2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006 Pete Zaitcev (zaitcev@redhat.com)
10 #include <linux/kernel.h>
11 #include <linux/types.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
19 #include <asm/uaccess.h>
24 * Defined by USB 2.0 clause 9.3, table 9.2.
29 #define MON_IOC_MAGIC 0x92
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
49 * N.B. An application does not know our chunk size.
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
75 * The per-event API header (2 per URB).
77 * This structure is seen in userland as defined by the documentation.
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
96 /* per file statistic */
97 struct mon_bin_stats {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
105 size_t alloc; /* Length of data (can be zero) */
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
115 struct mon_bin_get32 {
121 struct mon_bin_mfetch32 {
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
136 * The buffer: map of used pages.
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
144 * This gets associated with an open file struct.
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
156 struct mutex fetch_lock; /* Protect b_read, b_out */
159 /* A list of these is needed for "bus 0". Some time later. */
163 unsigned int cnt_lost;
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
175 static dev_t mon_bin_dev0;
176 static struct cdev mon_bin_cdev;
178 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
179 unsigned int offset, unsigned int size);
180 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
181 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
182 static void mon_free_buff(struct mon_pgmap *map, int npages);
185 * This is a "chunked memcpy". It does not manipulate any counters.
186 * But it returns the new offset for repeated application.
188 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
189 unsigned int off, const unsigned char *from, unsigned int length)
191 unsigned int step_len;
193 unsigned int in_page;
197 * Determine step_len.
200 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
201 if (in_page < step_len)
205 * Copy data and advance pointers.
207 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
208 memcpy(buf, from, step_len);
209 if ((off += step_len) >= this->b_size) off = 0;
217 * This is a little worse than the above because it's "chunked copy_to_user".
218 * The return value is an error code, not an offset.
220 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
221 char __user *to, int length)
223 unsigned int step_len;
225 unsigned int in_page;
229 * Determine step_len.
232 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
233 if (in_page < step_len)
237 * Copy data and advance pointers.
239 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
240 if (copy_to_user(to, buf, step_len))
242 if ((off += step_len) >= this->b_size) off = 0;
250 * Allocate an (aligned) area in the buffer.
251 * This is called under b_lock.
252 * Returns ~0 on failure.
254 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
259 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
260 if (rp->b_cnt + size > rp->b_size)
264 if ((rp->b_in += size) >= rp->b_size)
265 rp->b_in -= rp->b_size;
270 * This is the same thing as mon_buff_area_alloc, only it does not allow
271 * buffers to wrap. This is needed by applications which pass references
272 * into mmap-ed buffers up their stacks (libpcap can do that).
274 * Currently, we always have the header stuck with the data, although
275 * it is not strictly speaking necessary.
277 * When a buffer would wrap, we place a filler packet to mark the space.
279 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
283 unsigned int fill_size;
285 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
286 if (rp->b_cnt + size > rp->b_size)
288 if (rp->b_in + size > rp->b_size) {
290 * This would wrap. Find if we still have space after
291 * skipping to the end of the buffer. If we do, place
292 * a filler packet and allocate a new packet.
294 fill_size = rp->b_size - rp->b_in;
295 if (rp->b_cnt + size + fill_size > rp->b_size)
297 mon_buff_area_fill(rp, rp->b_in, fill_size);
301 rp->b_cnt += size + fill_size;
302 } else if (rp->b_in + size == rp->b_size) {
315 * Return a few (kilo-)bytes to the head of the buffer.
316 * This is used if a DMA fetch fails.
318 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
321 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 rp->b_in += rp->b_size;
329 * This has to be called under both b_lock and fetch_lock, because
330 * it accesses both b_cnt and b_out.
332 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
335 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
337 if ((rp->b_out += size) >= rp->b_size)
338 rp->b_out -= rp->b_size;
341 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
342 unsigned int offset, unsigned int size)
344 struct mon_bin_hdr *ep;
346 ep = MON_OFF2HDR(rp, offset);
347 memset(ep, 0, PKT_SIZE);
349 ep->len_cap = size - PKT_SIZE;
352 static inline char mon_bin_get_setup(unsigned char *setupb,
353 const struct urb *urb, char ev_type)
356 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
359 if (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)
360 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
361 if (urb->setup_packet == NULL)
364 memcpy(setupb, urb->setup_packet, SETUP_LEN);
368 static char mon_bin_get_data(const struct mon_reader_bin *rp,
369 unsigned int offset, struct urb *urb, unsigned int length)
372 if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) {
373 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
377 if (urb->transfer_buffer == NULL)
380 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
384 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
389 unsigned int urb_length;
392 struct mon_bin_hdr *ep;
395 do_gettimeofday(&ts);
397 spin_lock_irqsave(&rp->b_lock, flags);
400 * Find the maximum allowable length, then allocate space.
402 urb_length = (ev_type == 'S') ?
403 urb->transfer_buffer_length : urb->actual_length;
406 if (length >= rp->b_size/5)
407 length = rp->b_size/5;
409 if (usb_pipein(urb->pipe)) {
410 if (ev_type == 'S') {
415 if (ev_type == 'C') {
422 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
424 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
427 spin_unlock_irqrestore(&rp->b_lock, flags);
431 ep = MON_OFF2HDR(rp, offset);
432 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
435 * Fill the allocated area.
437 memset(ep, 0, PKT_SIZE);
439 ep->xfer_type = usb_pipetype(urb->pipe);
440 /* We use the fact that usb_pipein() returns 0x80 */
441 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
442 ep->devnum = usb_pipedevice(urb->pipe);
443 ep->busnum = rp->r.m_bus->u_bus->busnum;
444 ep->id = (unsigned long) urb;
445 ep->ts_sec = ts.tv_sec;
446 ep->ts_usec = ts.tv_usec;
447 ep->status = urb->status;
448 ep->len_urb = urb_length;
449 ep->len_cap = length;
451 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
453 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
454 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
456 mon_buff_area_shrink(rp, length);
459 ep->flag_data = data_tag;
462 spin_unlock_irqrestore(&rp->b_lock, flags);
464 wake_up(&rp->b_wait);
467 static void mon_bin_submit(void *data, struct urb *urb)
469 struct mon_reader_bin *rp = data;
470 mon_bin_event(rp, urb, 'S');
473 static void mon_bin_complete(void *data, struct urb *urb)
475 struct mon_reader_bin *rp = data;
476 mon_bin_event(rp, urb, 'C');
479 static void mon_bin_error(void *data, struct urb *urb, int error)
481 struct mon_reader_bin *rp = data;
484 struct mon_bin_hdr *ep;
486 spin_lock_irqsave(&rp->b_lock, flags);
488 offset = mon_buff_area_alloc(rp, PKT_SIZE);
490 /* Not incrementing cnt_lost. Just because. */
491 spin_unlock_irqrestore(&rp->b_lock, flags);
495 ep = MON_OFF2HDR(rp, offset);
497 memset(ep, 0, PKT_SIZE);
499 ep->xfer_type = usb_pipetype(urb->pipe);
500 /* We use the fact that usb_pipein() returns 0x80 */
501 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
502 ep->devnum = usb_pipedevice(urb->pipe);
503 ep->busnum = rp->r.m_bus->u_bus->busnum;
504 ep->id = (unsigned long) urb;
507 ep->flag_setup = '-';
510 spin_unlock_irqrestore(&rp->b_lock, flags);
512 wake_up(&rp->b_wait);
515 static int mon_bin_open(struct inode *inode, struct file *file)
517 struct mon_bus *mbus;
518 struct usb_bus *ubus;
519 struct mon_reader_bin *rp;
523 mutex_lock(&mon_lock);
524 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
525 mutex_unlock(&mon_lock);
528 if ((ubus = mbus->u_bus) == NULL) {
529 printk(KERN_ERR TAG ": consistency error on open\n");
530 mutex_unlock(&mon_lock);
534 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
539 spin_lock_init(&rp->b_lock);
540 init_waitqueue_head(&rp->b_wait);
541 mutex_init(&rp->fetch_lock);
543 rp->b_size = BUFF_DFL;
545 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
546 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
551 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
556 rp->r.rnf_submit = mon_bin_submit;
557 rp->r.rnf_error = mon_bin_error;
558 rp->r.rnf_complete = mon_bin_complete;
560 mon_reader_add(mbus, &rp->r);
562 file->private_data = rp;
563 mutex_unlock(&mon_lock);
571 mutex_unlock(&mon_lock);
576 * Extract an event from buffer and copy it to user space.
577 * Wait if there is no event ready.
578 * Returns zero or error.
580 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
581 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
584 struct mon_bin_hdr *ep;
589 mutex_lock(&rp->fetch_lock);
591 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
592 mutex_unlock(&rp->fetch_lock);
596 ep = MON_OFF2HDR(rp, rp->b_out);
598 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
599 mutex_unlock(&rp->fetch_lock);
603 step_len = min(ep->len_cap, nbytes);
604 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
606 if (copy_from_buf(rp, offset, data, step_len)) {
607 mutex_unlock(&rp->fetch_lock);
611 spin_lock_irqsave(&rp->b_lock, flags);
612 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
613 spin_unlock_irqrestore(&rp->b_lock, flags);
616 mutex_unlock(&rp->fetch_lock);
620 static int mon_bin_release(struct inode *inode, struct file *file)
622 struct mon_reader_bin *rp = file->private_data;
623 struct mon_bus* mbus = rp->r.m_bus;
625 mutex_lock(&mon_lock);
627 if (mbus->nreaders <= 0) {
628 printk(KERN_ERR TAG ": consistency error on close\n");
629 mutex_unlock(&mon_lock);
632 mon_reader_del(mbus, &rp->r);
634 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
638 mutex_unlock(&mon_lock);
642 static ssize_t mon_bin_read(struct file *file, char __user *buf,
643 size_t nbytes, loff_t *ppos)
645 struct mon_reader_bin *rp = file->private_data;
647 struct mon_bin_hdr *ep;
654 mutex_lock(&rp->fetch_lock);
656 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
657 mutex_unlock(&rp->fetch_lock);
661 ep = MON_OFF2HDR(rp, rp->b_out);
663 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
664 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
665 ptr = ((char *)ep) + rp->b_read;
666 if (step_len && copy_to_user(buf, ptr, step_len)) {
667 mutex_unlock(&rp->fetch_lock);
672 rp->b_read += step_len;
676 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
677 step_len = min(nbytes, (size_t)ep->len_cap);
678 offset = rp->b_out + PKT_SIZE;
679 offset += rp->b_read - sizeof(struct mon_bin_hdr);
680 if (offset >= rp->b_size)
681 offset -= rp->b_size;
682 if (copy_from_buf(rp, offset, buf, step_len)) {
683 mutex_unlock(&rp->fetch_lock);
688 rp->b_read += step_len;
693 * Check if whole packet was read, and if so, jump to the next one.
695 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
696 spin_lock_irqsave(&rp->b_lock, flags);
697 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
698 spin_unlock_irqrestore(&rp->b_lock, flags);
702 mutex_unlock(&rp->fetch_lock);
707 * Remove at most nevents from chunked buffer.
708 * Returns the number of removed events.
710 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
713 struct mon_bin_hdr *ep;
716 mutex_lock(&rp->fetch_lock);
717 spin_lock_irqsave(&rp->b_lock, flags);
718 for (i = 0; i < nevents; ++i) {
719 if (MON_RING_EMPTY(rp))
722 ep = MON_OFF2HDR(rp, rp->b_out);
723 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
725 spin_unlock_irqrestore(&rp->b_lock, flags);
727 mutex_unlock(&rp->fetch_lock);
732 * Fetch at most max event offsets into the buffer and put them into vec.
733 * The events are usually freed later with mon_bin_flush.
734 * Return the effective number of events fetched.
736 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
737 u32 __user *vec, unsigned int max)
739 unsigned int cur_out;
740 unsigned int bytes, avail;
742 unsigned int nevents;
743 struct mon_bin_hdr *ep;
747 mutex_lock(&rp->fetch_lock);
749 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 mutex_unlock(&rp->fetch_lock);
754 spin_lock_irqsave(&rp->b_lock, flags);
756 spin_unlock_irqrestore(&rp->b_lock, flags);
761 while (bytes < avail) {
765 ep = MON_OFF2HDR(rp, cur_out);
766 if (put_user(cur_out, &vec[nevents])) {
767 mutex_unlock(&rp->fetch_lock);
772 size = ep->len_cap + PKT_SIZE;
773 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
774 if ((cur_out += size) >= rp->b_size)
775 cur_out -= rp->b_size;
779 mutex_unlock(&rp->fetch_lock);
784 * Count events. This is almost the same as the above mon_bin_fetch,
785 * only we do not store offsets into user vector, and we have no limit.
787 static int mon_bin_queued(struct mon_reader_bin *rp)
789 unsigned int cur_out;
790 unsigned int bytes, avail;
792 unsigned int nevents;
793 struct mon_bin_hdr *ep;
796 mutex_lock(&rp->fetch_lock);
798 spin_lock_irqsave(&rp->b_lock, flags);
800 spin_unlock_irqrestore(&rp->b_lock, flags);
805 while (bytes < avail) {
806 ep = MON_OFF2HDR(rp, cur_out);
809 size = ep->len_cap + PKT_SIZE;
810 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
811 if ((cur_out += size) >= rp->b_size)
812 cur_out -= rp->b_size;
816 mutex_unlock(&rp->fetch_lock);
822 static int mon_bin_ioctl(struct inode *inode, struct file *file,
823 unsigned int cmd, unsigned long arg)
825 struct mon_reader_bin *rp = file->private_data;
826 // struct mon_bus* mbus = rp->r.m_bus;
828 struct mon_bin_hdr *ep;
833 case MON_IOCQ_URB_LEN:
835 * N.B. This only returns the size of data, without the header.
837 spin_lock_irqsave(&rp->b_lock, flags);
838 if (!MON_RING_EMPTY(rp)) {
839 ep = MON_OFF2HDR(rp, rp->b_out);
842 spin_unlock_irqrestore(&rp->b_lock, flags);
845 case MON_IOCQ_RING_SIZE:
849 case MON_IOCT_RING_SIZE:
851 * Changing the buffer size will flush it's contents; the new
852 * buffer is allocated before releasing the old one to be sure
853 * the device will stay functional also in case of memory
858 struct mon_pgmap *vec;
860 if (arg < BUFF_MIN || arg > BUFF_MAX)
863 size = CHUNK_ALIGN(arg);
864 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
865 GFP_KERNEL)) == NULL) {
870 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
876 mutex_lock(&rp->fetch_lock);
877 spin_lock_irqsave(&rp->b_lock, flags);
878 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
882 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
884 spin_unlock_irqrestore(&rp->b_lock, flags);
885 mutex_unlock(&rp->fetch_lock);
889 case MON_IOCH_MFLUSH:
890 ret = mon_bin_flush(rp, arg);
895 struct mon_bin_get getb;
897 if (copy_from_user(&getb, (void __user *)arg,
898 sizeof(struct mon_bin_get)))
901 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
903 ret = mon_bin_get_event(file, rp,
904 getb.hdr, getb.data, (unsigned int)getb.alloc);
909 case MON_IOCX_GET32: {
910 struct mon_bin_get32 getb;
912 if (copy_from_user(&getb, (void __user *)arg,
913 sizeof(struct mon_bin_get32)))
916 ret = mon_bin_get_event(file, rp,
917 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
923 case MON_IOCX_MFETCH:
925 struct mon_bin_mfetch mfetch;
926 struct mon_bin_mfetch __user *uptr;
928 uptr = (struct mon_bin_mfetch __user *)arg;
930 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
934 ret = mon_bin_flush(rp, mfetch.nflush);
937 if (put_user(ret, &uptr->nflush))
940 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
943 if (put_user(ret, &uptr->nfetch))
950 case MON_IOCX_MFETCH32:
952 struct mon_bin_mfetch32 mfetch;
953 struct mon_bin_mfetch32 __user *uptr;
955 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
957 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
960 if (mfetch.nflush32) {
961 ret = mon_bin_flush(rp, mfetch.nflush32);
964 if (put_user(ret, &uptr->nflush32))
967 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
971 if (put_user(ret, &uptr->nfetch32))
978 case MON_IOCG_STATS: {
979 struct mon_bin_stats __user *sp;
980 unsigned int nevents;
981 unsigned int ndropped;
983 spin_lock_irqsave(&rp->b_lock, flags);
984 ndropped = rp->cnt_lost;
986 spin_unlock_irqrestore(&rp->b_lock, flags);
987 nevents = mon_bin_queued(rp);
989 sp = (struct mon_bin_stats __user *)arg;
990 if (put_user(rp->cnt_lost, &sp->dropped))
992 if (put_user(nevents, &sp->queued))
1006 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1008 struct mon_reader_bin *rp = file->private_data;
1009 unsigned int mask = 0;
1010 unsigned long flags;
1012 if (file->f_mode & FMODE_READ)
1013 poll_wait(file, &rp->b_wait, wait);
1015 spin_lock_irqsave(&rp->b_lock, flags);
1016 if (!MON_RING_EMPTY(rp))
1017 mask |= POLLIN | POLLRDNORM; /* readable */
1018 spin_unlock_irqrestore(&rp->b_lock, flags);
1023 * open and close: just keep track of how many times the device is
1024 * mapped, to use the proper memory allocation function.
1026 static void mon_bin_vma_open(struct vm_area_struct *vma)
1028 struct mon_reader_bin *rp = vma->vm_private_data;
1032 static void mon_bin_vma_close(struct vm_area_struct *vma)
1034 struct mon_reader_bin *rp = vma->vm_private_data;
1039 * Map ring pages to user space.
1041 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1042 unsigned long address, int *type)
1044 struct mon_reader_bin *rp = vma->vm_private_data;
1045 unsigned long offset, chunk_idx;
1046 struct page *pageptr;
1048 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1049 if (offset >= rp->b_size)
1050 return NOPAGE_SIGBUS;
1051 chunk_idx = offset / CHUNK_SIZE;
1052 pageptr = rp->b_vec[chunk_idx].pg;
1055 *type = VM_FAULT_MINOR;
1059 struct vm_operations_struct mon_bin_vm_ops = {
1060 .open = mon_bin_vma_open,
1061 .close = mon_bin_vma_close,
1062 .nopage = mon_bin_vma_nopage,
1065 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1067 /* don't do anything here: "nopage" will set up page table entries */
1068 vma->vm_ops = &mon_bin_vm_ops;
1069 vma->vm_flags |= VM_RESERVED;
1070 vma->vm_private_data = filp->private_data;
1071 mon_bin_vma_open(vma);
1075 struct file_operations mon_fops_binary = {
1076 .owner = THIS_MODULE,
1077 .open = mon_bin_open,
1078 .llseek = no_llseek,
1079 .read = mon_bin_read,
1080 /* .write = mon_text_write, */
1081 .poll = mon_bin_poll,
1082 .ioctl = mon_bin_ioctl,
1083 .release = mon_bin_release,
1086 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1088 DECLARE_WAITQUEUE(waita, current);
1089 unsigned long flags;
1091 add_wait_queue(&rp->b_wait, &waita);
1092 set_current_state(TASK_INTERRUPTIBLE);
1094 spin_lock_irqsave(&rp->b_lock, flags);
1095 while (MON_RING_EMPTY(rp)) {
1096 spin_unlock_irqrestore(&rp->b_lock, flags);
1098 if (file->f_flags & O_NONBLOCK) {
1099 set_current_state(TASK_RUNNING);
1100 remove_wait_queue(&rp->b_wait, &waita);
1101 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1104 if (signal_pending(current)) {
1105 remove_wait_queue(&rp->b_wait, &waita);
1108 set_current_state(TASK_INTERRUPTIBLE);
1110 spin_lock_irqsave(&rp->b_lock, flags);
1112 spin_unlock_irqrestore(&rp->b_lock, flags);
1114 set_current_state(TASK_RUNNING);
1115 remove_wait_queue(&rp->b_wait, &waita);
1119 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1122 unsigned long vaddr;
1124 for (n = 0; n < npages; n++) {
1125 vaddr = get_zeroed_page(GFP_KERNEL);
1128 free_page((unsigned long) map[n].ptr);
1131 map[n].ptr = (unsigned char *) vaddr;
1132 map[n].pg = virt_to_page(vaddr);
1137 static void mon_free_buff(struct mon_pgmap *map, int npages)
1141 for (n = 0; n < npages; n++)
1142 free_page((unsigned long) map[n].ptr);
1145 int __init mon_bin_init(void)
1149 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1153 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1154 mon_bin_cdev.owner = THIS_MODULE;
1156 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1163 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1168 void mon_bin_exit(void)
1170 cdev_del(&mon_bin_cdev);
1171 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);