Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84
85 int randomize_va_space __read_mostly = 1;
86
87 static int __init disable_randmaps(char *s)
88 {
89         randomize_va_space = 0;
90         return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93
94
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103         pgd_ERROR(*pgd);
104         pgd_clear(pgd);
105 }
106
107 void pud_clear_bad(pud_t *pud)
108 {
109         pud_ERROR(*pud);
110         pud_clear(pud);
111 }
112
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115         pmd_ERROR(*pmd);
116         pmd_clear(pmd);
117 }
118
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125         struct page *page = pmd_page(*pmd);
126         pmd_clear(pmd);
127         pte_lock_deinit(page);
128         pte_free_tlb(tlb, page);
129         dec_zone_page_state(page, NR_PAGETABLE);
130         tlb->mm->nr_ptes--;
131 }
132
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134                                 unsigned long addr, unsigned long end,
135                                 unsigned long floor, unsigned long ceiling)
136 {
137         pmd_t *pmd;
138         unsigned long next;
139         unsigned long start;
140
141         start = addr;
142         pmd = pmd_offset(pud, addr);
143         do {
144                 next = pmd_addr_end(addr, end);
145                 if (pmd_none_or_clear_bad(pmd))
146                         continue;
147                 free_pte_range(tlb, pmd);
148         } while (pmd++, addr = next, addr != end);
149
150         start &= PUD_MASK;
151         if (start < floor)
152                 return;
153         if (ceiling) {
154                 ceiling &= PUD_MASK;
155                 if (!ceiling)
156                         return;
157         }
158         if (end - 1 > ceiling - 1)
159                 return;
160
161         pmd = pmd_offset(pud, start);
162         pud_clear(pud);
163         pmd_free_tlb(tlb, pmd);
164 }
165
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167                                 unsigned long addr, unsigned long end,
168                                 unsigned long floor, unsigned long ceiling)
169 {
170         pud_t *pud;
171         unsigned long next;
172         unsigned long start;
173
174         start = addr;
175         pud = pud_offset(pgd, addr);
176         do {
177                 next = pud_addr_end(addr, end);
178                 if (pud_none_or_clear_bad(pud))
179                         continue;
180                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181         } while (pud++, addr = next, addr != end);
182
183         start &= PGDIR_MASK;
184         if (start < floor)
185                 return;
186         if (ceiling) {
187                 ceiling &= PGDIR_MASK;
188                 if (!ceiling)
189                         return;
190         }
191         if (end - 1 > ceiling - 1)
192                 return;
193
194         pud = pud_offset(pgd, start);
195         pgd_clear(pgd);
196         pud_free_tlb(tlb, pud);
197 }
198
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205                         unsigned long addr, unsigned long end,
206                         unsigned long floor, unsigned long ceiling)
207 {
208         pgd_t *pgd;
209         unsigned long next;
210         unsigned long start;
211
212         /*
213          * The next few lines have given us lots of grief...
214          *
215          * Why are we testing PMD* at this top level?  Because often
216          * there will be no work to do at all, and we'd prefer not to
217          * go all the way down to the bottom just to discover that.
218          *
219          * Why all these "- 1"s?  Because 0 represents both the bottom
220          * of the address space and the top of it (using -1 for the
221          * top wouldn't help much: the masks would do the wrong thing).
222          * The rule is that addr 0 and floor 0 refer to the bottom of
223          * the address space, but end 0 and ceiling 0 refer to the top
224          * Comparisons need to use "end - 1" and "ceiling - 1" (though
225          * that end 0 case should be mythical).
226          *
227          * Wherever addr is brought up or ceiling brought down, we must
228          * be careful to reject "the opposite 0" before it confuses the
229          * subsequent tests.  But what about where end is brought down
230          * by PMD_SIZE below? no, end can't go down to 0 there.
231          *
232          * Whereas we round start (addr) and ceiling down, by different
233          * masks at different levels, in order to test whether a table
234          * now has no other vmas using it, so can be freed, we don't
235          * bother to round floor or end up - the tests don't need that.
236          */
237
238         addr &= PMD_MASK;
239         if (addr < floor) {
240                 addr += PMD_SIZE;
241                 if (!addr)
242                         return;
243         }
244         if (ceiling) {
245                 ceiling &= PMD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 end -= PMD_SIZE;
251         if (addr > end - 1)
252                 return;
253
254         start = addr;
255         pgd = pgd_offset((*tlb)->mm, addr);
256         do {
257                 next = pgd_addr_end(addr, end);
258                 if (pgd_none_or_clear_bad(pgd))
259                         continue;
260                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261         } while (pgd++, addr = next, addr != end);
262 }
263
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265                 unsigned long floor, unsigned long ceiling)
266 {
267         while (vma) {
268                 struct vm_area_struct *next = vma->vm_next;
269                 unsigned long addr = vma->vm_start;
270
271                 /*
272                  * Hide vma from rmap and vmtruncate before freeing pgtables
273                  */
274                 anon_vma_unlink(vma);
275                 unlink_file_vma(vma);
276
277                 if (is_vm_hugetlb_page(vma)) {
278                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279                                 floor, next? next->vm_start: ceiling);
280                 } else {
281                         /*
282                          * Optimization: gather nearby vmas into one call down
283                          */
284                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285                                && !is_vm_hugetlb_page(next)) {
286                                 vma = next;
287                                 next = vma->vm_next;
288                                 anon_vma_unlink(vma);
289                                 unlink_file_vma(vma);
290                         }
291                         free_pgd_range(tlb, addr, vma->vm_end,
292                                 floor, next? next->vm_start: ceiling);
293                 }
294                 vma = next;
295         }
296 }
297
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299 {
300         struct page *new = pte_alloc_one(mm, address);
301         if (!new)
302                 return -ENOMEM;
303
304         pte_lock_init(new);
305         spin_lock(&mm->page_table_lock);
306         if (pmd_present(*pmd)) {        /* Another has populated it */
307                 pte_lock_deinit(new);
308                 pte_free(mm, new);
309         } else {
310                 mm->nr_ptes++;
311                 inc_zone_page_state(new, NR_PAGETABLE);
312                 pmd_populate(mm, pmd, new);
313         }
314         spin_unlock(&mm->page_table_lock);
315         return 0;
316 }
317
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319 {
320         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321         if (!new)
322                 return -ENOMEM;
323
324         spin_lock(&init_mm.page_table_lock);
325         if (pmd_present(*pmd))          /* Another has populated it */
326                 pte_free_kernel(&init_mm, new);
327         else
328                 pmd_populate_kernel(&init_mm, pmd, new);
329         spin_unlock(&init_mm.page_table_lock);
330         return 0;
331 }
332
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334 {
335         if (file_rss)
336                 add_mm_counter(mm, file_rss, file_rss);
337         if (anon_rss)
338                 add_mm_counter(mm, anon_rss, anon_rss);
339 }
340
341 /*
342  * This function is called to print an error when a bad pte
343  * is found. For example, we might have a PFN-mapped pte in
344  * a region that doesn't allow it.
345  *
346  * The calling function must still handle the error.
347  */
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349 {
350         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351                         "vm_flags = %lx, vaddr = %lx\n",
352                 (long long)pte_val(pte),
353                 (vma->vm_mm == current->mm ? current->comm : "???"),
354                 vma->vm_flags, vaddr);
355         dump_stack();
356 }
357
358 static inline int is_cow_mapping(unsigned int flags)
359 {
360         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361 }
362
363 /*
364  * This function gets the "struct page" associated with a pte.
365  *
366  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367  * will have each page table entry just pointing to a raw page frame
368  * number, and as far as the VM layer is concerned, those do not have
369  * pages associated with them - even if the PFN might point to memory
370  * that otherwise is perfectly fine and has a "struct page".
371  *
372  * The way we recognize those mappings is through the rules set up
373  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374  * and the vm_pgoff will point to the first PFN mapped: thus every
375  * page that is a raw mapping will always honor the rule
376  *
377  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378  *
379  * and if that isn't true, the page has been COW'ed (in which case it
380  * _does_ have a "struct page" associated with it even if it is in a
381  * VM_PFNMAP range).
382  */
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384 {
385         unsigned long pfn = pte_pfn(pte);
386
387         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389                 if (pfn == vma->vm_pgoff + off)
390                         return NULL;
391                 if (!is_cow_mapping(vma->vm_flags))
392                         return NULL;
393         }
394
395 #ifdef CONFIG_DEBUG_VM
396         /*
397          * Add some anal sanity checks for now. Eventually,
398          * we should just do "return pfn_to_page(pfn)", but
399          * in the meantime we check that we get a valid pfn,
400          * and that the resulting page looks ok.
401          */
402         if (unlikely(!pfn_valid(pfn))) {
403                 print_bad_pte(vma, pte, addr);
404                 return NULL;
405         }
406 #endif
407
408         /*
409          * NOTE! We still have PageReserved() pages in the page 
410          * tables. 
411          *
412          * The PAGE_ZERO() pages and various VDSO mappings can
413          * cause them to exist.
414          */
415         return pfn_to_page(pfn);
416 }
417
418 /*
419  * copy one vm_area from one task to the other. Assumes the page tables
420  * already present in the new task to be cleared in the whole range
421  * covered by this vma.
422  */
423
424 static inline void
425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
427                 unsigned long addr, int *rss)
428 {
429         unsigned long vm_flags = vma->vm_flags;
430         pte_t pte = *src_pte;
431         struct page *page;
432
433         /* pte contains position in swap or file, so copy. */
434         if (unlikely(!pte_present(pte))) {
435                 if (!pte_file(pte)) {
436                         swp_entry_t entry = pte_to_swp_entry(pte);
437
438                         swap_duplicate(entry);
439                         /* make sure dst_mm is on swapoff's mmlist. */
440                         if (unlikely(list_empty(&dst_mm->mmlist))) {
441                                 spin_lock(&mmlist_lock);
442                                 if (list_empty(&dst_mm->mmlist))
443                                         list_add(&dst_mm->mmlist,
444                                                  &src_mm->mmlist);
445                                 spin_unlock(&mmlist_lock);
446                         }
447                         if (is_write_migration_entry(entry) &&
448                                         is_cow_mapping(vm_flags)) {
449                                 /*
450                                  * COW mappings require pages in both parent
451                                  * and child to be set to read.
452                                  */
453                                 make_migration_entry_read(&entry);
454                                 pte = swp_entry_to_pte(entry);
455                                 set_pte_at(src_mm, addr, src_pte, pte);
456                         }
457                 }
458                 goto out_set_pte;
459         }
460
461         /*
462          * If it's a COW mapping, write protect it both
463          * in the parent and the child
464          */
465         if (is_cow_mapping(vm_flags)) {
466                 ptep_set_wrprotect(src_mm, addr, src_pte);
467                 pte = pte_wrprotect(pte);
468         }
469
470         /*
471          * If it's a shared mapping, mark it clean in
472          * the child
473          */
474         if (vm_flags & VM_SHARED)
475                 pte = pte_mkclean(pte);
476         pte = pte_mkold(pte);
477
478         page = vm_normal_page(vma, addr, pte);
479         if (page) {
480                 get_page(page);
481                 page_dup_rmap(page, vma, addr);
482                 rss[!!PageAnon(page)]++;
483         }
484
485 out_set_pte:
486         set_pte_at(dst_mm, addr, dst_pte, pte);
487 }
488
489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
490                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
491                 unsigned long addr, unsigned long end)
492 {
493         pte_t *src_pte, *dst_pte;
494         spinlock_t *src_ptl, *dst_ptl;
495         int progress = 0;
496         int rss[2];
497
498 again:
499         rss[1] = rss[0] = 0;
500         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501         if (!dst_pte)
502                 return -ENOMEM;
503         src_pte = pte_offset_map_nested(src_pmd, addr);
504         src_ptl = pte_lockptr(src_mm, src_pmd);
505         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
506         arch_enter_lazy_mmu_mode();
507
508         do {
509                 /*
510                  * We are holding two locks at this point - either of them
511                  * could generate latencies in another task on another CPU.
512                  */
513                 if (progress >= 32) {
514                         progress = 0;
515                         if (need_resched() ||
516                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
517                                 break;
518                 }
519                 if (pte_none(*src_pte)) {
520                         progress++;
521                         continue;
522                 }
523                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
524                 progress += 8;
525         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
526
527         arch_leave_lazy_mmu_mode();
528         spin_unlock(src_ptl);
529         pte_unmap_nested(src_pte - 1);
530         add_mm_rss(dst_mm, rss[0], rss[1]);
531         pte_unmap_unlock(dst_pte - 1, dst_ptl);
532         cond_resched();
533         if (addr != end)
534                 goto again;
535         return 0;
536 }
537
538 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
539                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
540                 unsigned long addr, unsigned long end)
541 {
542         pmd_t *src_pmd, *dst_pmd;
543         unsigned long next;
544
545         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
546         if (!dst_pmd)
547                 return -ENOMEM;
548         src_pmd = pmd_offset(src_pud, addr);
549         do {
550                 next = pmd_addr_end(addr, end);
551                 if (pmd_none_or_clear_bad(src_pmd))
552                         continue;
553                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
554                                                 vma, addr, next))
555                         return -ENOMEM;
556         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
557         return 0;
558 }
559
560 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
561                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
562                 unsigned long addr, unsigned long end)
563 {
564         pud_t *src_pud, *dst_pud;
565         unsigned long next;
566
567         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
568         if (!dst_pud)
569                 return -ENOMEM;
570         src_pud = pud_offset(src_pgd, addr);
571         do {
572                 next = pud_addr_end(addr, end);
573                 if (pud_none_or_clear_bad(src_pud))
574                         continue;
575                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
576                                                 vma, addr, next))
577                         return -ENOMEM;
578         } while (dst_pud++, src_pud++, addr = next, addr != end);
579         return 0;
580 }
581
582 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583                 struct vm_area_struct *vma)
584 {
585         pgd_t *src_pgd, *dst_pgd;
586         unsigned long next;
587         unsigned long addr = vma->vm_start;
588         unsigned long end = vma->vm_end;
589
590         /*
591          * Don't copy ptes where a page fault will fill them correctly.
592          * Fork becomes much lighter when there are big shared or private
593          * readonly mappings. The tradeoff is that copy_page_range is more
594          * efficient than faulting.
595          */
596         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
597                 if (!vma->anon_vma)
598                         return 0;
599         }
600
601         if (is_vm_hugetlb_page(vma))
602                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
603
604         dst_pgd = pgd_offset(dst_mm, addr);
605         src_pgd = pgd_offset(src_mm, addr);
606         do {
607                 next = pgd_addr_end(addr, end);
608                 if (pgd_none_or_clear_bad(src_pgd))
609                         continue;
610                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
611                                                 vma, addr, next))
612                         return -ENOMEM;
613         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
614         return 0;
615 }
616
617 static unsigned long zap_pte_range(struct mmu_gather *tlb,
618                                 struct vm_area_struct *vma, pmd_t *pmd,
619                                 unsigned long addr, unsigned long end,
620                                 long *zap_work, struct zap_details *details)
621 {
622         struct mm_struct *mm = tlb->mm;
623         pte_t *pte;
624         spinlock_t *ptl;
625         int file_rss = 0;
626         int anon_rss = 0;
627
628         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
629         arch_enter_lazy_mmu_mode();
630         do {
631                 pte_t ptent = *pte;
632                 if (pte_none(ptent)) {
633                         (*zap_work)--;
634                         continue;
635                 }
636
637                 (*zap_work) -= PAGE_SIZE;
638
639                 if (pte_present(ptent)) {
640                         struct page *page;
641
642                         page = vm_normal_page(vma, addr, ptent);
643                         if (unlikely(details) && page) {
644                                 /*
645                                  * unmap_shared_mapping_pages() wants to
646                                  * invalidate cache without truncating:
647                                  * unmap shared but keep private pages.
648                                  */
649                                 if (details->check_mapping &&
650                                     details->check_mapping != page->mapping)
651                                         continue;
652                                 /*
653                                  * Each page->index must be checked when
654                                  * invalidating or truncating nonlinear.
655                                  */
656                                 if (details->nonlinear_vma &&
657                                     (page->index < details->first_index ||
658                                      page->index > details->last_index))
659                                         continue;
660                         }
661                         ptent = ptep_get_and_clear_full(mm, addr, pte,
662                                                         tlb->fullmm);
663                         tlb_remove_tlb_entry(tlb, pte, addr);
664                         if (unlikely(!page))
665                                 continue;
666                         if (unlikely(details) && details->nonlinear_vma
667                             && linear_page_index(details->nonlinear_vma,
668                                                 addr) != page->index)
669                                 set_pte_at(mm, addr, pte,
670                                            pgoff_to_pte(page->index));
671                         if (PageAnon(page))
672                                 anon_rss--;
673                         else {
674                                 if (pte_dirty(ptent))
675                                         set_page_dirty(page);
676                                 if (pte_young(ptent))
677                                         SetPageReferenced(page);
678                                 file_rss--;
679                         }
680                         page_remove_rmap(page, vma);
681                         tlb_remove_page(tlb, page);
682                         continue;
683                 }
684                 /*
685                  * If details->check_mapping, we leave swap entries;
686                  * if details->nonlinear_vma, we leave file entries.
687                  */
688                 if (unlikely(details))
689                         continue;
690                 if (!pte_file(ptent))
691                         free_swap_and_cache(pte_to_swp_entry(ptent));
692                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
693         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
694
695         add_mm_rss(mm, file_rss, anon_rss);
696         arch_leave_lazy_mmu_mode();
697         pte_unmap_unlock(pte - 1, ptl);
698
699         return addr;
700 }
701
702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
703                                 struct vm_area_struct *vma, pud_t *pud,
704                                 unsigned long addr, unsigned long end,
705                                 long *zap_work, struct zap_details *details)
706 {
707         pmd_t *pmd;
708         unsigned long next;
709
710         pmd = pmd_offset(pud, addr);
711         do {
712                 next = pmd_addr_end(addr, end);
713                 if (pmd_none_or_clear_bad(pmd)) {
714                         (*zap_work)--;
715                         continue;
716                 }
717                 next = zap_pte_range(tlb, vma, pmd, addr, next,
718                                                 zap_work, details);
719         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
720
721         return addr;
722 }
723
724 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
725                                 struct vm_area_struct *vma, pgd_t *pgd,
726                                 unsigned long addr, unsigned long end,
727                                 long *zap_work, struct zap_details *details)
728 {
729         pud_t *pud;
730         unsigned long next;
731
732         pud = pud_offset(pgd, addr);
733         do {
734                 next = pud_addr_end(addr, end);
735                 if (pud_none_or_clear_bad(pud)) {
736                         (*zap_work)--;
737                         continue;
738                 }
739                 next = zap_pmd_range(tlb, vma, pud, addr, next,
740                                                 zap_work, details);
741         } while (pud++, addr = next, (addr != end && *zap_work > 0));
742
743         return addr;
744 }
745
746 static unsigned long unmap_page_range(struct mmu_gather *tlb,
747                                 struct vm_area_struct *vma,
748                                 unsigned long addr, unsigned long end,
749                                 long *zap_work, struct zap_details *details)
750 {
751         pgd_t *pgd;
752         unsigned long next;
753
754         if (details && !details->check_mapping && !details->nonlinear_vma)
755                 details = NULL;
756
757         BUG_ON(addr >= end);
758         tlb_start_vma(tlb, vma);
759         pgd = pgd_offset(vma->vm_mm, addr);
760         do {
761                 next = pgd_addr_end(addr, end);
762                 if (pgd_none_or_clear_bad(pgd)) {
763                         (*zap_work)--;
764                         continue;
765                 }
766                 next = zap_pud_range(tlb, vma, pgd, addr, next,
767                                                 zap_work, details);
768         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
769         tlb_end_vma(tlb, vma);
770
771         return addr;
772 }
773
774 #ifdef CONFIG_PREEMPT
775 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
776 #else
777 /* No preempt: go for improved straight-line efficiency */
778 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
779 #endif
780
781 /**
782  * unmap_vmas - unmap a range of memory covered by a list of vma's
783  * @tlbp: address of the caller's struct mmu_gather
784  * @vma: the starting vma
785  * @start_addr: virtual address at which to start unmapping
786  * @end_addr: virtual address at which to end unmapping
787  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
788  * @details: details of nonlinear truncation or shared cache invalidation
789  *
790  * Returns the end address of the unmapping (restart addr if interrupted).
791  *
792  * Unmap all pages in the vma list.
793  *
794  * We aim to not hold locks for too long (for scheduling latency reasons).
795  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
796  * return the ending mmu_gather to the caller.
797  *
798  * Only addresses between `start' and `end' will be unmapped.
799  *
800  * The VMA list must be sorted in ascending virtual address order.
801  *
802  * unmap_vmas() assumes that the caller will flush the whole unmapped address
803  * range after unmap_vmas() returns.  So the only responsibility here is to
804  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
805  * drops the lock and schedules.
806  */
807 unsigned long unmap_vmas(struct mmu_gather **tlbp,
808                 struct vm_area_struct *vma, unsigned long start_addr,
809                 unsigned long end_addr, unsigned long *nr_accounted,
810                 struct zap_details *details)
811 {
812         long zap_work = ZAP_BLOCK_SIZE;
813         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
814         int tlb_start_valid = 0;
815         unsigned long start = start_addr;
816         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
817         int fullmm = (*tlbp)->fullmm;
818
819         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
820                 unsigned long end;
821
822                 start = max(vma->vm_start, start_addr);
823                 if (start >= vma->vm_end)
824                         continue;
825                 end = min(vma->vm_end, end_addr);
826                 if (end <= vma->vm_start)
827                         continue;
828
829                 if (vma->vm_flags & VM_ACCOUNT)
830                         *nr_accounted += (end - start) >> PAGE_SHIFT;
831
832                 while (start != end) {
833                         if (!tlb_start_valid) {
834                                 tlb_start = start;
835                                 tlb_start_valid = 1;
836                         }
837
838                         if (unlikely(is_vm_hugetlb_page(vma))) {
839                                 unmap_hugepage_range(vma, start, end);
840                                 zap_work -= (end - start) /
841                                                 (HPAGE_SIZE / PAGE_SIZE);
842                                 start = end;
843                         } else
844                                 start = unmap_page_range(*tlbp, vma,
845                                                 start, end, &zap_work, details);
846
847                         if (zap_work > 0) {
848                                 BUG_ON(start != end);
849                                 break;
850                         }
851
852                         tlb_finish_mmu(*tlbp, tlb_start, start);
853
854                         if (need_resched() ||
855                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
856                                 if (i_mmap_lock) {
857                                         *tlbp = NULL;
858                                         goto out;
859                                 }
860                                 cond_resched();
861                         }
862
863                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
864                         tlb_start_valid = 0;
865                         zap_work = ZAP_BLOCK_SIZE;
866                 }
867         }
868 out:
869         return start;   /* which is now the end (or restart) address */
870 }
871
872 /**
873  * zap_page_range - remove user pages in a given range
874  * @vma: vm_area_struct holding the applicable pages
875  * @address: starting address of pages to zap
876  * @size: number of bytes to zap
877  * @details: details of nonlinear truncation or shared cache invalidation
878  */
879 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
880                 unsigned long size, struct zap_details *details)
881 {
882         struct mm_struct *mm = vma->vm_mm;
883         struct mmu_gather *tlb;
884         unsigned long end = address + size;
885         unsigned long nr_accounted = 0;
886
887         lru_add_drain();
888         tlb = tlb_gather_mmu(mm, 0);
889         update_hiwater_rss(mm);
890         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
891         if (tlb)
892                 tlb_finish_mmu(tlb, address, end);
893         return end;
894 }
895
896 /*
897  * Do a quick page-table lookup for a single page.
898  */
899 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
900                         unsigned int flags)
901 {
902         pgd_t *pgd;
903         pud_t *pud;
904         pmd_t *pmd;
905         pte_t *ptep, pte;
906         spinlock_t *ptl;
907         struct page *page;
908         struct mm_struct *mm = vma->vm_mm;
909
910         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
911         if (!IS_ERR(page)) {
912                 BUG_ON(flags & FOLL_GET);
913                 goto out;
914         }
915
916         page = NULL;
917         pgd = pgd_offset(mm, address);
918         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
919                 goto no_page_table;
920
921         pud = pud_offset(pgd, address);
922         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
923                 goto no_page_table;
924         
925         pmd = pmd_offset(pud, address);
926         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
927                 goto no_page_table;
928
929         if (pmd_huge(*pmd)) {
930                 BUG_ON(flags & FOLL_GET);
931                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
932                 goto out;
933         }
934
935         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
936         if (!ptep)
937                 goto out;
938
939         pte = *ptep;
940         if (!pte_present(pte))
941                 goto unlock;
942         if ((flags & FOLL_WRITE) && !pte_write(pte))
943                 goto unlock;
944         page = vm_normal_page(vma, address, pte);
945         if (unlikely(!page))
946                 goto unlock;
947
948         if (flags & FOLL_GET)
949                 get_page(page);
950         if (flags & FOLL_TOUCH) {
951                 if ((flags & FOLL_WRITE) &&
952                     !pte_dirty(pte) && !PageDirty(page))
953                         set_page_dirty(page);
954                 mark_page_accessed(page);
955         }
956 unlock:
957         pte_unmap_unlock(ptep, ptl);
958 out:
959         return page;
960
961 no_page_table:
962         /*
963          * When core dumping an enormous anonymous area that nobody
964          * has touched so far, we don't want to allocate page tables.
965          */
966         if (flags & FOLL_ANON) {
967                 page = ZERO_PAGE(0);
968                 if (flags & FOLL_GET)
969                         get_page(page);
970                 BUG_ON(flags & FOLL_WRITE);
971         }
972         return page;
973 }
974
975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976                 unsigned long start, int len, int write, int force,
977                 struct page **pages, struct vm_area_struct **vmas)
978 {
979         int i;
980         unsigned int vm_flags;
981
982         /* 
983          * Require read or write permissions.
984          * If 'force' is set, we only require the "MAY" flags.
985          */
986         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
987         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
988         i = 0;
989
990         do {
991                 struct vm_area_struct *vma;
992                 unsigned int foll_flags;
993
994                 vma = find_extend_vma(mm, start);
995                 if (!vma && in_gate_area(tsk, start)) {
996                         unsigned long pg = start & PAGE_MASK;
997                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
998                         pgd_t *pgd;
999                         pud_t *pud;
1000                         pmd_t *pmd;
1001                         pte_t *pte;
1002                         if (write) /* user gate pages are read-only */
1003                                 return i ? : -EFAULT;
1004                         if (pg > TASK_SIZE)
1005                                 pgd = pgd_offset_k(pg);
1006                         else
1007                                 pgd = pgd_offset_gate(mm, pg);
1008                         BUG_ON(pgd_none(*pgd));
1009                         pud = pud_offset(pgd, pg);
1010                         BUG_ON(pud_none(*pud));
1011                         pmd = pmd_offset(pud, pg);
1012                         if (pmd_none(*pmd))
1013                                 return i ? : -EFAULT;
1014                         pte = pte_offset_map(pmd, pg);
1015                         if (pte_none(*pte)) {
1016                                 pte_unmap(pte);
1017                                 return i ? : -EFAULT;
1018                         }
1019                         if (pages) {
1020                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1021                                 pages[i] = page;
1022                                 if (page)
1023                                         get_page(page);
1024                         }
1025                         pte_unmap(pte);
1026                         if (vmas)
1027                                 vmas[i] = gate_vma;
1028                         i++;
1029                         start += PAGE_SIZE;
1030                         len--;
1031                         continue;
1032                 }
1033
1034                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1035                                 || !(vm_flags & vma->vm_flags))
1036                         return i ? : -EFAULT;
1037
1038                 if (is_vm_hugetlb_page(vma)) {
1039                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1040                                                 &start, &len, i, write);
1041                         continue;
1042                 }
1043
1044                 foll_flags = FOLL_TOUCH;
1045                 if (pages)
1046                         foll_flags |= FOLL_GET;
1047                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1048                     (!vma->vm_ops || (!vma->vm_ops->nopage &&
1049                                         !vma->vm_ops->fault)))
1050                         foll_flags |= FOLL_ANON;
1051
1052                 do {
1053                         struct page *page;
1054
1055                         /*
1056                          * If tsk is ooming, cut off its access to large memory
1057                          * allocations. It has a pending SIGKILL, but it can't
1058                          * be processed until returning to user space.
1059                          */
1060                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1061                                 return -ENOMEM;
1062
1063                         if (write)
1064                                 foll_flags |= FOLL_WRITE;
1065
1066                         cond_resched();
1067                         while (!(page = follow_page(vma, start, foll_flags))) {
1068                                 int ret;
1069                                 ret = handle_mm_fault(mm, vma, start,
1070                                                 foll_flags & FOLL_WRITE);
1071                                 if (ret & VM_FAULT_ERROR) {
1072                                         if (ret & VM_FAULT_OOM)
1073                                                 return i ? i : -ENOMEM;
1074                                         else if (ret & VM_FAULT_SIGBUS)
1075                                                 return i ? i : -EFAULT;
1076                                         BUG();
1077                                 }
1078                                 if (ret & VM_FAULT_MAJOR)
1079                                         tsk->maj_flt++;
1080                                 else
1081                                         tsk->min_flt++;
1082
1083                                 /*
1084                                  * The VM_FAULT_WRITE bit tells us that
1085                                  * do_wp_page has broken COW when necessary,
1086                                  * even if maybe_mkwrite decided not to set
1087                                  * pte_write. We can thus safely do subsequent
1088                                  * page lookups as if they were reads.
1089                                  */
1090                                 if (ret & VM_FAULT_WRITE)
1091                                         foll_flags &= ~FOLL_WRITE;
1092
1093                                 cond_resched();
1094                         }
1095                         if (pages) {
1096                                 pages[i] = page;
1097
1098                                 flush_anon_page(vma, page, start);
1099                                 flush_dcache_page(page);
1100                         }
1101                         if (vmas)
1102                                 vmas[i] = vma;
1103                         i++;
1104                         start += PAGE_SIZE;
1105                         len--;
1106                 } while (len && start < vma->vm_end);
1107         } while (len);
1108         return i;
1109 }
1110 EXPORT_SYMBOL(get_user_pages);
1111
1112 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1113                         spinlock_t **ptl)
1114 {
1115         pgd_t * pgd = pgd_offset(mm, addr);
1116         pud_t * pud = pud_alloc(mm, pgd, addr);
1117         if (pud) {
1118                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1119                 if (pmd)
1120                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1121         }
1122         return NULL;
1123 }
1124
1125 /*
1126  * This is the old fallback for page remapping.
1127  *
1128  * For historical reasons, it only allows reserved pages. Only
1129  * old drivers should use this, and they needed to mark their
1130  * pages reserved for the old functions anyway.
1131  */
1132 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1133 {
1134         int retval;
1135         pte_t *pte;
1136         spinlock_t *ptl;  
1137
1138         retval = -EINVAL;
1139         if (PageAnon(page))
1140                 goto out;
1141         retval = -ENOMEM;
1142         flush_dcache_page(page);
1143         pte = get_locked_pte(mm, addr, &ptl);
1144         if (!pte)
1145                 goto out;
1146         retval = -EBUSY;
1147         if (!pte_none(*pte))
1148                 goto out_unlock;
1149
1150         /* Ok, finally just insert the thing.. */
1151         get_page(page);
1152         inc_mm_counter(mm, file_rss);
1153         page_add_file_rmap(page);
1154         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1155
1156         retval = 0;
1157 out_unlock:
1158         pte_unmap_unlock(pte, ptl);
1159 out:
1160         return retval;
1161 }
1162
1163 /**
1164  * vm_insert_page - insert single page into user vma
1165  * @vma: user vma to map to
1166  * @addr: target user address of this page
1167  * @page: source kernel page
1168  *
1169  * This allows drivers to insert individual pages they've allocated
1170  * into a user vma.
1171  *
1172  * The page has to be a nice clean _individual_ kernel allocation.
1173  * If you allocate a compound page, you need to have marked it as
1174  * such (__GFP_COMP), or manually just split the page up yourself
1175  * (see split_page()).
1176  *
1177  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1178  * took an arbitrary page protection parameter. This doesn't allow
1179  * that. Your vma protection will have to be set up correctly, which
1180  * means that if you want a shared writable mapping, you'd better
1181  * ask for a shared writable mapping!
1182  *
1183  * The page does not need to be reserved.
1184  */
1185 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1186 {
1187         if (addr < vma->vm_start || addr >= vma->vm_end)
1188                 return -EFAULT;
1189         if (!page_count(page))
1190                 return -EINVAL;
1191         vma->vm_flags |= VM_INSERTPAGE;
1192         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1193 }
1194 EXPORT_SYMBOL(vm_insert_page);
1195
1196 /**
1197  * vm_insert_pfn - insert single pfn into user vma
1198  * @vma: user vma to map to
1199  * @addr: target user address of this page
1200  * @pfn: source kernel pfn
1201  *
1202  * Similar to vm_inert_page, this allows drivers to insert individual pages
1203  * they've allocated into a user vma. Same comments apply.
1204  *
1205  * This function should only be called from a vm_ops->fault handler, and
1206  * in that case the handler should return NULL.
1207  */
1208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1209                 unsigned long pfn)
1210 {
1211         struct mm_struct *mm = vma->vm_mm;
1212         int retval;
1213         pte_t *pte, entry;
1214         spinlock_t *ptl;
1215
1216         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1217         BUG_ON(is_cow_mapping(vma->vm_flags));
1218
1219         retval = -ENOMEM;
1220         pte = get_locked_pte(mm, addr, &ptl);
1221         if (!pte)
1222                 goto out;
1223         retval = -EBUSY;
1224         if (!pte_none(*pte))
1225                 goto out_unlock;
1226
1227         /* Ok, finally just insert the thing.. */
1228         entry = pfn_pte(pfn, vma->vm_page_prot);
1229         set_pte_at(mm, addr, pte, entry);
1230         update_mmu_cache(vma, addr, entry);
1231
1232         retval = 0;
1233 out_unlock:
1234         pte_unmap_unlock(pte, ptl);
1235
1236 out:
1237         return retval;
1238 }
1239 EXPORT_SYMBOL(vm_insert_pfn);
1240
1241 /*
1242  * maps a range of physical memory into the requested pages. the old
1243  * mappings are removed. any references to nonexistent pages results
1244  * in null mappings (currently treated as "copy-on-access")
1245  */
1246 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1247                         unsigned long addr, unsigned long end,
1248                         unsigned long pfn, pgprot_t prot)
1249 {
1250         pte_t *pte;
1251         spinlock_t *ptl;
1252
1253         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1254         if (!pte)
1255                 return -ENOMEM;
1256         arch_enter_lazy_mmu_mode();
1257         do {
1258                 BUG_ON(!pte_none(*pte));
1259                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1260                 pfn++;
1261         } while (pte++, addr += PAGE_SIZE, addr != end);
1262         arch_leave_lazy_mmu_mode();
1263         pte_unmap_unlock(pte - 1, ptl);
1264         return 0;
1265 }
1266
1267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1268                         unsigned long addr, unsigned long end,
1269                         unsigned long pfn, pgprot_t prot)
1270 {
1271         pmd_t *pmd;
1272         unsigned long next;
1273
1274         pfn -= addr >> PAGE_SHIFT;
1275         pmd = pmd_alloc(mm, pud, addr);
1276         if (!pmd)
1277                 return -ENOMEM;
1278         do {
1279                 next = pmd_addr_end(addr, end);
1280                 if (remap_pte_range(mm, pmd, addr, next,
1281                                 pfn + (addr >> PAGE_SHIFT), prot))
1282                         return -ENOMEM;
1283         } while (pmd++, addr = next, addr != end);
1284         return 0;
1285 }
1286
1287 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1288                         unsigned long addr, unsigned long end,
1289                         unsigned long pfn, pgprot_t prot)
1290 {
1291         pud_t *pud;
1292         unsigned long next;
1293
1294         pfn -= addr >> PAGE_SHIFT;
1295         pud = pud_alloc(mm, pgd, addr);
1296         if (!pud)
1297                 return -ENOMEM;
1298         do {
1299                 next = pud_addr_end(addr, end);
1300                 if (remap_pmd_range(mm, pud, addr, next,
1301                                 pfn + (addr >> PAGE_SHIFT), prot))
1302                         return -ENOMEM;
1303         } while (pud++, addr = next, addr != end);
1304         return 0;
1305 }
1306
1307 /**
1308  * remap_pfn_range - remap kernel memory to userspace
1309  * @vma: user vma to map to
1310  * @addr: target user address to start at
1311  * @pfn: physical address of kernel memory
1312  * @size: size of map area
1313  * @prot: page protection flags for this mapping
1314  *
1315  *  Note: this is only safe if the mm semaphore is held when called.
1316  */
1317 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1318                     unsigned long pfn, unsigned long size, pgprot_t prot)
1319 {
1320         pgd_t *pgd;
1321         unsigned long next;
1322         unsigned long end = addr + PAGE_ALIGN(size);
1323         struct mm_struct *mm = vma->vm_mm;
1324         int err;
1325
1326         /*
1327          * Physically remapped pages are special. Tell the
1328          * rest of the world about it:
1329          *   VM_IO tells people not to look at these pages
1330          *      (accesses can have side effects).
1331          *   VM_RESERVED is specified all over the place, because
1332          *      in 2.4 it kept swapout's vma scan off this vma; but
1333          *      in 2.6 the LRU scan won't even find its pages, so this
1334          *      flag means no more than count its pages in reserved_vm,
1335          *      and omit it from core dump, even when VM_IO turned off.
1336          *   VM_PFNMAP tells the core MM that the base pages are just
1337          *      raw PFN mappings, and do not have a "struct page" associated
1338          *      with them.
1339          *
1340          * There's a horrible special case to handle copy-on-write
1341          * behaviour that some programs depend on. We mark the "original"
1342          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1343          */
1344         if (is_cow_mapping(vma->vm_flags)) {
1345                 if (addr != vma->vm_start || end != vma->vm_end)
1346                         return -EINVAL;
1347                 vma->vm_pgoff = pfn;
1348         }
1349
1350         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1351
1352         BUG_ON(addr >= end);
1353         pfn -= addr >> PAGE_SHIFT;
1354         pgd = pgd_offset(mm, addr);
1355         flush_cache_range(vma, addr, end);
1356         do {
1357                 next = pgd_addr_end(addr, end);
1358                 err = remap_pud_range(mm, pgd, addr, next,
1359                                 pfn + (addr >> PAGE_SHIFT), prot);
1360                 if (err)
1361                         break;
1362         } while (pgd++, addr = next, addr != end);
1363         return err;
1364 }
1365 EXPORT_SYMBOL(remap_pfn_range);
1366
1367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1368                                      unsigned long addr, unsigned long end,
1369                                      pte_fn_t fn, void *data)
1370 {
1371         pte_t *pte;
1372         int err;
1373         struct page *pmd_page;
1374         spinlock_t *uninitialized_var(ptl);
1375
1376         pte = (mm == &init_mm) ?
1377                 pte_alloc_kernel(pmd, addr) :
1378                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1379         if (!pte)
1380                 return -ENOMEM;
1381
1382         BUG_ON(pmd_huge(*pmd));
1383
1384         pmd_page = pmd_page(*pmd);
1385
1386         do {
1387                 err = fn(pte, pmd_page, addr, data);
1388                 if (err)
1389                         break;
1390         } while (pte++, addr += PAGE_SIZE, addr != end);
1391
1392         if (mm != &init_mm)
1393                 pte_unmap_unlock(pte-1, ptl);
1394         return err;
1395 }
1396
1397 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1398                                      unsigned long addr, unsigned long end,
1399                                      pte_fn_t fn, void *data)
1400 {
1401         pmd_t *pmd;
1402         unsigned long next;
1403         int err;
1404
1405         pmd = pmd_alloc(mm, pud, addr);
1406         if (!pmd)
1407                 return -ENOMEM;
1408         do {
1409                 next = pmd_addr_end(addr, end);
1410                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1411                 if (err)
1412                         break;
1413         } while (pmd++, addr = next, addr != end);
1414         return err;
1415 }
1416
1417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1418                                      unsigned long addr, unsigned long end,
1419                                      pte_fn_t fn, void *data)
1420 {
1421         pud_t *pud;
1422         unsigned long next;
1423         int err;
1424
1425         pud = pud_alloc(mm, pgd, addr);
1426         if (!pud)
1427                 return -ENOMEM;
1428         do {
1429                 next = pud_addr_end(addr, end);
1430                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1431                 if (err)
1432                         break;
1433         } while (pud++, addr = next, addr != end);
1434         return err;
1435 }
1436
1437 /*
1438  * Scan a region of virtual memory, filling in page tables as necessary
1439  * and calling a provided function on each leaf page table.
1440  */
1441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1442                         unsigned long size, pte_fn_t fn, void *data)
1443 {
1444         pgd_t *pgd;
1445         unsigned long next;
1446         unsigned long end = addr + size;
1447         int err;
1448
1449         BUG_ON(addr >= end);
1450         pgd = pgd_offset(mm, addr);
1451         do {
1452                 next = pgd_addr_end(addr, end);
1453                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1454                 if (err)
1455                         break;
1456         } while (pgd++, addr = next, addr != end);
1457         return err;
1458 }
1459 EXPORT_SYMBOL_GPL(apply_to_page_range);
1460
1461 /*
1462  * handle_pte_fault chooses page fault handler according to an entry
1463  * which was read non-atomically.  Before making any commitment, on
1464  * those architectures or configurations (e.g. i386 with PAE) which
1465  * might give a mix of unmatched parts, do_swap_page and do_file_page
1466  * must check under lock before unmapping the pte and proceeding
1467  * (but do_wp_page is only called after already making such a check;
1468  * and do_anonymous_page and do_no_page can safely check later on).
1469  */
1470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1471                                 pte_t *page_table, pte_t orig_pte)
1472 {
1473         int same = 1;
1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1475         if (sizeof(pte_t) > sizeof(unsigned long)) {
1476                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1477                 spin_lock(ptl);
1478                 same = pte_same(*page_table, orig_pte);
1479                 spin_unlock(ptl);
1480         }
1481 #endif
1482         pte_unmap(page_table);
1483         return same;
1484 }
1485
1486 /*
1487  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1488  * servicing faults for write access.  In the normal case, do always want
1489  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1490  * that do not have writing enabled, when used by access_process_vm.
1491  */
1492 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1493 {
1494         if (likely(vma->vm_flags & VM_WRITE))
1495                 pte = pte_mkwrite(pte);
1496         return pte;
1497 }
1498
1499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1500 {
1501         /*
1502          * If the source page was a PFN mapping, we don't have
1503          * a "struct page" for it. We do a best-effort copy by
1504          * just copying from the original user address. If that
1505          * fails, we just zero-fill it. Live with it.
1506          */
1507         if (unlikely(!src)) {
1508                 void *kaddr = kmap_atomic(dst, KM_USER0);
1509                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1510
1511                 /*
1512                  * This really shouldn't fail, because the page is there
1513                  * in the page tables. But it might just be unreadable,
1514                  * in which case we just give up and fill the result with
1515                  * zeroes.
1516                  */
1517                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1518                         memset(kaddr, 0, PAGE_SIZE);
1519                 kunmap_atomic(kaddr, KM_USER0);
1520                 flush_dcache_page(dst);
1521         } else
1522                 copy_user_highpage(dst, src, va, vma);
1523 }
1524
1525 /*
1526  * This routine handles present pages, when users try to write
1527  * to a shared page. It is done by copying the page to a new address
1528  * and decrementing the shared-page counter for the old page.
1529  *
1530  * Note that this routine assumes that the protection checks have been
1531  * done by the caller (the low-level page fault routine in most cases).
1532  * Thus we can safely just mark it writable once we've done any necessary
1533  * COW.
1534  *
1535  * We also mark the page dirty at this point even though the page will
1536  * change only once the write actually happens. This avoids a few races,
1537  * and potentially makes it more efficient.
1538  *
1539  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1540  * but allow concurrent faults), with pte both mapped and locked.
1541  * We return with mmap_sem still held, but pte unmapped and unlocked.
1542  */
1543 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1544                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1545                 spinlock_t *ptl, pte_t orig_pte)
1546 {
1547         struct page *old_page, *new_page;
1548         pte_t entry;
1549         int reuse = 0, ret = 0;
1550         int page_mkwrite = 0;
1551         struct page *dirty_page = NULL;
1552
1553         old_page = vm_normal_page(vma, address, orig_pte);
1554         if (!old_page)
1555                 goto gotten;
1556
1557         /*
1558          * Take out anonymous pages first, anonymous shared vmas are
1559          * not dirty accountable.
1560          */
1561         if (PageAnon(old_page)) {
1562                 if (!TestSetPageLocked(old_page)) {
1563                         reuse = can_share_swap_page(old_page);
1564                         unlock_page(old_page);
1565                 }
1566         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1567                                         (VM_WRITE|VM_SHARED))) {
1568                 /*
1569                  * Only catch write-faults on shared writable pages,
1570                  * read-only shared pages can get COWed by
1571                  * get_user_pages(.write=1, .force=1).
1572                  */
1573                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1574                         /*
1575                          * Notify the address space that the page is about to
1576                          * become writable so that it can prohibit this or wait
1577                          * for the page to get into an appropriate state.
1578                          *
1579                          * We do this without the lock held, so that it can
1580                          * sleep if it needs to.
1581                          */
1582                         page_cache_get(old_page);
1583                         pte_unmap_unlock(page_table, ptl);
1584
1585                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1586                                 goto unwritable_page;
1587
1588                         /*
1589                          * Since we dropped the lock we need to revalidate
1590                          * the PTE as someone else may have changed it.  If
1591                          * they did, we just return, as we can count on the
1592                          * MMU to tell us if they didn't also make it writable.
1593                          */
1594                         page_table = pte_offset_map_lock(mm, pmd, address,
1595                                                          &ptl);
1596                         page_cache_release(old_page);
1597                         if (!pte_same(*page_table, orig_pte))
1598                                 goto unlock;
1599
1600                         page_mkwrite = 1;
1601                 }
1602                 dirty_page = old_page;
1603                 get_page(dirty_page);
1604                 reuse = 1;
1605         }
1606
1607         if (reuse) {
1608                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1609                 entry = pte_mkyoung(orig_pte);
1610                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1611                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1612                         update_mmu_cache(vma, address, entry);
1613                 ret |= VM_FAULT_WRITE;
1614                 goto unlock;
1615         }
1616
1617         /*
1618          * Ok, we need to copy. Oh, well..
1619          */
1620         page_cache_get(old_page);
1621 gotten:
1622         pte_unmap_unlock(page_table, ptl);
1623
1624         if (unlikely(anon_vma_prepare(vma)))
1625                 goto oom;
1626         VM_BUG_ON(old_page == ZERO_PAGE(0));
1627         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1628         if (!new_page)
1629                 goto oom;
1630         cow_user_page(new_page, old_page, address, vma);
1631         __SetPageUptodate(new_page);
1632
1633         /*
1634          * Re-check the pte - we dropped the lock
1635          */
1636         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1637         if (likely(pte_same(*page_table, orig_pte))) {
1638                 if (old_page) {
1639                         page_remove_rmap(old_page, vma);
1640                         if (!PageAnon(old_page)) {
1641                                 dec_mm_counter(mm, file_rss);
1642                                 inc_mm_counter(mm, anon_rss);
1643                         }
1644                 } else
1645                         inc_mm_counter(mm, anon_rss);
1646                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1647                 entry = mk_pte(new_page, vma->vm_page_prot);
1648                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1649                 /*
1650                  * Clear the pte entry and flush it first, before updating the
1651                  * pte with the new entry. This will avoid a race condition
1652                  * seen in the presence of one thread doing SMC and another
1653                  * thread doing COW.
1654                  */
1655                 ptep_clear_flush(vma, address, page_table);
1656                 set_pte_at(mm, address, page_table, entry);
1657                 update_mmu_cache(vma, address, entry);
1658                 lru_cache_add_active(new_page);
1659                 page_add_new_anon_rmap(new_page, vma, address);
1660
1661                 /* Free the old page.. */
1662                 new_page = old_page;
1663                 ret |= VM_FAULT_WRITE;
1664         }
1665         if (new_page)
1666                 page_cache_release(new_page);
1667         if (old_page)
1668                 page_cache_release(old_page);
1669 unlock:
1670         pte_unmap_unlock(page_table, ptl);
1671         if (dirty_page) {
1672                 if (vma->vm_file)
1673                         file_update_time(vma->vm_file);
1674
1675                 /*
1676                  * Yes, Virginia, this is actually required to prevent a race
1677                  * with clear_page_dirty_for_io() from clearing the page dirty
1678                  * bit after it clear all dirty ptes, but before a racing
1679                  * do_wp_page installs a dirty pte.
1680                  *
1681                  * do_no_page is protected similarly.
1682                  */
1683                 wait_on_page_locked(dirty_page);
1684                 set_page_dirty_balance(dirty_page, page_mkwrite);
1685                 put_page(dirty_page);
1686         }
1687         return ret;
1688 oom:
1689         if (old_page)
1690                 page_cache_release(old_page);
1691         return VM_FAULT_OOM;
1692
1693 unwritable_page:
1694         page_cache_release(old_page);
1695         return VM_FAULT_SIGBUS;
1696 }
1697
1698 /*
1699  * Helper functions for unmap_mapping_range().
1700  *
1701  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1702  *
1703  * We have to restart searching the prio_tree whenever we drop the lock,
1704  * since the iterator is only valid while the lock is held, and anyway
1705  * a later vma might be split and reinserted earlier while lock dropped.
1706  *
1707  * The list of nonlinear vmas could be handled more efficiently, using
1708  * a placeholder, but handle it in the same way until a need is shown.
1709  * It is important to search the prio_tree before nonlinear list: a vma
1710  * may become nonlinear and be shifted from prio_tree to nonlinear list
1711  * while the lock is dropped; but never shifted from list to prio_tree.
1712  *
1713  * In order to make forward progress despite restarting the search,
1714  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1715  * quickly skip it next time around.  Since the prio_tree search only
1716  * shows us those vmas affected by unmapping the range in question, we
1717  * can't efficiently keep all vmas in step with mapping->truncate_count:
1718  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1719  * mapping->truncate_count and vma->vm_truncate_count are protected by
1720  * i_mmap_lock.
1721  *
1722  * In order to make forward progress despite repeatedly restarting some
1723  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1724  * and restart from that address when we reach that vma again.  It might
1725  * have been split or merged, shrunk or extended, but never shifted: so
1726  * restart_addr remains valid so long as it remains in the vma's range.
1727  * unmap_mapping_range forces truncate_count to leap over page-aligned
1728  * values so we can save vma's restart_addr in its truncate_count field.
1729  */
1730 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1731
1732 static void reset_vma_truncate_counts(struct address_space *mapping)
1733 {
1734         struct vm_area_struct *vma;
1735         struct prio_tree_iter iter;
1736
1737         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1738                 vma->vm_truncate_count = 0;
1739         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1740                 vma->vm_truncate_count = 0;
1741 }
1742
1743 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1744                 unsigned long start_addr, unsigned long end_addr,
1745                 struct zap_details *details)
1746 {
1747         unsigned long restart_addr;
1748         int need_break;
1749
1750         /*
1751          * files that support invalidating or truncating portions of the
1752          * file from under mmaped areas must have their ->fault function
1753          * return a locked page (and set VM_FAULT_LOCKED in the return).
1754          * This provides synchronisation against concurrent unmapping here.
1755          */
1756
1757 again:
1758         restart_addr = vma->vm_truncate_count;
1759         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1760                 start_addr = restart_addr;
1761                 if (start_addr >= end_addr) {
1762                         /* Top of vma has been split off since last time */
1763                         vma->vm_truncate_count = details->truncate_count;
1764                         return 0;
1765                 }
1766         }
1767
1768         restart_addr = zap_page_range(vma, start_addr,
1769                                         end_addr - start_addr, details);
1770         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1771
1772         if (restart_addr >= end_addr) {
1773                 /* We have now completed this vma: mark it so */
1774                 vma->vm_truncate_count = details->truncate_count;
1775                 if (!need_break)
1776                         return 0;
1777         } else {
1778                 /* Note restart_addr in vma's truncate_count field */
1779                 vma->vm_truncate_count = restart_addr;
1780                 if (!need_break)
1781                         goto again;
1782         }
1783
1784         spin_unlock(details->i_mmap_lock);
1785         cond_resched();
1786         spin_lock(details->i_mmap_lock);
1787         return -EINTR;
1788 }
1789
1790 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1791                                             struct zap_details *details)
1792 {
1793         struct vm_area_struct *vma;
1794         struct prio_tree_iter iter;
1795         pgoff_t vba, vea, zba, zea;
1796
1797 restart:
1798         vma_prio_tree_foreach(vma, &iter, root,
1799                         details->first_index, details->last_index) {
1800                 /* Skip quickly over those we have already dealt with */
1801                 if (vma->vm_truncate_count == details->truncate_count)
1802                         continue;
1803
1804                 vba = vma->vm_pgoff;
1805                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1806                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1807                 zba = details->first_index;
1808                 if (zba < vba)
1809                         zba = vba;
1810                 zea = details->last_index;
1811                 if (zea > vea)
1812                         zea = vea;
1813
1814                 if (unmap_mapping_range_vma(vma,
1815                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1816                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1817                                 details) < 0)
1818                         goto restart;
1819         }
1820 }
1821
1822 static inline void unmap_mapping_range_list(struct list_head *head,
1823                                             struct zap_details *details)
1824 {
1825         struct vm_area_struct *vma;
1826
1827         /*
1828          * In nonlinear VMAs there is no correspondence between virtual address
1829          * offset and file offset.  So we must perform an exhaustive search
1830          * across *all* the pages in each nonlinear VMA, not just the pages
1831          * whose virtual address lies outside the file truncation point.
1832          */
1833 restart:
1834         list_for_each_entry(vma, head, shared.vm_set.list) {
1835                 /* Skip quickly over those we have already dealt with */
1836                 if (vma->vm_truncate_count == details->truncate_count)
1837                         continue;
1838                 details->nonlinear_vma = vma;
1839                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1840                                         vma->vm_end, details) < 0)
1841                         goto restart;
1842         }
1843 }
1844
1845 /**
1846  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1847  * @mapping: the address space containing mmaps to be unmapped.
1848  * @holebegin: byte in first page to unmap, relative to the start of
1849  * the underlying file.  This will be rounded down to a PAGE_SIZE
1850  * boundary.  Note that this is different from vmtruncate(), which
1851  * must keep the partial page.  In contrast, we must get rid of
1852  * partial pages.
1853  * @holelen: size of prospective hole in bytes.  This will be rounded
1854  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1855  * end of the file.
1856  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1857  * but 0 when invalidating pagecache, don't throw away private data.
1858  */
1859 void unmap_mapping_range(struct address_space *mapping,
1860                 loff_t const holebegin, loff_t const holelen, int even_cows)
1861 {
1862         struct zap_details details;
1863         pgoff_t hba = holebegin >> PAGE_SHIFT;
1864         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1865
1866         /* Check for overflow. */
1867         if (sizeof(holelen) > sizeof(hlen)) {
1868                 long long holeend =
1869                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1870                 if (holeend & ~(long long)ULONG_MAX)
1871                         hlen = ULONG_MAX - hba + 1;
1872         }
1873
1874         details.check_mapping = even_cows? NULL: mapping;
1875         details.nonlinear_vma = NULL;
1876         details.first_index = hba;
1877         details.last_index = hba + hlen - 1;
1878         if (details.last_index < details.first_index)
1879                 details.last_index = ULONG_MAX;
1880         details.i_mmap_lock = &mapping->i_mmap_lock;
1881
1882         spin_lock(&mapping->i_mmap_lock);
1883
1884         /* Protect against endless unmapping loops */
1885         mapping->truncate_count++;
1886         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1887                 if (mapping->truncate_count == 0)
1888                         reset_vma_truncate_counts(mapping);
1889                 mapping->truncate_count++;
1890         }
1891         details.truncate_count = mapping->truncate_count;
1892
1893         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1894                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1895         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1896                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1897         spin_unlock(&mapping->i_mmap_lock);
1898 }
1899 EXPORT_SYMBOL(unmap_mapping_range);
1900
1901 /**
1902  * vmtruncate - unmap mappings "freed" by truncate() syscall
1903  * @inode: inode of the file used
1904  * @offset: file offset to start truncating
1905  *
1906  * NOTE! We have to be ready to update the memory sharing
1907  * between the file and the memory map for a potential last
1908  * incomplete page.  Ugly, but necessary.
1909  */
1910 int vmtruncate(struct inode * inode, loff_t offset)
1911 {
1912         if (inode->i_size < offset) {
1913                 unsigned long limit;
1914
1915                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1916                 if (limit != RLIM_INFINITY && offset > limit)
1917                         goto out_sig;
1918                 if (offset > inode->i_sb->s_maxbytes)
1919                         goto out_big;
1920                 i_size_write(inode, offset);
1921         } else {
1922                 struct address_space *mapping = inode->i_mapping;
1923
1924                 /*
1925                  * truncation of in-use swapfiles is disallowed - it would
1926                  * cause subsequent swapout to scribble on the now-freed
1927                  * blocks.
1928                  */
1929                 if (IS_SWAPFILE(inode))
1930                         return -ETXTBSY;
1931                 i_size_write(inode, offset);
1932
1933                 /*
1934                  * unmap_mapping_range is called twice, first simply for
1935                  * efficiency so that truncate_inode_pages does fewer
1936                  * single-page unmaps.  However after this first call, and
1937                  * before truncate_inode_pages finishes, it is possible for
1938                  * private pages to be COWed, which remain after
1939                  * truncate_inode_pages finishes, hence the second
1940                  * unmap_mapping_range call must be made for correctness.
1941                  */
1942                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1943                 truncate_inode_pages(mapping, offset);
1944                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1945         }
1946
1947         if (inode->i_op && inode->i_op->truncate)
1948                 inode->i_op->truncate(inode);
1949         return 0;
1950
1951 out_sig:
1952         send_sig(SIGXFSZ, current, 0);
1953 out_big:
1954         return -EFBIG;
1955 }
1956 EXPORT_SYMBOL(vmtruncate);
1957
1958 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1959 {
1960         struct address_space *mapping = inode->i_mapping;
1961
1962         /*
1963          * If the underlying filesystem is not going to provide
1964          * a way to truncate a range of blocks (punch a hole) -
1965          * we should return failure right now.
1966          */
1967         if (!inode->i_op || !inode->i_op->truncate_range)
1968                 return -ENOSYS;
1969
1970         mutex_lock(&inode->i_mutex);
1971         down_write(&inode->i_alloc_sem);
1972         unmap_mapping_range(mapping, offset, (end - offset), 1);
1973         truncate_inode_pages_range(mapping, offset, end);
1974         unmap_mapping_range(mapping, offset, (end - offset), 1);
1975         inode->i_op->truncate_range(inode, offset, end);
1976         up_write(&inode->i_alloc_sem);
1977         mutex_unlock(&inode->i_mutex);
1978
1979         return 0;
1980 }
1981
1982 /*
1983  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1984  * but allow concurrent faults), and pte mapped but not yet locked.
1985  * We return with mmap_sem still held, but pte unmapped and unlocked.
1986  */
1987 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1988                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1989                 int write_access, pte_t orig_pte)
1990 {
1991         spinlock_t *ptl;
1992         struct page *page;
1993         swp_entry_t entry;
1994         pte_t pte;
1995         int ret = 0;
1996
1997         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1998                 goto out;
1999
2000         entry = pte_to_swp_entry(orig_pte);
2001         if (is_migration_entry(entry)) {
2002                 migration_entry_wait(mm, pmd, address);
2003                 goto out;
2004         }
2005         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2006         page = lookup_swap_cache(entry);
2007         if (!page) {
2008                 grab_swap_token(); /* Contend for token _before_ read-in */
2009                 page = swapin_readahead(entry,
2010                                         GFP_HIGHUSER_MOVABLE, vma, address);
2011                 if (!page) {
2012                         /*
2013                          * Back out if somebody else faulted in this pte
2014                          * while we released the pte lock.
2015                          */
2016                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2017                         if (likely(pte_same(*page_table, orig_pte)))
2018                                 ret = VM_FAULT_OOM;
2019                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2020                         goto unlock;
2021                 }
2022
2023                 /* Had to read the page from swap area: Major fault */
2024                 ret = VM_FAULT_MAJOR;
2025                 count_vm_event(PGMAJFAULT);
2026         }
2027
2028         mark_page_accessed(page);
2029         lock_page(page);
2030         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2031
2032         /*
2033          * Back out if somebody else already faulted in this pte.
2034          */
2035         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2036         if (unlikely(!pte_same(*page_table, orig_pte)))
2037                 goto out_nomap;
2038
2039         if (unlikely(!PageUptodate(page))) {
2040                 ret = VM_FAULT_SIGBUS;
2041                 goto out_nomap;
2042         }
2043
2044         /* The page isn't present yet, go ahead with the fault. */
2045
2046         inc_mm_counter(mm, anon_rss);
2047         pte = mk_pte(page, vma->vm_page_prot);
2048         if (write_access && can_share_swap_page(page)) {
2049                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2050                 write_access = 0;
2051         }
2052
2053         flush_icache_page(vma, page);
2054         set_pte_at(mm, address, page_table, pte);
2055         page_add_anon_rmap(page, vma, address);
2056
2057         swap_free(entry);
2058         if (vm_swap_full())
2059                 remove_exclusive_swap_page(page);
2060         unlock_page(page);
2061
2062         if (write_access) {
2063                 /* XXX: We could OR the do_wp_page code with this one? */
2064                 if (do_wp_page(mm, vma, address,
2065                                 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2066                         ret = VM_FAULT_OOM;
2067                 goto out;
2068         }
2069
2070         /* No need to invalidate - it was non-present before */
2071         update_mmu_cache(vma, address, pte);
2072 unlock:
2073         pte_unmap_unlock(page_table, ptl);
2074 out:
2075         return ret;
2076 out_nomap:
2077         pte_unmap_unlock(page_table, ptl);
2078         unlock_page(page);
2079         page_cache_release(page);
2080         return ret;
2081 }
2082
2083 /*
2084  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2085  * but allow concurrent faults), and pte mapped but not yet locked.
2086  * We return with mmap_sem still held, but pte unmapped and unlocked.
2087  */
2088 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2089                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2090                 int write_access)
2091 {
2092         struct page *page;
2093         spinlock_t *ptl;
2094         pte_t entry;
2095
2096         /* Allocate our own private page. */
2097         pte_unmap(page_table);
2098
2099         if (unlikely(anon_vma_prepare(vma)))
2100                 goto oom;
2101         page = alloc_zeroed_user_highpage_movable(vma, address);
2102         if (!page)
2103                 goto oom;
2104         __SetPageUptodate(page);
2105
2106         entry = mk_pte(page, vma->vm_page_prot);
2107         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108
2109         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2110         if (!pte_none(*page_table))
2111                 goto release;
2112         inc_mm_counter(mm, anon_rss);
2113         lru_cache_add_active(page);
2114         page_add_new_anon_rmap(page, vma, address);
2115         set_pte_at(mm, address, page_table, entry);
2116
2117         /* No need to invalidate - it was non-present before */
2118         update_mmu_cache(vma, address, entry);
2119 unlock:
2120         pte_unmap_unlock(page_table, ptl);
2121         return 0;
2122 release:
2123         page_cache_release(page);
2124         goto unlock;
2125 oom:
2126         return VM_FAULT_OOM;
2127 }
2128
2129 /*
2130  * __do_fault() tries to create a new page mapping. It aggressively
2131  * tries to share with existing pages, but makes a separate copy if
2132  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2133  * the next page fault.
2134  *
2135  * As this is called only for pages that do not currently exist, we
2136  * do not need to flush old virtual caches or the TLB.
2137  *
2138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2139  * but allow concurrent faults), and pte neither mapped nor locked.
2140  * We return with mmap_sem still held, but pte unmapped and unlocked.
2141  */
2142 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2143                 unsigned long address, pmd_t *pmd,
2144                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2145 {
2146         pte_t *page_table;
2147         spinlock_t *ptl;
2148         struct page *page;
2149         pte_t entry;
2150         int anon = 0;
2151         struct page *dirty_page = NULL;
2152         struct vm_fault vmf;
2153         int ret;
2154         int page_mkwrite = 0;
2155
2156         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2157         vmf.pgoff = pgoff;
2158         vmf.flags = flags;
2159         vmf.page = NULL;
2160
2161         BUG_ON(vma->vm_flags & VM_PFNMAP);
2162
2163         if (likely(vma->vm_ops->fault)) {
2164                 ret = vma->vm_ops->fault(vma, &vmf);
2165                 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2166                         return ret;
2167         } else {
2168                 /* Legacy ->nopage path */
2169                 ret = 0;
2170                 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2171                 /* no page was available -- either SIGBUS or OOM */
2172                 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2173                         return VM_FAULT_SIGBUS;
2174                 else if (unlikely(vmf.page == NOPAGE_OOM))
2175                         return VM_FAULT_OOM;
2176         }
2177
2178         /*
2179          * For consistency in subsequent calls, make the faulted page always
2180          * locked.
2181          */
2182         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2183                 lock_page(vmf.page);
2184         else
2185                 VM_BUG_ON(!PageLocked(vmf.page));
2186
2187         /*
2188          * Should we do an early C-O-W break?
2189          */
2190         page = vmf.page;
2191         if (flags & FAULT_FLAG_WRITE) {
2192                 if (!(vma->vm_flags & VM_SHARED)) {
2193                         anon = 1;
2194                         if (unlikely(anon_vma_prepare(vma))) {
2195                                 ret = VM_FAULT_OOM;
2196                                 goto out;
2197                         }
2198                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2199                                                 vma, address);
2200                         if (!page) {
2201                                 ret = VM_FAULT_OOM;
2202                                 goto out;
2203                         }
2204                         copy_user_highpage(page, vmf.page, address, vma);
2205                         __SetPageUptodate(page);
2206                 } else {
2207                         /*
2208                          * If the page will be shareable, see if the backing
2209                          * address space wants to know that the page is about
2210                          * to become writable
2211                          */
2212                         if (vma->vm_ops->page_mkwrite) {
2213                                 unlock_page(page);
2214                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2215                                         ret = VM_FAULT_SIGBUS;
2216                                         anon = 1; /* no anon but release vmf.page */
2217                                         goto out_unlocked;
2218                                 }
2219                                 lock_page(page);
2220                                 /*
2221                                  * XXX: this is not quite right (racy vs
2222                                  * invalidate) to unlock and relock the page
2223                                  * like this, however a better fix requires
2224                                  * reworking page_mkwrite locking API, which
2225                                  * is better done later.
2226                                  */
2227                                 if (!page->mapping) {
2228                                         ret = 0;
2229                                         anon = 1; /* no anon but release vmf.page */
2230                                         goto out;
2231                                 }
2232                                 page_mkwrite = 1;
2233                         }
2234                 }
2235
2236         }
2237
2238         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2239
2240         /*
2241          * This silly early PAGE_DIRTY setting removes a race
2242          * due to the bad i386 page protection. But it's valid
2243          * for other architectures too.
2244          *
2245          * Note that if write_access is true, we either now have
2246          * an exclusive copy of the page, or this is a shared mapping,
2247          * so we can make it writable and dirty to avoid having to
2248          * handle that later.
2249          */
2250         /* Only go through if we didn't race with anybody else... */
2251         if (likely(pte_same(*page_table, orig_pte))) {
2252                 flush_icache_page(vma, page);
2253                 entry = mk_pte(page, vma->vm_page_prot);
2254                 if (flags & FAULT_FLAG_WRITE)
2255                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2256                 set_pte_at(mm, address, page_table, entry);
2257                 if (anon) {
2258                         inc_mm_counter(mm, anon_rss);
2259                         lru_cache_add_active(page);
2260                         page_add_new_anon_rmap(page, vma, address);
2261                 } else {
2262                         inc_mm_counter(mm, file_rss);
2263                         page_add_file_rmap(page);
2264                         if (flags & FAULT_FLAG_WRITE) {
2265                                 dirty_page = page;
2266                                 get_page(dirty_page);
2267                         }
2268                 }
2269
2270                 /* no need to invalidate: a not-present page won't be cached */
2271                 update_mmu_cache(vma, address, entry);
2272         } else {
2273                 if (anon)
2274                         page_cache_release(page);
2275                 else
2276                         anon = 1; /* no anon but release faulted_page */
2277         }
2278
2279         pte_unmap_unlock(page_table, ptl);
2280
2281 out:
2282         unlock_page(vmf.page);
2283 out_unlocked:
2284         if (anon)
2285                 page_cache_release(vmf.page);
2286         else if (dirty_page) {
2287                 if (vma->vm_file)
2288                         file_update_time(vma->vm_file);
2289
2290                 set_page_dirty_balance(dirty_page, page_mkwrite);
2291                 put_page(dirty_page);
2292         }
2293
2294         return ret;
2295 }
2296
2297 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2298                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2299                 int write_access, pte_t orig_pte)
2300 {
2301         pgoff_t pgoff = (((address & PAGE_MASK)
2302                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2303         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2304
2305         pte_unmap(page_table);
2306         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2307 }
2308
2309
2310 /*
2311  * do_no_pfn() tries to create a new page mapping for a page without
2312  * a struct_page backing it
2313  *
2314  * As this is called only for pages that do not currently exist, we
2315  * do not need to flush old virtual caches or the TLB.
2316  *
2317  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2318  * but allow concurrent faults), and pte mapped but not yet locked.
2319  * We return with mmap_sem still held, but pte unmapped and unlocked.
2320  *
2321  * It is expected that the ->nopfn handler always returns the same pfn
2322  * for a given virtual mapping.
2323  *
2324  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2325  */
2326 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2327                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2328                      int write_access)
2329 {
2330         spinlock_t *ptl;
2331         pte_t entry;
2332         unsigned long pfn;
2333
2334         pte_unmap(page_table);
2335         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2336         BUG_ON(is_cow_mapping(vma->vm_flags));
2337
2338         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2339         if (unlikely(pfn == NOPFN_OOM))
2340                 return VM_FAULT_OOM;
2341         else if (unlikely(pfn == NOPFN_SIGBUS))
2342                 return VM_FAULT_SIGBUS;
2343         else if (unlikely(pfn == NOPFN_REFAULT))
2344                 return 0;
2345
2346         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2347
2348         /* Only go through if we didn't race with anybody else... */
2349         if (pte_none(*page_table)) {
2350                 entry = pfn_pte(pfn, vma->vm_page_prot);
2351                 if (write_access)
2352                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2353                 set_pte_at(mm, address, page_table, entry);
2354         }
2355         pte_unmap_unlock(page_table, ptl);
2356         return 0;
2357 }
2358
2359 /*
2360  * Fault of a previously existing named mapping. Repopulate the pte
2361  * from the encoded file_pte if possible. This enables swappable
2362  * nonlinear vmas.
2363  *
2364  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2365  * but allow concurrent faults), and pte mapped but not yet locked.
2366  * We return with mmap_sem still held, but pte unmapped and unlocked.
2367  */
2368 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2369                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2370                 int write_access, pte_t orig_pte)
2371 {
2372         unsigned int flags = FAULT_FLAG_NONLINEAR |
2373                                 (write_access ? FAULT_FLAG_WRITE : 0);
2374         pgoff_t pgoff;
2375
2376         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2377                 return 0;
2378
2379         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2380                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2381                 /*
2382                  * Page table corrupted: show pte and kill process.
2383                  */
2384                 print_bad_pte(vma, orig_pte, address);
2385                 return VM_FAULT_OOM;
2386         }
2387
2388         pgoff = pte_to_pgoff(orig_pte);
2389         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2390 }
2391
2392 /*
2393  * These routines also need to handle stuff like marking pages dirty
2394  * and/or accessed for architectures that don't do it in hardware (most
2395  * RISC architectures).  The early dirtying is also good on the i386.
2396  *
2397  * There is also a hook called "update_mmu_cache()" that architectures
2398  * with external mmu caches can use to update those (ie the Sparc or
2399  * PowerPC hashed page tables that act as extended TLBs).
2400  *
2401  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2402  * but allow concurrent faults), and pte mapped but not yet locked.
2403  * We return with mmap_sem still held, but pte unmapped and unlocked.
2404  */
2405 static inline int handle_pte_fault(struct mm_struct *mm,
2406                 struct vm_area_struct *vma, unsigned long address,
2407                 pte_t *pte, pmd_t *pmd, int write_access)
2408 {
2409         pte_t entry;
2410         spinlock_t *ptl;
2411
2412         entry = *pte;
2413         if (!pte_present(entry)) {
2414                 if (pte_none(entry)) {
2415                         if (vma->vm_ops) {
2416                                 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2417                                         return do_linear_fault(mm, vma, address,
2418                                                 pte, pmd, write_access, entry);
2419                                 if (unlikely(vma->vm_ops->nopfn))
2420                                         return do_no_pfn(mm, vma, address, pte,
2421                                                          pmd, write_access);
2422                         }
2423                         return do_anonymous_page(mm, vma, address,
2424                                                  pte, pmd, write_access);
2425                 }
2426                 if (pte_file(entry))
2427                         return do_nonlinear_fault(mm, vma, address,
2428                                         pte, pmd, write_access, entry);
2429                 return do_swap_page(mm, vma, address,
2430                                         pte, pmd, write_access, entry);
2431         }
2432
2433         ptl = pte_lockptr(mm, pmd);
2434         spin_lock(ptl);
2435         if (unlikely(!pte_same(*pte, entry)))
2436                 goto unlock;
2437         if (write_access) {
2438                 if (!pte_write(entry))
2439                         return do_wp_page(mm, vma, address,
2440                                         pte, pmd, ptl, entry);
2441                 entry = pte_mkdirty(entry);
2442         }
2443         entry = pte_mkyoung(entry);
2444         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2445                 update_mmu_cache(vma, address, entry);
2446         } else {
2447                 /*
2448                  * This is needed only for protection faults but the arch code
2449                  * is not yet telling us if this is a protection fault or not.
2450                  * This still avoids useless tlb flushes for .text page faults
2451                  * with threads.
2452                  */
2453                 if (write_access)
2454                         flush_tlb_page(vma, address);
2455         }
2456 unlock:
2457         pte_unmap_unlock(pte, ptl);
2458         return 0;
2459 }
2460
2461 /*
2462  * By the time we get here, we already hold the mm semaphore
2463  */
2464 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2465                 unsigned long address, int write_access)
2466 {
2467         pgd_t *pgd;
2468         pud_t *pud;
2469         pmd_t *pmd;
2470         pte_t *pte;
2471
2472         __set_current_state(TASK_RUNNING);
2473
2474         count_vm_event(PGFAULT);
2475
2476         if (unlikely(is_vm_hugetlb_page(vma)))
2477                 return hugetlb_fault(mm, vma, address, write_access);
2478
2479         pgd = pgd_offset(mm, address);
2480         pud = pud_alloc(mm, pgd, address);
2481         if (!pud)
2482                 return VM_FAULT_OOM;
2483         pmd = pmd_alloc(mm, pud, address);
2484         if (!pmd)
2485                 return VM_FAULT_OOM;
2486         pte = pte_alloc_map(mm, pmd, address);
2487         if (!pte)
2488                 return VM_FAULT_OOM;
2489
2490         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2491 }
2492
2493 #ifndef __PAGETABLE_PUD_FOLDED
2494 /*
2495  * Allocate page upper directory.
2496  * We've already handled the fast-path in-line.
2497  */
2498 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2499 {
2500         pud_t *new = pud_alloc_one(mm, address);
2501         if (!new)
2502                 return -ENOMEM;
2503
2504         spin_lock(&mm->page_table_lock);
2505         if (pgd_present(*pgd))          /* Another has populated it */
2506                 pud_free(mm, new);
2507         else
2508                 pgd_populate(mm, pgd, new);
2509         spin_unlock(&mm->page_table_lock);
2510         return 0;
2511 }
2512 #endif /* __PAGETABLE_PUD_FOLDED */
2513
2514 #ifndef __PAGETABLE_PMD_FOLDED
2515 /*
2516  * Allocate page middle directory.
2517  * We've already handled the fast-path in-line.
2518  */
2519 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2520 {
2521         pmd_t *new = pmd_alloc_one(mm, address);
2522         if (!new)
2523                 return -ENOMEM;
2524
2525         spin_lock(&mm->page_table_lock);
2526 #ifndef __ARCH_HAS_4LEVEL_HACK
2527         if (pud_present(*pud))          /* Another has populated it */
2528                 pmd_free(mm, new);
2529         else
2530                 pud_populate(mm, pud, new);
2531 #else
2532         if (pgd_present(*pud))          /* Another has populated it */
2533                 pmd_free(mm, new);
2534         else
2535                 pgd_populate(mm, pud, new);
2536 #endif /* __ARCH_HAS_4LEVEL_HACK */
2537         spin_unlock(&mm->page_table_lock);
2538         return 0;
2539 }
2540 #endif /* __PAGETABLE_PMD_FOLDED */
2541
2542 int make_pages_present(unsigned long addr, unsigned long end)
2543 {
2544         int ret, len, write;
2545         struct vm_area_struct * vma;
2546
2547         vma = find_vma(current->mm, addr);
2548         if (!vma)
2549                 return -1;
2550         write = (vma->vm_flags & VM_WRITE) != 0;
2551         BUG_ON(addr >= end);
2552         BUG_ON(end > vma->vm_end);
2553         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2554         ret = get_user_pages(current, current->mm, addr,
2555                         len, write, 0, NULL, NULL);
2556         if (ret < 0)
2557                 return ret;
2558         return ret == len ? 0 : -1;
2559 }
2560
2561 #if !defined(__HAVE_ARCH_GATE_AREA)
2562
2563 #if defined(AT_SYSINFO_EHDR)
2564 static struct vm_area_struct gate_vma;
2565
2566 static int __init gate_vma_init(void)
2567 {
2568         gate_vma.vm_mm = NULL;
2569         gate_vma.vm_start = FIXADDR_USER_START;
2570         gate_vma.vm_end = FIXADDR_USER_END;
2571         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2572         gate_vma.vm_page_prot = __P101;
2573         /*
2574          * Make sure the vDSO gets into every core dump.
2575          * Dumping its contents makes post-mortem fully interpretable later
2576          * without matching up the same kernel and hardware config to see
2577          * what PC values meant.
2578          */
2579         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2580         return 0;
2581 }
2582 __initcall(gate_vma_init);
2583 #endif
2584
2585 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2586 {
2587 #ifdef AT_SYSINFO_EHDR
2588         return &gate_vma;
2589 #else
2590         return NULL;
2591 #endif
2592 }
2593
2594 int in_gate_area_no_task(unsigned long addr)
2595 {
2596 #ifdef AT_SYSINFO_EHDR
2597         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2598                 return 1;
2599 #endif
2600         return 0;
2601 }
2602
2603 #endif  /* __HAVE_ARCH_GATE_AREA */
2604
2605 /*
2606  * Access another process' address space.
2607  * Source/target buffer must be kernel space,
2608  * Do not walk the page table directly, use get_user_pages
2609  */
2610 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2611 {
2612         struct mm_struct *mm;
2613         struct vm_area_struct *vma;
2614         struct page *page;
2615         void *old_buf = buf;
2616
2617         mm = get_task_mm(tsk);
2618         if (!mm)
2619                 return 0;
2620
2621         down_read(&mm->mmap_sem);
2622         /* ignore errors, just check how much was successfully transferred */
2623         while (len) {
2624                 int bytes, ret, offset;
2625                 void *maddr;
2626
2627                 ret = get_user_pages(tsk, mm, addr, 1,
2628                                 write, 1, &page, &vma);
2629                 if (ret <= 0)
2630                         break;
2631
2632                 bytes = len;
2633                 offset = addr & (PAGE_SIZE-1);
2634                 if (bytes > PAGE_SIZE-offset)
2635                         bytes = PAGE_SIZE-offset;
2636
2637                 maddr = kmap(page);
2638                 if (write) {
2639                         copy_to_user_page(vma, page, addr,
2640                                           maddr + offset, buf, bytes);
2641                         set_page_dirty_lock(page);
2642                 } else {
2643                         copy_from_user_page(vma, page, addr,
2644                                             buf, maddr + offset, bytes);
2645                 }
2646                 kunmap(page);
2647                 page_cache_release(page);
2648                 len -= bytes;
2649                 buf += bytes;
2650                 addr += bytes;
2651         }
2652         up_read(&mm->mmap_sem);
2653         mmput(mm);
2654
2655         return buf - old_buf;
2656 }
2657
2658 /*
2659  * Print the name of a VMA.
2660  */
2661 void print_vma_addr(char *prefix, unsigned long ip)
2662 {
2663         struct mm_struct *mm = current->mm;
2664         struct vm_area_struct *vma;
2665
2666         down_read(&mm->mmap_sem);
2667         vma = find_vma(mm, ip);
2668         if (vma && vma->vm_file) {
2669                 struct file *f = vma->vm_file;
2670                 char *buf = (char *)__get_free_page(GFP_KERNEL);
2671                 if (buf) {
2672                         char *p, *s;
2673
2674                         p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2675                         if (IS_ERR(p))
2676                                 p = "?";
2677                         s = strrchr(p, '/');
2678                         if (s)
2679                                 p = s+1;
2680                         printk("%s%s[%lx+%lx]", prefix, p,
2681                                         vma->vm_start,
2682                                         vma->vm_end - vma->vm_start);
2683                         free_page((unsigned long)buf);
2684                 }
2685         }
2686         up_read(&current->mm->mmap_sem);
2687 }