2 * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/linkage.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/kernel_stat.h>
28 #include <asm/errno.h>
29 #include <asm/signal.h>
30 #include <asm/system.h>
34 #include <asm/sibyte/sb1250_regs.h>
35 #include <asm/sibyte/sb1250_int.h>
36 #include <asm/sibyte/sb1250_uart.h>
37 #include <asm/sibyte/sb1250_scd.h>
38 #include <asm/sibyte/sb1250.h>
41 * These are the routines that handle all the low level interrupt stuff.
42 * Actions handled here are: initialization of the interrupt map, requesting of
43 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
48 static void end_sb1250_irq(unsigned int irq);
49 static void enable_sb1250_irq(unsigned int irq);
50 static void disable_sb1250_irq(unsigned int irq);
51 static void ack_sb1250_irq(unsigned int irq);
53 static void sb1250_set_affinity(unsigned int irq, cpumask_t mask);
56 #ifdef CONFIG_SIBYTE_HAS_LDT
57 extern unsigned long ldt_eoi_space;
63 /* Default to UART1 */
65 #ifdef CONFIG_SERIAL_SB1250_DUART
66 extern char sb1250_duart_present[];
70 static struct irq_chip sb1250_irq_type = {
72 .ack = ack_sb1250_irq,
73 .mask = disable_sb1250_irq,
74 .mask_ack = ack_sb1250_irq,
75 .unmask = enable_sb1250_irq,
76 .end = end_sb1250_irq,
78 .set_affinity = sb1250_set_affinity
82 /* Store the CPU id (not the logical number) */
83 int sb1250_irq_owner[SB1250_NR_IRQS];
85 DEFINE_SPINLOCK(sb1250_imr_lock);
87 void sb1250_mask_irq(int cpu, int irq)
92 spin_lock_irqsave(&sb1250_imr_lock, flags);
93 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
94 R_IMR_INTERRUPT_MASK));
95 cur_ints |= (((u64) 1) << irq);
96 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
97 R_IMR_INTERRUPT_MASK));
98 spin_unlock_irqrestore(&sb1250_imr_lock, flags);
101 void sb1250_unmask_irq(int cpu, int irq)
106 spin_lock_irqsave(&sb1250_imr_lock, flags);
107 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
108 R_IMR_INTERRUPT_MASK));
109 cur_ints &= ~(((u64) 1) << irq);
110 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
111 R_IMR_INTERRUPT_MASK));
112 spin_unlock_irqrestore(&sb1250_imr_lock, flags);
116 static void sb1250_set_affinity(unsigned int irq, cpumask_t mask)
118 int i = 0, old_cpu, cpu, int_on;
120 struct irq_desc *desc = irq_desc + irq;
125 if (cpus_weight(mask) > 1) {
126 printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq);
130 /* Convert logical CPU to physical CPU */
131 cpu = cpu_logical_map(i);
133 /* Protect against other affinity changers and IMR manipulation */
134 spin_lock_irqsave(&desc->lock, flags);
135 spin_lock(&sb1250_imr_lock);
137 /* Swizzle each CPU's IMR (but leave the IP selection alone) */
138 old_cpu = sb1250_irq_owner[irq];
139 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) +
140 R_IMR_INTERRUPT_MASK));
141 int_on = !(cur_ints & (((u64) 1) << irq));
143 /* If it was on, mask it */
144 cur_ints |= (((u64) 1) << irq);
145 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) +
146 R_IMR_INTERRUPT_MASK));
148 sb1250_irq_owner[irq] = cpu;
150 /* unmask for the new CPU */
151 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
152 R_IMR_INTERRUPT_MASK));
153 cur_ints &= ~(((u64) 1) << irq);
154 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
155 R_IMR_INTERRUPT_MASK));
157 spin_unlock(&sb1250_imr_lock);
158 spin_unlock_irqrestore(&desc->lock, flags);
162 /*****************************************************************************/
164 static void disable_sb1250_irq(unsigned int irq)
166 sb1250_mask_irq(sb1250_irq_owner[irq], irq);
169 static void enable_sb1250_irq(unsigned int irq)
171 sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
175 static void ack_sb1250_irq(unsigned int irq)
177 #ifdef CONFIG_SIBYTE_HAS_LDT
181 * If the interrupt was an HT interrupt, now is the time to
182 * clear it. NOTE: we assume the HT bridge was set up to
183 * deliver the interrupts to all CPUs (which makes affinity
184 * changing easier for us)
186 pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq],
187 R_IMR_LDT_INTERRUPT)));
188 pending &= ((u64)1 << (irq));
191 for (i=0; i<NR_CPUS; i++) {
194 cpu = cpu_logical_map(i);
199 * Clear for all CPUs so an affinity switch
200 * doesn't find an old status
202 __raw_writeq(pending,
203 IOADDR(A_IMR_REGISTER(cpu,
204 R_IMR_LDT_INTERRUPT_CLR)));
208 * Generate EOI. For Pass 1 parts, EOI is a nop. For
209 * Pass 2, the LDT world may be edge-triggered, but
210 * this EOI shouldn't hurt. If they are
211 * level-sensitive, the EOI is required.
213 *(uint32_t *)(ldt_eoi_space+(irq<<16)+(7<<2)) = 0;
216 sb1250_mask_irq(sb1250_irq_owner[irq], irq);
220 static void end_sb1250_irq(unsigned int irq)
222 if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
223 sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
228 void __init init_sb1250_irqs(void)
232 for (i = 0; i < SB1250_NR_IRQS; i++) {
233 set_irq_chip(i, &sb1250_irq_type);
234 sb1250_irq_owner[i] = 0;
239 static irqreturn_t sb1250_dummy_handler(int irq, void *dev_id)
244 static struct irqaction sb1250_dummy_action = {
245 .handler = sb1250_dummy_handler,
247 .mask = CPU_MASK_NONE,
248 .name = "sb1250-private",
253 int sb1250_steal_irq(int irq)
255 struct irq_desc *desc = irq_desc + irq;
259 if (irq >= SB1250_NR_IRQS)
262 spin_lock_irqsave(&desc->lock, flags);
263 /* Don't allow sharing at all for these */
264 if (desc->action != NULL)
267 desc->action = &sb1250_dummy_action;
270 spin_unlock_irqrestore(&desc->lock, flags);
275 * arch_init_irq is called early in the boot sequence from init/main.c via
276 * init_IRQ. It is responsible for setting up the interrupt mapper and
277 * installing the handler that will be responsible for dispatching interrupts
278 * to the "right" place.
281 * For now, map all interrupts to IP[2]. We could save
282 * some cycles by parceling out system interrupts to different
283 * IP lines, but keep it simple for bringup. We'll also direct
284 * all interrupts to a single CPU; we should probably route
285 * PCI and LDT to one cpu and everything else to the other
286 * to balance the load a bit.
288 * On the second cpu, everything is set to IP5, which is
289 * ignored, EXCEPT the mailbox interrupt. That one is
290 * set to IP[2] so it is handled. This is needed so we
291 * can do cross-cpu function calls, as requred by SMP
294 #define IMR_IP2_VAL K_INT_MAP_I0
295 #define IMR_IP3_VAL K_INT_MAP_I1
296 #define IMR_IP4_VAL K_INT_MAP_I2
297 #define IMR_IP5_VAL K_INT_MAP_I3
298 #define IMR_IP6_VAL K_INT_MAP_I4
300 void __init arch_init_irq(void)
305 unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
306 STATUSF_IP1 | STATUSF_IP0;
308 /* Default everything to IP2 */
309 for (i = 0; i < SB1250_NR_IRQS; i++) { /* was I0 */
310 __raw_writeq(IMR_IP2_VAL,
311 IOADDR(A_IMR_REGISTER(0,
312 R_IMR_INTERRUPT_MAP_BASE) +
314 __raw_writeq(IMR_IP2_VAL,
315 IOADDR(A_IMR_REGISTER(1,
316 R_IMR_INTERRUPT_MAP_BASE) +
323 * Map the high 16 bits of the mailbox registers to IP[3], for
327 __raw_writeq(IMR_IP3_VAL,
328 IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) +
329 (K_INT_MBOX_0 << 3)));
330 __raw_writeq(IMR_IP3_VAL,
331 IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) +
332 (K_INT_MBOX_0 << 3)));
334 /* Clear the mailboxes. The firmware may leave them dirty */
335 __raw_writeq(0xffffffffffffffffULL,
336 IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU)));
337 __raw_writeq(0xffffffffffffffffULL,
338 IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU)));
340 /* Mask everything except the mailbox registers for both cpus */
341 tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0);
342 __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK)));
343 __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK)));
345 sb1250_steal_irq(K_INT_MBOX_0);
348 * Note that the timer interrupts are also mapped, but this is
349 * done in sb1250_time_init(). Also, the profiling driver
350 * does its own management of IP7.
354 imask |= STATUSF_IP6;
356 /* Enable necessary IPs, disable the rest */
357 change_c0_status(ST0_IM, imask);
361 kgdb_irq = K_INT_UART_0 + kgdb_port;
363 #ifdef CONFIG_SERIAL_SB1250_DUART
364 sb1250_duart_present[kgdb_port] = 0;
366 /* Setup uart 1 settings, mapper */
367 __raw_writeq(M_DUART_IMR_BRK,
368 IOADDR(A_DUART_IMRREG(kgdb_port)));
370 sb1250_steal_irq(kgdb_irq);
371 __raw_writeq(IMR_IP6_VAL,
372 IOADDR(A_IMR_REGISTER(0,
373 R_IMR_INTERRUPT_MAP_BASE) +
375 sb1250_unmask_irq(0, kgdb_irq);
382 #include <linux/delay.h>
384 #define duart_out(reg, val) csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
385 #define duart_in(reg) csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
387 static void sb1250_kgdb_interrupt(void)
390 * Clear break-change status (allow some time for the remote
391 * host to stop the break, since we would see another
392 * interrupt on the end-of-break too)
394 kstat_this_cpu.irqs[kgdb_irq]++;
396 duart_out(R_DUART_CMD, V_DUART_MISC_CMD_RESET_BREAK_INT |
397 M_DUART_RX_EN | M_DUART_TX_EN);
398 set_async_breakpoint(&get_irq_regs()->cp0_epc);
401 #endif /* CONFIG_KGDB */
403 static inline void sb1250_timer_interrupt(void)
405 int cpu = smp_processor_id();
406 int irq = K_INT_TIMER_0 + cpu;
409 kstat_this_cpu.irqs[irq]++;
411 write_seqlock(&xtime_lock);
414 ____raw_writeq(M_SCD_TIMER_ENABLE | M_SCD_TIMER_MODE_CONTINUOUS,
415 IOADDR(A_SCD_TIMER_REGISTER(cpu, R_SCD_TIMER_CFG)));
418 * call the generic timer interrupt handling
422 write_sequnlock(&xtime_lock);
425 * In UP mode, we call local_timer_interrupt() to do profiling
426 * and process accouting.
428 * In SMP mode, local_timer_interrupt() is invoked by appropriate
429 * low-level local timer interrupt handler.
431 local_timer_interrupt(irq);
436 extern void sb1250_mailbox_interrupt(void);
438 asmlinkage void plat_irq_dispatch(void)
440 unsigned int pending;
443 * What a pain. We have to be really careful saving the upper 32 bits
444 * of any * register across function calls if we don't want them
445 * trashed--since were running in -o32, the calling routing never saves
446 * the full 64 bits of a register across a function call. Being the
447 * interrupt handler, we're guaranteed that interrupts are disabled
448 * during this code so we don't have to worry about random interrupts
449 * blasting the high 32 bits.
452 pending = read_c0_cause() & read_c0_status() & ST0_IM;
454 if (pending & CAUSEF_IP7) /* CPU performance counter interrupt */
455 do_IRQ(MIPS_CPU_IRQ_BASE + 7);
456 else if (pending & CAUSEF_IP4)
457 sb1250_timer_interrupt();
460 else if (pending & CAUSEF_IP3)
461 sb1250_mailbox_interrupt();
465 else if (pending & CAUSEF_IP6) /* KGDB (uart 1) */
466 sb1250_kgdb_interrupt();
469 else if (pending & CAUSEF_IP2) {
470 unsigned long long mask;
473 * Default...we've hit an IP[2] interrupt, which means we've
474 * got to check the 1250 interrupt registers to figure out what
475 * to do. Need to detect which CPU we're on, now that
476 * smp_affinity is supported.
478 mask = __raw_readq(IOADDR(A_IMR_REGISTER(smp_processor_id(),
479 R_IMR_INTERRUPT_STATUS_BASE)));
481 do_IRQ(fls64(mask) - 1);
483 spurious_interrupt();
485 spurious_interrupt();