that needs
2913 * generic_make_request() does not return any status. The
2914 * success/failure status of the request, along with notification of
2915 * completion, is delivered asynchronously through the bio->bi_end_io
2916 * function described (one day) else where.
2918 * The caller of generic_make_request must make sure that bi_io_vec
2919 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2920 * set to describe the device address, and the
2921 * bi_end_io and optionally bi_private are set to describe how
2922 * completion notification should be signaled.
2924 * generic_make_request and the drivers it calls may use bi_next if this
2925 * bio happens to be merged with someone else, and may change bi_dev and
2926 * bi_sector for remaps as it sees fit. So the values of these fields
2927 * should NOT be depended on after the call to generic_make_request.
2929 void generic_make_request(struct bio *bio)
2933 int ret, nr_sectors = bio_sectors(bio);
2936 /* Test device or partition size, when known. */
2937 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2939 sector_t sector = bio->bi_sector;
2941 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2943 * This may well happen - the kernel calls bread()
2944 * without checking the size of the device, e.g., when
2945 * mounting a device.
2947 handle_bad_sector(bio);
2953 * Resolve the mapping until finished. (drivers are
2954 * still free to implement/resolve their own stacking
2955 * by explicitly returning 0)
2957 * NOTE: we don't repeat the blk_size check for each new device.
2958 * Stacking drivers are expected to know what they are doing.
2961 char b[BDEVNAME_SIZE];
2963 q = bdev_get_queue(bio->bi_bdev);
2966 "generic_make_request: Trying to access "
2967 "nonexistent block-device %s (%Lu)\n",
2968 bdevname(bio->bi_bdev, b),
2969 (long long) bio->bi_sector);
2971 bio_endio(bio, bio->bi_size, -EIO);
2975 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2976 printk("bio too big device %s (%u > %u)\n",
2977 bdevname(bio->bi_bdev, b),
2983 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2986 block_wait_queue_running(q);
2989 * If this device has partitions, remap block n
2990 * of partition p to block n+start(p) of the disk.
2992 blk_partition_remap(bio);
2994 ret = q->make_request_fn(q, bio);
2998 EXPORT_SYMBOL(generic_make_request);
3001 * submit_bio: submit a bio to the block device layer for I/O
3002 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3003 * @bio: The &struct bio which describes the I/O
3005 * submit_bio() is very similar in purpose to generic_make_request(), and
3006 * uses that function to do most of the work. Both are fairly rough
3007 * interfaces, @bio must be presetup and ready for I/O.
3010 void submit_bio(int rw, struct bio *bio)
3012 int count = bio_sectors(bio);
3014 BIO_BUG_ON(!bio->bi_size);
3015 BIO_BUG_ON(!bio->bi_io_vec);
3018 mod_page_state(pgpgout, count);
3020 mod_page_state(pgpgin, count);
3022 if (unlikely(block_dump)) {
3023 char b[BDEVNAME_SIZE];
3024 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3025 current->comm, current->pid,
3026 (rw & WRITE) ? "WRITE" : "READ",
3027 (unsigned long long)bio->bi_sector,
3028 bdevname(bio->bi_bdev,b));
3031 generic_make_request(bio);
3034 EXPORT_SYMBOL(submit_bio);
3036 static void blk_recalc_rq_segments(struct request *rq)
3038 struct bio *bio, *prevbio = NULL;
3039 int nr_phys_segs, nr_hw_segs;
3040 unsigned int phys_size, hw_size;
3041 request_queue_t *q = rq->q;
3046 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3047 rq_for_each_bio(bio, rq) {
3048 /* Force bio hw/phys segs to be recalculated. */
3049 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3051 nr_phys_segs += bio_phys_segments(q, bio);
3052 nr_hw_segs += bio_hw_segments(q, bio);
3054 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3055 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3057 if (blk_phys_contig_segment(q, prevbio, bio) &&
3058 pseg <= q->max_segment_size) {
3060 phys_size += prevbio->bi_size + bio->bi_size;
3064 if (blk_hw_contig_segment(q, prevbio, bio) &&
3065 hseg <= q->max_segment_size) {
3067 hw_size += prevbio->bi_size + bio->bi_size;
3074 rq->nr_phys_segments = nr_phys_segs;
3075 rq->nr_hw_segments = nr_hw_segs;
3078 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3080 if (blk_fs_request(rq)) {
3081 rq->hard_sector += nsect;
3082 rq->hard_nr_sectors -= nsect;
3085 * Move the I/O submission pointers ahead if required.
3087 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3088 (rq->sector <= rq->hard_sector)) {
3089 rq->sector = rq->hard_sector;
3090 rq->nr_sectors = rq->hard_nr_sectors;
3091 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3092 rq->current_nr_sectors = rq->hard_cur_sectors;
3093 rq->buffer = bio_data(rq->bio);
3097 * if total number of sectors is less than the first segment
3098 * size, something has gone terribly wrong
3100 if (rq->nr_sectors < rq->current_nr_sectors) {
3101 printk("blk: request botched\n");
3102 rq->nr_sectors = rq->current_nr_sectors;
3107 static int __end_that_request_first(struct request *req, int uptodate,
3110 int total_bytes, bio_nbytes, error, next_idx = 0;
3114 * extend uptodate bool to allow < 0 value to be direct io error
3117 if (end_io_error(uptodate))
3118 error = !uptodate ? -EIO : uptodate;
3121 * for a REQ_BLOCK_PC request, we want to carry any eventual
3122 * sense key with us all the way through
3124 if (!blk_pc_request(req))
3128 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3129 printk("end_request: I/O error, dev %s, sector %llu\n",
3130 req->rq_disk ? req->rq_disk->disk_name : "?",
3131 (unsigned long long)req->sector);
3134 total_bytes = bio_nbytes = 0;
3135 while ((bio = req->bio) != NULL) {
3138 if (nr_bytes >= bio->bi_size) {
3139 req->bio = bio->bi_next;
3140 nbytes = bio->bi_size;
3141 bio_endio(bio, nbytes, error);
3145 int idx = bio->bi_idx + next_idx;
3147 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3148 blk_dump_rq_flags(req, "__end_that");
3149 printk("%s: bio idx %d >= vcnt %d\n",
3151 bio->bi_idx, bio->bi_vcnt);
3155 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3156 BIO_BUG_ON(nbytes > bio->bi_size);
3159 * not a complete bvec done
3161 if (unlikely(nbytes > nr_bytes)) {
3162 bio_nbytes += nr_bytes;
3163 total_bytes += nr_bytes;
3168 * advance to the next vector
3171 bio_nbytes += nbytes;
3174 total_bytes += nbytes;
3177 if ((bio = req->bio)) {
3179 * end more in this run, or just return 'not-done'
3181 if (unlikely(nr_bytes <= 0))
3193 * if the request wasn't completed, update state
3196 bio_endio(bio, bio_nbytes, error);
3197 bio->bi_idx += next_idx;
3198 bio_iovec(bio)->bv_offset += nr_bytes;
3199 bio_iovec(bio)->bv_len -= nr_bytes;
3202 blk_recalc_rq_sectors(req, total_bytes >> 9);
3203 blk_recalc_rq_segments(req);
3208 * end_that_request_first - end I/O on a request
3209 * @req: the request being processed
3210 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3211 * @nr_sectors: number of sectors to end I/O on
3214 * Ends I/O on a number of sectors attached to @req, and sets it up
3215 * for the next range of segments (if any) in the cluster.
3218 * 0 - we are done with this request, call end_that_request_last()
3219 * 1 - still buffers pending for this request
3221 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3223 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3226 EXPORT_SYMBOL(end_that_request_first);
3229 * end_that_request_chunk - end I/O on a request
3230 * @req: the request being processed
3231 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3232 * @nr_bytes: number of bytes to complete
3235 * Ends I/O on a number of bytes attached to @req, and sets it up
3236 * for the next range of segments (if any). Like end_that_request_first(),
3237 * but deals with bytes instead of sectors.
3240 * 0 - we are done with this request, call end_that_request_last()
3241 * 1 - still buffers pending for this request
3243 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3245 return __end_that_request_first(req, uptodate, nr_bytes);
3248 EXPORT_SYMBOL(end_that_request_chunk);
3251 * queue lock must be held
3253 void end_that_request_last(struct request *req)
3255 struct gendisk *disk = req->rq_disk;
3257 if (unlikely(laptop_mode) && blk_fs_request(req))
3258 laptop_io_completion();
3260 if (disk && blk_fs_request(req)) {
3261 unsigned long duration = jiffies - req->start_time;
3262 switch (rq_data_dir(req)) {
3264 __disk_stat_inc(disk, writes);
3265 __disk_stat_add(disk, write_ticks, duration);
3268 __disk_stat_inc(disk, reads);
3269 __disk_stat_add(disk, read_ticks, duration);
3272 disk_round_stats(disk);
3278 __blk_put_request(req->q, req);
3281 EXPORT_SYMBOL(end_that_request_last);
3283 void end_request(struct request *req, int uptodate)
3285 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3286 add_disk_randomness(req->rq_disk);
3287 blkdev_dequeue_request(req);
3288 end_that_request_last(req);
3292 EXPORT_SYMBOL(end_request);
3294 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3296 /* first three bits are identical in rq->flags and bio->bi_rw */
3297 rq->flags |= (bio->bi_rw & 7);
3299 rq->nr_phys_segments = bio_phys_segments(q, bio);
3300 rq->nr_hw_segments = bio_hw_segments(q, bio);
3301 rq->current_nr_sectors = bio_cur_sectors(bio);
3302 rq->hard_cur_sectors = rq->current_nr_sectors;
3303 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3304 rq->buffer = bio_data(bio);
3306 rq->bio = rq->biotail = bio;
3309 EXPORT_SYMBOL(blk_rq_bio_prep);
3311 int kblockd_schedule_work(struct work_struct *work)
3313 return queue_work(kblockd_workqueue, work);
3316 EXPORT_SYMBOL(kblockd_schedule_work);
3318 void kblockd_flush(void)
3320 flush_workqueue(kblockd_workqueue);
3322 EXPORT_SYMBOL(kblockd_flush);
3324 int __init blk_dev_init(void)
3326 kblockd_workqueue = create_workqueue("kblockd");
3327 if (!kblockd_workqueue)
3328 panic("Failed to create kblockd\n");
3330 request_cachep = kmem_cache_create("blkdev_requests",
3331 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3333 requestq_cachep = kmem_cache_create("blkdev_queue",
3334 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3336 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3337 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3339 blk_max_low_pfn = max_low_pfn;
3340 blk_max_pfn = max_pfn;
3346 * IO Context helper functions
3348 void put_io_context(struct io_context *ioc)
3353 BUG_ON(atomic_read(&ioc->refcount) == 0);
3355 if (atomic_dec_and_test(&ioc->refcount)) {
3356 if (ioc->aic && ioc->aic->dtor)
3357 ioc->aic->dtor(ioc->aic);
3358 if (ioc->cic && ioc->cic->dtor)
3359 ioc->cic->dtor(ioc->cic);
3361 kmem_cache_free(iocontext_cachep, ioc);
3364 EXPORT_SYMBOL(put_io_context);
3366 /* Called by the exitting task */
3367 void exit_io_context(void)
3369 unsigned long flags;
3370 struct io_context *ioc;
3372 local_irq_save(flags);
3374 ioc = current->io_context;
3375 current->io_context = NULL;
3377 task_unlock(current);
3378 local_irq_restore(flags);
3380 if (ioc->aic && ioc->aic->exit)
3381 ioc->aic->exit(ioc->aic);
3382 if (ioc->cic && ioc->cic->exit)
3383 ioc->cic->exit(ioc->cic);
3385 put_io_context(ioc);
3389 * If the current task has no IO context then create one and initialise it.
3390 * Otherwise, return its existing IO context.
3392 * This returned IO context doesn't have a specifically elevated refcount,
3393 * but since the current task itself holds a reference, the context can be
3394 * used in general code, so long as it stays within `current` context.
3396 struct io_context *current_io_context(gfp_t gfp_flags)
3398 struct task_struct *tsk = current;
3399 struct io_context *ret;
3401 ret = tsk->io_context;
3405 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3407 atomic_set(&ret->refcount, 1);
3408 ret->task = current;
3409 ret->set_ioprio = NULL;
3410 ret->last_waited = jiffies; /* doesn't matter... */
3411 ret->nr_batch_requests = 0; /* because this is 0 */
3414 tsk->io_context = ret;
3419 EXPORT_SYMBOL(current_io_context);
3422 * If the current task has no IO context then create one and initialise it.
3423 * If it does have a context, take a ref on it.
3425 * This is always called in the context of the task which submitted the I/O.
3427 struct io_context *get_io_context(gfp_t gfp_flags)
3429 struct io_context *ret;
3430 ret = current_io_context(gfp_flags);
3432 atomic_inc(&ret->refcount);
3435 EXPORT_SYMBOL(get_io_context);
3437 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3439 struct io_context *src = *psrc;
3440 struct io_context *dst = *pdst;
3443 BUG_ON(atomic_read(&src->refcount) == 0);
3444 atomic_inc(&src->refcount);
3445 put_io_context(dst);
3449 EXPORT_SYMBOL(copy_io_context);
3451 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3453 struct io_context *temp;
3458 EXPORT_SYMBOL(swap_io_context);
3463 struct queue_sysfs_entry {
3464 struct attribute attr;
3465 ssize_t (*show)(struct request_queue *, char *);
3466 ssize_t (*store)(struct request_queue *, const char *, size_t);
3470 queue_var_show(unsigned int var, char *page)
3472 return sprintf(page, "%d\n", var);
3476 queue_var_store(unsigned long *var, const char *page, size_t count)
3478 char *p = (char *) page;
3480 *var = simple_strtoul(p, &p, 10);
3484 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3486 return queue_var_show(q->nr_requests, (page));
3490 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3492 struct request_list *rl = &q->rq;
3494 int ret = queue_var_store(&q->nr_requests, page, count);
3495 if (q->nr_requests < BLKDEV_MIN_RQ)
3496 q->nr_requests = BLKDEV_MIN_RQ;
3497 blk_queue_congestion_threshold(q);
3499 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3500 set_queue_congested(q, READ);
3501 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3502 clear_queue_congested(q, READ);
3504 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3505 set_queue_congested(q, WRITE);
3506 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3507 clear_queue_congested(q, WRITE);
3509 if (rl->count[READ] >= q->nr_requests) {
3510 blk_set_queue_full(q, READ);
3511 } else if (rl->count[READ]+1 <= q->nr_requests) {
3512 blk_clear_queue_full(q, READ);
3513 wake_up(&rl->wait[READ]);
3516 if (rl->count[WRITE] >= q->nr_requests) {
3517 blk_set_queue_full(q, WRITE);
3518 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3519 blk_clear_queue_full(q, WRITE);
3520 wake_up(&rl->wait[WRITE]);
3525 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3527 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3529 return queue_var_show(ra_kb, (page));
3533 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3535 unsigned long ra_kb;
3536 ssize_t ret = queue_var_store(&ra_kb, page, count);
3538 spin_lock_irq(q->queue_lock);
3539 if (ra_kb > (q->max_sectors >> 1))
3540 ra_kb = (q->max_sectors >> 1);
3542 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3543 spin_unlock_irq(q->queue_lock);
3548 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3550 int max_sectors_kb = q->max_sectors >> 1;
3552 return queue_var_show(max_sectors_kb, (page));
3556 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3558 unsigned long max_sectors_kb,
3559 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3560 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3561 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3564 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3567 * Take the queue lock to update the readahead and max_sectors
3568 * values synchronously:
3570 spin_lock_irq(q->queue_lock);
3572 * Trim readahead window as well, if necessary:
3574 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3575 if (ra_kb > max_sectors_kb)
3576 q->backing_dev_info.ra_pages =
3577 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3579 q->max_sectors = max_sectors_kb << 1;
3580 spin_unlock_irq(q->queue_lock);
3585 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3587 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3589 return queue_var_show(max_hw_sectors_kb, (page));
3593 static struct queue_sysfs_entry queue_requests_entry = {
3594 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3595 .show = queue_requests_show,
3596 .store = queue_requests_store,
3599 static struct queue_sysfs_entry queue_ra_entry = {
3600 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3601 .show = queue_ra_show,
3602 .store = queue_ra_store,
3605 static struct queue_sysfs_entry queue_max_sectors_entry = {
3606 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3607 .show = queue_max_sectors_show,
3608 .store = queue_max_sectors_store,
3611 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3612 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3613 .show = queue_max_hw_sectors_show,
3616 static struct queue_sysfs_entry queue_iosched_entry = {
3617 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3618 .show = elv_iosched_show,
3619 .store = elv_iosched_store,
3622 static struct attribute *default_attrs[] = {
3623 &queue_requests_entry.attr,
3624 &queue_ra_entry.attr,
3625 &queue_max_hw_sectors_entry.attr,
3626 &queue_max_sectors_entry.attr,
3627 &queue_iosched_entry.attr,
3631 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3634 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3636 struct queue_sysfs_entry *entry = to_queue(attr);
3637 struct request_queue *q;
3639 q = container_of(kobj, struct request_queue, kobj);
3643 return entry->show(q, page);
3647 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3648 const char *page, size_t length)
3650 struct queue_sysfs_entry *entry = to_queue(attr);
3651 struct request_queue *q;
3653 q = container_of(kobj, struct request_queue, kobj);
3657 return entry->store(q, page, length);
3660 static struct sysfs_ops queue_sysfs_ops = {
3661 .show = queue_attr_show,
3662 .store = queue_attr_store,
3665 static struct kobj_type queue_ktype = {
3666 .sysfs_ops = &queue_sysfs_ops,
3667 .default_attrs = default_attrs,
3670 int blk_register_queue(struct gendisk *disk)
3674 request_queue_t *q = disk->queue;
3676 if (!q || !q->request_fn)
3679 q->kobj.parent = kobject_get(&disk->kobj);
3680 if (!q->kobj.parent)
3683 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3684 q->kobj.ktype = &queue_ktype;
3686 ret = kobject_register(&q->kobj);
3690 ret = elv_register_queue(q);
3692 kobject_unregister(&q->kobj);
3699 void blk_unregister_queue(struct gendisk *disk)
3701 request_queue_t *q = disk->queue;
3703 if (q && q->request_fn) {
3704 elv_unregister_queue(q);
3706 kobject_unregister(&q->kobj);
3707 kobject_put(&disk->kobj);