1 /* Kernel dynamically loadable module help for PARISC.
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->module_init;
47 * val -= (uint32_t)me->module_core;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
64 #include <linux/uaccess.h>
66 #include <asm/sections.h>
67 #include <asm/unwind.h>
72 #define DEBUGP(fmt...)
75 #define RELOC_REACHABLE(val, bits) \
76 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
77 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
80 #define CHECK_RELOC(val, bits) \
81 if (!RELOC_REACHABLE(val, bits)) { \
82 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
83 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
87 /* Maximum number of GOT entries. We use a long displacement ldd from
88 * the bottom of the table, which has a maximum signed displacement of
89 * 0x3fff; however, since we're only going forward, this becomes
90 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
91 * at most 1023 entries */
94 /* three functions to determine where in the module core
95 * or init pieces the location is */
96 static inline int in_init(struct module *me, void *loc)
98 return (loc >= me->module_init &&
99 loc <= (me->module_init + me->init_size));
102 static inline int in_core(struct module *me, void *loc)
104 return (loc >= me->module_core &&
105 loc <= (me->module_core + me->core_size));
108 static inline int in_local(struct module *me, void *loc)
110 return in_init(me, loc) || in_core(me, loc);
118 #define Elf_Fdesc Elf32_Fdesc
121 Elf32_Word insns[2]; /* each stub entry has two insns */
128 #define Elf_Fdesc Elf64_Fdesc
131 Elf64_Word insns[4]; /* each stub entry has four insns */
135 /* Field selection types defined by hppa */
136 #define rnd(x) (((x)+0x1000)&~0x1fff)
137 /* fsel: full 32 bits */
138 #define fsel(v,a) ((v)+(a))
139 /* lsel: select left 21 bits */
140 #define lsel(v,a) (((v)+(a))>>11)
141 /* rsel: select right 11 bits */
142 #define rsel(v,a) (((v)+(a))&0x7ff)
143 /* lrsel with rounding of addend to nearest 8k */
144 #define lrsel(v,a) (((v)+rnd(a))>>11)
145 /* rrsel with rounding of addend to nearest 8k */
146 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
148 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
151 /* The reassemble_* functions prepare an immediate value for
152 insertion into an opcode. pa-risc uses all sorts of weird bitfields
153 in the instruction to hold the value. */
154 static inline int reassemble_14(int as14)
156 return (((as14 & 0x1fff) << 1) |
157 ((as14 & 0x2000) >> 13));
160 static inline int reassemble_17(int as17)
162 return (((as17 & 0x10000) >> 16) |
163 ((as17 & 0x0f800) << 5) |
164 ((as17 & 0x00400) >> 8) |
165 ((as17 & 0x003ff) << 3));
168 static inline int reassemble_21(int as21)
170 return (((as21 & 0x100000) >> 20) |
171 ((as21 & 0x0ffe00) >> 8) |
172 ((as21 & 0x000180) << 7) |
173 ((as21 & 0x00007c) << 14) |
174 ((as21 & 0x000003) << 12));
177 static inline int reassemble_22(int as22)
179 return (((as22 & 0x200000) >> 21) |
180 ((as22 & 0x1f0000) << 5) |
181 ((as22 & 0x00f800) << 5) |
182 ((as22 & 0x000400) >> 8) |
183 ((as22 & 0x0003ff) << 3));
186 void *module_alloc(unsigned long size)
190 return vmalloc(size);
194 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
199 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
204 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
206 unsigned long cnt = 0;
208 for (; n > 0; n--, rela++)
210 switch (ELF32_R_TYPE(rela->r_info)) {
211 case R_PARISC_PCREL17F:
212 case R_PARISC_PCREL22F:
220 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
222 unsigned long cnt = 0;
224 for (; n > 0; n--, rela++)
226 switch (ELF64_R_TYPE(rela->r_info)) {
227 case R_PARISC_LTOFF21L:
228 case R_PARISC_LTOFF14R:
229 case R_PARISC_PCREL22F:
237 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
239 unsigned long cnt = 0;
241 for (; n > 0; n--, rela++)
243 switch (ELF64_R_TYPE(rela->r_info)) {
244 case R_PARISC_FPTR64:
252 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
254 unsigned long cnt = 0;
256 for (; n > 0; n--, rela++)
258 switch (ELF64_R_TYPE(rela->r_info)) {
259 case R_PARISC_PCREL22F:
269 /* Free memory returned from module_alloc */
270 void module_free(struct module *mod, void *module_region)
272 kfree(mod->arch.section);
273 mod->arch.section = NULL;
275 vfree(module_region);
276 /* FIXME: If module_region == mod->init_region, trim exception
280 /* Additional bytes needed in front of individual sections */
281 unsigned int arch_mod_section_prepend(struct module *mod,
282 unsigned int section)
284 /* size needed for all stubs of this section (including
285 * one additional for correct alignment of the stubs) */
286 return (mod->arch.section[section].stub_entries + 1)
287 * sizeof(struct stub_entry);
291 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
292 CONST Elf_Shdr *sechdrs,
293 CONST char *secstrings,
296 unsigned long gots = 0, fdescs = 0, len;
299 len = hdr->e_shnum * sizeof(me->arch.section[0]);
300 me->arch.section = kzalloc(len, GFP_KERNEL);
301 if (!me->arch.section)
304 for (i = 1; i < hdr->e_shnum; i++) {
305 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
306 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
307 unsigned int count, s;
309 if (strncmp(secstrings + sechdrs[i].sh_name,
310 ".PARISC.unwind", 14) == 0)
311 me->arch.unwind_section = i;
313 if (sechdrs[i].sh_type != SHT_RELA)
316 /* some of these are not relevant for 32-bit/64-bit
317 * we leave them here to make the code common. the
318 * compiler will do its thing and optimize out the
319 * stuff we don't need
321 gots += count_gots(rels, nrels);
322 fdescs += count_fdescs(rels, nrels);
324 /* XXX: By sorting the relocs and finding duplicate entries
325 * we could reduce the number of necessary stubs and save
327 count = count_stubs(rels, nrels);
331 /* so we need relocation stubs. reserve necessary memory. */
332 /* sh_info gives the section for which we need to add stubs. */
333 s = sechdrs[i].sh_info;
335 /* each code section should only have one relocation section */
336 WARN_ON(me->arch.section[s].stub_entries);
338 /* store number of stubs we need for this section */
339 me->arch.section[s].stub_entries += count;
342 /* align things a bit */
343 me->core_size = ALIGN(me->core_size, 16);
344 me->arch.got_offset = me->core_size;
345 me->core_size += gots * sizeof(struct got_entry);
347 me->core_size = ALIGN(me->core_size, 16);
348 me->arch.fdesc_offset = me->core_size;
349 me->core_size += fdescs * sizeof(Elf_Fdesc);
351 me->arch.got_max = gots;
352 me->arch.fdesc_max = fdescs;
358 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
361 struct got_entry *got;
367 got = me->module_core + me->arch.got_offset;
368 for (i = 0; got[i].addr; i++)
369 if (got[i].addr == value)
372 BUG_ON(++me->arch.got_count > me->arch.got_max);
376 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
378 return i * sizeof(struct got_entry);
380 #endif /* CONFIG_64BIT */
383 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
385 Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
388 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
392 /* Look for existing fdesc entry. */
393 while (fdesc->addr) {
394 if (fdesc->addr == value)
395 return (Elf_Addr)fdesc;
399 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
403 fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
404 return (Elf_Addr)fdesc;
406 #endif /* CONFIG_64BIT */
414 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
415 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
417 struct stub_entry *stub;
419 /* initialize stub_offset to point in front of the section */
420 if (!me->arch.section[targetsec].stub_offset) {
421 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
422 sizeof(struct stub_entry);
423 /* get correct alignment for the stubs */
424 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
425 me->arch.section[targetsec].stub_offset = loc0;
428 /* get address of stub entry */
429 stub = (void *) me->arch.section[targetsec].stub_offset;
430 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
432 /* do not write outside available stub area */
433 BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
437 /* for 32-bit the stub looks like this:
439 * be,n R'XXX(%sr4,%r1)
441 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
443 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
444 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
446 stub->insns[0] |= reassemble_21(lrsel(value, addend));
447 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
450 /* for 64-bit we have three kinds of stubs:
451 * for normal function calls:
463 * for direct branches (jumps between different section of the
471 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
472 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
473 stub->insns[2] = 0xe820d000; /* bve (%r1) */
474 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
476 stub->insns[0] |= reassemble_14(get_got(me, value, addend) & 0x3fff);
479 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
480 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
481 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
482 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
484 stub->insns[0] |= reassemble_21(lrsel(value, addend));
485 stub->insns[1] |= reassemble_14(rrsel(value, addend));
487 case ELF_STUB_DIRECT:
488 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
489 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
490 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
492 stub->insns[0] |= reassemble_21(lrsel(value, addend));
493 stub->insns[1] |= reassemble_14(rrsel(value, addend));
499 return (Elf_Addr)stub;
502 int apply_relocate(Elf_Shdr *sechdrs,
504 unsigned int symindex,
508 /* parisc should not need this ... */
509 printk(KERN_ERR "module %s: RELOCATION unsupported\n",
515 int apply_relocate_add(Elf_Shdr *sechdrs,
517 unsigned int symindex,
522 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
529 unsigned int targetsec = sechdrs[relsec].sh_info;
530 //unsigned long dp = (unsigned long)$global$;
531 register unsigned long dp asm ("r27");
533 DEBUGP("Applying relocate section %u to %u\n", relsec,
535 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
536 /* This is where to make the change */
537 loc = (void *)sechdrs[targetsec].sh_addr
539 /* This is the start of the target section */
540 loc0 = sechdrs[targetsec].sh_addr;
541 /* This is the symbol it is referring to */
542 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
543 + ELF32_R_SYM(rel[i].r_info);
544 if (!sym->st_value) {
545 printk(KERN_WARNING "%s: Unknown symbol %s\n",
546 me->name, strtab + sym->st_name);
549 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
550 dot = (Elf32_Addr)loc & ~0x03;
553 addend = rel[i].r_addend;
556 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
557 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
558 strtab + sym->st_name,
559 (uint32_t)loc, val, addend,
573 switch (ELF32_R_TYPE(rel[i].r_info)) {
574 case R_PARISC_PLABEL32:
575 /* 32-bit function address */
576 /* no function descriptors... */
577 *loc = fsel(val, addend);
580 /* direct 32-bit ref */
581 *loc = fsel(val, addend);
583 case R_PARISC_DIR21L:
584 /* left 21 bits of effective address */
585 val = lrsel(val, addend);
586 *loc = mask(*loc, 21) | reassemble_21(val);
588 case R_PARISC_DIR14R:
589 /* right 14 bits of effective address */
590 val = rrsel(val, addend);
591 *loc = mask(*loc, 14) | reassemble_14(val);
593 case R_PARISC_SEGREL32:
594 /* 32-bit segment relative address */
595 /* See note about special handling of SEGREL32 at
596 * the beginning of this file.
598 *loc = fsel(val, addend);
600 case R_PARISC_DPREL21L:
601 /* left 21 bit of relative address */
602 val = lrsel(val - dp, addend);
603 *loc = mask(*loc, 21) | reassemble_21(val);
605 case R_PARISC_DPREL14R:
606 /* right 14 bit of relative address */
607 val = rrsel(val - dp, addend);
608 *loc = mask(*loc, 14) | reassemble_14(val);
610 case R_PARISC_PCREL17F:
611 /* 17-bit PC relative address */
612 /* calculate direct call offset */
614 val = (val - dot - 8)/4;
615 if (!RELOC_REACHABLE(val, 17)) {
616 /* direct distance too far, create
617 * stub entry instead */
618 val = get_stub(me, sym->st_value, addend,
619 ELF_STUB_DIRECT, loc0, targetsec);
620 val = (val - dot - 8)/4;
621 CHECK_RELOC(val, 17);
623 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
625 case R_PARISC_PCREL22F:
626 /* 22-bit PC relative address; only defined for pa20 */
627 /* calculate direct call offset */
629 val = (val - dot - 8)/4;
630 if (!RELOC_REACHABLE(val, 22)) {
631 /* direct distance too far, create
632 * stub entry instead */
633 val = get_stub(me, sym->st_value, addend,
634 ELF_STUB_DIRECT, loc0, targetsec);
635 val = (val - dot - 8)/4;
636 CHECK_RELOC(val, 22);
638 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
642 printk(KERN_ERR "module %s: Unknown relocation: %u\n",
643 me->name, ELF32_R_TYPE(rel[i].r_info));
652 int apply_relocate_add(Elf_Shdr *sechdrs,
654 unsigned int symindex,
659 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
667 unsigned int targetsec = sechdrs[relsec].sh_info;
669 DEBUGP("Applying relocate section %u to %u\n", relsec,
671 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
672 /* This is where to make the change */
673 loc = (void *)sechdrs[targetsec].sh_addr
675 /* This is the start of the target section */
676 loc0 = sechdrs[targetsec].sh_addr;
677 /* This is the symbol it is referring to */
678 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
679 + ELF64_R_SYM(rel[i].r_info);
680 if (!sym->st_value) {
681 printk(KERN_WARNING "%s: Unknown symbol %s\n",
682 me->name, strtab + sym->st_name);
685 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
686 dot = (Elf64_Addr)loc & ~0x03;
687 loc64 = (Elf64_Xword *)loc;
690 addend = rel[i].r_addend;
693 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
694 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
695 strtab + sym->st_name,
707 switch (ELF64_R_TYPE(rel[i].r_info)) {
708 case R_PARISC_LTOFF21L:
709 /* LT-relative; left 21 bits */
710 val = get_got(me, val, addend);
711 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
712 strtab + sym->st_name,
715 *loc = mask(*loc, 21) | reassemble_21(val);
717 case R_PARISC_LTOFF14R:
718 /* L(ltoff(val+addend)) */
719 /* LT-relative; right 14 bits */
720 val = get_got(me, val, addend);
722 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
723 strtab + sym->st_name,
725 *loc = mask(*loc, 14) | reassemble_14(val);
727 case R_PARISC_PCREL22F:
728 /* PC-relative; 22 bits */
729 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
730 strtab + sym->st_name,
733 /* can we reach it locally? */
734 if (in_local(me, (void *)val)) {
735 /* this is the case where the symbol is local
736 * to the module, but in a different section,
737 * so stub the jump in case it's more than 22
739 val = (val - dot - 8)/4;
740 if (!RELOC_REACHABLE(val, 22)) {
741 /* direct distance too far, create
742 * stub entry instead */
743 val = get_stub(me, sym->st_value,
744 addend, ELF_STUB_DIRECT,
747 /* Ok, we can reach it directly. */
753 if (strncmp(strtab + sym->st_name, "$$", 2)
755 val = get_stub(me, val, addend, ELF_STUB_MILLI,
758 val = get_stub(me, val, addend, ELF_STUB_GOT,
761 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
762 strtab + sym->st_name, loc, sym->st_value,
764 val = (val - dot - 8)/4;
765 CHECK_RELOC(val, 22);
766 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
769 /* 64-bit effective address */
770 *loc64 = val + addend;
772 case R_PARISC_SEGREL32:
773 /* 32-bit segment relative address */
774 /* See note about special handling of SEGREL32 at
775 * the beginning of this file.
777 *loc = fsel(val, addend);
779 case R_PARISC_FPTR64:
780 /* 64-bit function address */
781 if(in_local(me, (void *)(val + addend))) {
782 *loc64 = get_fdesc(me, val+addend);
783 DEBUGP("FDESC for %s at %p points to %lx\n",
784 strtab + sym->st_name, *loc64,
785 ((Elf_Fdesc *)*loc64)->addr);
787 /* if the symbol is not local to this
788 * module then val+addend is a pointer
789 * to the function descriptor */
790 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
791 strtab + sym->st_name,
793 *loc64 = val + addend;
798 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
799 me->name, ELF64_R_TYPE(rel[i].r_info));
808 register_unwind_table(struct module *me,
809 const Elf_Shdr *sechdrs)
811 unsigned char *table, *end;
814 if (!me->arch.unwind_section)
817 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
818 end = table + sechdrs[me->arch.unwind_section].sh_size;
819 gp = (Elf_Addr)me->module_core + me->arch.got_offset;
821 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
822 me->arch.unwind_section, table, end, gp);
823 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
827 deregister_unwind_table(struct module *me)
830 unwind_table_remove(me->arch.unwind);
833 int module_finalize(const Elf_Ehdr *hdr,
834 const Elf_Shdr *sechdrs,
839 const char *strtab = NULL;
840 Elf_Sym *newptr, *oldptr;
841 Elf_Shdr *symhdr = NULL;
846 entry = (Elf_Fdesc *)me->init;
847 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
848 entry->gp, entry->addr);
849 addr = (u32 *)entry->addr;
850 printk("INSNS: %x %x %x %x\n",
851 addr[0], addr[1], addr[2], addr[3]);
852 printk("got entries used %ld, gots max %ld\n"
853 "fdescs used %ld, fdescs max %ld\n",
854 me->arch.got_count, me->arch.got_max,
855 me->arch.fdesc_count, me->arch.fdesc_max);
858 register_unwind_table(me, sechdrs);
860 /* haven't filled in me->symtab yet, so have to find it
862 for (i = 1; i < hdr->e_shnum; i++) {
863 if(sechdrs[i].sh_type == SHT_SYMTAB
864 && (sechdrs[i].sh_type & SHF_ALLOC)) {
865 int strindex = sechdrs[i].sh_link;
867 * The cast is to drop the const from
868 * the sechdrs pointer */
869 symhdr = (Elf_Shdr *)&sechdrs[i];
870 strtab = (char *)sechdrs[strindex].sh_addr;
875 DEBUGP("module %s: strtab %p, symhdr %p\n",
876 me->name, strtab, symhdr);
878 if(me->arch.got_count > MAX_GOTS) {
879 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
880 me->name, me->arch.got_count, MAX_GOTS);
884 kfree(me->arch.section);
885 me->arch.section = NULL;
887 /* no symbol table */
891 oldptr = (void *)symhdr->sh_addr;
892 newptr = oldptr + 1; /* we start counting at 1 */
893 nsyms = symhdr->sh_size / sizeof(Elf_Sym);
894 DEBUGP("OLD num_symtab %lu\n", nsyms);
896 for (i = 1; i < nsyms; i++) {
897 oldptr++; /* note, count starts at 1 so preincrement */
898 if(strncmp(strtab + oldptr->st_name,
908 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
909 DEBUGP("NEW num_symtab %lu\n", nsyms);
910 symhdr->sh_size = nsyms * sizeof(Elf_Sym);
911 return module_bug_finalize(hdr, sechdrs, me);
914 void module_arch_cleanup(struct module *mod)
916 deregister_unwind_table(mod);
917 module_bug_cleanup(mod);
921 void *dereference_function_descriptor(void *ptr)
923 Elf64_Fdesc *desc = ptr;
926 if (!probe_kernel_address(&desc->addr, p))