2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
29 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/clock.h>
33 #include <asm/mmu_context.h>
36 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
37 * This value will be used at the very early stage of serial setup.
38 * The bigger value means no problem.
40 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
43 .loops_per_jiffy = 10000000,
46 EXPORT_SYMBOL(cpu_data);
49 * The machine vector. First entry in .machvec.init, or clobbered by
50 * sh_mv= on the command line, prior to .machvec.init teardown.
52 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
55 struct screen_info screen_info;
58 extern int root_mountflags;
60 #define RAMDISK_IMAGE_START_MASK 0x07FF
61 #define RAMDISK_PROMPT_FLAG 0x8000
62 #define RAMDISK_LOAD_FLAG 0x4000
64 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
66 static struct resource code_resource = {
67 .name = "Kernel code",
68 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
71 static struct resource data_resource = {
72 .name = "Kernel data",
73 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
76 unsigned long memory_start;
77 EXPORT_SYMBOL(memory_start);
78 unsigned long memory_end = 0;
79 EXPORT_SYMBOL(memory_end);
81 static int __init early_parse_mem(char *p)
85 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
86 size = memparse(p, &p);
87 memory_end = memory_start + size;
91 early_param("mem", early_parse_mem);
94 * Register fully available low RAM pages with the bootmem allocator.
96 static void __init register_bootmem_low_pages(void)
98 unsigned long curr_pfn, last_pfn, pages;
101 * We are rounding up the start address of usable memory:
103 curr_pfn = PFN_UP(__MEMORY_START);
106 * ... and at the end of the usable range downwards:
108 last_pfn = PFN_DOWN(__pa(memory_end));
110 if (last_pfn > max_low_pfn)
111 last_pfn = max_low_pfn;
113 pages = last_pfn - curr_pfn;
114 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
118 static void __init reserve_crashkernel(void)
120 unsigned long long free_mem;
121 unsigned long long crash_size, crash_base;
124 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
126 ret = parse_crashkernel(boot_command_line, free_mem,
127 &crash_size, &crash_base);
128 if (ret == 0 && crash_size) {
129 if (crash_base > 0) {
130 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
131 "for crashkernel (System RAM: %ldMB)\n",
132 (unsigned long)(crash_size >> 20),
133 (unsigned long)(crash_base >> 20),
134 (unsigned long)(free_mem >> 20));
135 crashk_res.start = crash_base;
136 crashk_res.end = crash_base + crash_size - 1;
137 reserve_bootmem(crash_base, crash_size);
139 printk(KERN_INFO "crashkernel reservation failed - "
140 "you have to specify a base address\n");
144 static inline void __init reserve_crashkernel(void)
148 void __init setup_bootmem_allocator(unsigned long free_pfn)
150 unsigned long bootmap_size;
153 * Find a proper area for the bootmem bitmap. After this
154 * bootstrap step all allocations (until the page allocator
155 * is intact) must be done via bootmem_alloc().
157 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
158 min_low_pfn, max_low_pfn);
160 add_active_range(0, min_low_pfn, max_low_pfn);
161 register_bootmem_low_pages();
166 * Reserve the kernel text and
167 * Reserve the bootmem bitmap. We do this in two steps (first step
168 * was init_bootmem()), because this catches the (definitely buggy)
169 * case of us accidentally initializing the bootmem allocator with
170 * an invalid RAM area.
172 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
173 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
176 * reserve physical page 0 - it's a special BIOS page on many boxes,
177 * enabling clean reboots, SMP operation, laptop functions.
179 reserve_bootmem(__MEMORY_START, PAGE_SIZE);
181 sparse_memory_present_with_active_regions(0);
183 #ifdef CONFIG_BLK_DEV_INITRD
184 ROOT_DEV = Root_RAM0;
186 if (LOADER_TYPE && INITRD_START) {
187 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
188 reserve_bootmem(INITRD_START + __MEMORY_START,
190 initrd_start = INITRD_START + PAGE_OFFSET +
192 initrd_end = initrd_start + INITRD_SIZE;
194 printk("initrd extends beyond end of memory "
195 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
196 INITRD_START + INITRD_SIZE,
197 max_low_pfn << PAGE_SHIFT);
203 reserve_crashkernel();
206 #ifndef CONFIG_NEED_MULTIPLE_NODES
207 static void __init setup_memory(void)
209 unsigned long start_pfn;
212 * Partially used pages are not usable - thus
213 * we are rounding upwards:
215 start_pfn = PFN_UP(__pa(_end));
216 setup_bootmem_allocator(start_pfn);
219 extern void __init setup_memory(void);
222 void __init setup_arch(char **cmdline_p)
226 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
228 #ifdef CONFIG_BLK_DEV_RAM
229 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
230 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
231 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
234 if (!MOUNT_ROOT_RDONLY)
235 root_mountflags &= ~MS_RDONLY;
236 init_mm.start_code = (unsigned long) _text;
237 init_mm.end_code = (unsigned long) _etext;
238 init_mm.end_data = (unsigned long) _edata;
239 init_mm.brk = (unsigned long) _end;
241 code_resource.start = virt_to_phys(_text);
242 code_resource.end = virt_to_phys(_etext)-1;
243 data_resource.start = virt_to_phys(_etext);
244 data_resource.end = virt_to_phys(_edata)-1;
246 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
248 memory_end = memory_start + __MEMORY_SIZE;
250 #ifdef CONFIG_CMDLINE_BOOL
251 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
253 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
256 /* Save unparsed command line copy for /proc/cmdline */
257 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
258 *cmdline_p = command_line;
265 * Find the highest page frame number we have available
267 max_pfn = PFN_DOWN(__pa(memory_end));
270 * Determine low and high memory ranges:
272 max_low_pfn = max_pfn;
273 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
275 nodes_clear(node_online_map);
277 /* Setup bootmem with available RAM */
281 #ifdef CONFIG_DUMMY_CONSOLE
282 conswitchp = &dummy_con;
285 /* Perform the machine specific initialisation */
286 if (likely(sh_mv.mv_setup))
287 sh_mv.mv_setup(cmdline_p);
296 static const char *cpu_name[] = {
297 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
298 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
299 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
300 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
301 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
302 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
303 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
304 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
305 [CPU_SH7760] = "SH7760",
306 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
307 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
308 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
309 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
310 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
311 [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown"
314 const char *get_cpu_subtype(struct sh_cpuinfo *c)
316 return cpu_name[c->type];
319 #ifdef CONFIG_PROC_FS
320 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
321 static const char *cpu_flags[] = {
322 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
323 "ptea", "llsc", "l2", "op32", NULL
326 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
330 seq_printf(m, "cpu flags\t:");
333 seq_printf(m, " %s\n", cpu_flags[0]);
337 for (i = 0; cpu_flags[i]; i++)
338 if ((c->flags & (1 << i)))
339 seq_printf(m, " %s", cpu_flags[i+1]);
344 static void show_cacheinfo(struct seq_file *m, const char *type,
345 struct cache_info info)
347 unsigned int cache_size;
349 cache_size = info.ways * info.sets * info.linesz;
351 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
352 type, cache_size >> 10, info.ways);
356 * Get CPU information for use by the procfs.
358 static int show_cpuinfo(struct seq_file *m, void *v)
360 struct sh_cpuinfo *c = v;
361 unsigned int cpu = c - cpu_data;
363 if (!cpu_online(cpu))
367 seq_printf(m, "machine\t\t: %s\n", get_system_type());
369 seq_printf(m, "processor\t: %d\n", cpu);
370 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
371 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
375 seq_printf(m, "cache type\t: ");
378 * Check for what type of cache we have, we support both the
379 * unified cache on the SH-2 and SH-3, as well as the harvard
380 * style cache on the SH-4.
382 if (c->icache.flags & SH_CACHE_COMBINED) {
383 seq_printf(m, "unified\n");
384 show_cacheinfo(m, "cache", c->icache);
386 seq_printf(m, "split (harvard)\n");
387 show_cacheinfo(m, "icache", c->icache);
388 show_cacheinfo(m, "dcache", c->dcache);
391 /* Optional secondary cache */
392 if (c->flags & CPU_HAS_L2_CACHE)
393 show_cacheinfo(m, "scache", c->scache);
395 seq_printf(m, "bogomips\t: %lu.%02lu\n",
396 c->loops_per_jiffy/(500000/HZ),
397 (c->loops_per_jiffy/(5000/HZ)) % 100);
402 static void *c_start(struct seq_file *m, loff_t *pos)
404 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
406 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
409 return c_start(m, pos);
411 static void c_stop(struct seq_file *m, void *v)
414 struct seq_operations cpuinfo_op = {
418 .show = show_cpuinfo,
420 #endif /* CONFIG_PROC_FS */