2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
130 * Inherited from caller.
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
153 fis[13] = tf->hob_nsect;
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
171 * Inherited from caller.
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
189 tf->hob_nsect = fis[13];
192 static const u8 ata_rw_cmds[] = {
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
219 ATA_CMD_WRITE_FUA_EXT
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
237 int index, fua, lba48, write;
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
251 tf->protocol = ATA_PROT_DMA;
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
276 * Block address read from @tf.
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
288 block |= (tf->device & 0xf) << 24;
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
335 if (!lba_48_ok(block, n_block))
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
344 tf->command = ATA_CMD_FPDMA_READ;
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
363 if (lba_28_ok(block, n_block)) {
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
371 tf->flags |= ATA_TFLAG_LBA48;
373 tf->hob_nsect = (n_block >> 8) & 0xff;
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
379 /* request too large even for LBA48 */
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
385 tf->nsect = n_block & 0xff;
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
391 tf->device |= ATA_LBA;
394 u32 sect, head, cyl, track;
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
412 /* Check whether the converted CHS can fit.
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
476 static const struct ata_xfer_ent {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
497 * Matching XFER_* value, 0 if no match found.
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
514 * Return matching xfer_mask for @xfer_mode.
520 * Matching xfer_mask, 0 if no match found.
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
524 const struct ata_xfer_ent *ent;
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
536 * Return matching xfer_shift for @xfer_mode.
542 * Matching xfer_shift, -1 if no match found.
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
546 const struct ata_xfer_ent *ent;
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
568 static const char *ata_mode_string(unsigned int xfer_mask)
570 static const char * const xfer_mode_str[] = {
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
600 static const char *sata_spd_string(unsigned int spd)
602 static const char * const spd_str[] = {
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
609 return spd_str[spd - 1];
612 void ata_dev_disable(struct ata_device *dev)
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
623 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
628 unsigned int err_mask;
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
645 * For DIPM, we will only enable it for the
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
680 * we don't have to disable DIPM since IPM flags
681 * disallow transitions to SLUMBER, which effectively
682 * disable DIPM if it does not support PARTIAL
686 case MAX_PERFORMANCE:
687 /* disable all IPM transitions */
688 scontrol |= (0x3 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
694 * we don't have to disable DIPM since IPM flags
695 * disallow all transitions which effectively
696 * disable DIPM anyway.
701 /* FIXME: handle SET FEATURES failure */
708 * ata_dev_enable_pm - enable SATA interface power management
709 * @dev: device to enable power management
710 * @policy: the link power management policy
712 * Enable SATA Interface power management. This will enable
713 * Device Interface Power Management (DIPM) for min_power
714 * policy, and then call driver specific callbacks for
715 * enabling Host Initiated Power management.
718 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
720 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
723 struct ata_port *ap = dev->link->ap;
725 /* set HIPM first, then DIPM */
726 if (ap->ops->enable_pm)
727 rc = ap->ops->enable_pm(ap, policy);
730 rc = ata_dev_set_dipm(dev, policy);
734 ap->pm_policy = MAX_PERFORMANCE;
736 ap->pm_policy = policy;
737 return /* rc */; /* hopefully we can use 'rc' eventually */
742 * ata_dev_disable_pm - disable SATA interface power management
743 * @dev: device to disable power management
745 * Disable SATA Interface power management. This will disable
746 * Device Interface Power Management (DIPM) without changing
747 * policy, call driver specific callbacks for disabling Host
748 * Initiated Power management.
753 static void ata_dev_disable_pm(struct ata_device *dev)
755 struct ata_port *ap = dev->link->ap;
757 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
758 if (ap->ops->disable_pm)
759 ap->ops->disable_pm(ap);
761 #endif /* CONFIG_PM */
763 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
765 ap->pm_policy = policy;
766 ap->link.eh_info.action |= ATA_EHI_LPM;
767 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
768 ata_port_schedule_eh(ap);
772 static void ata_lpm_enable(struct ata_host *host)
774 struct ata_link *link;
776 struct ata_device *dev;
779 for (i = 0; i < host->n_ports; i++) {
781 ata_port_for_each_link(link, ap) {
782 ata_link_for_each_dev(dev, link)
783 ata_dev_disable_pm(dev);
788 static void ata_lpm_disable(struct ata_host *host)
792 for (i = 0; i < host->n_ports; i++) {
793 struct ata_port *ap = host->ports[i];
794 ata_lpm_schedule(ap, ap->pm_policy);
797 #endif /* CONFIG_PM */
801 * ata_devchk - PATA device presence detection
802 * @ap: ATA channel to examine
803 * @device: Device to examine (starting at zero)
805 * This technique was originally described in
806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
807 * later found its way into the ATA/ATAPI spec.
809 * Write a pattern to the ATA shadow registers,
810 * and if a device is present, it will respond by
811 * correctly storing and echoing back the
812 * ATA shadow register contents.
818 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
820 struct ata_ioports *ioaddr = &ap->ioaddr;
823 ap->ops->dev_select(ap, device);
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
828 iowrite8(0xaa, ioaddr->nsect_addr);
829 iowrite8(0x55, ioaddr->lbal_addr);
831 iowrite8(0x55, ioaddr->nsect_addr);
832 iowrite8(0xaa, ioaddr->lbal_addr);
834 nsect = ioread8(ioaddr->nsect_addr);
835 lbal = ioread8(ioaddr->lbal_addr);
837 if ((nsect == 0x55) && (lbal == 0xaa))
838 return 1; /* we found a device */
840 return 0; /* nothing found */
844 * ata_dev_classify - determine device type based on ATA-spec signature
845 * @tf: ATA taskfile register set for device to be identified
847 * Determine from taskfile register contents whether a device is
848 * ATA or ATAPI, as per "Signature and persistence" section
849 * of ATA/PI spec (volume 1, sect 5.14).
855 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
856 * %ATA_DEV_UNKNOWN the event of failure.
858 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
864 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
865 * signatures for ATA and ATAPI devices attached on SerialATA,
866 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
867 * spec has never mentioned about using different signatures
868 * for ATA/ATAPI devices. Then, Serial ATA II: Port
869 * Multiplier specification began to use 0x69/0x96 to identify
870 * port multpliers and 0x3c/0xc3 to identify SEMB device.
871 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
872 * 0x69/0x96 shortly and described them as reserved for
875 * We follow the current spec and consider that 0x69/0x96
876 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
878 if ((tf->lbam == 0) && (tf->lbah == 0)) {
879 DPRINTK("found ATA device by sig\n");
883 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
884 DPRINTK("found ATAPI device by sig\n");
885 return ATA_DEV_ATAPI;
888 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
889 DPRINTK("found PMP device by sig\n");
893 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
894 printk(KERN_INFO "ata: SEMB device ignored\n");
895 return ATA_DEV_SEMB_UNSUP; /* not yet */
898 DPRINTK("unknown device\n");
899 return ATA_DEV_UNKNOWN;
903 * ata_dev_try_classify - Parse returned ATA device signature
904 * @dev: ATA device to classify (starting at zero)
905 * @present: device seems present
906 * @r_err: Value of error register on completion
908 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
909 * an ATA/ATAPI-defined set of values is placed in the ATA
910 * shadow registers, indicating the results of device detection
913 * Select the ATA device, and read the values from the ATA shadow
914 * registers. Then parse according to the Error register value,
915 * and the spec-defined values examined by ata_dev_classify().
921 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
923 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
926 struct ata_port *ap = dev->link->ap;
927 struct ata_taskfile tf;
931 ap->ops->dev_select(ap, dev->devno);
933 memset(&tf, 0, sizeof(tf));
935 ap->ops->tf_read(ap, &tf);
940 /* see if device passed diags: if master then continue and warn later */
941 if (err == 0 && dev->devno == 0)
942 /* diagnostic fail : do nothing _YET_ */
943 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
946 else if ((dev->devno == 0) && (err == 0x81))
951 /* determine if device is ATA or ATAPI */
952 class = ata_dev_classify(&tf);
954 if (class == ATA_DEV_UNKNOWN) {
955 /* If the device failed diagnostic, it's likely to
956 * have reported incorrect device signature too.
957 * Assume ATA device if the device seems present but
958 * device signature is invalid with diagnostic
961 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
964 class = ATA_DEV_NONE;
965 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
966 class = ATA_DEV_NONE;
972 * ata_id_string - Convert IDENTIFY DEVICE page into string
973 * @id: IDENTIFY DEVICE results we will examine
974 * @s: string into which data is output
975 * @ofs: offset into identify device page
976 * @len: length of string to return. must be an even number.
978 * The strings in the IDENTIFY DEVICE page are broken up into
979 * 16-bit chunks. Run through the string, and output each
980 * 8-bit chunk linearly, regardless of platform.
986 void ata_id_string(const u16 *id, unsigned char *s,
987 unsigned int ofs, unsigned int len)
1006 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1007 * @id: IDENTIFY DEVICE results we will examine
1008 * @s: string into which data is output
1009 * @ofs: offset into identify device page
1010 * @len: length of string to return. must be an odd number.
1012 * This function is identical to ata_id_string except that it
1013 * trims trailing spaces and terminates the resulting string with
1014 * null. @len must be actual maximum length (even number) + 1.
1019 void ata_id_c_string(const u16 *id, unsigned char *s,
1020 unsigned int ofs, unsigned int len)
1024 WARN_ON(!(len & 1));
1026 ata_id_string(id, s, ofs, len - 1);
1028 p = s + strnlen(s, len - 1);
1029 while (p > s && p[-1] == ' ')
1034 static u64 ata_id_n_sectors(const u16 *id)
1036 if (ata_id_has_lba(id)) {
1037 if (ata_id_has_lba48(id))
1038 return ata_id_u64(id, 100);
1040 return ata_id_u32(id, 60);
1042 if (ata_id_current_chs_valid(id))
1043 return ata_id_u32(id, 57);
1045 return id[1] * id[3] * id[6];
1049 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1053 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1054 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1055 sectors |= (tf->hob_lbal & 0xff) << 24;
1056 sectors |= (tf->lbah & 0xff) << 16;
1057 sectors |= (tf->lbam & 0xff) << 8;
1058 sectors |= (tf->lbal & 0xff);
1063 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1067 sectors |= (tf->device & 0x0f) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1076 * ata_read_native_max_address - Read native max address
1077 * @dev: target device
1078 * @max_sectors: out parameter for the result native max address
1080 * Perform an LBA48 or LBA28 native size query upon the device in
1084 * 0 on success, -EACCES if command is aborted by the drive.
1085 * -EIO on other errors.
1087 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1089 unsigned int err_mask;
1090 struct ata_taskfile tf;
1091 int lba48 = ata_id_has_lba48(dev->id);
1093 ata_tf_init(dev, &tf);
1095 /* always clear all address registers */
1096 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1099 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1100 tf.flags |= ATA_TFLAG_LBA48;
1102 tf.command = ATA_CMD_READ_NATIVE_MAX;
1104 tf.protocol |= ATA_PROT_NODATA;
1105 tf.device |= ATA_LBA;
1107 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1109 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1110 "max address (err_mask=0x%x)\n", err_mask);
1111 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1117 *max_sectors = ata_tf_to_lba48(&tf);
1119 *max_sectors = ata_tf_to_lba(&tf);
1120 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1126 * ata_set_max_sectors - Set max sectors
1127 * @dev: target device
1128 * @new_sectors: new max sectors value to set for the device
1130 * Set max sectors of @dev to @new_sectors.
1133 * 0 on success, -EACCES if command is aborted or denied (due to
1134 * previous non-volatile SET_MAX) by the drive. -EIO on other
1137 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1139 unsigned int err_mask;
1140 struct ata_taskfile tf;
1141 int lba48 = ata_id_has_lba48(dev->id);
1145 ata_tf_init(dev, &tf);
1147 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1150 tf.command = ATA_CMD_SET_MAX_EXT;
1151 tf.flags |= ATA_TFLAG_LBA48;
1153 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1154 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1155 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1157 tf.command = ATA_CMD_SET_MAX;
1159 tf.device |= (new_sectors >> 24) & 0xf;
1162 tf.protocol |= ATA_PROT_NODATA;
1163 tf.device |= ATA_LBA;
1165 tf.lbal = (new_sectors >> 0) & 0xff;
1166 tf.lbam = (new_sectors >> 8) & 0xff;
1167 tf.lbah = (new_sectors >> 16) & 0xff;
1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1171 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1172 "max address (err_mask=0x%x)\n", err_mask);
1173 if (err_mask == AC_ERR_DEV &&
1174 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1183 * ata_hpa_resize - Resize a device with an HPA set
1184 * @dev: Device to resize
1186 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1187 * it if required to the full size of the media. The caller must check
1188 * the drive has the HPA feature set enabled.
1191 * 0 on success, -errno on failure.
1193 static int ata_hpa_resize(struct ata_device *dev)
1195 struct ata_eh_context *ehc = &dev->link->eh_context;
1196 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1197 u64 sectors = ata_id_n_sectors(dev->id);
1201 /* do we need to do it? */
1202 if (dev->class != ATA_DEV_ATA ||
1203 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1204 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1207 /* read native max address */
1208 rc = ata_read_native_max_address(dev, &native_sectors);
1210 /* If HPA isn't going to be unlocked, skip HPA
1211 * resizing from the next try.
1213 if (!ata_ignore_hpa) {
1214 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1215 "broken, will skip HPA handling\n");
1216 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1218 /* we can continue if device aborted the command */
1226 /* nothing to do? */
1227 if (native_sectors <= sectors || !ata_ignore_hpa) {
1228 if (!print_info || native_sectors == sectors)
1231 if (native_sectors > sectors)
1232 ata_dev_printk(dev, KERN_INFO,
1233 "HPA detected: current %llu, native %llu\n",
1234 (unsigned long long)sectors,
1235 (unsigned long long)native_sectors);
1236 else if (native_sectors < sectors)
1237 ata_dev_printk(dev, KERN_WARNING,
1238 "native sectors (%llu) is smaller than "
1240 (unsigned long long)native_sectors,
1241 (unsigned long long)sectors);
1245 /* let's unlock HPA */
1246 rc = ata_set_max_sectors(dev, native_sectors);
1247 if (rc == -EACCES) {
1248 /* if device aborted the command, skip HPA resizing */
1249 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1250 "(%llu -> %llu), skipping HPA handling\n",
1251 (unsigned long long)sectors,
1252 (unsigned long long)native_sectors);
1253 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1258 /* re-read IDENTIFY data */
1259 rc = ata_dev_reread_id(dev, 0);
1261 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1262 "data after HPA resizing\n");
1267 u64 new_sectors = ata_id_n_sectors(dev->id);
1268 ata_dev_printk(dev, KERN_INFO,
1269 "HPA unlocked: %llu -> %llu, native %llu\n",
1270 (unsigned long long)sectors,
1271 (unsigned long long)new_sectors,
1272 (unsigned long long)native_sectors);
1279 * ata_id_to_dma_mode - Identify DMA mode from id block
1280 * @dev: device to identify
1281 * @unknown: mode to assume if we cannot tell
1283 * Set up the timing values for the device based upon the identify
1284 * reported values for the DMA mode. This function is used by drivers
1285 * which rely upon firmware configured modes, but wish to report the
1286 * mode correctly when possible.
1288 * In addition we emit similarly formatted messages to the default
1289 * ata_dev_set_mode handler, in order to provide consistency of
1293 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1298 /* Pack the DMA modes */
1299 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1300 if (dev->id[53] & 0x04)
1301 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1303 /* Select the mode in use */
1304 mode = ata_xfer_mask2mode(mask);
1307 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1308 ata_mode_string(mask));
1310 /* SWDMA perhaps ? */
1312 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1315 /* Configure the device reporting */
1316 dev->xfer_mode = mode;
1317 dev->xfer_shift = ata_xfer_mode2shift(mode);
1321 * ata_noop_dev_select - Select device 0/1 on ATA bus
1322 * @ap: ATA channel to manipulate
1323 * @device: ATA device (numbered from zero) to select
1325 * This function performs no actual function.
1327 * May be used as the dev_select() entry in ata_port_operations.
1332 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1338 * ata_std_dev_select - Select device 0/1 on ATA bus
1339 * @ap: ATA channel to manipulate
1340 * @device: ATA device (numbered from zero) to select
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
1344 * ATA channel. Works with both PIO and MMIO.
1346 * May be used as the dev_select() entry in ata_port_operations.
1352 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1357 tmp = ATA_DEVICE_OBS;
1359 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1361 iowrite8(tmp, ap->ioaddr.device_addr);
1362 ata_pause(ap); /* needed; also flushes, for mmio */
1366 * ata_dev_select - Select device 0/1 on ATA bus
1367 * @ap: ATA channel to manipulate
1368 * @device: ATA device (numbered from zero) to select
1369 * @wait: non-zero to wait for Status register BSY bit to clear
1370 * @can_sleep: non-zero if context allows sleeping
1372 * Use the method defined in the ATA specification to
1373 * make either device 0, or device 1, active on the
1376 * This is a high-level version of ata_std_dev_select(),
1377 * which additionally provides the services of inserting
1378 * the proper pauses and status polling, where needed.
1384 void ata_dev_select(struct ata_port *ap, unsigned int device,
1385 unsigned int wait, unsigned int can_sleep)
1387 if (ata_msg_probe(ap))
1388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1389 "device %u, wait %u\n", device, wait);
1394 ap->ops->dev_select(ap, device);
1397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
1405 * @id: IDENTIFY DEVICE page to dump
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1414 static inline void ata_dump_id(const u16 *id)
1416 DPRINTK("49==0x%04x "
1426 DPRINTK("80==0x%04x "
1436 DPRINTK("88==0x%04x "
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1449 * FIXME: pre IDE drive timing (do we care ?).
1457 static unsigned int ata_id_xfermask(const u16 *id)
1459 unsigned int pio_mask, mwdma_mask, udma_mask;
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 if (mode < 5) /* Valid PIO range */
1473 pio_mask = (2 << mode) - 1;
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487 if (ata_id_is_cfa(id)) {
1489 * Process compact flash extended modes
1491 int pio = id[163] & 0x7;
1492 int dma = (id[163] >> 3) & 7;
1495 pio_mask |= (1 << 5);
1497 pio_mask |= (1 << 6);
1499 mwdma_mask |= (1 << 3);
1501 mwdma_mask |= (1 << 4);
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 * ata_port_queue_task - Queue port_task
1513 * @ap: The ata_port to queue port_task for
1514 * @fn: workqueue function to be scheduled
1515 * @data: data for @fn to use
1516 * @delay: delay time for workqueue function
1518 * Schedule @fn(@data) for execution after @delay jiffies using
1519 * port_task. There is one port_task per port and it's the
1520 * user(low level driver)'s responsibility to make sure that only
1521 * one task is active at any given time.
1523 * libata core layer takes care of synchronization between
1524 * port_task and EH. ata_port_queue_task() may be ignored for EH
1528 * Inherited from caller.
1530 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1531 unsigned long delay)
1533 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1534 ap->port_task_data = data;
1536 /* may fail if ata_port_flush_task() in progress */
1537 queue_delayed_work(ata_wq, &ap->port_task, delay);
1541 * ata_port_flush_task - Flush port_task
1542 * @ap: The ata_port to flush port_task for
1544 * After this function completes, port_task is guranteed not to
1545 * be running or scheduled.
1548 * Kernel thread context (may sleep)
1550 void ata_port_flush_task(struct ata_port *ap)
1554 cancel_rearming_delayed_work(&ap->port_task);
1556 if (ata_msg_ctl(ap))
1557 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1560 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1562 struct completion *waiting = qc->private_data;
1568 * ata_exec_internal_sg - execute libata internal command
1569 * @dev: Device to which the command is sent
1570 * @tf: Taskfile registers for the command and the result
1571 * @cdb: CDB for packet command
1572 * @dma_dir: Data tranfer direction of the command
1573 * @sgl: sg list for the data buffer of the command
1574 * @n_elem: Number of sg entries
1575 * @timeout: Timeout in msecs (0 for default)
1577 * Executes libata internal command with timeout. @tf contains
1578 * command on entry and result on return. Timeout and error
1579 * conditions are reported via return value. No recovery action
1580 * is taken after a command times out. It's caller's duty to
1581 * clean up after timeout.
1584 * None. Should be called with kernel context, might sleep.
1587 * Zero on success, AC_ERR_* mask on failure
1589 unsigned ata_exec_internal_sg(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
1591 int dma_dir, struct scatterlist *sgl,
1592 unsigned int n_elem, unsigned long timeout)
1594 struct ata_link *link = dev->link;
1595 struct ata_port *ap = link->ap;
1596 u8 command = tf->command;
1597 struct ata_queued_cmd *qc;
1598 unsigned int tag, preempted_tag;
1599 u32 preempted_sactive, preempted_qc_active;
1600 int preempted_nr_active_links;
1601 DECLARE_COMPLETION_ONSTACK(wait);
1602 unsigned long flags;
1603 unsigned int err_mask;
1606 spin_lock_irqsave(ap->lock, flags);
1608 /* no internal command while frozen */
1609 if (ap->pflags & ATA_PFLAG_FROZEN) {
1610 spin_unlock_irqrestore(ap->lock, flags);
1611 return AC_ERR_SYSTEM;
1614 /* initialize internal qc */
1616 /* XXX: Tag 0 is used for drivers with legacy EH as some
1617 * drivers choke if any other tag is given. This breaks
1618 * ata_tag_internal() test for those drivers. Don't use new
1619 * EH stuff without converting to it.
1621 if (ap->ops->error_handler)
1622 tag = ATA_TAG_INTERNAL;
1626 if (test_and_set_bit(tag, &ap->qc_allocated))
1628 qc = __ata_qc_from_tag(ap, tag);
1636 preempted_tag = link->active_tag;
1637 preempted_sactive = link->sactive;
1638 preempted_qc_active = ap->qc_active;
1639 preempted_nr_active_links = ap->nr_active_links;
1640 link->active_tag = ATA_TAG_POISON;
1643 ap->nr_active_links = 0;
1645 /* prepare & issue qc */
1648 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1649 qc->flags |= ATA_QCFLAG_RESULT_TF;
1650 qc->dma_dir = dma_dir;
1651 if (dma_dir != DMA_NONE) {
1652 unsigned int i, buflen = 0;
1653 struct scatterlist *sg;
1655 for_each_sg(sgl, sg, n_elem, i)
1656 buflen += sg->length;
1658 ata_sg_init(qc, sgl, n_elem);
1659 qc->nbytes = buflen;
1662 qc->private_data = &wait;
1663 qc->complete_fn = ata_qc_complete_internal;
1667 spin_unlock_irqrestore(ap->lock, flags);
1670 timeout = ata_probe_timeout * 1000 / HZ;
1672 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1674 ata_port_flush_task(ap);
1677 spin_lock_irqsave(ap->lock, flags);
1679 /* We're racing with irq here. If we lose, the
1680 * following test prevents us from completing the qc
1681 * twice. If we win, the port is frozen and will be
1682 * cleaned up by ->post_internal_cmd().
1684 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1685 qc->err_mask |= AC_ERR_TIMEOUT;
1687 if (ap->ops->error_handler)
1688 ata_port_freeze(ap);
1690 ata_qc_complete(qc);
1692 if (ata_msg_warn(ap))
1693 ata_dev_printk(dev, KERN_WARNING,
1694 "qc timeout (cmd 0x%x)\n", command);
1697 spin_unlock_irqrestore(ap->lock, flags);
1700 /* do post_internal_cmd */
1701 if (ap->ops->post_internal_cmd)
1702 ap->ops->post_internal_cmd(qc);
1704 /* perform minimal error analysis */
1705 if (qc->flags & ATA_QCFLAG_FAILED) {
1706 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1707 qc->err_mask |= AC_ERR_DEV;
1710 qc->err_mask |= AC_ERR_OTHER;
1712 if (qc->err_mask & ~AC_ERR_OTHER)
1713 qc->err_mask &= ~AC_ERR_OTHER;
1717 spin_lock_irqsave(ap->lock, flags);
1719 *tf = qc->result_tf;
1720 err_mask = qc->err_mask;
1723 link->active_tag = preempted_tag;
1724 link->sactive = preempted_sactive;
1725 ap->qc_active = preempted_qc_active;
1726 ap->nr_active_links = preempted_nr_active_links;
1728 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1729 * Until those drivers are fixed, we detect the condition
1730 * here, fail the command with AC_ERR_SYSTEM and reenable the
1733 * Note that this doesn't change any behavior as internal
1734 * command failure results in disabling the device in the
1735 * higher layer for LLDDs without new reset/EH callbacks.
1737 * Kill the following code as soon as those drivers are fixed.
1739 if (ap->flags & ATA_FLAG_DISABLED) {
1740 err_mask |= AC_ERR_SYSTEM;
1744 spin_unlock_irqrestore(ap->lock, flags);
1750 * ata_exec_internal - execute libata internal command
1751 * @dev: Device to which the command is sent
1752 * @tf: Taskfile registers for the command and the result
1753 * @cdb: CDB for packet command
1754 * @dma_dir: Data tranfer direction of the command
1755 * @buf: Data buffer of the command
1756 * @buflen: Length of data buffer
1757 * @timeout: Timeout in msecs (0 for default)
1759 * Wrapper around ata_exec_internal_sg() which takes simple
1760 * buffer instead of sg list.
1763 * None. Should be called with kernel context, might sleep.
1766 * Zero on success, AC_ERR_* mask on failure
1768 unsigned ata_exec_internal(struct ata_device *dev,
1769 struct ata_taskfile *tf, const u8 *cdb,
1770 int dma_dir, void *buf, unsigned int buflen,
1771 unsigned long timeout)
1773 struct scatterlist *psg = NULL, sg;
1774 unsigned int n_elem = 0;
1776 if (dma_dir != DMA_NONE) {
1778 sg_init_one(&sg, buf, buflen);
1783 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1788 * ata_do_simple_cmd - execute simple internal command
1789 * @dev: Device to which the command is sent
1790 * @cmd: Opcode to execute
1792 * Execute a 'simple' command, that only consists of the opcode
1793 * 'cmd' itself, without filling any other registers
1796 * Kernel thread context (may sleep).
1799 * Zero on success, AC_ERR_* mask on failure
1801 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1803 struct ata_taskfile tf;
1805 ata_tf_init(dev, &tf);
1808 tf.flags |= ATA_TFLAG_DEVICE;
1809 tf.protocol = ATA_PROT_NODATA;
1811 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1815 * ata_pio_need_iordy - check if iordy needed
1818 * Check if the current speed of the device requires IORDY. Used
1819 * by various controllers for chip configuration.
1822 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1824 /* Controller doesn't support IORDY. Probably a pointless check
1825 as the caller should know this */
1826 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1828 /* PIO3 and higher it is mandatory */
1829 if (adev->pio_mode > XFER_PIO_2)
1831 /* We turn it on when possible */
1832 if (ata_id_has_iordy(adev->id))
1838 * ata_pio_mask_no_iordy - Return the non IORDY mask
1841 * Compute the highest mode possible if we are not using iordy. Return
1842 * -1 if no iordy mode is available.
1845 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1847 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1849 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1850 /* Is the speed faster than the drive allows non IORDY ? */
1852 /* This is cycle times not frequency - watch the logic! */
1853 if (pio > 240) /* PIO2 is 240nS per cycle */
1854 return 3 << ATA_SHIFT_PIO;
1855 return 7 << ATA_SHIFT_PIO;
1858 return 3 << ATA_SHIFT_PIO;
1862 * ata_dev_read_id - Read ID data from the specified device
1863 * @dev: target device
1864 * @p_class: pointer to class of the target device (may be changed)
1865 * @flags: ATA_READID_* flags
1866 * @id: buffer to read IDENTIFY data into
1868 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1869 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1870 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1871 * for pre-ATA4 drives.
1873 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1874 * now we abort if we hit that case.
1877 * Kernel thread context (may sleep)
1880 * 0 on success, -errno otherwise.
1882 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1883 unsigned int flags, u16 *id)
1885 struct ata_port *ap = dev->link->ap;
1886 unsigned int class = *p_class;
1887 struct ata_taskfile tf;
1888 unsigned int err_mask = 0;
1890 int may_fallback = 1, tried_spinup = 0;
1893 if (ata_msg_ctl(ap))
1894 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1896 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1898 ata_tf_init(dev, &tf);
1902 tf.command = ATA_CMD_ID_ATA;
1905 tf.command = ATA_CMD_ID_ATAPI;
1909 reason = "unsupported class";
1913 tf.protocol = ATA_PROT_PIO;
1915 /* Some devices choke if TF registers contain garbage. Make
1916 * sure those are properly initialized.
1918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1920 /* Device presence detection is unreliable on some
1921 * controllers. Always poll IDENTIFY if available.
1923 tf.flags |= ATA_TFLAG_POLLING;
1925 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1926 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1928 if (err_mask & AC_ERR_NODEV_HINT) {
1929 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1930 ap->print_id, dev->devno);
1934 /* Device or controller might have reported the wrong
1935 * device class. Give a shot at the other IDENTIFY if
1936 * the current one is aborted by the device.
1939 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1945 class = ATA_DEV_ATA;
1950 reason = "I/O error";
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1959 swap_buf_le16(id, ATA_ID_WORDS);
1963 reason = "device reports invalid type";
1965 if (class == ATA_DEV_ATA) {
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1969 if (ata_id_is_ata(id))
1973 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1976 * Drive powered-up in standby mode, and requires a specific
1977 * SET_FEATURES spin-up subcommand before it will accept
1978 * anything other than the original IDENTIFY command.
1980 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1981 if (err_mask && id[2] != 0x738c) {
1983 reason = "SPINUP failed";
1987 * If the drive initially returned incomplete IDENTIFY info,
1988 * we now must reissue the IDENTIFY command.
1990 if (id[2] == 0x37c8)
1994 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1996 * The exact sequence expected by certain pre-ATA4 drives is:
1998 * IDENTIFY (optional in early ATA)
1999 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2001 * Some drives were very specific about that exact sequence.
2003 * Note that ATA4 says lba is mandatory so the second check
2004 * shoud never trigger.
2006 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2007 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2010 reason = "INIT_DEV_PARAMS failed";
2014 /* current CHS translation info (id[53-58]) might be
2015 * changed. reread the identify device info.
2017 flags &= ~ATA_READID_POSTRESET;
2027 if (ata_msg_warn(ap))
2028 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2029 "(%s, err_mask=0x%x)\n", reason, err_mask);
2033 static inline u8 ata_dev_knobble(struct ata_device *dev)
2035 struct ata_port *ap = dev->link->ap;
2036 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2039 static void ata_dev_config_ncq(struct ata_device *dev,
2040 char *desc, size_t desc_sz)
2042 struct ata_port *ap = dev->link->ap;
2043 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2045 if (!ata_id_has_ncq(dev->id)) {
2049 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2050 snprintf(desc, desc_sz, "NCQ (not used)");
2053 if (ap->flags & ATA_FLAG_NCQ) {
2054 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2055 dev->flags |= ATA_DFLAG_NCQ;
2058 if (hdepth >= ddepth)
2059 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2061 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2065 * ata_dev_configure - Configure the specified ATA/ATAPI device
2066 * @dev: Target device to configure
2068 * Configure @dev according to @dev->id. Generic and low-level
2069 * driver specific fixups are also applied.
2072 * Kernel thread context (may sleep)
2075 * 0 on success, -errno otherwise
2077 int ata_dev_configure(struct ata_device *dev)
2079 struct ata_port *ap = dev->link->ap;
2080 struct ata_eh_context *ehc = &dev->link->eh_context;
2081 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2082 const u16 *id = dev->id;
2083 unsigned int xfer_mask;
2084 char revbuf[7]; /* XYZ-99\0 */
2085 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2086 char modelbuf[ATA_ID_PROD_LEN+1];
2089 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2090 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2095 if (ata_msg_probe(ap))
2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2099 dev->horkage |= ata_dev_blacklisted(dev);
2101 /* let ACPI work its magic */
2102 rc = ata_acpi_on_devcfg(dev);
2106 /* massage HPA, do it early as it might change IDENTIFY data */
2107 rc = ata_hpa_resize(dev);
2111 /* print device capabilities */
2112 if (ata_msg_probe(ap))
2113 ata_dev_printk(dev, KERN_DEBUG,
2114 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2115 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2117 id[49], id[82], id[83], id[84],
2118 id[85], id[86], id[87], id[88]);
2120 /* initialize to-be-configured parameters */
2121 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2122 dev->max_sectors = 0;
2130 * common ATA, ATAPI feature tests
2133 /* find max transfer mode; for printk only */
2134 xfer_mask = ata_id_xfermask(id);
2136 if (ata_msg_probe(ap))
2139 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2140 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2143 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2146 /* ATA-specific feature tests */
2147 if (dev->class == ATA_DEV_ATA) {
2148 if (ata_id_is_cfa(id)) {
2149 if (id[162] & 1) /* CPRM may make this media unusable */
2150 ata_dev_printk(dev, KERN_WARNING,
2151 "supports DRM functions and may "
2152 "not be fully accessable.\n");
2153 snprintf(revbuf, 7, "CFA");
2155 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2157 dev->n_sectors = ata_id_n_sectors(id);
2159 if (dev->id[59] & 0x100)
2160 dev->multi_count = dev->id[59] & 0xff;
2162 if (ata_id_has_lba(id)) {
2163 const char *lba_desc;
2167 dev->flags |= ATA_DFLAG_LBA;
2168 if (ata_id_has_lba48(id)) {
2169 dev->flags |= ATA_DFLAG_LBA48;
2172 if (dev->n_sectors >= (1UL << 28) &&
2173 ata_id_has_flush_ext(id))
2174 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2178 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2180 /* print device info to dmesg */
2181 if (ata_msg_drv(ap) && print_info) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "%s: %s, %s, max %s\n",
2184 revbuf, modelbuf, fwrevbuf,
2185 ata_mode_string(xfer_mask));
2186 ata_dev_printk(dev, KERN_INFO,
2187 "%Lu sectors, multi %u: %s %s\n",
2188 (unsigned long long)dev->n_sectors,
2189 dev->multi_count, lba_desc, ncq_desc);
2194 /* Default translation */
2195 dev->cylinders = id[1];
2197 dev->sectors = id[6];
2199 if (ata_id_current_chs_valid(id)) {
2200 /* Current CHS translation is valid. */
2201 dev->cylinders = id[54];
2202 dev->heads = id[55];
2203 dev->sectors = id[56];
2206 /* print device info to dmesg */
2207 if (ata_msg_drv(ap) && print_info) {
2208 ata_dev_printk(dev, KERN_INFO,
2209 "%s: %s, %s, max %s\n",
2210 revbuf, modelbuf, fwrevbuf,
2211 ata_mode_string(xfer_mask));
2212 ata_dev_printk(dev, KERN_INFO,
2213 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2214 (unsigned long long)dev->n_sectors,
2215 dev->multi_count, dev->cylinders,
2216 dev->heads, dev->sectors);
2223 /* ATAPI-specific feature tests */
2224 else if (dev->class == ATA_DEV_ATAPI) {
2225 const char *cdb_intr_string = "";
2226 const char *atapi_an_string = "";
2229 rc = atapi_cdb_len(id);
2230 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2231 if (ata_msg_warn(ap))
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "unsupported CDB len\n");
2237 dev->cdb_len = (unsigned int) rc;
2239 /* Enable ATAPI AN if both the host and device have
2240 * the support. If PMP is attached, SNTF is required
2241 * to enable ATAPI AN to discern between PHY status
2242 * changed notifications and ATAPI ANs.
2244 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2245 (!ap->nr_pmp_links ||
2246 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2247 unsigned int err_mask;
2249 /* issue SET feature command to turn this on */
2250 err_mask = ata_dev_set_feature(dev,
2251 SETFEATURES_SATA_ENABLE, SATA_AN);
2253 ata_dev_printk(dev, KERN_ERR,
2254 "failed to enable ATAPI AN "
2255 "(err_mask=0x%x)\n", err_mask);
2257 dev->flags |= ATA_DFLAG_AN;
2258 atapi_an_string = ", ATAPI AN";
2262 if (ata_id_cdb_intr(dev->id)) {
2263 dev->flags |= ATA_DFLAG_CDB_INTR;
2264 cdb_intr_string = ", CDB intr";
2267 /* print device info to dmesg */
2268 if (ata_msg_drv(ap) && print_info)
2269 ata_dev_printk(dev, KERN_INFO,
2270 "ATAPI: %s, %s, max %s%s%s\n",
2272 ata_mode_string(xfer_mask),
2273 cdb_intr_string, atapi_an_string);
2276 /* determine max_sectors */
2277 dev->max_sectors = ATA_MAX_SECTORS;
2278 if (dev->flags & ATA_DFLAG_LBA48)
2279 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2281 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2282 if (ata_id_has_hipm(dev->id))
2283 dev->flags |= ATA_DFLAG_HIPM;
2284 if (ata_id_has_dipm(dev->id))
2285 dev->flags |= ATA_DFLAG_DIPM;
2288 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2289 /* Let the user know. We don't want to disallow opens for
2290 rescue purposes, or in case the vendor is just a blithering
2293 ata_dev_printk(dev, KERN_WARNING,
2294 "Drive reports diagnostics failure. This may indicate a drive\n");
2295 ata_dev_printk(dev, KERN_WARNING,
2296 "fault or invalid emulation. Contact drive vendor for information.\n");
2300 /* limit bridge transfers to udma5, 200 sectors */
2301 if (ata_dev_knobble(dev)) {
2302 if (ata_msg_drv(ap) && print_info)
2303 ata_dev_printk(dev, KERN_INFO,
2304 "applying bridge limits\n");
2305 dev->udma_mask &= ATA_UDMA5;
2306 dev->max_sectors = ATA_MAX_SECTORS;
2309 if ((dev->class == ATA_DEV_ATAPI) &&
2310 (atapi_command_packet_set(id) == TYPE_TAPE))
2311 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2313 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2314 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2317 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2318 dev->horkage |= ATA_HORKAGE_IPM;
2320 /* reset link pm_policy for this port to no pm */
2321 ap->pm_policy = MAX_PERFORMANCE;
2324 if (ap->ops->dev_config)
2325 ap->ops->dev_config(dev);
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2329 __FUNCTION__, ata_chk_status(ap));
2333 if (ata_msg_probe(ap))
2334 ata_dev_printk(dev, KERN_DEBUG,
2335 "%s: EXIT, err\n", __FUNCTION__);
2340 * ata_cable_40wire - return 40 wire cable type
2343 * Helper method for drivers which want to hardwire 40 wire cable
2347 int ata_cable_40wire(struct ata_port *ap)
2349 return ATA_CBL_PATA40;
2353 * ata_cable_80wire - return 80 wire cable type
2356 * Helper method for drivers which want to hardwire 80 wire cable
2360 int ata_cable_80wire(struct ata_port *ap)
2362 return ATA_CBL_PATA80;
2366 * ata_cable_unknown - return unknown PATA cable.
2369 * Helper method for drivers which have no PATA cable detection.
2372 int ata_cable_unknown(struct ata_port *ap)
2374 return ATA_CBL_PATA_UNK;
2378 * ata_cable_sata - return SATA cable type
2381 * Helper method for drivers which have SATA cables
2384 int ata_cable_sata(struct ata_port *ap)
2386 return ATA_CBL_SATA;
2390 * ata_bus_probe - Reset and probe ATA bus
2393 * Master ATA bus probing function. Initiates a hardware-dependent
2394 * bus reset, then attempts to identify any devices found on
2398 * PCI/etc. bus probe sem.
2401 * Zero on success, negative errno otherwise.
2404 int ata_bus_probe(struct ata_port *ap)
2406 unsigned int classes[ATA_MAX_DEVICES];
2407 int tries[ATA_MAX_DEVICES];
2409 struct ata_device *dev;
2413 ata_link_for_each_dev(dev, &ap->link)
2414 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2417 ata_link_for_each_dev(dev, &ap->link) {
2418 /* If we issue an SRST then an ATA drive (not ATAPI)
2419 * may change configuration and be in PIO0 timing. If
2420 * we do a hard reset (or are coming from power on)
2421 * this is true for ATA or ATAPI. Until we've set a
2422 * suitable controller mode we should not touch the
2423 * bus as we may be talking too fast.
2425 dev->pio_mode = XFER_PIO_0;
2427 /* If the controller has a pio mode setup function
2428 * then use it to set the chipset to rights. Don't
2429 * touch the DMA setup as that will be dealt with when
2430 * configuring devices.
2432 if (ap->ops->set_piomode)
2433 ap->ops->set_piomode(ap, dev);
2436 /* reset and determine device classes */
2437 ap->ops->phy_reset(ap);
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2441 dev->class != ATA_DEV_UNKNOWN)
2442 classes[dev->devno] = dev->class;
2444 classes[dev->devno] = ATA_DEV_NONE;
2446 dev->class = ATA_DEV_UNKNOWN;
2451 /* read IDENTIFY page and configure devices. We have to do the identify
2452 specific sequence bass-ackwards so that PDIAG- is released by
2455 ata_link_for_each_dev(dev, &ap->link) {
2456 if (tries[dev->devno])
2457 dev->class = classes[dev->devno];
2459 if (!ata_dev_enabled(dev))
2462 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2468 /* Now ask for the cable type as PDIAG- should have been released */
2469 if (ap->ops->cable_detect)
2470 ap->cbl = ap->ops->cable_detect(ap);
2472 /* We may have SATA bridge glue hiding here irrespective of the
2473 reported cable types and sensed types */
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 if (!ata_dev_enabled(dev))
2477 /* SATA drives indicate we have a bridge. We don't know which
2478 end of the link the bridge is which is a problem */
2479 if (ata_id_is_sata(dev->id))
2480 ap->cbl = ATA_CBL_SATA;
2483 /* After the identify sequence we can now set up the devices. We do
2484 this in the normal order so that the user doesn't get confused */
2486 ata_link_for_each_dev(dev, &ap->link) {
2487 if (!ata_dev_enabled(dev))
2490 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2491 rc = ata_dev_configure(dev);
2492 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2497 /* configure transfer mode */
2498 rc = ata_set_mode(&ap->link, &dev);
2502 ata_link_for_each_dev(dev, &ap->link)
2503 if (ata_dev_enabled(dev))
2506 /* no device present, disable port */
2507 ata_port_disable(ap);
2511 tries[dev->devno]--;
2515 /* eeek, something went very wrong, give up */
2516 tries[dev->devno] = 0;
2520 /* give it just one more chance */
2521 tries[dev->devno] = min(tries[dev->devno], 1);
2523 if (tries[dev->devno] == 1) {
2524 /* This is the last chance, better to slow
2525 * down than lose it.
2527 sata_down_spd_limit(&ap->link);
2528 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2532 if (!tries[dev->devno])
2533 ata_dev_disable(dev);
2539 * ata_port_probe - Mark port as enabled
2540 * @ap: Port for which we indicate enablement
2542 * Modify @ap data structure such that the system
2543 * thinks that the entire port is enabled.
2545 * LOCKING: host lock, or some other form of
2549 void ata_port_probe(struct ata_port *ap)
2551 ap->flags &= ~ATA_FLAG_DISABLED;
2555 * sata_print_link_status - Print SATA link status
2556 * @link: SATA link to printk link status about
2558 * This function prints link speed and status of a SATA link.
2563 void sata_print_link_status(struct ata_link *link)
2565 u32 sstatus, scontrol, tmp;
2567 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2569 sata_scr_read(link, SCR_CONTROL, &scontrol);
2571 if (ata_link_online(link)) {
2572 tmp = (sstatus >> 4) & 0xf;
2573 ata_link_printk(link, KERN_INFO,
2574 "SATA link up %s (SStatus %X SControl %X)\n",
2575 sata_spd_string(tmp), sstatus, scontrol);
2577 ata_link_printk(link, KERN_INFO,
2578 "SATA link down (SStatus %X SControl %X)\n",
2584 * ata_dev_pair - return other device on cable
2587 * Obtain the other device on the same cable, or if none is
2588 * present NULL is returned
2591 struct ata_device *ata_dev_pair(struct ata_device *adev)
2593 struct ata_link *link = adev->link;
2594 struct ata_device *pair = &link->device[1 - adev->devno];
2595 if (!ata_dev_enabled(pair))
2601 * ata_port_disable - Disable port.
2602 * @ap: Port to be disabled.
2604 * Modify @ap data structure such that the system
2605 * thinks that the entire port is disabled, and should
2606 * never attempt to probe or communicate with devices
2609 * LOCKING: host lock, or some other form of
2613 void ata_port_disable(struct ata_port *ap)
2615 ap->link.device[0].class = ATA_DEV_NONE;
2616 ap->link.device[1].class = ATA_DEV_NONE;
2617 ap->flags |= ATA_FLAG_DISABLED;
2621 * sata_down_spd_limit - adjust SATA spd limit downward
2622 * @link: Link to adjust SATA spd limit for
2624 * Adjust SATA spd limit of @link downward. Note that this
2625 * function only adjusts the limit. The change must be applied
2626 * using sata_set_spd().
2629 * Inherited from caller.
2632 * 0 on success, negative errno on failure
2634 int sata_down_spd_limit(struct ata_link *link)
2636 u32 sstatus, spd, mask;
2639 if (!sata_scr_valid(link))
2642 /* If SCR can be read, use it to determine the current SPD.
2643 * If not, use cached value in link->sata_spd.
2645 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2647 spd = (sstatus >> 4) & 0xf;
2649 spd = link->sata_spd;
2651 mask = link->sata_spd_limit;
2655 /* unconditionally mask off the highest bit */
2656 highbit = fls(mask) - 1;
2657 mask &= ~(1 << highbit);
2659 /* Mask off all speeds higher than or equal to the current
2660 * one. Force 1.5Gbps if current SPD is not available.
2663 mask &= (1 << (spd - 1)) - 1;
2667 /* were we already at the bottom? */
2671 link->sata_spd_limit = mask;
2673 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2674 sata_spd_string(fls(mask)));
2679 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2681 struct ata_link *host_link = &link->ap->link;
2682 u32 limit, target, spd;
2684 limit = link->sata_spd_limit;
2686 /* Don't configure downstream link faster than upstream link.
2687 * It doesn't speed up anything and some PMPs choke on such
2690 if (!ata_is_host_link(link) && host_link->sata_spd)
2691 limit &= (1 << host_link->sata_spd) - 1;
2693 if (limit == UINT_MAX)
2696 target = fls(limit);
2698 spd = (*scontrol >> 4) & 0xf;
2699 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2701 return spd != target;
2705 * sata_set_spd_needed - is SATA spd configuration needed
2706 * @link: Link in question
2708 * Test whether the spd limit in SControl matches
2709 * @link->sata_spd_limit. This function is used to determine
2710 * whether hardreset is necessary to apply SATA spd
2714 * Inherited from caller.
2717 * 1 if SATA spd configuration is needed, 0 otherwise.
2719 int sata_set_spd_needed(struct ata_link *link)
2723 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2726 return __sata_set_spd_needed(link, &scontrol);
2730 * sata_set_spd - set SATA spd according to spd limit
2731 * @link: Link to set SATA spd for
2733 * Set SATA spd of @link according to sata_spd_limit.
2736 * Inherited from caller.
2739 * 0 if spd doesn't need to be changed, 1 if spd has been
2740 * changed. Negative errno if SCR registers are inaccessible.
2742 int sata_set_spd(struct ata_link *link)
2747 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2750 if (!__sata_set_spd_needed(link, &scontrol))
2753 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2760 * This mode timing computation functionality is ported over from
2761 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2764 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2765 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2766 * for UDMA6, which is currently supported only by Maxtor drives.
2768 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2771 static const struct ata_timing ata_timing[] = {
2773 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2774 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2775 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2776 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2778 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2779 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2780 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2781 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2782 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2784 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2786 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2787 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2788 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2790 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2791 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2792 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2794 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2795 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2796 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2797 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2799 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2800 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2801 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2803 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2808 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2809 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2811 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2813 q->setup = EZ(t->setup * 1000, T);
2814 q->act8b = EZ(t->act8b * 1000, T);
2815 q->rec8b = EZ(t->rec8b * 1000, T);
2816 q->cyc8b = EZ(t->cyc8b * 1000, T);
2817 q->active = EZ(t->active * 1000, T);
2818 q->recover = EZ(t->recover * 1000, T);
2819 q->cycle = EZ(t->cycle * 1000, T);
2820 q->udma = EZ(t->udma * 1000, UT);
2823 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2824 struct ata_timing *m, unsigned int what)
2826 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2827 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2828 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2829 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2830 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2831 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2832 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2833 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2836 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2838 const struct ata_timing *t;
2840 for (t = ata_timing; t->mode != speed; t++)
2841 if (t->mode == 0xFF)
2846 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2847 struct ata_timing *t, int T, int UT)
2849 const struct ata_timing *s;
2850 struct ata_timing p;
2856 if (!(s = ata_timing_find_mode(speed)))
2859 memcpy(t, s, sizeof(*s));
2862 * If the drive is an EIDE drive, it can tell us it needs extended
2863 * PIO/MW_DMA cycle timing.
2866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2867 memset(&p, 0, sizeof(p));
2868 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2869 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2870 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2871 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2872 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2874 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2878 * Convert the timing to bus clock counts.
2881 ata_timing_quantize(t, t, T, UT);
2884 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2885 * S.M.A.R.T * and some other commands. We have to ensure that the
2886 * DMA cycle timing is slower/equal than the fastest PIO timing.
2889 if (speed > XFER_PIO_6) {
2890 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2891 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2895 * Lengthen active & recovery time so that cycle time is correct.
2898 if (t->act8b + t->rec8b < t->cyc8b) {
2899 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2900 t->rec8b = t->cyc8b - t->act8b;
2903 if (t->active + t->recover < t->cycle) {
2904 t->active += (t->cycle - (t->active + t->recover)) / 2;
2905 t->recover = t->cycle - t->active;
2908 /* In a few cases quantisation may produce enough errors to
2909 leave t->cycle too low for the sum of active and recovery
2910 if so we must correct this */
2911 if (t->active + t->recover > t->cycle)
2912 t->cycle = t->active + t->recover;
2918 * ata_down_xfermask_limit - adjust dev xfer masks downward
2919 * @dev: Device to adjust xfer masks
2920 * @sel: ATA_DNXFER_* selector
2922 * Adjust xfer masks of @dev downward. Note that this function
2923 * does not apply the change. Invoking ata_set_mode() afterwards
2924 * will apply the limit.
2927 * Inherited from caller.
2930 * 0 on success, negative errno on failure
2932 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2935 unsigned int orig_mask, xfer_mask;
2936 unsigned int pio_mask, mwdma_mask, udma_mask;
2939 quiet = !!(sel & ATA_DNXFER_QUIET);
2940 sel &= ~ATA_DNXFER_QUIET;
2942 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2945 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2948 case ATA_DNXFER_PIO:
2949 highbit = fls(pio_mask) - 1;
2950 pio_mask &= ~(1 << highbit);
2953 case ATA_DNXFER_DMA:
2955 highbit = fls(udma_mask) - 1;
2956 udma_mask &= ~(1 << highbit);
2959 } else if (mwdma_mask) {
2960 highbit = fls(mwdma_mask) - 1;
2961 mwdma_mask &= ~(1 << highbit);
2967 case ATA_DNXFER_40C:
2968 udma_mask &= ATA_UDMA_MASK_40C;
2971 case ATA_DNXFER_FORCE_PIO0:
2973 case ATA_DNXFER_FORCE_PIO:
2982 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2984 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2988 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2989 snprintf(buf, sizeof(buf), "%s:%s",
2990 ata_mode_string(xfer_mask),
2991 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2993 snprintf(buf, sizeof(buf), "%s",
2994 ata_mode_string(xfer_mask));
2996 ata_dev_printk(dev, KERN_WARNING,
2997 "limiting speed to %s\n", buf);
3000 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3006 static int ata_dev_set_mode(struct ata_device *dev)
3008 struct ata_eh_context *ehc = &dev->link->eh_context;
3009 unsigned int err_mask;
3012 dev->flags &= ~ATA_DFLAG_PIO;
3013 if (dev->xfer_shift == ATA_SHIFT_PIO)
3014 dev->flags |= ATA_DFLAG_PIO;
3016 err_mask = ata_dev_set_xfermode(dev);
3018 /* Old CFA may refuse this command, which is just fine */
3019 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3020 err_mask &= ~AC_ERR_DEV;
3022 /* Some very old devices and some bad newer ones fail any kind of
3023 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3024 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3025 dev->pio_mode <= XFER_PIO_2)
3026 err_mask &= ~AC_ERR_DEV;
3028 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3029 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3030 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3031 dev->dma_mode == XFER_MW_DMA_0 &&
3032 (dev->id[63] >> 8) & 1)
3033 err_mask &= ~AC_ERR_DEV;
3036 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3037 "(err_mask=0x%x)\n", err_mask);
3041 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3042 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3043 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3047 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3048 dev->xfer_shift, (int)dev->xfer_mode);
3050 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3051 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3056 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3057 * @link: link on which timings will be programmed
3058 * @r_failed_dev: out paramter for failed device
3060 * Standard implementation of the function used to tune and set
3061 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3062 * ata_dev_set_mode() fails, pointer to the failing device is
3063 * returned in @r_failed_dev.
3066 * PCI/etc. bus probe sem.
3069 * 0 on success, negative errno otherwise
3072 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3074 struct ata_port *ap = link->ap;
3075 struct ata_device *dev;
3076 int rc = 0, used_dma = 0, found = 0;
3078 /* step 1: calculate xfer_mask */
3079 ata_link_for_each_dev(dev, link) {
3080 unsigned int pio_mask, dma_mask;
3081 unsigned int mode_mask;
3083 if (!ata_dev_enabled(dev))
3086 mode_mask = ATA_DMA_MASK_ATA;
3087 if (dev->class == ATA_DEV_ATAPI)
3088 mode_mask = ATA_DMA_MASK_ATAPI;
3089 else if (ata_id_is_cfa(dev->id))
3090 mode_mask = ATA_DMA_MASK_CFA;
3092 ata_dev_xfermask(dev);
3094 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3095 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3097 if (libata_dma_mask & mode_mask)
3098 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3102 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3103 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3112 /* step 2: always set host PIO timings */
3113 ata_link_for_each_dev(dev, link) {
3114 if (!ata_dev_enabled(dev))
3117 if (!dev->pio_mode) {
3118 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3123 dev->xfer_mode = dev->pio_mode;
3124 dev->xfer_shift = ATA_SHIFT_PIO;
3125 if (ap->ops->set_piomode)
3126 ap->ops->set_piomode(ap, dev);
3129 /* step 3: set host DMA timings */
3130 ata_link_for_each_dev(dev, link) {
3131 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3134 dev->xfer_mode = dev->dma_mode;
3135 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3136 if (ap->ops->set_dmamode)
3137 ap->ops->set_dmamode(ap, dev);
3140 /* step 4: update devices' xfer mode */
3141 ata_link_for_each_dev(dev, link) {
3142 /* don't update suspended devices' xfer mode */
3143 if (!ata_dev_enabled(dev))
3146 rc = ata_dev_set_mode(dev);
3151 /* Record simplex status. If we selected DMA then the other
3152 * host channels are not permitted to do so.
3154 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3155 ap->host->simplex_claimed = ap;
3159 *r_failed_dev = dev;
3164 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3165 * @link: link on which timings will be programmed
3166 * @r_failed_dev: out paramter for failed device
3168 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3169 * ata_set_mode() fails, pointer to the failing device is
3170 * returned in @r_failed_dev.
3173 * PCI/etc. bus probe sem.
3176 * 0 on success, negative errno otherwise
3178 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3180 struct ata_port *ap = link->ap;
3182 /* has private set_mode? */
3183 if (ap->ops->set_mode)
3184 return ap->ops->set_mode(link, r_failed_dev);
3185 return ata_do_set_mode(link, r_failed_dev);
3189 * ata_tf_to_host - issue ATA taskfile to host controller
3190 * @ap: port to which command is being issued
3191 * @tf: ATA taskfile register set
3193 * Issues ATA taskfile register set to ATA host controller,
3194 * with proper synchronization with interrupt handler and
3198 * spin_lock_irqsave(host lock)
3201 static inline void ata_tf_to_host(struct ata_port *ap,
3202 const struct ata_taskfile *tf)
3204 ap->ops->tf_load(ap, tf);
3205 ap->ops->exec_command(ap, tf);
3209 * ata_busy_sleep - sleep until BSY clears, or timeout
3210 * @ap: port containing status register to be polled
3211 * @tmout_pat: impatience timeout
3212 * @tmout: overall timeout
3214 * Sleep until ATA Status register bit BSY clears,
3215 * or a timeout occurs.
3218 * Kernel thread context (may sleep).
3221 * 0 on success, -errno otherwise.
3223 int ata_busy_sleep(struct ata_port *ap,
3224 unsigned long tmout_pat, unsigned long tmout)
3226 unsigned long timer_start, timeout;
3229 status = ata_busy_wait(ap, ATA_BUSY, 300);
3230 timer_start = jiffies;
3231 timeout = timer_start + tmout_pat;
3232 while (status != 0xff && (status & ATA_BUSY) &&
3233 time_before(jiffies, timeout)) {
3235 status = ata_busy_wait(ap, ATA_BUSY, 3);
3238 if (status != 0xff && (status & ATA_BUSY))
3239 ata_port_printk(ap, KERN_WARNING,
3240 "port is slow to respond, please be patient "
3241 "(Status 0x%x)\n", status);
3243 timeout = timer_start + tmout;
3244 while (status != 0xff && (status & ATA_BUSY) &&
3245 time_before(jiffies, timeout)) {
3247 status = ata_chk_status(ap);
3253 if (status & ATA_BUSY) {
3254 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3255 "(%lu secs, Status 0x%x)\n",
3256 tmout / HZ, status);
3264 * ata_wait_after_reset - wait before checking status after reset
3265 * @ap: port containing status register to be polled
3266 * @deadline: deadline jiffies for the operation
3268 * After reset, we need to pause a while before reading status.
3269 * Also, certain combination of controller and device report 0xff
3270 * for some duration (e.g. until SATA PHY is up and running)
3271 * which is interpreted as empty port in ATA world. This
3272 * function also waits for such devices to get out of 0xff
3276 * Kernel thread context (may sleep).
3278 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3280 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3282 if (time_before(until, deadline))
3285 /* Spec mandates ">= 2ms" before checking status. We wait
3286 * 150ms, because that was the magic delay used for ATAPI
3287 * devices in Hale Landis's ATADRVR, for the period of time
3288 * between when the ATA command register is written, and then
3289 * status is checked. Because waiting for "a while" before
3290 * checking status is fine, post SRST, we perform this magic
3291 * delay here as well.
3293 * Old drivers/ide uses the 2mS rule and then waits for ready.
3297 /* Wait for 0xff to clear. Some SATA devices take a long time
3298 * to clear 0xff after reset. For example, HHD424020F7SV00
3299 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3302 * Note that some PATA controllers (pata_ali) explode if
3303 * status register is read more than once when there's no
3306 if (ap->flags & ATA_FLAG_SATA) {
3308 u8 status = ata_chk_status(ap);
3310 if (status != 0xff || time_after(jiffies, deadline))
3319 * ata_wait_ready - sleep until BSY clears, or timeout
3320 * @ap: port containing status register to be polled
3321 * @deadline: deadline jiffies for the operation
3323 * Sleep until ATA Status register bit BSY clears, or timeout
3327 * Kernel thread context (may sleep).
3330 * 0 on success, -errno otherwise.
3332 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3334 unsigned long start = jiffies;
3338 u8 status = ata_chk_status(ap);
3339 unsigned long now = jiffies;
3341 if (!(status & ATA_BUSY))
3343 if (!ata_link_online(&ap->link) && status == 0xff)
3345 if (time_after(now, deadline))
3348 if (!warned && time_after(now, start + 5 * HZ) &&
3349 (deadline - now > 3 * HZ)) {
3350 ata_port_printk(ap, KERN_WARNING,
3351 "port is slow to respond, please be patient "
3352 "(Status 0x%x)\n", status);
3360 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3361 unsigned long deadline)
3363 struct ata_ioports *ioaddr = &ap->ioaddr;
3364 unsigned int dev0 = devmask & (1 << 0);
3365 unsigned int dev1 = devmask & (1 << 1);
3368 /* if device 0 was found in ata_devchk, wait for its
3372 rc = ata_wait_ready(ap, deadline);
3380 /* if device 1 was found in ata_devchk, wait for register
3381 * access briefly, then wait for BSY to clear.
3386 ap->ops->dev_select(ap, 1);
3388 /* Wait for register access. Some ATAPI devices fail
3389 * to set nsect/lbal after reset, so don't waste too
3390 * much time on it. We're gonna wait for !BSY anyway.
3392 for (i = 0; i < 2; i++) {
3395 nsect = ioread8(ioaddr->nsect_addr);
3396 lbal = ioread8(ioaddr->lbal_addr);
3397 if ((nsect == 1) && (lbal == 1))
3399 msleep(50); /* give drive a breather */
3402 rc = ata_wait_ready(ap, deadline);
3410 /* is all this really necessary? */
3411 ap->ops->dev_select(ap, 0);
3413 ap->ops->dev_select(ap, 1);
3415 ap->ops->dev_select(ap, 0);
3420 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3421 unsigned long deadline)
3423 struct ata_ioports *ioaddr = &ap->ioaddr;
3425 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3427 /* software reset. causes dev0 to be selected */
3428 iowrite8(ap->ctl, ioaddr->ctl_addr);
3429 udelay(20); /* FIXME: flush */
3430 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3431 udelay(20); /* FIXME: flush */
3432 iowrite8(ap->ctl, ioaddr->ctl_addr);
3434 /* wait a while before checking status */
3435 ata_wait_after_reset(ap, deadline);
3437 /* Before we perform post reset processing we want to see if
3438 * the bus shows 0xFF because the odd clown forgets the D7
3439 * pulldown resistor.
3441 if (ata_chk_status(ap) == 0xFF)
3444 return ata_bus_post_reset(ap, devmask, deadline);
3448 * ata_bus_reset - reset host port and associated ATA channel
3449 * @ap: port to reset
3451 * This is typically the first time we actually start issuing
3452 * commands to the ATA channel. We wait for BSY to clear, then
3453 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3454 * result. Determine what devices, if any, are on the channel
3455 * by looking at the device 0/1 error register. Look at the signature
3456 * stored in each device's taskfile registers, to determine if
3457 * the device is ATA or ATAPI.
3460 * PCI/etc. bus probe sem.
3461 * Obtains host lock.
3464 * Sets ATA_FLAG_DISABLED if bus reset fails.
3467 void ata_bus_reset(struct ata_port *ap)
3469 struct ata_device *device = ap->link.device;
3470 struct ata_ioports *ioaddr = &ap->ioaddr;
3471 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3473 unsigned int dev0, dev1 = 0, devmask = 0;
3476 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3478 /* determine if device 0/1 are present */
3479 if (ap->flags & ATA_FLAG_SATA_RESET)
3482 dev0 = ata_devchk(ap, 0);
3484 dev1 = ata_devchk(ap, 1);
3488 devmask |= (1 << 0);
3490 devmask |= (1 << 1);
3492 /* select device 0 again */
3493 ap->ops->dev_select(ap, 0);
3495 /* issue bus reset */
3496 if (ap->flags & ATA_FLAG_SRST) {
3497 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3498 if (rc && rc != -ENODEV)
3503 * determine by signature whether we have ATA or ATAPI devices
3505 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3506 if ((slave_possible) && (err != 0x81))
3507 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3509 /* is double-select really necessary? */
3510 if (device[1].class != ATA_DEV_NONE)
3511 ap->ops->dev_select(ap, 1);
3512 if (device[0].class != ATA_DEV_NONE)
3513 ap->ops->dev_select(ap, 0);
3515 /* if no devices were detected, disable this port */
3516 if ((device[0].class == ATA_DEV_NONE) &&
3517 (device[1].class == ATA_DEV_NONE))
3520 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3521 /* set up device control for ATA_FLAG_SATA_RESET */
3522 iowrite8(ap->ctl, ioaddr->ctl_addr);
3529 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3530 ata_port_disable(ap);
3536 * sata_link_debounce - debounce SATA phy status
3537 * @link: ATA link to debounce SATA phy status for
3538 * @params: timing parameters { interval, duratinon, timeout } in msec
3539 * @deadline: deadline jiffies for the operation
3541 * Make sure SStatus of @link reaches stable state, determined by
3542 * holding the same value where DET is not 1 for @duration polled
3543 * every @interval, before @timeout. Timeout constraints the
3544 * beginning of the stable state. Because DET gets stuck at 1 on
3545 * some controllers after hot unplugging, this functions waits
3546 * until timeout then returns 0 if DET is stable at 1.
3548 * @timeout is further limited by @deadline. The sooner of the
3552 * Kernel thread context (may sleep)
3555 * 0 on success, -errno on failure.
3557 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3558 unsigned long deadline)
3560 unsigned long interval_msec = params[0];
3561 unsigned long duration = msecs_to_jiffies(params[1]);
3562 unsigned long last_jiffies, t;
3566 t = jiffies + msecs_to_jiffies(params[2]);
3567 if (time_before(t, deadline))
3570 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3575 last_jiffies = jiffies;
3578 msleep(interval_msec);
3579 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3585 if (cur == 1 && time_before(jiffies, deadline))
3587 if (time_after(jiffies, last_jiffies + duration))
3592 /* unstable, start over */
3594 last_jiffies = jiffies;
3596 /* Check deadline. If debouncing failed, return
3597 * -EPIPE to tell upper layer to lower link speed.
3599 if (time_after(jiffies, deadline))
3605 * sata_link_resume - resume SATA link
3606 * @link: ATA link to resume SATA
3607 * @params: timing parameters { interval, duratinon, timeout } in msec
3608 * @deadline: deadline jiffies for the operation
3610 * Resume SATA phy @link and debounce it.
3613 * Kernel thread context (may sleep)
3616 * 0 on success, -errno on failure.
3618 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3619 unsigned long deadline)
3624 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3627 scontrol = (scontrol & 0x0f0) | 0x300;
3629 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3632 /* Some PHYs react badly if SStatus is pounded immediately
3633 * after resuming. Delay 200ms before debouncing.
3637 return sata_link_debounce(link, params, deadline);
3641 * ata_std_prereset - prepare for reset
3642 * @link: ATA link to be reset
3643 * @deadline: deadline jiffies for the operation
3645 * @link is about to be reset. Initialize it. Failure from
3646 * prereset makes libata abort whole reset sequence and give up
3647 * that port, so prereset should be best-effort. It does its
3648 * best to prepare for reset sequence but if things go wrong, it
3649 * should just whine, not fail.
3652 * Kernel thread context (may sleep)
3655 * 0 on success, -errno otherwise.
3657 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3659 struct ata_port *ap = link->ap;
3660 struct ata_eh_context *ehc = &link->eh_context;
3661 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3664 /* handle link resume */
3665 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3666 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3667 ehc->i.action |= ATA_EH_HARDRESET;
3669 /* Some PMPs don't work with only SRST, force hardreset if PMP
3672 if (ap->flags & ATA_FLAG_PMP)
3673 ehc->i.action |= ATA_EH_HARDRESET;
3675 /* if we're about to do hardreset, nothing more to do */
3676 if (ehc->i.action & ATA_EH_HARDRESET)
3679 /* if SATA, resume link */
3680 if (ap->flags & ATA_FLAG_SATA) {
3681 rc = sata_link_resume(link, timing, deadline);
3682 /* whine about phy resume failure but proceed */
3683 if (rc && rc != -EOPNOTSUPP)
3684 ata_link_printk(link, KERN_WARNING, "failed to resume "
3685 "link for reset (errno=%d)\n", rc);
3688 /* Wait for !BSY if the controller can wait for the first D2H
3689 * Reg FIS and we don't know that no device is attached.
3691 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3692 rc = ata_wait_ready(ap, deadline);
3693 if (rc && rc != -ENODEV) {
3694 ata_link_printk(link, KERN_WARNING, "device not ready "
3695 "(errno=%d), forcing hardreset\n", rc);
3696 ehc->i.action |= ATA_EH_HARDRESET;
3704 * ata_std_softreset - reset host port via ATA SRST
3705 * @link: ATA link to reset
3706 * @classes: resulting classes of attached devices
3707 * @deadline: deadline jiffies for the operation
3709 * Reset host port using ATA SRST.
3712 * Kernel thread context (may sleep)
3715 * 0 on success, -errno otherwise.
3717 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3718 unsigned long deadline)
3720 struct ata_port *ap = link->ap;
3721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3722 unsigned int devmask = 0;
3728 if (ata_link_offline(link)) {
3729 classes[0] = ATA_DEV_NONE;
3733 /* determine if device 0/1 are present */
3734 if (ata_devchk(ap, 0))
3735 devmask |= (1 << 0);
3736 if (slave_possible && ata_devchk(ap, 1))
3737 devmask |= (1 << 1);
3739 /* select device 0 again */
3740 ap->ops->dev_select(ap, 0);
3742 /* issue bus reset */
3743 DPRINTK("about to softreset, devmask=%x\n", devmask);
3744 rc = ata_bus_softreset(ap, devmask, deadline);
3745 /* if link is occupied, -ENODEV too is an error */
3746 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3747 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3751 /* determine by signature whether we have ATA or ATAPI devices */
3752 classes[0] = ata_dev_try_classify(&link->device[0],
3753 devmask & (1 << 0), &err);
3754 if (slave_possible && err != 0x81)
3755 classes[1] = ata_dev_try_classify(&link->device[1],
3756 devmask & (1 << 1), &err);
3759 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3764 * sata_link_hardreset - reset link via SATA phy reset
3765 * @link: link to reset
3766 * @timing: timing parameters { interval, duratinon, timeout } in msec
3767 * @deadline: deadline jiffies for the operation
3769 * SATA phy-reset @link using DET bits of SControl register.
3772 * Kernel thread context (may sleep)
3775 * 0 on success, -errno otherwise.
3777 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3778 unsigned long deadline)
3785 if (sata_set_spd_needed(link)) {
3786 /* SATA spec says nothing about how to reconfigure
3787 * spd. To be on the safe side, turn off phy during
3788 * reconfiguration. This works for at least ICH7 AHCI
3791 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3794 scontrol = (scontrol & 0x0f0) | 0x304;
3796 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3802 /* issue phy wake/reset */
3803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3806 scontrol = (scontrol & 0x0f0) | 0x301;
3808 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3811 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3812 * 10.4.2 says at least 1 ms.
3816 /* bring link back */
3817 rc = sata_link_resume(link, timing, deadline);
3819 DPRINTK("EXIT, rc=%d\n", rc);
3824 * sata_std_hardreset - reset host port via SATA phy reset
3825 * @link: link to reset
3826 * @class: resulting class of attached device
3827 * @deadline: deadline jiffies for the operation
3829 * SATA phy-reset host port using DET bits of SControl register,
3830 * wait for !BSY and classify the attached device.
3833 * Kernel thread context (may sleep)
3836 * 0 on success, -errno otherwise.
3838 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3839 unsigned long deadline)
3841 struct ata_port *ap = link->ap;
3842 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3848 rc = sata_link_hardreset(link, timing, deadline);
3850 ata_link_printk(link, KERN_ERR,
3851 "COMRESET failed (errno=%d)\n", rc);
3855 /* TODO: phy layer with polling, timeouts, etc. */
3856 if (ata_link_offline(link)) {
3857 *class = ATA_DEV_NONE;
3858 DPRINTK("EXIT, link offline\n");
3862 /* wait a while before checking status */
3863 ata_wait_after_reset(ap, deadline);
3865 /* If PMP is supported, we have to do follow-up SRST. Note
3866 * that some PMPs don't send D2H Reg FIS after hardreset at
3867 * all if the first port is empty. Wait for it just for a
3868 * second and request follow-up SRST.
3870 if (ap->flags & ATA_FLAG_PMP) {
3871 ata_wait_ready(ap, jiffies + HZ);
3875 rc = ata_wait_ready(ap, deadline);
3876 /* link occupied, -ENODEV too is an error */
3878 ata_link_printk(link, KERN_ERR,
3879 "COMRESET failed (errno=%d)\n", rc);
3883 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3885 *class = ata_dev_try_classify(link->device, 1, NULL);
3887 DPRINTK("EXIT, class=%u\n", *class);
3892 * ata_std_postreset - standard postreset callback
3893 * @link: the target ata_link
3894 * @classes: classes of attached devices
3896 * This function is invoked after a successful reset. Note that
3897 * the device might have been reset more than once using
3898 * different reset methods before postreset is invoked.
3901 * Kernel thread context (may sleep)
3903 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3905 struct ata_port *ap = link->ap;
3910 /* print link status */
3911 sata_print_link_status(link);
3914 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3915 sata_scr_write(link, SCR_ERROR, serror);
3917 /* is double-select really necessary? */
3918 if (classes[0] != ATA_DEV_NONE)
3919 ap->ops->dev_select(ap, 1);
3920 if (classes[1] != ATA_DEV_NONE)
3921 ap->ops->dev_select(ap, 0);
3923 /* bail out if no device is present */
3924 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3925 DPRINTK("EXIT, no device\n");
3929 /* set up device control */
3930 if (ap->ioaddr.ctl_addr)
3931 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3937 * ata_dev_same_device - Determine whether new ID matches configured device
3938 * @dev: device to compare against
3939 * @new_class: class of the new device
3940 * @new_id: IDENTIFY page of the new device
3942 * Compare @new_class and @new_id against @dev and determine
3943 * whether @dev is the device indicated by @new_class and
3950 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3952 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3955 const u16 *old_id = dev->id;
3956 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3957 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3959 if (dev->class != new_class) {
3960 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3961 dev->class, new_class);
3965 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3966 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3967 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3968 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3970 if (strcmp(model[0], model[1])) {
3971 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3972 "'%s' != '%s'\n", model[0], model[1]);
3976 if (strcmp(serial[0], serial[1])) {
3977 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3978 "'%s' != '%s'\n", serial[0], serial[1]);
3986 * ata_dev_reread_id - Re-read IDENTIFY data
3987 * @dev: target ATA device
3988 * @readid_flags: read ID flags
3990 * Re-read IDENTIFY page and make sure @dev is still attached to
3994 * Kernel thread context (may sleep)
3997 * 0 on success, negative errno otherwise
3999 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4001 unsigned int class = dev->class;
4002 u16 *id = (void *)dev->link->ap->sector_buf;
4006 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4010 /* is the device still there? */
4011 if (!ata_dev_same_device(dev, class, id))
4014 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4019 * ata_dev_revalidate - Revalidate ATA device
4020 * @dev: device to revalidate
4021 * @new_class: new class code
4022 * @readid_flags: read ID flags
4024 * Re-read IDENTIFY page, make sure @dev is still attached to the
4025 * port and reconfigure it according to the new IDENTIFY page.
4028 * Kernel thread context (may sleep)
4031 * 0 on success, negative errno otherwise
4033 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4034 unsigned int readid_flags)
4036 u64 n_sectors = dev->n_sectors;
4039 if (!ata_dev_enabled(dev))
4042 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4043 if (ata_class_enabled(new_class) &&
4044 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4045 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4046 dev->class, new_class);
4052 rc = ata_dev_reread_id(dev, readid_flags);
4056 /* configure device according to the new ID */
4057 rc = ata_dev_configure(dev);
4061 /* verify n_sectors hasn't changed */
4062 if (dev->class == ATA_DEV_ATA && n_sectors &&
4063 dev->n_sectors != n_sectors) {
4064 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4066 (unsigned long long)n_sectors,
4067 (unsigned long long)dev->n_sectors);
4069 /* restore original n_sectors */
4070 dev->n_sectors = n_sectors;
4079 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4083 struct ata_blacklist_entry {
4084 const char *model_num;
4085 const char *model_rev;
4086 unsigned long horkage;
4089 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4090 /* Devices with DMA related problems under Linux */
4091 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4092 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4093 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4095 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4096 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4097 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4098 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4099 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4100 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4101 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4102 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4103 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4104 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4105 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4106 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4107 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4108 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4109 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4110 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4111 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4112 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4113 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4114 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4115 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4116 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4117 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4118 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4119 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4120 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4121 /* Odd clown on sil3726/4726 PMPs */
4122 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4123 ATA_HORKAGE_SKIP_PM },
4125 /* Weird ATAPI devices */
4126 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4128 /* Devices we expect to fail diagnostics */
4130 /* Devices where NCQ should be avoided */
4132 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4133 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4134 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4136 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4137 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4138 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4139 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4140 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4142 /* Blacklist entries taken from Silicon Image 3124/3132
4143 Windows driver .inf file - also several Linux problem reports */
4144 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4145 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4146 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4147 /* Drives which do spurious command completion */
4148 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4149 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4150 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4151 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4152 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4154 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4155 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4156 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4157 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4158 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4159 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4160 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4161 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4162 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4163 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4165 /* devices which puke on READ_NATIVE_MAX */
4166 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4167 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4168 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4169 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4171 /* Devices which report 1 sector over size HPA */
4172 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4173 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4175 /* Devices which get the IVB wrong */
4176 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4183 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4189 * check for trailing wildcard: *\0
4191 p = strchr(patt, wildchar);
4192 if (p && ((*(p + 1)) == 0))
4203 return strncmp(patt, name, len);
4206 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4208 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4209 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4210 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4212 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4213 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4215 while (ad->model_num) {
4216 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4217 if (ad->model_rev == NULL)
4219 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4227 static int ata_dma_blacklisted(const struct ata_device *dev)
4229 /* We don't support polling DMA.
4230 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4231 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4233 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4234 (dev->flags & ATA_DFLAG_CDB_INTR))
4236 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4240 * ata_is_40wire - check drive side detection
4243 * Perform drive side detection decoding, allowing for device vendors
4244 * who can't follow the documentation.
4247 static int ata_is_40wire(struct ata_device *dev)
4249 if (dev->horkage & ATA_HORKAGE_IVB)
4250 return ata_drive_40wire_relaxed(dev->id);
4251 return ata_drive_40wire(dev->id);
4255 * ata_dev_xfermask - Compute supported xfermask of the given device
4256 * @dev: Device to compute xfermask for
4258 * Compute supported xfermask of @dev and store it in
4259 * dev->*_mask. This function is responsible for applying all
4260 * known limits including host controller limits, device
4266 static void ata_dev_xfermask(struct ata_device *dev)
4268 struct ata_link *link = dev->link;
4269 struct ata_port *ap = link->ap;
4270 struct ata_host *host = ap->host;
4271 unsigned long xfer_mask;
4273 /* controller modes available */
4274 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4275 ap->mwdma_mask, ap->udma_mask);
4277 /* drive modes available */
4278 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4279 dev->mwdma_mask, dev->udma_mask);
4280 xfer_mask &= ata_id_xfermask(dev->id);
4283 * CFA Advanced TrueIDE timings are not allowed on a shared
4286 if (ata_dev_pair(dev)) {
4287 /* No PIO5 or PIO6 */
4288 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4289 /* No MWDMA3 or MWDMA 4 */
4290 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4293 if (ata_dma_blacklisted(dev)) {
4294 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4295 ata_dev_printk(dev, KERN_WARNING,
4296 "device is on DMA blacklist, disabling DMA\n");
4299 if ((host->flags & ATA_HOST_SIMPLEX) &&
4300 host->simplex_claimed && host->simplex_claimed != ap) {
4301 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4302 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4303 "other device, disabling DMA\n");
4306 if (ap->flags & ATA_FLAG_NO_IORDY)
4307 xfer_mask &= ata_pio_mask_no_iordy(dev);
4309 if (ap->ops->mode_filter)
4310 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4312 /* Apply cable rule here. Don't apply it early because when
4313 * we handle hot plug the cable type can itself change.
4314 * Check this last so that we know if the transfer rate was
4315 * solely limited by the cable.
4316 * Unknown or 80 wire cables reported host side are checked
4317 * drive side as well. Cases where we know a 40wire cable
4318 * is used safely for 80 are not checked here.
4320 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4321 /* UDMA/44 or higher would be available */
4322 if ((ap->cbl == ATA_CBL_PATA40) ||
4323 (ata_is_40wire(dev) &&
4324 (ap->cbl == ATA_CBL_PATA_UNK ||
4325 ap->cbl == ATA_CBL_PATA80))) {
4326 ata_dev_printk(dev, KERN_WARNING,
4327 "limited to UDMA/33 due to 40-wire cable\n");
4328 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4332 &dev->mwdma_mask, &dev->udma_mask);
4336 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4337 * @dev: Device to which command will be sent
4339 * Issue SET FEATURES - XFER MODE command to device @dev
4343 * PCI/etc. bus probe sem.
4346 * 0 on success, AC_ERR_* mask otherwise.
4349 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4351 struct ata_taskfile tf;
4352 unsigned int err_mask;
4354 /* set up set-features taskfile */
4355 DPRINTK("set features - xfer mode\n");
4357 /* Some controllers and ATAPI devices show flaky interrupt
4358 * behavior after setting xfer mode. Use polling instead.
4360 ata_tf_init(dev, &tf);
4361 tf.command = ATA_CMD_SET_FEATURES;
4362 tf.feature = SETFEATURES_XFER;
4363 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4364 tf.protocol = ATA_PROT_NODATA;
4365 tf.nsect = dev->xfer_mode;
4367 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4369 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4373 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4374 * @dev: Device to which command will be sent
4375 * @enable: Whether to enable or disable the feature
4376 * @feature: The sector count represents the feature to set
4378 * Issue SET FEATURES - SATA FEATURES command to device @dev
4379 * on port @ap with sector count
4382 * PCI/etc. bus probe sem.
4385 * 0 on success, AC_ERR_* mask otherwise.
4387 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4390 struct ata_taskfile tf;
4391 unsigned int err_mask;
4393 /* set up set-features taskfile */
4394 DPRINTK("set features - SATA features\n");
4396 ata_tf_init(dev, &tf);
4397 tf.command = ATA_CMD_SET_FEATURES;
4398 tf.feature = enable;
4399 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4400 tf.protocol = ATA_PROT_NODATA;
4403 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4405 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4410 * ata_dev_init_params - Issue INIT DEV PARAMS command
4411 * @dev: Device to which command will be sent
4412 * @heads: Number of heads (taskfile parameter)
4413 * @sectors: Number of sectors (taskfile parameter)
4416 * Kernel thread context (may sleep)
4419 * 0 on success, AC_ERR_* mask otherwise.
4421 static unsigned int ata_dev_init_params(struct ata_device *dev,
4422 u16 heads, u16 sectors)
4424 struct ata_taskfile tf;
4425 unsigned int err_mask;
4427 /* Number of sectors per track 1-255. Number of heads 1-16 */
4428 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4429 return AC_ERR_INVALID;
4431 /* set up init dev params taskfile */
4432 DPRINTK("init dev params \n");
4434 ata_tf_init(dev, &tf);
4435 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4436 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4437 tf.protocol = ATA_PROT_NODATA;
4439 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4441 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4442 /* A clean abort indicates an original or just out of spec drive
4443 and we should continue as we issue the setup based on the
4444 drive reported working geometry */
4445 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4448 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4453 * ata_sg_clean - Unmap DMA memory associated with command
4454 * @qc: Command containing DMA memory to be released
4456 * Unmap all mapped DMA memory associated with this command.
4459 * spin_lock_irqsave(host lock)
4461 void ata_sg_clean(struct ata_queued_cmd *qc)
4463 struct ata_port *ap = qc->ap;
4464 struct scatterlist *sg = qc->__sg;
4465 int dir = qc->dma_dir;
4466 void *pad_buf = NULL;
4468 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4469 WARN_ON(sg == NULL);
4471 if (qc->flags & ATA_QCFLAG_SINGLE)
4472 WARN_ON(qc->n_elem > 1);
4474 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4476 /* if we padded the buffer out to 32-bit bound, and data
4477 * xfer direction is from-device, we must copy from the
4478 * pad buffer back into the supplied buffer
4480 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4481 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4483 if (qc->flags & ATA_QCFLAG_SG) {
4485 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4486 /* restore last sg */
4487 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4489 struct scatterlist *psg = &qc->pad_sgent;
4490 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4491 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4492 kunmap_atomic(addr, KM_IRQ0);
4496 dma_unmap_single(ap->dev,
4497 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4500 sg->length += qc->pad_len;
4502 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4503 pad_buf, qc->pad_len);
4506 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4511 * ata_fill_sg - Fill PCI IDE PRD table
4512 * @qc: Metadata associated with taskfile to be transferred
4514 * Fill PCI IDE PRD (scatter-gather) table with segments
4515 * associated with the current disk command.
4518 * spin_lock_irqsave(host lock)
4521 static void ata_fill_sg(struct ata_queued_cmd *qc)
4523 struct ata_port *ap = qc->ap;
4524 struct scatterlist *sg;
4527 WARN_ON(qc->__sg == NULL);
4528 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4531 ata_for_each_sg(sg, qc) {
4535 /* determine if physical DMA addr spans 64K boundary.
4536 * Note h/w doesn't support 64-bit, so we unconditionally
4537 * truncate dma_addr_t to u32.
4539 addr = (u32) sg_dma_address(sg);
4540 sg_len = sg_dma_len(sg);
4543 offset = addr & 0xffff;
4545 if ((offset + sg_len) > 0x10000)
4546 len = 0x10000 - offset;
4548 ap->prd[idx].addr = cpu_to_le32(addr);
4549 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4550 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4559 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4563 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4564 * @qc: Metadata associated with taskfile to be transferred
4566 * Fill PCI IDE PRD (scatter-gather) table with segments
4567 * associated with the current disk command. Perform the fill
4568 * so that we avoid writing any length 64K records for
4569 * controllers that don't follow the spec.
4572 * spin_lock_irqsave(host lock)
4575 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4577 struct ata_port *ap = qc->ap;
4578 struct scatterlist *sg;
4581 WARN_ON(qc->__sg == NULL);
4582 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4585 ata_for_each_sg(sg, qc) {
4587 u32 sg_len, len, blen;
4589 /* determine if physical DMA addr spans 64K boundary.
4590 * Note h/w doesn't support 64-bit, so we unconditionally
4591 * truncate dma_addr_t to u32.
4593 addr = (u32) sg_dma_address(sg);
4594 sg_len = sg_dma_len(sg);
4597 offset = addr & 0xffff;
4599 if ((offset + sg_len) > 0x10000)
4600 len = 0x10000 - offset;
4602 blen = len & 0xffff;
4603 ap->prd[idx].addr = cpu_to_le32(addr);
4605 /* Some PATA chipsets like the CS5530 can't
4606 cope with 0x0000 meaning 64K as the spec says */
4607 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4609 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4611 ap->prd[idx].flags_len = cpu_to_le32(blen);
4612 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4621 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4625 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4626 * @qc: Metadata associated with taskfile to check
4628 * Allow low-level driver to filter ATA PACKET commands, returning
4629 * a status indicating whether or not it is OK to use DMA for the
4630 * supplied PACKET command.
4633 * spin_lock_irqsave(host lock)
4635 * RETURNS: 0 when ATAPI DMA can be used
4638 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4640 struct ata_port *ap = qc->ap;
4642 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4643 * few ATAPI devices choke on such DMA requests.
4645 if (unlikely(qc->nbytes & 15))
4648 if (ap->ops->check_atapi_dma)
4649 return ap->ops->check_atapi_dma(qc);
4655 * ata_std_qc_defer - Check whether a qc needs to be deferred
4656 * @qc: ATA command in question
4658 * Non-NCQ commands cannot run with any other command, NCQ or
4659 * not. As upper layer only knows the queue depth, we are
4660 * responsible for maintaining exclusion. This function checks
4661 * whether a new command @qc can be issued.
4664 * spin_lock_irqsave(host lock)
4667 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4669 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4671 struct ata_link *link = qc->dev->link;
4673 if (qc->tf.protocol == ATA_PROT_NCQ) {
4674 if (!ata_tag_valid(link->active_tag))
4677 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4681 return ATA_DEFER_LINK;
4685 * ata_qc_prep - Prepare taskfile for submission
4686 * @qc: Metadata associated with taskfile to be prepared
4688 * Prepare ATA taskfile for submission.
4691 * spin_lock_irqsave(host lock)
4693 void ata_qc_prep(struct ata_queued_cmd *qc)
4695 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4702 * ata_dumb_qc_prep - Prepare taskfile for submission
4703 * @qc: Metadata associated with taskfile to be prepared
4705 * Prepare ATA taskfile for submission.
4708 * spin_lock_irqsave(host lock)
4710 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4712 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4715 ata_fill_sg_dumb(qc);
4718 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4721 * ata_sg_init_one - Associate command with memory buffer
4722 * @qc: Command to be associated
4723 * @buf: Memory buffer
4724 * @buflen: Length of memory buffer, in bytes.
4726 * Initialize the data-related elements of queued_cmd @qc
4727 * to point to a single memory buffer, @buf of byte length @buflen.
4730 * spin_lock_irqsave(host lock)
4733 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4735 qc->flags |= ATA_QCFLAG_SINGLE;
4737 qc->__sg = &qc->sgent;
4739 qc->orig_n_elem = 1;
4741 qc->nbytes = buflen;
4742 qc->cursg = qc->__sg;
4744 sg_init_one(&qc->sgent, buf, buflen);
4748 * ata_sg_init - Associate command with scatter-gather table.
4749 * @qc: Command to be associated
4750 * @sg: Scatter-gather table.
4751 * @n_elem: Number of elements in s/g table.
4753 * Initialize the data-related elements of queued_cmd @qc
4754 * to point to a scatter-gather table @sg, containing @n_elem
4758 * spin_lock_irqsave(host lock)
4761 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4762 unsigned int n_elem)
4764 qc->flags |= ATA_QCFLAG_SG;
4766 qc->n_elem = n_elem;
4767 qc->orig_n_elem = n_elem;
4768 qc->cursg = qc->__sg;
4772 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4773 * @qc: Command with memory buffer to be mapped.
4775 * DMA-map the memory buffer associated with queued_cmd @qc.
4778 * spin_lock_irqsave(host lock)
4781 * Zero on success, negative on error.
4784 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4786 struct ata_port *ap = qc->ap;
4787 int dir = qc->dma_dir;
4788 struct scatterlist *sg = qc->__sg;
4789 dma_addr_t dma_address;
4792 /* we must lengthen transfers to end on a 32-bit boundary */
4793 qc->pad_len = sg->length & 3;
4795 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4796 struct scatterlist *psg = &qc->pad_sgent;
4798 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4800 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4802 if (qc->tf.flags & ATA_TFLAG_WRITE)
4803 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4806 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4807 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4809 sg->length -= qc->pad_len;
4810 if (sg->length == 0)
4813 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4814 sg->length, qc->pad_len);
4822 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4824 if (dma_mapping_error(dma_address)) {
4826 sg->length += qc->pad_len;
4830 sg_dma_address(sg) = dma_address;
4831 sg_dma_len(sg) = sg->length;
4834 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4835 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4841 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4842 * @qc: Command with scatter-gather table to be mapped.
4844 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4847 * spin_lock_irqsave(host lock)
4850 * Zero on success, negative on error.
4854 static int ata_sg_setup(struct ata_queued_cmd *qc)
4856 struct ata_port *ap = qc->ap;
4857 struct scatterlist *sg = qc->__sg;
4858 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4859 int n_elem, pre_n_elem, dir, trim_sg = 0;
4861 VPRINTK("ENTER, ata%u\n", ap->print_id);
4862 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4864 /* we must lengthen transfers to end on a 32-bit boundary */
4865 qc->pad_len = lsg->length & 3;
4867 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4868 struct scatterlist *psg = &qc->pad_sgent;
4869 unsigned int offset;
4871 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4873 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4876 * psg->page/offset are used to copy to-be-written
4877 * data in this function or read data in ata_sg_clean.
4879 offset = lsg->offset + lsg->length - qc->pad_len;
4880 sg_init_table(psg, 1);
4881 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4882 qc->pad_len, offset_in_page(offset));
4884 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4885 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4886 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4887 kunmap_atomic(addr, KM_IRQ0);
4890 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4891 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4893 lsg->length -= qc->pad_len;
4894 if (lsg->length == 0)
4897 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4898 qc->n_elem - 1, lsg->length, qc->pad_len);
4901 pre_n_elem = qc->n_elem;
4902 if (trim_sg && pre_n_elem)
4911 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4913 /* restore last sg */
4914 lsg->length += qc->pad_len;
4918 DPRINTK("%d sg elements mapped\n", n_elem);
4921 qc->n_elem = n_elem;
4927 * swap_buf_le16 - swap halves of 16-bit words in place
4928 * @buf: Buffer to swap
4929 * @buf_words: Number of 16-bit words in buffer.
4931 * Swap halves of 16-bit words if needed to convert from
4932 * little-endian byte order to native cpu byte order, or
4936 * Inherited from caller.
4938 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4943 for (i = 0; i < buf_words; i++)
4944 buf[i] = le16_to_cpu(buf[i]);
4945 #endif /* __BIG_ENDIAN */
4949 * ata_data_xfer - Transfer data by PIO
4950 * @adev: device to target
4952 * @buflen: buffer length
4953 * @write_data: read/write
4955 * Transfer data from/to the device data register by PIO.
4958 * Inherited from caller.
4960 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4961 unsigned int buflen, int write_data)
4963 struct ata_port *ap = adev->link->ap;
4964 unsigned int words = buflen >> 1;
4966 /* Transfer multiple of 2 bytes */
4968 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4970 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4972 /* Transfer trailing 1 byte, if any. */
4973 if (unlikely(buflen & 0x01)) {
4974 u16 align_buf[1] = { 0 };
4975 unsigned char *trailing_buf = buf + buflen - 1;
4978 memcpy(align_buf, trailing_buf, 1);
4979 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4981 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4982 memcpy(trailing_buf, align_buf, 1);
4988 * ata_data_xfer_noirq - Transfer data by PIO
4989 * @adev: device to target
4991 * @buflen: buffer length
4992 * @write_data: read/write
4994 * Transfer data from/to the device data register by PIO. Do the
4995 * transfer with interrupts disabled.
4998 * Inherited from caller.
5000 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5001 unsigned int buflen, int write_data)
5003 unsigned long flags;
5004 local_irq_save(flags);
5005 ata_data_xfer(adev, buf, buflen, write_data);
5006 local_irq_restore(flags);
5011 * ata_pio_sector - Transfer a sector of data.
5012 * @qc: Command on going
5014 * Transfer qc->sect_size bytes of data from/to the ATA device.
5017 * Inherited from caller.
5020 static void ata_pio_sector(struct ata_queued_cmd *qc)
5022 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5023 struct ata_port *ap = qc->ap;
5025 unsigned int offset;
5028 if (qc->curbytes == qc->nbytes - qc->sect_size)
5029 ap->hsm_task_state = HSM_ST_LAST;
5031 page = sg_page(qc->cursg);
5032 offset = qc->cursg->offset + qc->cursg_ofs;
5034 /* get the current page and offset */
5035 page = nth_page(page, (offset >> PAGE_SHIFT));
5036 offset %= PAGE_SIZE;
5038 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5040 if (PageHighMem(page)) {
5041 unsigned long flags;
5043 /* FIXME: use a bounce buffer */
5044 local_irq_save(flags);
5045 buf = kmap_atomic(page, KM_IRQ0);
5047 /* do the actual data transfer */
5048 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5050 kunmap_atomic(buf, KM_IRQ0);
5051 local_irq_restore(flags);
5053 buf = page_address(page);
5054 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5057 qc->curbytes += qc->sect_size;
5058 qc->cursg_ofs += qc->sect_size;
5060 if (qc->cursg_ofs == qc->cursg->length) {
5061 qc->cursg = sg_next(qc->cursg);
5067 * ata_pio_sectors - Transfer one or many sectors.
5068 * @qc: Command on going
5070 * Transfer one or many sectors of data from/to the
5071 * ATA device for the DRQ request.
5074 * Inherited from caller.
5077 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5079 if (is_multi_taskfile(&qc->tf)) {
5080 /* READ/WRITE MULTIPLE */
5083 WARN_ON(qc->dev->multi_count == 0);
5085 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5086 qc->dev->multi_count);
5092 ata_altstatus(qc->ap); /* flush */
5096 * atapi_send_cdb - Write CDB bytes to hardware
5097 * @ap: Port to which ATAPI device is attached.
5098 * @qc: Taskfile currently active
5100 * When device has indicated its readiness to accept
5101 * a CDB, this function is called. Send the CDB.
5107 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5110 DPRINTK("send cdb\n");
5111 WARN_ON(qc->dev->cdb_len < 12);
5113 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5114 ata_altstatus(ap); /* flush */
5116 switch (qc->tf.protocol) {
5117 case ATA_PROT_ATAPI:
5118 ap->hsm_task_state = HSM_ST;
5120 case ATA_PROT_ATAPI_NODATA:
5121 ap->hsm_task_state = HSM_ST_LAST;
5123 case ATA_PROT_ATAPI_DMA:
5124 ap->hsm_task_state = HSM_ST_LAST;
5125 /* initiate bmdma */
5126 ap->ops->bmdma_start(qc);
5132 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5133 * @qc: Command on going
5134 * @bytes: number of bytes
5136 * Transfer Transfer data from/to the ATAPI device.
5139 * Inherited from caller.
5143 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5145 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5146 struct scatterlist *sg = qc->__sg;
5147 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5148 struct ata_port *ap = qc->ap;
5151 unsigned int offset, count;
5154 if (qc->curbytes + bytes >= qc->nbytes)
5155 ap->hsm_task_state = HSM_ST_LAST;
5158 if (unlikely(no_more_sg)) {
5160 * The end of qc->sg is reached and the device expects
5161 * more data to transfer. In order not to overrun qc->sg
5162 * and fulfill length specified in the byte count register,
5163 * - for read case, discard trailing data from the device
5164 * - for write case, padding zero data to the device
5166 u16 pad_buf[1] = { 0 };
5167 unsigned int words = bytes >> 1;
5170 if (words) /* warning if bytes > 1 */
5171 ata_dev_printk(qc->dev, KERN_WARNING,
5172 "%u bytes trailing data\n", bytes);
5174 for (i = 0; i < words; i++)
5175 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5177 ap->hsm_task_state = HSM_ST_LAST;
5184 offset = sg->offset + qc->cursg_ofs;
5186 /* get the current page and offset */
5187 page = nth_page(page, (offset >> PAGE_SHIFT));
5188 offset %= PAGE_SIZE;
5190 /* don't overrun current sg */
5191 count = min(sg->length - qc->cursg_ofs, bytes);
5193 /* don't cross page boundaries */
5194 count = min(count, (unsigned int)PAGE_SIZE - offset);
5196 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5198 if (PageHighMem(page)) {
5199 unsigned long flags;
5201 /* FIXME: use bounce buffer */
5202 local_irq_save(flags);
5203 buf = kmap_atomic(page, KM_IRQ0);
5205 /* do the actual data transfer */
5206 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5208 kunmap_atomic(buf, KM_IRQ0);
5209 local_irq_restore(flags);
5211 buf = page_address(page);
5212 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5216 qc->curbytes += count;
5217 qc->cursg_ofs += count;
5219 if (qc->cursg_ofs == sg->length) {
5220 if (qc->cursg == lsg)
5223 qc->cursg = sg_next(qc->cursg);
5232 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5233 * @qc: Command on going
5235 * Transfer Transfer data from/to the ATAPI device.
5238 * Inherited from caller.
5241 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5243 struct ata_port *ap = qc->ap;
5244 struct ata_device *dev = qc->dev;
5245 unsigned int ireason, bc_lo, bc_hi, bytes;
5246 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5248 /* Abuse qc->result_tf for temp storage of intermediate TF
5249 * here to save some kernel stack usage.
5250 * For normal completion, qc->result_tf is not relevant. For
5251 * error, qc->result_tf is later overwritten by ata_qc_complete().
5252 * So, the correctness of qc->result_tf is not affected.
5254 ap->ops->tf_read(ap, &qc->result_tf);
5255 ireason = qc->result_tf.nsect;
5256 bc_lo = qc->result_tf.lbam;
5257 bc_hi = qc->result_tf.lbah;
5258 bytes = (bc_hi << 8) | bc_lo;
5260 /* shall be cleared to zero, indicating xfer of data */
5261 if (ireason & (1 << 0))
5264 /* make sure transfer direction matches expected */
5265 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5266 if (do_write != i_write)
5269 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5271 __atapi_pio_bytes(qc, bytes);
5272 ata_altstatus(ap); /* flush */
5277 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5278 qc->err_mask |= AC_ERR_HSM;
5279 ap->hsm_task_state = HSM_ST_ERR;
5283 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5284 * @ap: the target ata_port
5288 * 1 if ok in workqueue, 0 otherwise.
5291 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5293 if (qc->tf.flags & ATA_TFLAG_POLLING)
5296 if (ap->hsm_task_state == HSM_ST_FIRST) {
5297 if (qc->tf.protocol == ATA_PROT_PIO &&
5298 (qc->tf.flags & ATA_TFLAG_WRITE))
5301 if (is_atapi_taskfile(&qc->tf) &&
5302 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5310 * ata_hsm_qc_complete - finish a qc running on standard HSM
5311 * @qc: Command to complete
5312 * @in_wq: 1 if called from workqueue, 0 otherwise
5314 * Finish @qc which is running on standard HSM.
5317 * If @in_wq is zero, spin_lock_irqsave(host lock).
5318 * Otherwise, none on entry and grabs host lock.
5320 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5322 struct ata_port *ap = qc->ap;
5323 unsigned long flags;
5325 if (ap->ops->error_handler) {
5327 spin_lock_irqsave(ap->lock, flags);
5329 /* EH might have kicked in while host lock is
5332 qc = ata_qc_from_tag(ap, qc->tag);
5334 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5335 ap->ops->irq_on(ap);
5336 ata_qc_complete(qc);
5338 ata_port_freeze(ap);
5341 spin_unlock_irqrestore(ap->lock, flags);
5343 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5344 ata_qc_complete(qc);
5346 ata_port_freeze(ap);
5350 spin_lock_irqsave(ap->lock, flags);
5351 ap->ops->irq_on(ap);
5352 ata_qc_complete(qc);
5353 spin_unlock_irqrestore(ap->lock, flags);
5355 ata_qc_complete(qc);
5360 * ata_hsm_move - move the HSM to the next state.
5361 * @ap: the target ata_port
5363 * @status: current device status
5364 * @in_wq: 1 if called from workqueue, 0 otherwise
5367 * 1 when poll next status needed, 0 otherwise.
5369 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5370 u8 status, int in_wq)
5372 unsigned long flags = 0;
5375 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5377 /* Make sure ata_qc_issue_prot() does not throw things
5378 * like DMA polling into the workqueue. Notice that
5379 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5381 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5384 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5385 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5387 switch (ap->hsm_task_state) {
5389 /* Send first data block or PACKET CDB */
5391 /* If polling, we will stay in the work queue after
5392 * sending the data. Otherwise, interrupt handler
5393 * takes over after sending the data.
5395 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5397 /* check device status */
5398 if (unlikely((status & ATA_DRQ) == 0)) {
5399 /* handle BSY=0, DRQ=0 as error */
5400 if (likely(status & (ATA_ERR | ATA_DF)))
5401 /* device stops HSM for abort/error */
5402 qc->err_mask |= AC_ERR_DEV;
5404 /* HSM violation. Let EH handle this */
5405 qc->err_mask |= AC_ERR_HSM;
5407 ap->hsm_task_state = HSM_ST_ERR;
5411 /* Device should not ask for data transfer (DRQ=1)
5412 * when it finds something wrong.
5413 * We ignore DRQ here and stop the HSM by
5414 * changing hsm_task_state to HSM_ST_ERR and
5415 * let the EH abort the command or reset the device.
5417 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5418 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5419 "error, dev_stat 0x%X\n", status);
5420 qc->err_mask |= AC_ERR_HSM;
5421 ap->hsm_task_state = HSM_ST_ERR;
5425 /* Send the CDB (atapi) or the first data block (ata pio out).
5426 * During the state transition, interrupt handler shouldn't
5427 * be invoked before the data transfer is complete and
5428 * hsm_task_state is changed. Hence, the following locking.
5431 spin_lock_irqsave(ap->lock, flags);
5433 if (qc->tf.protocol == ATA_PROT_PIO) {
5434 /* PIO data out protocol.
5435 * send first data block.
5438 /* ata_pio_sectors() might change the state
5439 * to HSM_ST_LAST. so, the state is changed here
5440 * before ata_pio_sectors().
5442 ap->hsm_task_state = HSM_ST;
5443 ata_pio_sectors(qc);
5446 atapi_send_cdb(ap, qc);
5449 spin_unlock_irqrestore(ap->lock, flags);
5451 /* if polling, ata_pio_task() handles the rest.
5452 * otherwise, interrupt handler takes over from here.
5457 /* complete command or read/write the data register */
5458 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5459 /* ATAPI PIO protocol */
5460 if ((status & ATA_DRQ) == 0) {
5461 /* No more data to transfer or device error.
5462 * Device error will be tagged in HSM_ST_LAST.
5464 ap->hsm_task_state = HSM_ST_LAST;
5468 /* Device should not ask for data transfer (DRQ=1)
5469 * when it finds something wrong.
5470 * We ignore DRQ here and stop the HSM by
5471 * changing hsm_task_state to HSM_ST_ERR and
5472 * let the EH abort the command or reset the device.
5474 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5475 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5476 "device error, dev_stat 0x%X\n",
5478 qc->err_mask |= AC_ERR_HSM;
5479 ap->hsm_task_state = HSM_ST_ERR;
5483 atapi_pio_bytes(qc);
5485 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5486 /* bad ireason reported by device */
5490 /* ATA PIO protocol */
5491 if (unlikely((status & ATA_DRQ) == 0)) {
5492 /* handle BSY=0, DRQ=0 as error */
5493 if (likely(status & (ATA_ERR | ATA_DF)))
5494 /* device stops HSM for abort/error */
5495 qc->err_mask |= AC_ERR_DEV;
5497 /* HSM violation. Let EH handle this.
5498 * Phantom devices also trigger this
5499 * condition. Mark hint.
5501 qc->err_mask |= AC_ERR_HSM |
5504 ap->hsm_task_state = HSM_ST_ERR;
5508 /* For PIO reads, some devices may ask for
5509 * data transfer (DRQ=1) alone with ERR=1.
5510 * We respect DRQ here and transfer one
5511 * block of junk data before changing the
5512 * hsm_task_state to HSM_ST_ERR.
5514 * For PIO writes, ERR=1 DRQ=1 doesn't make
5515 * sense since the data block has been
5516 * transferred to the device.
5518 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5519 /* data might be corrputed */
5520 qc->err_mask |= AC_ERR_DEV;
5522 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5523 ata_pio_sectors(qc);
5524 status = ata_wait_idle(ap);
5527 if (status & (ATA_BUSY | ATA_DRQ))
5528 qc->err_mask |= AC_ERR_HSM;
5530 /* ata_pio_sectors() might change the
5531 * state to HSM_ST_LAST. so, the state
5532 * is changed after ata_pio_sectors().
5534 ap->hsm_task_state = HSM_ST_ERR;
5538 ata_pio_sectors(qc);
5540 if (ap->hsm_task_state == HSM_ST_LAST &&
5541 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5543 status = ata_wait_idle(ap);
5552 if (unlikely(!ata_ok(status))) {
5553 qc->err_mask |= __ac_err_mask(status);
5554 ap->hsm_task_state = HSM_ST_ERR;
5558 /* no more data to transfer */
5559 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5560 ap->print_id, qc->dev->devno, status);
5562 WARN_ON(qc->err_mask);
5564 ap->hsm_task_state = HSM_ST_IDLE;
5566 /* complete taskfile transaction */
5567 ata_hsm_qc_complete(qc, in_wq);
5573 /* make sure qc->err_mask is available to
5574 * know what's wrong and recover
5576 WARN_ON(qc->err_mask == 0);
5578 ap->hsm_task_state = HSM_ST_IDLE;
5580 /* complete taskfile transaction */
5581 ata_hsm_qc_complete(qc, in_wq);
5593 static void ata_pio_task(struct work_struct *work)
5595 struct ata_port *ap =
5596 container_of(work, struct ata_port, port_task.work);
5597 struct ata_queued_cmd *qc = ap->port_task_data;
5602 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5605 * This is purely heuristic. This is a fast path.
5606 * Sometimes when we enter, BSY will be cleared in
5607 * a chk-status or two. If not, the drive is probably seeking
5608 * or something. Snooze for a couple msecs, then
5609 * chk-status again. If still busy, queue delayed work.
5611 status = ata_busy_wait(ap, ATA_BUSY, 5);
5612 if (status & ATA_BUSY) {
5614 status = ata_busy_wait(ap, ATA_BUSY, 10);
5615 if (status & ATA_BUSY) {
5616 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5622 poll_next = ata_hsm_move(ap, qc, status, 1);
5624 /* another command or interrupt handler
5625 * may be running at this point.
5632 * ata_qc_new - Request an available ATA command, for queueing
5633 * @ap: Port associated with device @dev
5634 * @dev: Device from whom we request an available command structure
5640 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5642 struct ata_queued_cmd *qc = NULL;
5645 /* no command while frozen */
5646 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5649 /* the last tag is reserved for internal command. */
5650 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5651 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5652 qc = __ata_qc_from_tag(ap, i);
5663 * ata_qc_new_init - Request an available ATA command, and initialize it
5664 * @dev: Device from whom we request an available command structure
5670 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5672 struct ata_port *ap = dev->link->ap;
5673 struct ata_queued_cmd *qc;
5675 qc = ata_qc_new(ap);
5688 * ata_qc_free - free unused ata_queued_cmd
5689 * @qc: Command to complete
5691 * Designed to free unused ata_queued_cmd object
5692 * in case something prevents using it.
5695 * spin_lock_irqsave(host lock)
5697 void ata_qc_free(struct ata_queued_cmd *qc)
5699 struct ata_port *ap = qc->ap;
5702 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5706 if (likely(ata_tag_valid(tag))) {
5707 qc->tag = ATA_TAG_POISON;
5708 clear_bit(tag, &ap->qc_allocated);
5712 void __ata_qc_complete(struct ata_queued_cmd *qc)
5714 struct ata_port *ap = qc->ap;
5715 struct ata_link *link = qc->dev->link;
5717 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5718 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5720 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5723 /* command should be marked inactive atomically with qc completion */
5724 if (qc->tf.protocol == ATA_PROT_NCQ) {
5725 link->sactive &= ~(1 << qc->tag);
5727 ap->nr_active_links--;
5729 link->active_tag = ATA_TAG_POISON;
5730 ap->nr_active_links--;
5733 /* clear exclusive status */
5734 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5735 ap->excl_link == link))
5736 ap->excl_link = NULL;
5738 /* atapi: mark qc as inactive to prevent the interrupt handler
5739 * from completing the command twice later, before the error handler
5740 * is called. (when rc != 0 and atapi request sense is needed)
5742 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5743 ap->qc_active &= ~(1 << qc->tag);
5745 /* call completion callback */
5746 qc->complete_fn(qc);
5749 static void fill_result_tf(struct ata_queued_cmd *qc)
5751 struct ata_port *ap = qc->ap;
5753 qc->result_tf.flags = qc->tf.flags;
5754 ap->ops->tf_read(ap, &qc->result_tf);
5758 * ata_qc_complete - Complete an active ATA command
5759 * @qc: Command to complete
5760 * @err_mask: ATA Status register contents
5762 * Indicate to the mid and upper layers that an ATA
5763 * command has completed, with either an ok or not-ok status.
5766 * spin_lock_irqsave(host lock)
5768 void ata_qc_complete(struct ata_queued_cmd *qc)
5770 struct ata_port *ap = qc->ap;
5772 /* XXX: New EH and old EH use different mechanisms to
5773 * synchronize EH with regular execution path.
5775 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5776 * Normal execution path is responsible for not accessing a
5777 * failed qc. libata core enforces the rule by returning NULL
5778 * from ata_qc_from_tag() for failed qcs.
5780 * Old EH depends on ata_qc_complete() nullifying completion
5781 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5782 * not synchronize with interrupt handler. Only PIO task is
5785 if (ap->ops->error_handler) {
5786 struct ata_device *dev = qc->dev;
5787 struct ata_eh_info *ehi = &dev->link->eh_info;
5789 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5791 if (unlikely(qc->err_mask))
5792 qc->flags |= ATA_QCFLAG_FAILED;
5794 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5795 if (!ata_tag_internal(qc->tag)) {
5796 /* always fill result TF for failed qc */
5798 ata_qc_schedule_eh(qc);
5803 /* read result TF if requested */
5804 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5807 /* Some commands need post-processing after successful
5810 switch (qc->tf.command) {
5811 case ATA_CMD_SET_FEATURES:
5812 if (qc->tf.feature != SETFEATURES_WC_ON &&
5813 qc->tf.feature != SETFEATURES_WC_OFF)
5816 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5817 case ATA_CMD_SET_MULTI: /* multi_count changed */
5818 /* revalidate device */
5819 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5820 ata_port_schedule_eh(ap);
5824 dev->flags |= ATA_DFLAG_SLEEPING;
5828 __ata_qc_complete(qc);
5830 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5833 /* read result TF if failed or requested */
5834 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5837 __ata_qc_complete(qc);
5842 * ata_qc_complete_multiple - Complete multiple qcs successfully
5843 * @ap: port in question
5844 * @qc_active: new qc_active mask
5845 * @finish_qc: LLDD callback invoked before completing a qc
5847 * Complete in-flight commands. This functions is meant to be
5848 * called from low-level driver's interrupt routine to complete
5849 * requests normally. ap->qc_active and @qc_active is compared
5850 * and commands are completed accordingly.
5853 * spin_lock_irqsave(host lock)
5856 * Number of completed commands on success, -errno otherwise.
5858 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5859 void (*finish_qc)(struct ata_queued_cmd *))
5865 done_mask = ap->qc_active ^ qc_active;
5867 if (unlikely(done_mask & qc_active)) {
5868 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5869 "(%08x->%08x)\n", ap->qc_active, qc_active);
5873 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5874 struct ata_queued_cmd *qc;
5876 if (!(done_mask & (1 << i)))
5879 if ((qc = ata_qc_from_tag(ap, i))) {
5882 ata_qc_complete(qc);
5890 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5892 struct ata_port *ap = qc->ap;
5894 switch (qc->tf.protocol) {
5897 case ATA_PROT_ATAPI_DMA:
5900 case ATA_PROT_ATAPI:
5902 if (ap->flags & ATA_FLAG_PIO_DMA)
5915 * ata_qc_issue - issue taskfile to device
5916 * @qc: command to issue to device
5918 * Prepare an ATA command to submission to device.
5919 * This includes mapping the data into a DMA-able
5920 * area, filling in the S/G table, and finally
5921 * writing the taskfile to hardware, starting the command.
5924 * spin_lock_irqsave(host lock)
5926 void ata_qc_issue(struct ata_queued_cmd *qc)
5928 struct ata_port *ap = qc->ap;
5929 struct ata_link *link = qc->dev->link;
5931 /* Make sure only one non-NCQ command is outstanding. The
5932 * check is skipped for old EH because it reuses active qc to
5933 * request ATAPI sense.
5935 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5937 if (qc->tf.protocol == ATA_PROT_NCQ) {
5938 WARN_ON(link->sactive & (1 << qc->tag));
5941 ap->nr_active_links++;
5942 link->sactive |= 1 << qc->tag;
5944 WARN_ON(link->sactive);
5946 ap->nr_active_links++;
5947 link->active_tag = qc->tag;
5950 qc->flags |= ATA_QCFLAG_ACTIVE;
5951 ap->qc_active |= 1 << qc->tag;
5953 if (ata_should_dma_map(qc)) {
5954 if (qc->flags & ATA_QCFLAG_SG) {
5955 if (ata_sg_setup(qc))
5957 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5958 if (ata_sg_setup_one(qc))
5962 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5965 /* if device is sleeping, schedule softreset and abort the link */
5966 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5967 link->eh_info.action |= ATA_EH_SOFTRESET;
5968 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5969 ata_link_abort(link);
5973 ap->ops->qc_prep(qc);
5975 qc->err_mask |= ap->ops->qc_issue(qc);
5976 if (unlikely(qc->err_mask))
5981 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5982 qc->err_mask |= AC_ERR_SYSTEM;
5984 ata_qc_complete(qc);
5988 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5989 * @qc: command to issue to device
5991 * Using various libata functions and hooks, this function
5992 * starts an ATA command. ATA commands are grouped into
5993 * classes called "protocols", and issuing each type of protocol
5994 * is slightly different.
5996 * May be used as the qc_issue() entry in ata_port_operations.
5999 * spin_lock_irqsave(host lock)
6002 * Zero on success, AC_ERR_* mask on failure
6005 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6007 struct ata_port *ap = qc->ap;
6009 /* Use polling pio if the LLD doesn't handle
6010 * interrupt driven pio and atapi CDB interrupt.
6012 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6013 switch (qc->tf.protocol) {
6015 case ATA_PROT_NODATA:
6016 case ATA_PROT_ATAPI:
6017 case ATA_PROT_ATAPI_NODATA:
6018 qc->tf.flags |= ATA_TFLAG_POLLING;
6020 case ATA_PROT_ATAPI_DMA:
6021 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6022 /* see ata_dma_blacklisted() */
6030 /* select the device */
6031 ata_dev_select(ap, qc->dev->devno, 1, 0);
6033 /* start the command */
6034 switch (qc->tf.protocol) {
6035 case ATA_PROT_NODATA:
6036 if (qc->tf.flags & ATA_TFLAG_POLLING)
6037 ata_qc_set_polling(qc);
6039 ata_tf_to_host(ap, &qc->tf);
6040 ap->hsm_task_state = HSM_ST_LAST;
6042 if (qc->tf.flags & ATA_TFLAG_POLLING)
6043 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6048 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6050 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6051 ap->ops->bmdma_setup(qc); /* set up bmdma */
6052 ap->ops->bmdma_start(qc); /* initiate bmdma */
6053 ap->hsm_task_state = HSM_ST_LAST;
6057 if (qc->tf.flags & ATA_TFLAG_POLLING)
6058 ata_qc_set_polling(qc);
6060 ata_tf_to_host(ap, &qc->tf);
6062 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6063 /* PIO data out protocol */
6064 ap->hsm_task_state = HSM_ST_FIRST;
6065 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6067 /* always send first data block using
6068 * the ata_pio_task() codepath.
6071 /* PIO data in protocol */
6072 ap->hsm_task_state = HSM_ST;
6074 if (qc->tf.flags & ATA_TFLAG_POLLING)
6075 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6077 /* if polling, ata_pio_task() handles the rest.
6078 * otherwise, interrupt handler takes over from here.
6084 case ATA_PROT_ATAPI:
6085 case ATA_PROT_ATAPI_NODATA:
6086 if (qc->tf.flags & ATA_TFLAG_POLLING)
6087 ata_qc_set_polling(qc);
6089 ata_tf_to_host(ap, &qc->tf);
6091 ap->hsm_task_state = HSM_ST_FIRST;
6093 /* send cdb by polling if no cdb interrupt */
6094 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6095 (qc->tf.flags & ATA_TFLAG_POLLING))
6096 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6099 case ATA_PROT_ATAPI_DMA:
6100 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6102 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6103 ap->ops->bmdma_setup(qc); /* set up bmdma */
6104 ap->hsm_task_state = HSM_ST_FIRST;
6106 /* send cdb by polling if no cdb interrupt */
6107 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6108 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6113 return AC_ERR_SYSTEM;
6120 * ata_host_intr - Handle host interrupt for given (port, task)
6121 * @ap: Port on which interrupt arrived (possibly...)
6122 * @qc: Taskfile currently active in engine
6124 * Handle host interrupt for given queued command. Currently,
6125 * only DMA interrupts are handled. All other commands are
6126 * handled via polling with interrupts disabled (nIEN bit).
6129 * spin_lock_irqsave(host lock)
6132 * One if interrupt was handled, zero if not (shared irq).
6135 inline unsigned int ata_host_intr(struct ata_port *ap,
6136 struct ata_queued_cmd *qc)
6138 struct ata_eh_info *ehi = &ap->link.eh_info;
6139 u8 status, host_stat = 0;
6141 VPRINTK("ata%u: protocol %d task_state %d\n",
6142 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6144 /* Check whether we are expecting interrupt in this state */
6145 switch (ap->hsm_task_state) {
6147 /* Some pre-ATAPI-4 devices assert INTRQ
6148 * at this state when ready to receive CDB.
6151 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6152 * The flag was turned on only for atapi devices.
6153 * No need to check is_atapi_taskfile(&qc->tf) again.
6155 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6159 if (qc->tf.protocol == ATA_PROT_DMA ||
6160 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6161 /* check status of DMA engine */
6162 host_stat = ap->ops->bmdma_status(ap);
6163 VPRINTK("ata%u: host_stat 0x%X\n",
6164 ap->print_id, host_stat);
6166 /* if it's not our irq... */
6167 if (!(host_stat & ATA_DMA_INTR))
6170 /* before we do anything else, clear DMA-Start bit */
6171 ap->ops->bmdma_stop(qc);
6173 if (unlikely(host_stat & ATA_DMA_ERR)) {
6174 /* error when transfering data to/from memory */
6175 qc->err_mask |= AC_ERR_HOST_BUS;
6176 ap->hsm_task_state = HSM_ST_ERR;
6186 /* check altstatus */
6187 status = ata_altstatus(ap);
6188 if (status & ATA_BUSY)
6191 /* check main status, clearing INTRQ */
6192 status = ata_chk_status(ap);
6193 if (unlikely(status & ATA_BUSY))
6196 /* ack bmdma irq events */
6197 ap->ops->irq_clear(ap);
6199 ata_hsm_move(ap, qc, status, 0);
6201 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6202 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6203 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6205 return 1; /* irq handled */
6208 ap->stats.idle_irq++;
6211 if ((ap->stats.idle_irq % 1000) == 0) {
6213 ap->ops->irq_clear(ap);
6214 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6218 return 0; /* irq not handled */
6222 * ata_interrupt - Default ATA host interrupt handler
6223 * @irq: irq line (unused)
6224 * @dev_instance: pointer to our ata_host information structure
6226 * Default interrupt handler for PCI IDE devices. Calls
6227 * ata_host_intr() for each port that is not disabled.
6230 * Obtains host lock during operation.
6233 * IRQ_NONE or IRQ_HANDLED.
6236 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6238 struct ata_host *host = dev_instance;
6240 unsigned int handled = 0;
6241 unsigned long flags;
6243 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6244 spin_lock_irqsave(&host->lock, flags);
6246 for (i = 0; i < host->n_ports; i++) {
6247 struct ata_port *ap;
6249 ap = host->ports[i];
6251 !(ap->flags & ATA_FLAG_DISABLED)) {
6252 struct ata_queued_cmd *qc;
6254 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6255 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6256 (qc->flags & ATA_QCFLAG_ACTIVE))
6257 handled |= ata_host_intr(ap, qc);
6261 spin_unlock_irqrestore(&host->lock, flags);
6263 return IRQ_RETVAL(handled);
6267 * sata_scr_valid - test whether SCRs are accessible
6268 * @link: ATA link to test SCR accessibility for
6270 * Test whether SCRs are accessible for @link.
6276 * 1 if SCRs are accessible, 0 otherwise.
6278 int sata_scr_valid(struct ata_link *link)
6280 struct ata_port *ap = link->ap;
6282 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6286 * sata_scr_read - read SCR register of the specified port
6287 * @link: ATA link to read SCR for
6289 * @val: Place to store read value
6291 * Read SCR register @reg of @link into *@val. This function is
6292 * guaranteed to succeed if @link is ap->link, the cable type of
6293 * the port is SATA and the port implements ->scr_read.
6296 * None if @link is ap->link. Kernel thread context otherwise.
6299 * 0 on success, negative errno on failure.
6301 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6303 if (ata_is_host_link(link)) {
6304 struct ata_port *ap = link->ap;
6306 if (sata_scr_valid(link))
6307 return ap->ops->scr_read(ap, reg, val);
6311 return sata_pmp_scr_read(link, reg, val);
6315 * sata_scr_write - write SCR register of the specified port
6316 * @link: ATA link to write SCR for
6317 * @reg: SCR to write
6318 * @val: value to write
6320 * Write @val to SCR register @reg of @link. This function is
6321 * guaranteed to succeed if @link is ap->link, the cable type of
6322 * the port is SATA and the port implements ->scr_read.
6325 * None if @link is ap->link. Kernel thread context otherwise.
6328 * 0 on success, negative errno on failure.
6330 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6332 if (ata_is_host_link(link)) {
6333 struct ata_port *ap = link->ap;
6335 if (sata_scr_valid(link))
6336 return ap->ops->scr_write(ap, reg, val);
6340 return sata_pmp_scr_write(link, reg, val);
6344 * sata_scr_write_flush - write SCR register of the specified port and flush
6345 * @link: ATA link to write SCR for
6346 * @reg: SCR to write
6347 * @val: value to write
6349 * This function is identical to sata_scr_write() except that this
6350 * function performs flush after writing to the register.
6353 * None if @link is ap->link. Kernel thread context otherwise.
6356 * 0 on success, negative errno on failure.
6358 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6360 if (ata_is_host_link(link)) {
6361 struct ata_port *ap = link->ap;
6364 if (sata_scr_valid(link)) {
6365 rc = ap->ops->scr_write(ap, reg, val);
6367 rc = ap->ops->scr_read(ap, reg, &val);
6373 return sata_pmp_scr_write(link, reg, val);
6377 * ata_link_online - test whether the given link is online
6378 * @link: ATA link to test
6380 * Test whether @link is online. Note that this function returns
6381 * 0 if online status of @link cannot be obtained, so
6382 * ata_link_online(link) != !ata_link_offline(link).
6388 * 1 if the port online status is available and online.
6390 int ata_link_online(struct ata_link *link)
6394 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6395 (sstatus & 0xf) == 0x3)
6401 * ata_link_offline - test whether the given link is offline
6402 * @link: ATA link to test
6404 * Test whether @link is offline. Note that this function
6405 * returns 0 if offline status of @link cannot be obtained, so
6406 * ata_link_online(link) != !ata_link_offline(link).
6412 * 1 if the port offline status is available and offline.
6414 int ata_link_offline(struct ata_link *link)
6418 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6419 (sstatus & 0xf) != 0x3)
6424 int ata_flush_cache(struct ata_device *dev)
6426 unsigned int err_mask;
6429 if (!ata_try_flush_cache(dev))
6432 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6433 cmd = ATA_CMD_FLUSH_EXT;
6435 cmd = ATA_CMD_FLUSH;
6437 /* This is wrong. On a failed flush we get back the LBA of the lost
6438 sector and we should (assuming it wasn't aborted as unknown) issue
6439 a further flush command to continue the writeback until it
6441 err_mask = ata_do_simple_cmd(dev, cmd);
6443 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6451 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6452 unsigned int action, unsigned int ehi_flags,
6455 unsigned long flags;
6458 for (i = 0; i < host->n_ports; i++) {
6459 struct ata_port *ap = host->ports[i];
6460 struct ata_link *link;
6462 /* Previous resume operation might still be in
6463 * progress. Wait for PM_PENDING to clear.
6465 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6466 ata_port_wait_eh(ap);
6467 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6470 /* request PM ops to EH */
6471 spin_lock_irqsave(ap->lock, flags);
6476 ap->pm_result = &rc;
6479 ap->pflags |= ATA_PFLAG_PM_PENDING;
6480 __ata_port_for_each_link(link, ap) {
6481 link->eh_info.action |= action;
6482 link->eh_info.flags |= ehi_flags;
6485 ata_port_schedule_eh(ap);
6487 spin_unlock_irqrestore(ap->lock, flags);
6489 /* wait and check result */
6491 ata_port_wait_eh(ap);
6492 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6502 * ata_host_suspend - suspend host
6503 * @host: host to suspend
6506 * Suspend @host. Actual operation is performed by EH. This
6507 * function requests EH to perform PM operations and waits for EH
6511 * Kernel thread context (may sleep).
6514 * 0 on success, -errno on failure.
6516 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6521 * disable link pm on all ports before requesting
6524 ata_lpm_enable(host);
6526 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6528 host->dev->power.power_state = mesg;
6533 * ata_host_resume - resume host
6534 * @host: host to resume
6536 * Resume @host. Actual operation is performed by EH. This
6537 * function requests EH to perform PM operations and returns.
6538 * Note that all resume operations are performed parallely.
6541 * Kernel thread context (may sleep).
6543 void ata_host_resume(struct ata_host *host)
6545 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6546 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6547 host->dev->power.power_state = PMSG_ON;
6549 /* reenable link pm */
6550 ata_lpm_disable(host);
6555 * ata_port_start - Set port up for dma.
6556 * @ap: Port to initialize
6558 * Called just after data structures for each port are
6559 * initialized. Allocates space for PRD table.
6561 * May be used as the port_start() entry in ata_port_operations.
6564 * Inherited from caller.
6566 int ata_port_start(struct ata_port *ap)
6568 struct device *dev = ap->dev;
6571 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6576 rc = ata_pad_alloc(ap, dev);
6580 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6581 (unsigned long long)ap->prd_dma);
6586 * ata_dev_init - Initialize an ata_device structure
6587 * @dev: Device structure to initialize
6589 * Initialize @dev in preparation for probing.
6592 * Inherited from caller.
6594 void ata_dev_init(struct ata_device *dev)
6596 struct ata_link *link = dev->link;
6597 struct ata_port *ap = link->ap;
6598 unsigned long flags;
6600 /* SATA spd limit is bound to the first device */
6601 link->sata_spd_limit = link->hw_sata_spd_limit;
6604 /* High bits of dev->flags are used to record warm plug
6605 * requests which occur asynchronously. Synchronize using
6608 spin_lock_irqsave(ap->lock, flags);
6609 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6611 spin_unlock_irqrestore(ap->lock, flags);
6613 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6614 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6615 dev->pio_mask = UINT_MAX;
6616 dev->mwdma_mask = UINT_MAX;
6617 dev->udma_mask = UINT_MAX;
6621 * ata_link_init - Initialize an ata_link structure
6622 * @ap: ATA port link is attached to
6623 * @link: Link structure to initialize
6624 * @pmp: Port multiplier port number
6629 * Kernel thread context (may sleep)
6631 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6635 /* clear everything except for devices */
6636 memset(link, 0, offsetof(struct ata_link, device[0]));
6640 link->active_tag = ATA_TAG_POISON;
6641 link->hw_sata_spd_limit = UINT_MAX;
6643 /* can't use iterator, ap isn't initialized yet */
6644 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6645 struct ata_device *dev = &link->device[i];
6648 dev->devno = dev - link->device;
6654 * sata_link_init_spd - Initialize link->sata_spd_limit
6655 * @link: Link to configure sata_spd_limit for
6657 * Initialize @link->[hw_]sata_spd_limit to the currently
6661 * Kernel thread context (may sleep).
6664 * 0 on success, -errno on failure.
6666 int sata_link_init_spd(struct ata_link *link)
6671 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6675 spd = (scontrol >> 4) & 0xf;
6677 link->hw_sata_spd_limit &= (1 << spd) - 1;
6679 link->sata_spd_limit = link->hw_sata_spd_limit;
6685 * ata_port_alloc - allocate and initialize basic ATA port resources
6686 * @host: ATA host this allocated port belongs to
6688 * Allocate and initialize basic ATA port resources.
6691 * Allocate ATA port on success, NULL on failure.
6694 * Inherited from calling layer (may sleep).
6696 struct ata_port *ata_port_alloc(struct ata_host *host)
6698 struct ata_port *ap;
6702 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6706 ap->pflags |= ATA_PFLAG_INITIALIZING;
6707 ap->lock = &host->lock;
6708 ap->flags = ATA_FLAG_DISABLED;
6710 ap->ctl = ATA_DEVCTL_OBS;
6712 ap->dev = host->dev;
6713 ap->last_ctl = 0xFF;
6715 #if defined(ATA_VERBOSE_DEBUG)
6716 /* turn on all debugging levels */
6717 ap->msg_enable = 0x00FF;
6718 #elif defined(ATA_DEBUG)
6719 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6721 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6724 INIT_DELAYED_WORK(&ap->port_task, NULL);
6725 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6726 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6727 INIT_LIST_HEAD(&ap->eh_done_q);
6728 init_waitqueue_head(&ap->eh_wait_q);
6729 init_timer_deferrable(&ap->fastdrain_timer);
6730 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6731 ap->fastdrain_timer.data = (unsigned long)ap;
6733 ap->cbl = ATA_CBL_NONE;
6735 ata_link_init(ap, &ap->link, 0);
6738 ap->stats.unhandled_irq = 1;
6739 ap->stats.idle_irq = 1;
6744 static void ata_host_release(struct device *gendev, void *res)
6746 struct ata_host *host = dev_get_drvdata(gendev);
6749 for (i = 0; i < host->n_ports; i++) {
6750 struct ata_port *ap = host->ports[i];
6756 scsi_host_put(ap->scsi_host);
6758 kfree(ap->pmp_link);
6760 host->ports[i] = NULL;
6763 dev_set_drvdata(gendev, NULL);
6767 * ata_host_alloc - allocate and init basic ATA host resources
6768 * @dev: generic device this host is associated with
6769 * @max_ports: maximum number of ATA ports associated with this host
6771 * Allocate and initialize basic ATA host resources. LLD calls
6772 * this function to allocate a host, initializes it fully and
6773 * attaches it using ata_host_register().
6775 * @max_ports ports are allocated and host->n_ports is
6776 * initialized to @max_ports. The caller is allowed to decrease
6777 * host->n_ports before calling ata_host_register(). The unused
6778 * ports will be automatically freed on registration.
6781 * Allocate ATA host on success, NULL on failure.
6784 * Inherited from calling layer (may sleep).
6786 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6788 struct ata_host *host;
6794 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6797 /* alloc a container for our list of ATA ports (buses) */
6798 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6799 /* alloc a container for our list of ATA ports (buses) */
6800 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6804 devres_add(dev, host);
6805 dev_set_drvdata(dev, host);
6807 spin_lock_init(&host->lock);
6809 host->n_ports = max_ports;
6811 /* allocate ports bound to this host */
6812 for (i = 0; i < max_ports; i++) {
6813 struct ata_port *ap;
6815 ap = ata_port_alloc(host);
6820 host->ports[i] = ap;
6823 devres_remove_group(dev, NULL);
6827 devres_release_group(dev, NULL);
6832 * ata_host_alloc_pinfo - alloc host and init with port_info array
6833 * @dev: generic device this host is associated with
6834 * @ppi: array of ATA port_info to initialize host with
6835 * @n_ports: number of ATA ports attached to this host
6837 * Allocate ATA host and initialize with info from @ppi. If NULL
6838 * terminated, @ppi may contain fewer entries than @n_ports. The
6839 * last entry will be used for the remaining ports.
6842 * Allocate ATA host on success, NULL on failure.
6845 * Inherited from calling layer (may sleep).
6847 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6848 const struct ata_port_info * const * ppi,
6851 const struct ata_port_info *pi;
6852 struct ata_host *host;
6855 host = ata_host_alloc(dev, n_ports);
6859 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6860 struct ata_port *ap = host->ports[i];
6865 ap->pio_mask = pi->pio_mask;
6866 ap->mwdma_mask = pi->mwdma_mask;
6867 ap->udma_mask = pi->udma_mask;
6868 ap->flags |= pi->flags;
6869 ap->link.flags |= pi->link_flags;
6870 ap->ops = pi->port_ops;
6872 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6873 host->ops = pi->port_ops;
6874 if (!host->private_data && pi->private_data)
6875 host->private_data = pi->private_data;
6881 static void ata_host_stop(struct device *gendev, void *res)
6883 struct ata_host *host = dev_get_drvdata(gendev);
6886 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6888 for (i = 0; i < host->n_ports; i++) {
6889 struct ata_port *ap = host->ports[i];
6891 if (ap->ops->port_stop)
6892 ap->ops->port_stop(ap);
6895 if (host->ops->host_stop)
6896 host->ops->host_stop(host);
6900 * ata_host_start - start and freeze ports of an ATA host
6901 * @host: ATA host to start ports for
6903 * Start and then freeze ports of @host. Started status is
6904 * recorded in host->flags, so this function can be called
6905 * multiple times. Ports are guaranteed to get started only
6906 * once. If host->ops isn't initialized yet, its set to the
6907 * first non-dummy port ops.
6910 * Inherited from calling layer (may sleep).
6913 * 0 if all ports are started successfully, -errno otherwise.
6915 int ata_host_start(struct ata_host *host)
6918 void *start_dr = NULL;
6921 if (host->flags & ATA_HOST_STARTED)
6924 for (i = 0; i < host->n_ports; i++) {
6925 struct ata_port *ap = host->ports[i];
6927 if (!host->ops && !ata_port_is_dummy(ap))
6928 host->ops = ap->ops;
6930 if (ap->ops->port_stop)
6934 if (host->ops->host_stop)
6938 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6943 for (i = 0; i < host->n_ports; i++) {
6944 struct ata_port *ap = host->ports[i];
6946 if (ap->ops->port_start) {
6947 rc = ap->ops->port_start(ap);
6949 ata_port_printk(ap, KERN_ERR, "failed to "
6950 "start port (errno=%d)\n", rc);
6955 ata_eh_freeze_port(ap);
6959 devres_add(host->dev, start_dr);
6960 host->flags |= ATA_HOST_STARTED;
6965 struct ata_port *ap = host->ports[i];
6967 if (ap->ops->port_stop)
6968 ap->ops->port_stop(ap);
6970 devres_free(start_dr);
6975 * ata_sas_host_init - Initialize a host struct
6976 * @host: host to initialize
6977 * @dev: device host is attached to
6978 * @flags: host flags
6982 * PCI/etc. bus probe sem.
6985 /* KILLME - the only user left is ipr */
6986 void ata_host_init(struct ata_host *host, struct device *dev,
6987 unsigned long flags, const struct ata_port_operations *ops)
6989 spin_lock_init(&host->lock);
6991 host->flags = flags;
6996 * ata_host_register - register initialized ATA host
6997 * @host: ATA host to register
6998 * @sht: template for SCSI host
7000 * Register initialized ATA host. @host is allocated using
7001 * ata_host_alloc() and fully initialized by LLD. This function
7002 * starts ports, registers @host with ATA and SCSI layers and
7003 * probe registered devices.
7006 * Inherited from calling layer (may sleep).
7009 * 0 on success, -errno otherwise.
7011 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7015 /* host must have been started */
7016 if (!(host->flags & ATA_HOST_STARTED)) {
7017 dev_printk(KERN_ERR, host->dev,
7018 "BUG: trying to register unstarted host\n");
7023 /* Blow away unused ports. This happens when LLD can't
7024 * determine the exact number of ports to allocate at
7027 for (i = host->n_ports; host->ports[i]; i++)
7028 kfree(host->ports[i]);
7030 /* give ports names and add SCSI hosts */
7031 for (i = 0; i < host->n_ports; i++)
7032 host->ports[i]->print_id = ata_print_id++;
7034 rc = ata_scsi_add_hosts(host, sht);
7038 /* associate with ACPI nodes */
7039 ata_acpi_associate(host);
7041 /* set cable, sata_spd_limit and report */
7042 for (i = 0; i < host->n_ports; i++) {
7043 struct ata_port *ap = host->ports[i];
7044 unsigned long xfer_mask;
7046 /* set SATA cable type if still unset */
7047 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7048 ap->cbl = ATA_CBL_SATA;
7050 /* init sata_spd_limit to the current value */
7051 sata_link_init_spd(&ap->link);
7053 /* print per-port info to dmesg */
7054 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7057 if (!ata_port_is_dummy(ap)) {
7058 ata_port_printk(ap, KERN_INFO,
7059 "%cATA max %s %s\n",
7060 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7061 ata_mode_string(xfer_mask),
7062 ap->link.eh_info.desc);
7063 ata_ehi_clear_desc(&ap->link.eh_info);
7065 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7068 /* perform each probe synchronously */
7069 DPRINTK("probe begin\n");
7070 for (i = 0; i < host->n_ports; i++) {
7071 struct ata_port *ap = host->ports[i];
7075 if (ap->ops->error_handler) {
7076 struct ata_eh_info *ehi = &ap->link.eh_info;
7077 unsigned long flags;
7081 /* kick EH for boot probing */
7082 spin_lock_irqsave(ap->lock, flags);
7085 (1 << ata_link_max_devices(&ap->link)) - 1;
7086 ehi->action |= ATA_EH_SOFTRESET;
7087 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7089 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7090 ap->pflags |= ATA_PFLAG_LOADING;
7091 ata_port_schedule_eh(ap);
7093 spin_unlock_irqrestore(ap->lock, flags);
7095 /* wait for EH to finish */
7096 ata_port_wait_eh(ap);
7098 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7099 rc = ata_bus_probe(ap);
7100 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7103 /* FIXME: do something useful here?
7104 * Current libata behavior will
7105 * tear down everything when
7106 * the module is removed
7107 * or the h/w is unplugged.
7113 /* probes are done, now scan each port's disk(s) */
7114 DPRINTK("host probe begin\n");
7115 for (i = 0; i < host->n_ports; i++) {
7116 struct ata_port *ap = host->ports[i];
7118 ata_scsi_scan_host(ap, 1);
7119 ata_lpm_schedule(ap, ap->pm_policy);
7126 * ata_host_activate - start host, request IRQ and register it
7127 * @host: target ATA host
7128 * @irq: IRQ to request
7129 * @irq_handler: irq_handler used when requesting IRQ
7130 * @irq_flags: irq_flags used when requesting IRQ
7131 * @sht: scsi_host_template to use when registering the host
7133 * After allocating an ATA host and initializing it, most libata
7134 * LLDs perform three steps to activate the host - start host,
7135 * request IRQ and register it. This helper takes necessasry
7136 * arguments and performs the three steps in one go.
7138 * An invalid IRQ skips the IRQ registration and expects the host to
7139 * have set polling mode on the port. In this case, @irq_handler
7143 * Inherited from calling layer (may sleep).
7146 * 0 on success, -errno otherwise.
7148 int ata_host_activate(struct ata_host *host, int irq,
7149 irq_handler_t irq_handler, unsigned long irq_flags,
7150 struct scsi_host_template *sht)
7154 rc = ata_host_start(host);
7158 /* Special case for polling mode */
7160 WARN_ON(irq_handler);
7161 return ata_host_register(host, sht);
7164 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7165 dev_driver_string(host->dev), host);
7169 for (i = 0; i < host->n_ports; i++)
7170 ata_port_desc(host->ports[i], "irq %d", irq);
7172 rc = ata_host_register(host, sht);
7173 /* if failed, just free the IRQ and leave ports alone */
7175 devm_free_irq(host->dev, irq, host);
7181 * ata_port_detach - Detach ATA port in prepration of device removal
7182 * @ap: ATA port to be detached
7184 * Detach all ATA devices and the associated SCSI devices of @ap;
7185 * then, remove the associated SCSI host. @ap is guaranteed to
7186 * be quiescent on return from this function.
7189 * Kernel thread context (may sleep).
7191 static void ata_port_detach(struct ata_port *ap)
7193 unsigned long flags;
7194 struct ata_link *link;
7195 struct ata_device *dev;
7197 if (!ap->ops->error_handler)
7200 /* tell EH we're leaving & flush EH */
7201 spin_lock_irqsave(ap->lock, flags);
7202 ap->pflags |= ATA_PFLAG_UNLOADING;
7203 spin_unlock_irqrestore(ap->lock, flags);
7205 ata_port_wait_eh(ap);
7207 /* EH is now guaranteed to see UNLOADING, so no new device
7208 * will be attached. Disable all existing devices.
7210 spin_lock_irqsave(ap->lock, flags);
7212 ata_port_for_each_link(link, ap) {
7213 ata_link_for_each_dev(dev, link)
7214 ata_dev_disable(dev);
7217 spin_unlock_irqrestore(ap->lock, flags);
7219 /* Final freeze & EH. All in-flight commands are aborted. EH
7220 * will be skipped and retrials will be terminated with bad
7223 spin_lock_irqsave(ap->lock, flags);
7224 ata_port_freeze(ap); /* won't be thawed */
7225 spin_unlock_irqrestore(ap->lock, flags);
7227 ata_port_wait_eh(ap);
7228 cancel_rearming_delayed_work(&ap->hotplug_task);
7231 /* remove the associated SCSI host */
7232 scsi_remove_host(ap->scsi_host);
7236 * ata_host_detach - Detach all ports of an ATA host
7237 * @host: Host to detach
7239 * Detach all ports of @host.
7242 * Kernel thread context (may sleep).
7244 void ata_host_detach(struct ata_host *host)
7248 for (i = 0; i < host->n_ports; i++)
7249 ata_port_detach(host->ports[i]);
7253 * ata_std_ports - initialize ioaddr with standard port offsets.
7254 * @ioaddr: IO address structure to be initialized
7256 * Utility function which initializes data_addr, error_addr,
7257 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7258 * device_addr, status_addr, and command_addr to standard offsets
7259 * relative to cmd_addr.
7261 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7264 void ata_std_ports(struct ata_ioports *ioaddr)
7266 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7267 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7268 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7269 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7270 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7271 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7272 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7273 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7274 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7275 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7282 * ata_pci_remove_one - PCI layer callback for device removal
7283 * @pdev: PCI device that was removed
7285 * PCI layer indicates to libata via this hook that hot-unplug or
7286 * module unload event has occurred. Detach all ports. Resource
7287 * release is handled via devres.
7290 * Inherited from PCI layer (may sleep).
7292 void ata_pci_remove_one(struct pci_dev *pdev)
7294 struct device *dev = &pdev->dev;
7295 struct ata_host *host = dev_get_drvdata(dev);
7297 ata_host_detach(host);
7300 /* move to PCI subsystem */
7301 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7303 unsigned long tmp = 0;
7305 switch (bits->width) {
7308 pci_read_config_byte(pdev, bits->reg, &tmp8);
7314 pci_read_config_word(pdev, bits->reg, &tmp16);
7320 pci_read_config_dword(pdev, bits->reg, &tmp32);
7331 return (tmp == bits->val) ? 1 : 0;
7335 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7337 pci_save_state(pdev);
7338 pci_disable_device(pdev);
7340 if (mesg.event == PM_EVENT_SUSPEND)
7341 pci_set_power_state(pdev, PCI_D3hot);
7344 int ata_pci_device_do_resume(struct pci_dev *pdev)
7348 pci_set_power_state(pdev, PCI_D0);
7349 pci_restore_state(pdev);
7351 rc = pcim_enable_device(pdev);
7353 dev_printk(KERN_ERR, &pdev->dev,
7354 "failed to enable device after resume (%d)\n", rc);
7358 pci_set_master(pdev);
7362 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7364 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7367 rc = ata_host_suspend(host, mesg);
7371 ata_pci_device_do_suspend(pdev, mesg);
7376 int ata_pci_device_resume(struct pci_dev *pdev)
7378 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7381 rc = ata_pci_device_do_resume(pdev);
7383 ata_host_resume(host);
7386 #endif /* CONFIG_PM */
7388 #endif /* CONFIG_PCI */
7391 static int __init ata_init(void)
7393 ata_probe_timeout *= HZ;
7394 ata_wq = create_workqueue("ata");
7398 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7400 destroy_workqueue(ata_wq);
7404 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7408 static void __exit ata_exit(void)
7410 destroy_workqueue(ata_wq);
7411 destroy_workqueue(ata_aux_wq);
7414 subsys_initcall(ata_init);
7415 module_exit(ata_exit);
7417 static unsigned long ratelimit_time;
7418 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7420 int ata_ratelimit(void)
7423 unsigned long flags;
7425 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7427 if (time_after(jiffies, ratelimit_time)) {
7429 ratelimit_time = jiffies + (HZ/5);
7433 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7439 * ata_wait_register - wait until register value changes
7440 * @reg: IO-mapped register
7441 * @mask: Mask to apply to read register value
7442 * @val: Wait condition
7443 * @interval_msec: polling interval in milliseconds
7444 * @timeout_msec: timeout in milliseconds
7446 * Waiting for some bits of register to change is a common
7447 * operation for ATA controllers. This function reads 32bit LE
7448 * IO-mapped register @reg and tests for the following condition.
7450 * (*@reg & mask) != val
7452 * If the condition is met, it returns; otherwise, the process is
7453 * repeated after @interval_msec until timeout.
7456 * Kernel thread context (may sleep)
7459 * The final register value.
7461 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7462 unsigned long interval_msec,
7463 unsigned long timeout_msec)
7465 unsigned long timeout;
7468 tmp = ioread32(reg);
7470 /* Calculate timeout _after_ the first read to make sure
7471 * preceding writes reach the controller before starting to
7472 * eat away the timeout.
7474 timeout = jiffies + (timeout_msec * HZ) / 1000;
7476 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7477 msleep(interval_msec);
7478 tmp = ioread32(reg);
7487 static void ata_dummy_noret(struct ata_port *ap) { }
7488 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7489 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7491 static u8 ata_dummy_check_status(struct ata_port *ap)
7496 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7498 return AC_ERR_SYSTEM;
7501 const struct ata_port_operations ata_dummy_port_ops = {
7502 .check_status = ata_dummy_check_status,
7503 .check_altstatus = ata_dummy_check_status,
7504 .dev_select = ata_noop_dev_select,
7505 .qc_prep = ata_noop_qc_prep,
7506 .qc_issue = ata_dummy_qc_issue,
7507 .freeze = ata_dummy_noret,
7508 .thaw = ata_dummy_noret,
7509 .error_handler = ata_dummy_noret,
7510 .post_internal_cmd = ata_dummy_qc_noret,
7511 .irq_clear = ata_dummy_noret,
7512 .port_start = ata_dummy_ret0,
7513 .port_stop = ata_dummy_noret,
7516 const struct ata_port_info ata_dummy_port_info = {
7517 .port_ops = &ata_dummy_port_ops,
7521 * libata is essentially a library of internal helper functions for
7522 * low-level ATA host controller drivers. As such, the API/ABI is
7523 * likely to change as new drivers are added and updated.
7524 * Do not depend on ABI/API stability.
7526 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7527 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7528 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7529 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7530 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7531 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7532 EXPORT_SYMBOL_GPL(ata_std_ports);
7533 EXPORT_SYMBOL_GPL(ata_host_init);
7534 EXPORT_SYMBOL_GPL(ata_host_alloc);
7535 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7536 EXPORT_SYMBOL_GPL(ata_host_start);
7537 EXPORT_SYMBOL_GPL(ata_host_register);
7538 EXPORT_SYMBOL_GPL(ata_host_activate);
7539 EXPORT_SYMBOL_GPL(ata_host_detach);
7540 EXPORT_SYMBOL_GPL(ata_sg_init);
7541 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7542 EXPORT_SYMBOL_GPL(ata_hsm_move);
7543 EXPORT_SYMBOL_GPL(ata_qc_complete);
7544 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7545 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7546 EXPORT_SYMBOL_GPL(ata_tf_load);
7547 EXPORT_SYMBOL_GPL(ata_tf_read);
7548 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7549 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7550 EXPORT_SYMBOL_GPL(sata_print_link_status);
7551 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7552 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7553 EXPORT_SYMBOL_GPL(ata_check_status);
7554 EXPORT_SYMBOL_GPL(ata_altstatus);
7555 EXPORT_SYMBOL_GPL(ata_exec_command);
7556 EXPORT_SYMBOL_GPL(ata_port_start);
7557 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7558 EXPORT_SYMBOL_GPL(ata_interrupt);
7559 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7560 EXPORT_SYMBOL_GPL(ata_data_xfer);
7561 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7562 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7563 EXPORT_SYMBOL_GPL(ata_qc_prep);
7564 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7565 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7566 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7567 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7568 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7569 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7570 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7571 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7572 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7573 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7574 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7575 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7576 EXPORT_SYMBOL_GPL(ata_port_probe);
7577 EXPORT_SYMBOL_GPL(ata_dev_disable);
7578 EXPORT_SYMBOL_GPL(sata_set_spd);
7579 EXPORT_SYMBOL_GPL(sata_link_debounce);
7580 EXPORT_SYMBOL_GPL(sata_link_resume);
7581 EXPORT_SYMBOL_GPL(ata_bus_reset);
7582 EXPORT_SYMBOL_GPL(ata_std_prereset);
7583 EXPORT_SYMBOL_GPL(ata_std_softreset);
7584 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7585 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7586 EXPORT_SYMBOL_GPL(ata_std_postreset);
7587 EXPORT_SYMBOL_GPL(ata_dev_classify);
7588 EXPORT_SYMBOL_GPL(ata_dev_pair);
7589 EXPORT_SYMBOL_GPL(ata_port_disable);
7590 EXPORT_SYMBOL_GPL(ata_ratelimit);
7591 EXPORT_SYMBOL_GPL(ata_wait_register);
7592 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7593 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7594 EXPORT_SYMBOL_GPL(ata_wait_ready);
7595 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7596 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7597 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7598 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7599 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7600 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7601 EXPORT_SYMBOL_GPL(ata_host_intr);
7602 EXPORT_SYMBOL_GPL(sata_scr_valid);
7603 EXPORT_SYMBOL_GPL(sata_scr_read);
7604 EXPORT_SYMBOL_GPL(sata_scr_write);
7605 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7606 EXPORT_SYMBOL_GPL(ata_link_online);
7607 EXPORT_SYMBOL_GPL(ata_link_offline);
7609 EXPORT_SYMBOL_GPL(ata_host_suspend);
7610 EXPORT_SYMBOL_GPL(ata_host_resume);
7611 #endif /* CONFIG_PM */
7612 EXPORT_SYMBOL_GPL(ata_id_string);
7613 EXPORT_SYMBOL_GPL(ata_id_c_string);
7614 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7615 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7617 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7618 EXPORT_SYMBOL_GPL(ata_timing_compute);
7619 EXPORT_SYMBOL_GPL(ata_timing_merge);
7622 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7623 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7624 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7625 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7626 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7627 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7629 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7630 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7631 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7632 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7633 #endif /* CONFIG_PM */
7634 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7635 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7636 #endif /* CONFIG_PCI */
7638 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7639 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7640 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7641 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7642 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7644 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7645 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7646 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7647 EXPORT_SYMBOL_GPL(ata_port_desc);
7649 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7650 #endif /* CONFIG_PCI */
7651 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7652 EXPORT_SYMBOL_GPL(ata_link_abort);
7653 EXPORT_SYMBOL_GPL(ata_port_abort);
7654 EXPORT_SYMBOL_GPL(ata_port_freeze);
7655 EXPORT_SYMBOL_GPL(sata_async_notification);
7656 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7657 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7658 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7659 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7660 EXPORT_SYMBOL_GPL(ata_do_eh);
7661 EXPORT_SYMBOL_GPL(ata_irq_on);
7662 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7664 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7665 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7666 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7667 EXPORT_SYMBOL_GPL(ata_cable_sata);