2 * Code to handle x86 style IRQs plus some generic interrupt stuff.
4 * Copyright (C) 1992 Linus Torvalds
5 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7 * Copyright (C) 1999-2000 Grant Grundler
8 * Copyright (c) 2005 Matthew Wilcox
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/bitops.h>
25 #include <linux/config.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <linux/types.h>
37 #undef PARISC_IRQ_CR16_COUNTS
39 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
40 extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *);
42 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq))
44 /* Bits in EIEM correlate with cpu_irq_action[].
45 ** Numbered *Big Endian*! (ie bit 0 is MSB)
47 static volatile unsigned long cpu_eiem = 0;
49 static void cpu_disable_irq(unsigned int irq)
51 unsigned long eirr_bit = EIEM_MASK(irq);
53 cpu_eiem &= ~eirr_bit;
54 /* Do nothing on the other CPUs. If they get this interrupt,
55 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
56 * handle it, and the set_eiem() at the bottom will ensure it
57 * then gets disabled */
60 static void cpu_enable_irq(unsigned int irq)
62 unsigned long eirr_bit = EIEM_MASK(irq);
66 /* FIXME: while our interrupts aren't nested, we cannot reset
67 * the eiem mask if we're already in an interrupt. Once we
68 * implement nested interrupts, this can go away
73 /* This is just a simple NOP IPI. But what it does is cause
74 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
75 * of the interrupt handler */
79 static unsigned int cpu_startup_irq(unsigned int irq)
85 void no_ack_irq(unsigned int irq) { }
86 void no_end_irq(unsigned int irq) { }
89 int cpu_check_affinity(unsigned int irq, cpumask_t *dest)
93 /* timer and ipi have to always be received on all CPUs */
94 if (irq == TIMER_IRQ || irq == IPI_IRQ) {
95 /* Bad linux design decision. The mask has already
96 * been set; we must reset it */
97 irq_affinity[irq] = CPU_MASK_ALL;
101 /* whatever mask they set, we just allow one CPU */
102 cpu_dest = first_cpu(*dest);
103 *dest = cpumask_of_cpu(cpu_dest);
108 static void cpu_set_affinity_irq(unsigned int irq, cpumask_t dest)
110 if (cpu_check_affinity(irq, &dest))
113 irq_affinity[irq] = dest;
117 static struct hw_interrupt_type cpu_interrupt_type = {
119 .startup = cpu_startup_irq,
120 .shutdown = cpu_disable_irq,
121 .enable = cpu_enable_irq,
122 .disable = cpu_disable_irq,
126 .set_affinity = cpu_set_affinity_irq,
130 int show_interrupts(struct seq_file *p, void *v)
132 int i = *(loff_t *) v, j;
137 for_each_online_cpu(j)
138 seq_printf(p, " CPU%d", j);
140 #ifdef PARISC_IRQ_CR16_COUNTS
141 seq_printf(p, " [min/avg/max] (CPU cycle counts)");
147 struct irqaction *action;
149 spin_lock_irqsave(&irq_desc[i].lock, flags);
150 action = irq_desc[i].action;
153 seq_printf(p, "%3d: ", i);
155 for_each_online_cpu(j)
156 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
158 seq_printf(p, "%10u ", kstat_irqs(i));
161 seq_printf(p, " %14s", irq_desc[i].handler->typename);
162 #ifndef PARISC_IRQ_CR16_COUNTS
163 seq_printf(p, " %s", action->name);
165 while ((action = action->next))
166 seq_printf(p, ", %s", action->name);
168 for ( ;action; action = action->next) {
169 unsigned int k, avg, min, max;
171 min = max = action->cr16_hist[0];
173 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
174 int hist = action->cr16_hist[k];
181 if (hist > max) max = hist;
182 if (hist < min) min = hist;
186 seq_printf(p, " %s[%d/%d/%d]", action->name,
193 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
202 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
203 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
205 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
206 ** Then use that to get the Transaction address and data.
209 int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data)
211 if (irq_desc[irq].action)
213 if (irq_desc[irq].handler != &cpu_interrupt_type)
217 irq_desc[irq].handler = type;
218 irq_desc[irq].handler_data = data;
219 cpu_interrupt_type.enable(irq);
224 int txn_claim_irq(int irq)
226 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
230 * The bits_wide parameter accommodates the limitations of the HW/SW which
232 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
233 * V-class (EPIC): 6 bits
234 * N/L/A-class (iosapic): 8 bits
235 * PCI 2.2 MSI: 16 bits
236 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric)
238 * On the service provider side:
239 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register)
240 * o PA 2.0 wide mode 6-bits (per processor)
241 * o IA64 8-bits (0-256 total)
243 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
244 * by the processor...and the N/L-class I/O subsystem supports more bits than
245 * PA2.0 has. The first case is the problem.
247 int txn_alloc_irq(unsigned int bits_wide)
251 /* never return irq 0 cause that's the interval timer */
252 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
253 if (cpu_claim_irq(irq, NULL, NULL) < 0)
255 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
260 /* unlikely, but be prepared */
265 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
268 irq_affinity[irq] = cpumask_of_cpu(cpu);
271 return cpu_data[cpu].txn_addr;
275 unsigned long txn_alloc_addr(unsigned int virt_irq)
277 static int next_cpu = -1;
279 next_cpu++; /* assign to "next" CPU we want this bugger on */
282 while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr ||
283 !cpu_online(next_cpu)))
286 if (next_cpu >= NR_CPUS)
287 next_cpu = 0; /* nothing else, assign monarch */
289 return txn_affinity_addr(virt_irq, next_cpu);
293 unsigned int txn_alloc_data(unsigned int virt_irq)
295 return virt_irq - CPU_IRQ_BASE;
298 /* ONLY called from entry.S:intr_extint() */
299 void do_cpu_irq_mask(struct pt_regs *regs)
301 unsigned long eirr_val;
306 * Don't allow TIMER or IPI nested interrupts.
307 * Allowing any single interrupt to nest can lead to that CPU
308 * handling interrupts with all enabled interrupts unmasked.
312 /* 1) only process IRQs that are enabled/unmasked (cpu_eiem)
313 * 2) We loop here on EIRR contents in order to avoid
314 * nested interrupts or having to take another interrupt
315 * when we could have just handled it right away.
318 unsigned long bit = (1UL << (BITS_PER_LONG - 1));
320 eirr_val = mfctl(23) & cpu_eiem;
324 mtctl(eirr_val, 23); /* reset bits we are going to process */
326 /* Work our way from MSb to LSb...same order we alloc EIRs */
327 for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) {
329 cpumask_t dest = irq_affinity[irq];
331 if (!(bit & eirr_val))
334 /* clear bit in mask - can exit loop sooner */
338 /* FIXME: because generic set affinity mucks
339 * with the affinity before sending it to us
340 * we can get the situation where the affinity is
341 * wrong for our CPU type interrupts */
342 if (irq != TIMER_IRQ && irq != IPI_IRQ &&
343 !cpu_isset(smp_processor_id(), dest)) {
344 int cpu = first_cpu(dest);
346 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
347 irq, smp_processor_id(), cpu);
348 gsc_writel(irq + CPU_IRQ_BASE,
358 set_eiem(cpu_eiem); /* restore original mask */
363 static struct irqaction timer_action = {
364 .handler = timer_interrupt,
366 .flags = SA_INTERRUPT,
370 static struct irqaction ipi_action = {
371 .handler = ipi_interrupt,
373 .flags = SA_INTERRUPT,
377 static void claim_cpu_irqs(void)
380 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
381 irq_desc[i].handler = &cpu_interrupt_type;
384 irq_desc[TIMER_IRQ].action = &timer_action;
385 irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU;
387 irq_desc[IPI_IRQ].action = &ipi_action;
388 irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
392 void __init init_IRQ(void)
394 local_irq_disable(); /* PARANOID - should already be disabled */
395 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */
399 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
401 cpu_eiem = EIEM_MASK(TIMER_IRQ);
403 set_eiem(cpu_eiem); /* EIEM : enable all external intr */
407 void hw_resend_irq(struct hw_interrupt_type *type, unsigned int irq)
409 /* XXX: Needs to be written. We managed without it so far, but
410 * we really ought to write it.
414 void ack_bad_irq(unsigned int irq)
416 printk("unexpected IRQ %d\n", irq);