Merge branch 'linux-next' of git://git.infradead.org/~dedekind/ubifs-2.6
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 e_err("Unsupported Speed/Duplex configuration\n");
193                 return -EINVAL;
194         }
195
196         switch (spddplx) {
197         case SPEED_10 + DUPLEX_HALF:
198                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
199                 break;
200         case SPEED_10 + DUPLEX_FULL:
201                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
202                 break;
203         case SPEED_100 + DUPLEX_HALF:
204                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
205                 break;
206         case SPEED_100 + DUPLEX_FULL:
207                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
208                 break;
209         case SPEED_1000 + DUPLEX_FULL:
210                 mac->autoneg = 1;
211                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
212                 break;
213         case SPEED_1000 + DUPLEX_HALF: /* not supported */
214         default:
215                 e_err("Unsupported Speed/Duplex configuration\n");
216                 return -EINVAL;
217         }
218         return 0;
219 }
220
221 static int e1000_set_settings(struct net_device *netdev,
222                               struct ethtool_cmd *ecmd)
223 {
224         struct e1000_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         /*
228          * When SoL/IDER sessions are active, autoneg/speed/duplex
229          * cannot be changed
230          */
231         if (e1000_check_reset_block(hw)) {
232                 e_err("Cannot change link characteristics when SoL/IDER is "
233                       "active.\n");
234                 return -EINVAL;
235         }
236
237         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238                 msleep(1);
239
240         if (ecmd->autoneg == AUTONEG_ENABLE) {
241                 hw->mac.autoneg = 1;
242                 if (hw->phy.media_type == e1000_media_type_fiber)
243                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244                                                      ADVERTISED_FIBRE |
245                                                      ADVERTISED_Autoneg;
246                 else
247                         hw->phy.autoneg_advertised = ecmd->advertising |
248                                                      ADVERTISED_TP |
249                                                      ADVERTISED_Autoneg;
250                 ecmd->advertising = hw->phy.autoneg_advertised;
251                 if (adapter->fc_autoneg)
252                         hw->fc.original_type = e1000_fc_default;
253         } else {
254                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
255                         clear_bit(__E1000_RESETTING, &adapter->state);
256                         return -EINVAL;
257                 }
258         }
259
260         /* reset the link */
261
262         if (netif_running(adapter->netdev)) {
263                 e1000e_down(adapter);
264                 e1000e_up(adapter);
265         } else {
266                 e1000e_reset(adapter);
267         }
268
269         clear_bit(__E1000_RESETTING, &adapter->state);
270         return 0;
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274                                  struct ethtool_pauseparam *pause)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         struct e1000_hw *hw = &adapter->hw;
278
279         pause->autoneg =
280                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282         if (hw->fc.type == e1000_fc_rx_pause) {
283                 pause->rx_pause = 1;
284         } else if (hw->fc.type == e1000_fc_tx_pause) {
285                 pause->tx_pause = 1;
286         } else if (hw->fc.type == e1000_fc_full) {
287                 pause->rx_pause = 1;
288                 pause->tx_pause = 1;
289         }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293                                 struct ethtool_pauseparam *pause)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         struct e1000_hw *hw = &adapter->hw;
297         int retval = 0;
298
299         adapter->fc_autoneg = pause->autoneg;
300
301         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302                 msleep(1);
303
304         if (pause->rx_pause && pause->tx_pause)
305                 hw->fc.type = e1000_fc_full;
306         else if (pause->rx_pause && !pause->tx_pause)
307                 hw->fc.type = e1000_fc_rx_pause;
308         else if (!pause->rx_pause && pause->tx_pause)
309                 hw->fc.type = e1000_fc_tx_pause;
310         else if (!pause->rx_pause && !pause->tx_pause)
311                 hw->fc.type = e1000_fc_none;
312
313         hw->fc.original_type = hw->fc.type;
314
315         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316                 hw->fc.type = e1000_fc_default;
317                 if (netif_running(adapter->netdev)) {
318                         e1000e_down(adapter);
319                         e1000e_up(adapter);
320                 } else {
321                         e1000e_reset(adapter);
322                 }
323         } else {
324                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
325                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
326         }
327
328         clear_bit(__E1000_RESETTING, &adapter->state);
329         return retval;
330 }
331
332 static u32 e1000_get_rx_csum(struct net_device *netdev)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
336 }
337
338 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341
342         if (data)
343                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
344         else
345                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
346
347         if (netif_running(netdev))
348                 e1000e_reinit_locked(adapter);
349         else
350                 e1000e_reset(adapter);
351         return 0;
352 }
353
354 static u32 e1000_get_tx_csum(struct net_device *netdev)
355 {
356         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
357 }
358
359 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
360 {
361         if (data)
362                 netdev->features |= NETIF_F_HW_CSUM;
363         else
364                 netdev->features &= ~NETIF_F_HW_CSUM;
365
366         return 0;
367 }
368
369 static int e1000_set_tso(struct net_device *netdev, u32 data)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372
373         if (data) {
374                 netdev->features |= NETIF_F_TSO;
375                 netdev->features |= NETIF_F_TSO6;
376         } else {
377                 netdev->features &= ~NETIF_F_TSO;
378                 netdev->features &= ~NETIF_F_TSO6;
379         }
380
381         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
382         adapter->flags |= FLAG_TSO_FORCE;
383         return 0;
384 }
385
386 static u32 e1000_get_msglevel(struct net_device *netdev)
387 {
388         struct e1000_adapter *adapter = netdev_priv(netdev);
389         return adapter->msg_enable;
390 }
391
392 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
393 {
394         struct e1000_adapter *adapter = netdev_priv(netdev);
395         adapter->msg_enable = data;
396 }
397
398 static int e1000_get_regs_len(struct net_device *netdev)
399 {
400 #define E1000_REGS_LEN 32 /* overestimate */
401         return E1000_REGS_LEN * sizeof(u32);
402 }
403
404 static void e1000_get_regs(struct net_device *netdev,
405                            struct ethtool_regs *regs, void *p)
406 {
407         struct e1000_adapter *adapter = netdev_priv(netdev);
408         struct e1000_hw *hw = &adapter->hw;
409         u32 *regs_buff = p;
410         u16 phy_data;
411         u8 revision_id;
412
413         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
414
415         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
416
417         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
418
419         regs_buff[0]  = er32(CTRL);
420         regs_buff[1]  = er32(STATUS);
421
422         regs_buff[2]  = er32(RCTL);
423         regs_buff[3]  = er32(RDLEN);
424         regs_buff[4]  = er32(RDH);
425         regs_buff[5]  = er32(RDT);
426         regs_buff[6]  = er32(RDTR);
427
428         regs_buff[7]  = er32(TCTL);
429         regs_buff[8]  = er32(TDLEN);
430         regs_buff[9]  = er32(TDH);
431         regs_buff[10] = er32(TDT);
432         regs_buff[11] = er32(TIDV);
433
434         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
435         if (hw->phy.type == e1000_phy_m88) {
436                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437                 regs_buff[13] = (u32)phy_data; /* cable length */
438                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443                 regs_buff[18] = regs_buff[13]; /* cable polarity */
444                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 regs_buff[20] = regs_buff[17]; /* polarity correction */
446                 /* phy receive errors */
447                 regs_buff[22] = adapter->phy_stats.receive_errors;
448                 regs_buff[23] = regs_buff[13]; /* mdix mode */
449         }
450         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
451         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
452         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
453         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
454 }
455
456 static int e1000_get_eeprom_len(struct net_device *netdev)
457 {
458         struct e1000_adapter *adapter = netdev_priv(netdev);
459         return adapter->hw.nvm.word_size * 2;
460 }
461
462 static int e1000_get_eeprom(struct net_device *netdev,
463                             struct ethtool_eeprom *eeprom, u8 *bytes)
464 {
465         struct e1000_adapter *adapter = netdev_priv(netdev);
466         struct e1000_hw *hw = &adapter->hw;
467         u16 *eeprom_buff;
468         int first_word;
469         int last_word;
470         int ret_val = 0;
471         u16 i;
472
473         if (eeprom->len == 0)
474                 return -EINVAL;
475
476         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
477
478         first_word = eeprom->offset >> 1;
479         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
480
481         eeprom_buff = kmalloc(sizeof(u16) *
482                         (last_word - first_word + 1), GFP_KERNEL);
483         if (!eeprom_buff)
484                 return -ENOMEM;
485
486         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
487                 ret_val = e1000_read_nvm(hw, first_word,
488                                          last_word - first_word + 1,
489                                          eeprom_buff);
490         } else {
491                 for (i = 0; i < last_word - first_word + 1; i++) {
492                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
493                                                       &eeprom_buff[i]);
494                         if (ret_val) {
495                                 /* a read error occurred, throw away the
496                                  * result */
497                                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
498                                 break;
499                         }
500                 }
501         }
502
503         /* Device's eeprom is always little-endian, word addressable */
504         for (i = 0; i < last_word - first_word + 1; i++)
505                 le16_to_cpus(&eeprom_buff[i]);
506
507         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
508         kfree(eeprom_buff);
509
510         return ret_val;
511 }
512
513 static int e1000_set_eeprom(struct net_device *netdev,
514                             struct ethtool_eeprom *eeprom, u8 *bytes)
515 {
516         struct e1000_adapter *adapter = netdev_priv(netdev);
517         struct e1000_hw *hw = &adapter->hw;
518         u16 *eeprom_buff;
519         void *ptr;
520         int max_len;
521         int first_word;
522         int last_word;
523         int ret_val = 0;
524         u16 i;
525
526         if (eeprom->len == 0)
527                 return -EOPNOTSUPP;
528
529         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
530                 return -EFAULT;
531
532         max_len = hw->nvm.word_size * 2;
533
534         first_word = eeprom->offset >> 1;
535         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
536         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
537         if (!eeprom_buff)
538                 return -ENOMEM;
539
540         ptr = (void *)eeprom_buff;
541
542         if (eeprom->offset & 1) {
543                 /* need read/modify/write of first changed EEPROM word */
544                 /* only the second byte of the word is being modified */
545                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
546                 ptr++;
547         }
548         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
549                 /* need read/modify/write of last changed EEPROM word */
550                 /* only the first byte of the word is being modified */
551                 ret_val = e1000_read_nvm(hw, last_word, 1,
552                                   &eeprom_buff[last_word - first_word]);
553
554         /* Device's eeprom is always little-endian, word addressable */
555         for (i = 0; i < last_word - first_word + 1; i++)
556                 le16_to_cpus(&eeprom_buff[i]);
557
558         memcpy(ptr, bytes, eeprom->len);
559
560         for (i = 0; i < last_word - first_word + 1; i++)
561                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
562
563         ret_val = e1000_write_nvm(hw, first_word,
564                                   last_word - first_word + 1, eeprom_buff);
565
566         /*
567          * Update the checksum over the first part of the EEPROM if needed
568          * and flush shadow RAM for 82573 controllers
569          */
570         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
571                                (hw->mac.type == e1000_82573)))
572                 e1000e_update_nvm_checksum(hw);
573
574         kfree(eeprom_buff);
575         return ret_val;
576 }
577
578 static void e1000_get_drvinfo(struct net_device *netdev,
579                               struct ethtool_drvinfo *drvinfo)
580 {
581         struct e1000_adapter *adapter = netdev_priv(netdev);
582         char firmware_version[32];
583         u16 eeprom_data;
584
585         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
586         strncpy(drvinfo->version, e1000e_driver_version, 32);
587
588         /*
589          * EEPROM image version # is reported as firmware version # for
590          * PCI-E controllers
591          */
592         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
593         sprintf(firmware_version, "%d.%d-%d",
594                 (eeprom_data & 0xF000) >> 12,
595                 (eeprom_data & 0x0FF0) >> 4,
596                 eeprom_data & 0x000F);
597
598         strncpy(drvinfo->fw_version, firmware_version, 32);
599         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
600         drvinfo->regdump_len = e1000_get_regs_len(netdev);
601         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
602 }
603
604 static void e1000_get_ringparam(struct net_device *netdev,
605                                 struct ethtool_ringparam *ring)
606 {
607         struct e1000_adapter *adapter = netdev_priv(netdev);
608         struct e1000_ring *tx_ring = adapter->tx_ring;
609         struct e1000_ring *rx_ring = adapter->rx_ring;
610
611         ring->rx_max_pending = E1000_MAX_RXD;
612         ring->tx_max_pending = E1000_MAX_TXD;
613         ring->rx_mini_max_pending = 0;
614         ring->rx_jumbo_max_pending = 0;
615         ring->rx_pending = rx_ring->count;
616         ring->tx_pending = tx_ring->count;
617         ring->rx_mini_pending = 0;
618         ring->rx_jumbo_pending = 0;
619 }
620
621 static int e1000_set_ringparam(struct net_device *netdev,
622                                struct ethtool_ringparam *ring)
623 {
624         struct e1000_adapter *adapter = netdev_priv(netdev);
625         struct e1000_ring *tx_ring, *tx_old;
626         struct e1000_ring *rx_ring, *rx_old;
627         int err;
628
629         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
630                 return -EINVAL;
631
632         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
633                 msleep(1);
634
635         if (netif_running(adapter->netdev))
636                 e1000e_down(adapter);
637
638         tx_old = adapter->tx_ring;
639         rx_old = adapter->rx_ring;
640
641         err = -ENOMEM;
642         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
643         if (!tx_ring)
644                 goto err_alloc_tx;
645         /*
646          * use a memcpy to save any previously configured
647          * items like napi structs from having to be
648          * reinitialized
649          */
650         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
651
652         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
653         if (!rx_ring)
654                 goto err_alloc_rx;
655         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
656
657         adapter->tx_ring = tx_ring;
658         adapter->rx_ring = rx_ring;
659
660         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
661         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
662         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
663
664         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
665         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
666         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
667
668         if (netif_running(adapter->netdev)) {
669                 /* Try to get new resources before deleting old */
670                 err = e1000e_setup_rx_resources(adapter);
671                 if (err)
672                         goto err_setup_rx;
673                 err = e1000e_setup_tx_resources(adapter);
674                 if (err)
675                         goto err_setup_tx;
676
677                 /*
678                  * restore the old in order to free it,
679                  * then add in the new
680                  */
681                 adapter->rx_ring = rx_old;
682                 adapter->tx_ring = tx_old;
683                 e1000e_free_rx_resources(adapter);
684                 e1000e_free_tx_resources(adapter);
685                 kfree(tx_old);
686                 kfree(rx_old);
687                 adapter->rx_ring = rx_ring;
688                 adapter->tx_ring = tx_ring;
689                 err = e1000e_up(adapter);
690                 if (err)
691                         goto err_setup;
692         }
693
694         clear_bit(__E1000_RESETTING, &adapter->state);
695         return 0;
696 err_setup_tx:
697         e1000e_free_rx_resources(adapter);
698 err_setup_rx:
699         adapter->rx_ring = rx_old;
700         adapter->tx_ring = tx_old;
701         kfree(rx_ring);
702 err_alloc_rx:
703         kfree(tx_ring);
704 err_alloc_tx:
705         e1000e_up(adapter);
706 err_setup:
707         clear_bit(__E1000_RESETTING, &adapter->state);
708         return err;
709 }
710
711 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
712                              int reg, int offset, u32 mask, u32 write)
713 {
714         u32 pat, val;
715         static const u32 test[] =
716                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
717         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
718                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
719                                       (test[pat] & write));
720                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
721                 if (val != (test[pat] & write & mask)) {
722                         e_err("pattern test reg %04X failed: got 0x%08X "
723                               "expected 0x%08X\n", reg + offset, val,
724                               (test[pat] & write & mask));
725                         *data = reg;
726                         return 1;
727                 }
728         }
729         return 0;
730 }
731
732 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
733                               int reg, u32 mask, u32 write)
734 {
735         u32 val;
736         __ew32(&adapter->hw, reg, write & mask);
737         val = __er32(&adapter->hw, reg);
738         if ((write & mask) != (val & mask)) {
739                 e_err("set/check reg %04X test failed: got 0x%08X "
740                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
741                 *data = reg;
742                 return 1;
743         }
744         return 0;
745 }
746 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
747         do {                                                                   \
748                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
749                         return 1;                                              \
750         } while (0)
751 #define REG_PATTERN_TEST(reg, mask, write)                                     \
752         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
753
754 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
755         do {                                                                   \
756                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
757                         return 1;                                              \
758         } while (0)
759
760 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
761 {
762         struct e1000_hw *hw = &adapter->hw;
763         struct e1000_mac_info *mac = &adapter->hw.mac;
764         u32 value;
765         u32 before;
766         u32 after;
767         u32 i;
768         u32 toggle;
769
770         /*
771          * The status register is Read Only, so a write should fail.
772          * Some bits that get toggled are ignored.
773          */
774         switch (mac->type) {
775         /* there are several bits on newer hardware that are r/w */
776         case e1000_82571:
777         case e1000_82572:
778         case e1000_80003es2lan:
779                 toggle = 0x7FFFF3FF;
780                 break;
781         case e1000_82573:
782         case e1000_ich8lan:
783         case e1000_ich9lan:
784                 toggle = 0x7FFFF033;
785                 break;
786         default:
787                 toggle = 0xFFFFF833;
788                 break;
789         }
790
791         before = er32(STATUS);
792         value = (er32(STATUS) & toggle);
793         ew32(STATUS, toggle);
794         after = er32(STATUS) & toggle;
795         if (value != after) {
796                 e_err("failed STATUS register test got: 0x%08X expected: "
797                       "0x%08X\n", after, value);
798                 *data = 1;
799                 return 1;
800         }
801         /* restore previous status */
802         ew32(STATUS, before);
803
804         if (!(adapter->flags & FLAG_IS_ICH)) {
805                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
806                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
807                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
808                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
809         }
810
811         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
812         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
813         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
814         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
815         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
816         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
817         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
819         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
820         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
821
822         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
823
824         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
825         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
826         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
827
828         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
829         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
830         if (!(adapter->flags & FLAG_IS_ICH))
831                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
832         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
833         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
834         for (i = 0; i < mac->rar_entry_count; i++)
835                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
836                                        0x8003FFFF, 0xFFFFFFFF);
837
838         for (i = 0; i < mac->mta_reg_count; i++)
839                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
840
841         *data = 0;
842         return 0;
843 }
844
845 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
846 {
847         u16 temp;
848         u16 checksum = 0;
849         u16 i;
850
851         *data = 0;
852         /* Read and add up the contents of the EEPROM */
853         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
854                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
855                         *data = 1;
856                         break;
857                 }
858                 checksum += temp;
859         }
860
861         /* If Checksum is not Correct return error else test passed */
862         if ((checksum != (u16) NVM_SUM) && !(*data))
863                 *data = 2;
864
865         return *data;
866 }
867
868 static irqreturn_t e1000_test_intr(int irq, void *data)
869 {
870         struct net_device *netdev = (struct net_device *) data;
871         struct e1000_adapter *adapter = netdev_priv(netdev);
872         struct e1000_hw *hw = &adapter->hw;
873
874         adapter->test_icr |= er32(ICR);
875
876         return IRQ_HANDLED;
877 }
878
879 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
880 {
881         struct net_device *netdev = adapter->netdev;
882         struct e1000_hw *hw = &adapter->hw;
883         u32 mask;
884         u32 shared_int = 1;
885         u32 irq = adapter->pdev->irq;
886         int i;
887
888         *data = 0;
889
890         /* NOTE: we don't test MSI interrupts here, yet */
891         /* Hook up test interrupt handler just for this test */
892         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
893                          netdev)) {
894                 shared_int = 0;
895         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
896                  netdev->name, netdev)) {
897                 *data = 1;
898                 return -1;
899         }
900         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
901
902         /* Disable all the interrupts */
903         ew32(IMC, 0xFFFFFFFF);
904         msleep(10);
905
906         /* Test each interrupt */
907         for (i = 0; i < 10; i++) {
908                 if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
909                         continue;
910
911                 /* Interrupt to test */
912                 mask = 1 << i;
913
914                 if (!shared_int) {
915                         /*
916                          * Disable the interrupt to be reported in
917                          * the cause register and then force the same
918                          * interrupt and see if one gets posted.  If
919                          * an interrupt was posted to the bus, the
920                          * test failed.
921                          */
922                         adapter->test_icr = 0;
923                         ew32(IMC, mask);
924                         ew32(ICS, mask);
925                         msleep(10);
926
927                         if (adapter->test_icr & mask) {
928                                 *data = 3;
929                                 break;
930                         }
931                 }
932
933                 /*
934                  * Enable the interrupt to be reported in
935                  * the cause register and then force the same
936                  * interrupt and see if one gets posted.  If
937                  * an interrupt was not posted to the bus, the
938                  * test failed.
939                  */
940                 adapter->test_icr = 0;
941                 ew32(IMS, mask);
942                 ew32(ICS, mask);
943                 msleep(10);
944
945                 if (!(adapter->test_icr & mask)) {
946                         *data = 4;
947                         break;
948                 }
949
950                 if (!shared_int) {
951                         /*
952                          * Disable the other interrupts to be reported in
953                          * the cause register and then force the other
954                          * interrupts and see if any get posted.  If
955                          * an interrupt was posted to the bus, the
956                          * test failed.
957                          */
958                         adapter->test_icr = 0;
959                         ew32(IMC, ~mask & 0x00007FFF);
960                         ew32(ICS, ~mask & 0x00007FFF);
961                         msleep(10);
962
963                         if (adapter->test_icr) {
964                                 *data = 5;
965                                 break;
966                         }
967                 }
968         }
969
970         /* Disable all the interrupts */
971         ew32(IMC, 0xFFFFFFFF);
972         msleep(10);
973
974         /* Unhook test interrupt handler */
975         free_irq(irq, netdev);
976
977         return *data;
978 }
979
980 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
981 {
982         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
983         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
984         struct pci_dev *pdev = adapter->pdev;
985         int i;
986
987         if (tx_ring->desc && tx_ring->buffer_info) {
988                 for (i = 0; i < tx_ring->count; i++) {
989                         if (tx_ring->buffer_info[i].dma)
990                                 pci_unmap_single(pdev,
991                                         tx_ring->buffer_info[i].dma,
992                                         tx_ring->buffer_info[i].length,
993                                         PCI_DMA_TODEVICE);
994                         if (tx_ring->buffer_info[i].skb)
995                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
996                 }
997         }
998
999         if (rx_ring->desc && rx_ring->buffer_info) {
1000                 for (i = 0; i < rx_ring->count; i++) {
1001                         if (rx_ring->buffer_info[i].dma)
1002                                 pci_unmap_single(pdev,
1003                                         rx_ring->buffer_info[i].dma,
1004                                         2048, PCI_DMA_FROMDEVICE);
1005                         if (rx_ring->buffer_info[i].skb)
1006                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1007                 }
1008         }
1009
1010         if (tx_ring->desc) {
1011                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1012                                   tx_ring->dma);
1013                 tx_ring->desc = NULL;
1014         }
1015         if (rx_ring->desc) {
1016                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1017                                   rx_ring->dma);
1018                 rx_ring->desc = NULL;
1019         }
1020
1021         kfree(tx_ring->buffer_info);
1022         tx_ring->buffer_info = NULL;
1023         kfree(rx_ring->buffer_info);
1024         rx_ring->buffer_info = NULL;
1025 }
1026
1027 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1028 {
1029         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1030         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1031         struct pci_dev *pdev = adapter->pdev;
1032         struct e1000_hw *hw = &adapter->hw;
1033         u32 rctl;
1034         int i;
1035         int ret_val;
1036
1037         /* Setup Tx descriptor ring and Tx buffers */
1038
1039         if (!tx_ring->count)
1040                 tx_ring->count = E1000_DEFAULT_TXD;
1041
1042         tx_ring->buffer_info = kcalloc(tx_ring->count,
1043                                        sizeof(struct e1000_buffer),
1044                                        GFP_KERNEL);
1045         if (!(tx_ring->buffer_info)) {
1046                 ret_val = 1;
1047                 goto err_nomem;
1048         }
1049
1050         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1051         tx_ring->size = ALIGN(tx_ring->size, 4096);
1052         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1053                                            &tx_ring->dma, GFP_KERNEL);
1054         if (!tx_ring->desc) {
1055                 ret_val = 2;
1056                 goto err_nomem;
1057         }
1058         tx_ring->next_to_use = 0;
1059         tx_ring->next_to_clean = 0;
1060
1061         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1062         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1063         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1064         ew32(TDH, 0);
1065         ew32(TDT, 0);
1066         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1067              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1068              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1069
1070         for (i = 0; i < tx_ring->count; i++) {
1071                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1072                 struct sk_buff *skb;
1073                 unsigned int skb_size = 1024;
1074
1075                 skb = alloc_skb(skb_size, GFP_KERNEL);
1076                 if (!skb) {
1077                         ret_val = 3;
1078                         goto err_nomem;
1079                 }
1080                 skb_put(skb, skb_size);
1081                 tx_ring->buffer_info[i].skb = skb;
1082                 tx_ring->buffer_info[i].length = skb->len;
1083                 tx_ring->buffer_info[i].dma =
1084                         pci_map_single(pdev, skb->data, skb->len,
1085                                        PCI_DMA_TODEVICE);
1086                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1087                         ret_val = 4;
1088                         goto err_nomem;
1089                 }
1090                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1091                 tx_desc->lower.data = cpu_to_le32(skb->len);
1092                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1093                                                    E1000_TXD_CMD_IFCS |
1094                                                    E1000_TXD_CMD_RS);
1095                 tx_desc->upper.data = 0;
1096         }
1097
1098         /* Setup Rx descriptor ring and Rx buffers */
1099
1100         if (!rx_ring->count)
1101                 rx_ring->count = E1000_DEFAULT_RXD;
1102
1103         rx_ring->buffer_info = kcalloc(rx_ring->count,
1104                                        sizeof(struct e1000_buffer),
1105                                        GFP_KERNEL);
1106         if (!(rx_ring->buffer_info)) {
1107                 ret_val = 5;
1108                 goto err_nomem;
1109         }
1110
1111         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1112         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1113                                            &rx_ring->dma, GFP_KERNEL);
1114         if (!rx_ring->desc) {
1115                 ret_val = 6;
1116                 goto err_nomem;
1117         }
1118         rx_ring->next_to_use = 0;
1119         rx_ring->next_to_clean = 0;
1120
1121         rctl = er32(RCTL);
1122         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1123         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1124         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1125         ew32(RDLEN, rx_ring->size);
1126         ew32(RDH, 0);
1127         ew32(RDT, 0);
1128         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1129                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1130                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1131                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1132                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1133         ew32(RCTL, rctl);
1134
1135         for (i = 0; i < rx_ring->count; i++) {
1136                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1137                 struct sk_buff *skb;
1138
1139                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1140                 if (!skb) {
1141                         ret_val = 7;
1142                         goto err_nomem;
1143                 }
1144                 skb_reserve(skb, NET_IP_ALIGN);
1145                 rx_ring->buffer_info[i].skb = skb;
1146                 rx_ring->buffer_info[i].dma =
1147                         pci_map_single(pdev, skb->data, 2048,
1148                                        PCI_DMA_FROMDEVICE);
1149                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1150                         ret_val = 8;
1151                         goto err_nomem;
1152                 }
1153                 rx_desc->buffer_addr =
1154                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1155                 memset(skb->data, 0x00, skb->len);
1156         }
1157
1158         return 0;
1159
1160 err_nomem:
1161         e1000_free_desc_rings(adapter);
1162         return ret_val;
1163 }
1164
1165 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1166 {
1167         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1168         e1e_wphy(&adapter->hw, 29, 0x001F);
1169         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1170         e1e_wphy(&adapter->hw, 29, 0x001A);
1171         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1172 }
1173
1174 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1175 {
1176         struct e1000_hw *hw = &adapter->hw;
1177         u32 ctrl_reg = 0;
1178         u32 stat_reg = 0;
1179         u16 phy_reg = 0;
1180
1181         hw->mac.autoneg = 0;
1182
1183         if (hw->phy.type == e1000_phy_m88) {
1184                 /* Auto-MDI/MDIX Off */
1185                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1186                 /* reset to update Auto-MDI/MDIX */
1187                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1188                 /* autoneg off */
1189                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1190         } else if (hw->phy.type == e1000_phy_gg82563)
1191                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1192
1193         ctrl_reg = er32(CTRL);
1194
1195         switch (hw->phy.type) {
1196         case e1000_phy_ife:
1197                 /* force 100, set loopback */
1198                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1199
1200                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1201                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1202                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1203                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1204                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1205                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1206                 break;
1207         case e1000_phy_bm:
1208                 /* Set Default MAC Interface speed to 1GB */
1209                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1210                 phy_reg &= ~0x0007;
1211                 phy_reg |= 0x006;
1212                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1213                 /* Assert SW reset for above settings to take effect */
1214                 e1000e_commit_phy(hw);
1215                 mdelay(1);
1216                 /* Force Full Duplex */
1217                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1218                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1219                 /* Set Link Up (in force link) */
1220                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1221                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1222                 /* Force Link */
1223                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1224                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1225                 /* Set Early Link Enable */
1226                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1227                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1228                 /* fall through */
1229         default:
1230                 /* force 1000, set loopback */
1231                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1232                 mdelay(250);
1233
1234                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1235                 ctrl_reg = er32(CTRL);
1236                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1237                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1238                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1239                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1240                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1241
1242                 if (adapter->flags & FLAG_IS_ICH)
1243                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1244         }
1245
1246         if (hw->phy.media_type == e1000_media_type_copper &&
1247             hw->phy.type == e1000_phy_m88) {
1248                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1249         } else {
1250                 /*
1251                  * Set the ILOS bit on the fiber Nic if half duplex link is
1252                  * detected.
1253                  */
1254                 stat_reg = er32(STATUS);
1255                 if ((stat_reg & E1000_STATUS_FD) == 0)
1256                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1257         }
1258
1259         ew32(CTRL, ctrl_reg);
1260
1261         /*
1262          * Disable the receiver on the PHY so when a cable is plugged in, the
1263          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1264          */
1265         if (hw->phy.type == e1000_phy_m88)
1266                 e1000_phy_disable_receiver(adapter);
1267
1268         udelay(500);
1269
1270         return 0;
1271 }
1272
1273 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1274 {
1275         struct e1000_hw *hw = &adapter->hw;
1276         u32 ctrl = er32(CTRL);
1277         int link = 0;
1278
1279         /* special requirements for 82571/82572 fiber adapters */
1280
1281         /*
1282          * jump through hoops to make sure link is up because serdes
1283          * link is hardwired up
1284          */
1285         ctrl |= E1000_CTRL_SLU;
1286         ew32(CTRL, ctrl);
1287
1288         /* disable autoneg */
1289         ctrl = er32(TXCW);
1290         ctrl &= ~(1 << 31);
1291         ew32(TXCW, ctrl);
1292
1293         link = (er32(STATUS) & E1000_STATUS_LU);
1294
1295         if (!link) {
1296                 /* set invert loss of signal */
1297                 ctrl = er32(CTRL);
1298                 ctrl |= E1000_CTRL_ILOS;
1299                 ew32(CTRL, ctrl);
1300         }
1301
1302         /*
1303          * special write to serdes control register to enable SerDes analog
1304          * loopback
1305          */
1306 #define E1000_SERDES_LB_ON 0x410
1307         ew32(SCTL, E1000_SERDES_LB_ON);
1308         msleep(10);
1309
1310         return 0;
1311 }
1312
1313 /* only call this for fiber/serdes connections to es2lan */
1314 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1315 {
1316         struct e1000_hw *hw = &adapter->hw;
1317         u32 ctrlext = er32(CTRL_EXT);
1318         u32 ctrl = er32(CTRL);
1319
1320         /*
1321          * save CTRL_EXT to restore later, reuse an empty variable (unused
1322          * on mac_type 80003es2lan)
1323          */
1324         adapter->tx_fifo_head = ctrlext;
1325
1326         /* clear the serdes mode bits, putting the device into mac loopback */
1327         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1328         ew32(CTRL_EXT, ctrlext);
1329
1330         /* force speed to 1000/FD, link up */
1331         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1332         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1333                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1334         ew32(CTRL, ctrl);
1335
1336         /* set mac loopback */
1337         ctrl = er32(RCTL);
1338         ctrl |= E1000_RCTL_LBM_MAC;
1339         ew32(RCTL, ctrl);
1340
1341         /* set testing mode parameters (no need to reset later) */
1342 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1343 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1344         ew32(KMRNCTRLSTA,
1345              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1346
1347         return 0;
1348 }
1349
1350 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1351 {
1352         struct e1000_hw *hw = &adapter->hw;
1353         u32 rctl;
1354
1355         if (hw->phy.media_type == e1000_media_type_fiber ||
1356             hw->phy.media_type == e1000_media_type_internal_serdes) {
1357                 switch (hw->mac.type) {
1358                 case e1000_80003es2lan:
1359                         return e1000_set_es2lan_mac_loopback(adapter);
1360                         break;
1361                 case e1000_82571:
1362                 case e1000_82572:
1363                         return e1000_set_82571_fiber_loopback(adapter);
1364                         break;
1365                 default:
1366                         rctl = er32(RCTL);
1367                         rctl |= E1000_RCTL_LBM_TCVR;
1368                         ew32(RCTL, rctl);
1369                         return 0;
1370                 }
1371         } else if (hw->phy.media_type == e1000_media_type_copper) {
1372                 return e1000_integrated_phy_loopback(adapter);
1373         }
1374
1375         return 7;
1376 }
1377
1378 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1379 {
1380         struct e1000_hw *hw = &adapter->hw;
1381         u32 rctl;
1382         u16 phy_reg;
1383
1384         rctl = er32(RCTL);
1385         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1386         ew32(RCTL, rctl);
1387
1388         switch (hw->mac.type) {
1389         case e1000_80003es2lan:
1390                 if (hw->phy.media_type == e1000_media_type_fiber ||
1391                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1392                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1393                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1394                         adapter->tx_fifo_head = 0;
1395                 }
1396                 /* fall through */
1397         case e1000_82571:
1398         case e1000_82572:
1399                 if (hw->phy.media_type == e1000_media_type_fiber ||
1400                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1401 #define E1000_SERDES_LB_OFF 0x400
1402                         ew32(SCTL, E1000_SERDES_LB_OFF);
1403                         msleep(10);
1404                         break;
1405                 }
1406                 /* Fall Through */
1407         default:
1408                 hw->mac.autoneg = 1;
1409                 if (hw->phy.type == e1000_phy_gg82563)
1410                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1411                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1412                 if (phy_reg & MII_CR_LOOPBACK) {
1413                         phy_reg &= ~MII_CR_LOOPBACK;
1414                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1415                         e1000e_commit_phy(hw);
1416                 }
1417                 break;
1418         }
1419 }
1420
1421 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1422                                       unsigned int frame_size)
1423 {
1424         memset(skb->data, 0xFF, frame_size);
1425         frame_size &= ~1;
1426         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1427         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1428         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1429 }
1430
1431 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1432                                     unsigned int frame_size)
1433 {
1434         frame_size &= ~1;
1435         if (*(skb->data + 3) == 0xFF)
1436                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1437                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1438                         return 0;
1439         return 13;
1440 }
1441
1442 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1443 {
1444         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1445         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1446         struct pci_dev *pdev = adapter->pdev;
1447         struct e1000_hw *hw = &adapter->hw;
1448         int i, j, k, l;
1449         int lc;
1450         int good_cnt;
1451         int ret_val = 0;
1452         unsigned long time;
1453
1454         ew32(RDT, rx_ring->count - 1);
1455
1456         /*
1457          * Calculate the loop count based on the largest descriptor ring
1458          * The idea is to wrap the largest ring a number of times using 64
1459          * send/receive pairs during each loop
1460          */
1461
1462         if (rx_ring->count <= tx_ring->count)
1463                 lc = ((tx_ring->count / 64) * 2) + 1;
1464         else
1465                 lc = ((rx_ring->count / 64) * 2) + 1;
1466
1467         k = 0;
1468         l = 0;
1469         for (j = 0; j <= lc; j++) { /* loop count loop */
1470                 for (i = 0; i < 64; i++) { /* send the packets */
1471                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1472                                                   1024);
1473                         pci_dma_sync_single_for_device(pdev,
1474                                         tx_ring->buffer_info[k].dma,
1475                                         tx_ring->buffer_info[k].length,
1476                                         PCI_DMA_TODEVICE);
1477                         k++;
1478                         if (k == tx_ring->count)
1479                                 k = 0;
1480                 }
1481                 ew32(TDT, k);
1482                 msleep(200);
1483                 time = jiffies; /* set the start time for the receive */
1484                 good_cnt = 0;
1485                 do { /* receive the sent packets */
1486                         pci_dma_sync_single_for_cpu(pdev,
1487                                         rx_ring->buffer_info[l].dma, 2048,
1488                                         PCI_DMA_FROMDEVICE);
1489
1490                         ret_val = e1000_check_lbtest_frame(
1491                                         rx_ring->buffer_info[l].skb, 1024);
1492                         if (!ret_val)
1493                                 good_cnt++;
1494                         l++;
1495                         if (l == rx_ring->count)
1496                                 l = 0;
1497                         /*
1498                          * time + 20 msecs (200 msecs on 2.4) is more than
1499                          * enough time to complete the receives, if it's
1500                          * exceeded, break and error off
1501                          */
1502                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1503                 if (good_cnt != 64) {
1504                         ret_val = 13; /* ret_val is the same as mis-compare */
1505                         break;
1506                 }
1507                 if (jiffies >= (time + 20)) {
1508                         ret_val = 14; /* error code for time out error */
1509                         break;
1510                 }
1511         } /* end loop count loop */
1512         return ret_val;
1513 }
1514
1515 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1516 {
1517         /*
1518          * PHY loopback cannot be performed if SoL/IDER
1519          * sessions are active
1520          */
1521         if (e1000_check_reset_block(&adapter->hw)) {
1522                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1523                 *data = 0;
1524                 goto out;
1525         }
1526
1527         *data = e1000_setup_desc_rings(adapter);
1528         if (*data)
1529                 goto out;
1530
1531         *data = e1000_setup_loopback_test(adapter);
1532         if (*data)
1533                 goto err_loopback;
1534
1535         *data = e1000_run_loopback_test(adapter);
1536         e1000_loopback_cleanup(adapter);
1537
1538 err_loopback:
1539         e1000_free_desc_rings(adapter);
1540 out:
1541         return *data;
1542 }
1543
1544 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1545 {
1546         struct e1000_hw *hw = &adapter->hw;
1547
1548         *data = 0;
1549         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1550                 int i = 0;
1551                 hw->mac.serdes_has_link = 0;
1552
1553                 /*
1554                  * On some blade server designs, link establishment
1555                  * could take as long as 2-3 minutes
1556                  */
1557                 do {
1558                         hw->mac.ops.check_for_link(hw);
1559                         if (hw->mac.serdes_has_link)
1560                                 return *data;
1561                         msleep(20);
1562                 } while (i++ < 3750);
1563
1564                 *data = 1;
1565         } else {
1566                 hw->mac.ops.check_for_link(hw);
1567                 if (hw->mac.autoneg)
1568                         msleep(4000);
1569
1570                 if (!(er32(STATUS) &
1571                       E1000_STATUS_LU))
1572                         *data = 1;
1573         }
1574         return *data;
1575 }
1576
1577 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1578 {
1579         switch (sset) {
1580         case ETH_SS_TEST:
1581                 return E1000_TEST_LEN;
1582         case ETH_SS_STATS:
1583                 return E1000_STATS_LEN;
1584         default:
1585                 return -EOPNOTSUPP;
1586         }
1587 }
1588
1589 static void e1000_diag_test(struct net_device *netdev,
1590                             struct ethtool_test *eth_test, u64 *data)
1591 {
1592         struct e1000_adapter *adapter = netdev_priv(netdev);
1593         u16 autoneg_advertised;
1594         u8 forced_speed_duplex;
1595         u8 autoneg;
1596         bool if_running = netif_running(netdev);
1597
1598         set_bit(__E1000_TESTING, &adapter->state);
1599         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1600                 /* Offline tests */
1601
1602                 /* save speed, duplex, autoneg settings */
1603                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1604                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1605                 autoneg = adapter->hw.mac.autoneg;
1606
1607                 e_info("offline testing starting\n");
1608
1609                 /*
1610                  * Link test performed before hardware reset so autoneg doesn't
1611                  * interfere with test result
1612                  */
1613                 if (e1000_link_test(adapter, &data[4]))
1614                         eth_test->flags |= ETH_TEST_FL_FAILED;
1615
1616                 if (if_running)
1617                         /* indicate we're in test mode */
1618                         dev_close(netdev);
1619                 else
1620                         e1000e_reset(adapter);
1621
1622                 if (e1000_reg_test(adapter, &data[0]))
1623                         eth_test->flags |= ETH_TEST_FL_FAILED;
1624
1625                 e1000e_reset(adapter);
1626                 if (e1000_eeprom_test(adapter, &data[1]))
1627                         eth_test->flags |= ETH_TEST_FL_FAILED;
1628
1629                 e1000e_reset(adapter);
1630                 if (e1000_intr_test(adapter, &data[2]))
1631                         eth_test->flags |= ETH_TEST_FL_FAILED;
1632
1633                 e1000e_reset(adapter);
1634                 /* make sure the phy is powered up */
1635                 e1000e_power_up_phy(adapter);
1636                 if (e1000_loopback_test(adapter, &data[3]))
1637                         eth_test->flags |= ETH_TEST_FL_FAILED;
1638
1639                 /* restore speed, duplex, autoneg settings */
1640                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1641                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1642                 adapter->hw.mac.autoneg = autoneg;
1643
1644                 /* force this routine to wait until autoneg complete/timeout */
1645                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1646                 e1000e_reset(adapter);
1647                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1648
1649                 clear_bit(__E1000_TESTING, &adapter->state);
1650                 if (if_running)
1651                         dev_open(netdev);
1652         } else {
1653                 e_info("online testing starting\n");
1654                 /* Online tests */
1655                 if (e1000_link_test(adapter, &data[4]))
1656                         eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658                 /* Online tests aren't run; pass by default */
1659                 data[0] = 0;
1660                 data[1] = 0;
1661                 data[2] = 0;
1662                 data[3] = 0;
1663
1664                 clear_bit(__E1000_TESTING, &adapter->state);
1665         }
1666         msleep_interruptible(4 * 1000);
1667 }
1668
1669 static void e1000_get_wol(struct net_device *netdev,
1670                           struct ethtool_wolinfo *wol)
1671 {
1672         struct e1000_adapter *adapter = netdev_priv(netdev);
1673
1674         wol->supported = 0;
1675         wol->wolopts = 0;
1676
1677         if (!(adapter->flags & FLAG_HAS_WOL))
1678                 return;
1679
1680         wol->supported = WAKE_UCAST | WAKE_MCAST |
1681                          WAKE_BCAST | WAKE_MAGIC |
1682                          WAKE_PHY | WAKE_ARP;
1683
1684         /* apply any specific unsupported masks here */
1685         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1686                 wol->supported &= ~WAKE_UCAST;
1687
1688                 if (adapter->wol & E1000_WUFC_EX)
1689                         e_err("Interface does not support directed (unicast) "
1690                               "frame wake-up packets\n");
1691         }
1692
1693         if (adapter->wol & E1000_WUFC_EX)
1694                 wol->wolopts |= WAKE_UCAST;
1695         if (adapter->wol & E1000_WUFC_MC)
1696                 wol->wolopts |= WAKE_MCAST;
1697         if (adapter->wol & E1000_WUFC_BC)
1698                 wol->wolopts |= WAKE_BCAST;
1699         if (adapter->wol & E1000_WUFC_MAG)
1700                 wol->wolopts |= WAKE_MAGIC;
1701         if (adapter->wol & E1000_WUFC_LNKC)
1702                 wol->wolopts |= WAKE_PHY;
1703         if (adapter->wol & E1000_WUFC_ARP)
1704                 wol->wolopts |= WAKE_ARP;
1705 }
1706
1707 static int e1000_set_wol(struct net_device *netdev,
1708                          struct ethtool_wolinfo *wol)
1709 {
1710         struct e1000_adapter *adapter = netdev_priv(netdev);
1711
1712         if (wol->wolopts & WAKE_MAGICSECURE)
1713                 return -EOPNOTSUPP;
1714
1715         if (!(adapter->flags & FLAG_HAS_WOL))
1716                 return wol->wolopts ? -EOPNOTSUPP : 0;
1717
1718         /* these settings will always override what we currently have */
1719         adapter->wol = 0;
1720
1721         if (wol->wolopts & WAKE_UCAST)
1722                 adapter->wol |= E1000_WUFC_EX;
1723         if (wol->wolopts & WAKE_MCAST)
1724                 adapter->wol |= E1000_WUFC_MC;
1725         if (wol->wolopts & WAKE_BCAST)
1726                 adapter->wol |= E1000_WUFC_BC;
1727         if (wol->wolopts & WAKE_MAGIC)
1728                 adapter->wol |= E1000_WUFC_MAG;
1729         if (wol->wolopts & WAKE_PHY)
1730                 adapter->wol |= E1000_WUFC_LNKC;
1731         if (wol->wolopts & WAKE_ARP)
1732                 adapter->wol |= E1000_WUFC_ARP;
1733
1734         return 0;
1735 }
1736
1737 /* toggle LED 4 times per second = 2 "blinks" per second */
1738 #define E1000_ID_INTERVAL       (HZ/4)
1739
1740 /* bit defines for adapter->led_status */
1741 #define E1000_LED_ON            0
1742
1743 static void e1000_led_blink_callback(unsigned long data)
1744 {
1745         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1746
1747         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1748                 adapter->hw.mac.ops.led_off(&adapter->hw);
1749         else
1750                 adapter->hw.mac.ops.led_on(&adapter->hw);
1751
1752         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1753 }
1754
1755 static int e1000_phys_id(struct net_device *netdev, u32 data)
1756 {
1757         struct e1000_adapter *adapter = netdev_priv(netdev);
1758
1759         if (!data)
1760                 data = INT_MAX;
1761
1762         if (adapter->hw.phy.type == e1000_phy_ife) {
1763                 if (!adapter->blink_timer.function) {
1764                         init_timer(&adapter->blink_timer);
1765                         adapter->blink_timer.function =
1766                                 e1000_led_blink_callback;
1767                         adapter->blink_timer.data = (unsigned long) adapter;
1768                 }
1769                 mod_timer(&adapter->blink_timer, jiffies);
1770                 msleep_interruptible(data * 1000);
1771                 del_timer_sync(&adapter->blink_timer);
1772                 e1e_wphy(&adapter->hw,
1773                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1774         } else {
1775                 e1000e_blink_led(&adapter->hw);
1776                 msleep_interruptible(data * 1000);
1777         }
1778
1779         adapter->hw.mac.ops.led_off(&adapter->hw);
1780         clear_bit(E1000_LED_ON, &adapter->led_status);
1781         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1782
1783         return 0;
1784 }
1785
1786 static int e1000_get_coalesce(struct net_device *netdev,
1787                               struct ethtool_coalesce *ec)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790
1791         if (adapter->itr_setting <= 3)
1792                 ec->rx_coalesce_usecs = adapter->itr_setting;
1793         else
1794                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1795
1796         return 0;
1797 }
1798
1799 static int e1000_set_coalesce(struct net_device *netdev,
1800                               struct ethtool_coalesce *ec)
1801 {
1802         struct e1000_adapter *adapter = netdev_priv(netdev);
1803         struct e1000_hw *hw = &adapter->hw;
1804
1805         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1806             ((ec->rx_coalesce_usecs > 3) &&
1807              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1808             (ec->rx_coalesce_usecs == 2))
1809                 return -EINVAL;
1810
1811         if (ec->rx_coalesce_usecs <= 3) {
1812                 adapter->itr = 20000;
1813                 adapter->itr_setting = ec->rx_coalesce_usecs;
1814         } else {
1815                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1816                 adapter->itr_setting = adapter->itr & ~3;
1817         }
1818
1819         if (adapter->itr_setting != 0)
1820                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1821         else
1822                 ew32(ITR, 0);
1823
1824         return 0;
1825 }
1826
1827 static int e1000_nway_reset(struct net_device *netdev)
1828 {
1829         struct e1000_adapter *adapter = netdev_priv(netdev);
1830         if (netif_running(netdev))
1831                 e1000e_reinit_locked(adapter);
1832         return 0;
1833 }
1834
1835 static void e1000_get_ethtool_stats(struct net_device *netdev,
1836                                     struct ethtool_stats *stats,
1837                                     u64 *data)
1838 {
1839         struct e1000_adapter *adapter = netdev_priv(netdev);
1840         int i;
1841
1842         e1000e_update_stats(adapter);
1843         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1844                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1845                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1846                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1847         }
1848 }
1849
1850 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1851                               u8 *data)
1852 {
1853         u8 *p = data;
1854         int i;
1855
1856         switch (stringset) {
1857         case ETH_SS_TEST:
1858                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1859                 break;
1860         case ETH_SS_STATS:
1861                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1862                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1863                                ETH_GSTRING_LEN);
1864                         p += ETH_GSTRING_LEN;
1865                 }
1866                 break;
1867         }
1868 }
1869
1870 static const struct ethtool_ops e1000_ethtool_ops = {
1871         .get_settings           = e1000_get_settings,
1872         .set_settings           = e1000_set_settings,
1873         .get_drvinfo            = e1000_get_drvinfo,
1874         .get_regs_len           = e1000_get_regs_len,
1875         .get_regs               = e1000_get_regs,
1876         .get_wol                = e1000_get_wol,
1877         .set_wol                = e1000_set_wol,
1878         .get_msglevel           = e1000_get_msglevel,
1879         .set_msglevel           = e1000_set_msglevel,
1880         .nway_reset             = e1000_nway_reset,
1881         .get_link               = e1000_get_link,
1882         .get_eeprom_len         = e1000_get_eeprom_len,
1883         .get_eeprom             = e1000_get_eeprom,
1884         .set_eeprom             = e1000_set_eeprom,
1885         .get_ringparam          = e1000_get_ringparam,
1886         .set_ringparam          = e1000_set_ringparam,
1887         .get_pauseparam         = e1000_get_pauseparam,
1888         .set_pauseparam         = e1000_set_pauseparam,
1889         .get_rx_csum            = e1000_get_rx_csum,
1890         .set_rx_csum            = e1000_set_rx_csum,
1891         .get_tx_csum            = e1000_get_tx_csum,
1892         .set_tx_csum            = e1000_set_tx_csum,
1893         .get_sg                 = ethtool_op_get_sg,
1894         .set_sg                 = ethtool_op_set_sg,
1895         .get_tso                = ethtool_op_get_tso,
1896         .set_tso                = e1000_set_tso,
1897         .self_test              = e1000_diag_test,
1898         .get_strings            = e1000_get_strings,
1899         .phys_id                = e1000_phys_id,
1900         .get_ethtool_stats      = e1000_get_ethtool_stats,
1901         .get_sset_count         = e1000e_get_sset_count,
1902         .get_coalesce           = e1000_get_coalesce,
1903         .set_coalesce           = e1000_set_coalesce,
1904 };
1905
1906 void e1000e_set_ethtool_ops(struct net_device *netdev)
1907 {
1908         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1909 }