hwmon: (ibmaem) Automatically load on IBM systems via DMI
[linux-2.6] / drivers / spi / atmel_spi.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21
22 #include <asm/io.h>
23 #include <mach/board.h>
24 #include <mach/gpio.h>
25 #include <mach/cpu.h>
26
27 #include "atmel_spi.h"
28
29 /*
30  * The core SPI transfer engine just talks to a register bank to set up
31  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
32  * framework provides the base clock, subdivided for each spi_device.
33  *
34  * Newer controllers, marked with "new_1" flag, have:
35  *  - CR.LASTXFER
36  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
37  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
38  *  - SPI_CSRx.CSAAT
39  *  - SPI_CSRx.SBCR allows faster clocking
40  */
41 struct atmel_spi {
42         spinlock_t              lock;
43
44         void __iomem            *regs;
45         int                     irq;
46         struct clk              *clk;
47         struct platform_device  *pdev;
48         unsigned                new_1:1;
49         struct spi_device       *stay;
50
51         u8                      stopping;
52         struct list_head        queue;
53         struct spi_transfer     *current_transfer;
54         unsigned long           current_remaining_bytes;
55         struct spi_transfer     *next_transfer;
56         unsigned long           next_remaining_bytes;
57
58         void                    *buffer;
59         dma_addr_t              buffer_dma;
60 };
61
62 #define BUFFER_SIZE             PAGE_SIZE
63 #define INVALID_DMA_ADDRESS     0xffffffff
64
65 /*
66  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
67  * they assume that spi slave device state will not change on deselect, so
68  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
69  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
70  * controllers have CSAAT and friends.
71  *
72  * Since the CSAAT functionality is a bit weird on newer controllers as
73  * well, we use GPIO to control nCSx pins on all controllers, updating
74  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
75  * support active-high chipselects despite the controller's belief that
76  * only active-low devices/systems exists.
77  *
78  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
79  * right when driven with GPIO.  ("Mode Fault does not allow more than one
80  * Master on Chip Select 0.")  No workaround exists for that ... so for
81  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
82  * and (c) will trigger that first erratum in some cases.
83  */
84
85 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
86 {
87         unsigned gpio = (unsigned) spi->controller_data;
88         unsigned active = spi->mode & SPI_CS_HIGH;
89         u32 mr;
90         int i;
91         u32 csr;
92         u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
93
94         /* Make sure clock polarity is correct */
95         for (i = 0; i < spi->master->num_chipselect; i++) {
96                 csr = spi_readl(as, CSR0 + 4 * i);
97                 if ((csr ^ cpol) & SPI_BIT(CPOL))
98                         spi_writel(as, CSR0 + 4 * i, csr ^ SPI_BIT(CPOL));
99         }
100
101         mr = spi_readl(as, MR);
102         mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
103
104         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
105                         gpio, active ? " (high)" : "",
106                         mr);
107
108         if (!(cpu_is_at91rm9200() && spi->chip_select == 0))
109                 gpio_set_value(gpio, active);
110         spi_writel(as, MR, mr);
111 }
112
113 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
114 {
115         unsigned gpio = (unsigned) spi->controller_data;
116         unsigned active = spi->mode & SPI_CS_HIGH;
117         u32 mr;
118
119         /* only deactivate *this* device; sometimes transfers to
120          * another device may be active when this routine is called.
121          */
122         mr = spi_readl(as, MR);
123         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
124                 mr = SPI_BFINS(PCS, 0xf, mr);
125                 spi_writel(as, MR, mr);
126         }
127
128         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
129                         gpio, active ? " (low)" : "",
130                         mr);
131
132         if (!(cpu_is_at91rm9200() && spi->chip_select == 0))
133                 gpio_set_value(gpio, !active);
134 }
135
136 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
137                                         struct spi_transfer *xfer)
138 {
139         return msg->transfers.prev == &xfer->transfer_list;
140 }
141
142 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
143 {
144         return xfer->delay_usecs == 0 && !xfer->cs_change;
145 }
146
147 static void atmel_spi_next_xfer_data(struct spi_master *master,
148                                 struct spi_transfer *xfer,
149                                 dma_addr_t *tx_dma,
150                                 dma_addr_t *rx_dma,
151                                 u32 *plen)
152 {
153         struct atmel_spi        *as = spi_master_get_devdata(master);
154         u32                     len = *plen;
155
156         /* use scratch buffer only when rx or tx data is unspecified */
157         if (xfer->rx_buf)
158                 *rx_dma = xfer->rx_dma + xfer->len - len;
159         else {
160                 *rx_dma = as->buffer_dma;
161                 if (len > BUFFER_SIZE)
162                         len = BUFFER_SIZE;
163         }
164         if (xfer->tx_buf)
165                 *tx_dma = xfer->tx_dma + xfer->len - len;
166         else {
167                 *tx_dma = as->buffer_dma;
168                 if (len > BUFFER_SIZE)
169                         len = BUFFER_SIZE;
170                 memset(as->buffer, 0, len);
171                 dma_sync_single_for_device(&as->pdev->dev,
172                                 as->buffer_dma, len, DMA_TO_DEVICE);
173         }
174
175         *plen = len;
176 }
177
178 /*
179  * Submit next transfer for DMA.
180  * lock is held, spi irq is blocked
181  */
182 static void atmel_spi_next_xfer(struct spi_master *master,
183                                 struct spi_message *msg)
184 {
185         struct atmel_spi        *as = spi_master_get_devdata(master);
186         struct spi_transfer     *xfer;
187         u32                     len, remaining;
188         u32                     ieval;
189         dma_addr_t              tx_dma, rx_dma;
190
191         if (!as->current_transfer)
192                 xfer = list_entry(msg->transfers.next,
193                                 struct spi_transfer, transfer_list);
194         else if (!as->next_transfer)
195                 xfer = list_entry(as->current_transfer->transfer_list.next,
196                                 struct spi_transfer, transfer_list);
197         else
198                 xfer = NULL;
199
200         if (xfer) {
201                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
202
203                 len = xfer->len;
204                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
205                 remaining = xfer->len - len;
206
207                 spi_writel(as, RPR, rx_dma);
208                 spi_writel(as, TPR, tx_dma);
209
210                 if (msg->spi->bits_per_word > 8)
211                         len >>= 1;
212                 spi_writel(as, RCR, len);
213                 spi_writel(as, TCR, len);
214
215                 dev_dbg(&msg->spi->dev,
216                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
217                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
218                         xfer->rx_buf, xfer->rx_dma);
219         } else {
220                 xfer = as->next_transfer;
221                 remaining = as->next_remaining_bytes;
222         }
223
224         as->current_transfer = xfer;
225         as->current_remaining_bytes = remaining;
226
227         if (remaining > 0)
228                 len = remaining;
229         else if (!atmel_spi_xfer_is_last(msg, xfer)
230                         && atmel_spi_xfer_can_be_chained(xfer)) {
231                 xfer = list_entry(xfer->transfer_list.next,
232                                 struct spi_transfer, transfer_list);
233                 len = xfer->len;
234         } else
235                 xfer = NULL;
236
237         as->next_transfer = xfer;
238
239         if (xfer) {
240                 u32     total;
241
242                 total = len;
243                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
244                 as->next_remaining_bytes = total - len;
245
246                 spi_writel(as, RNPR, rx_dma);
247                 spi_writel(as, TNPR, tx_dma);
248
249                 if (msg->spi->bits_per_word > 8)
250                         len >>= 1;
251                 spi_writel(as, RNCR, len);
252                 spi_writel(as, TNCR, len);
253
254                 dev_dbg(&msg->spi->dev,
255                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
256                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
257                         xfer->rx_buf, xfer->rx_dma);
258                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
259         } else {
260                 spi_writel(as, RNCR, 0);
261                 spi_writel(as, TNCR, 0);
262                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
263         }
264
265         /* REVISIT: We're waiting for ENDRX before we start the next
266          * transfer because we need to handle some difficult timing
267          * issues otherwise. If we wait for ENDTX in one transfer and
268          * then starts waiting for ENDRX in the next, it's difficult
269          * to tell the difference between the ENDRX interrupt we're
270          * actually waiting for and the ENDRX interrupt of the
271          * previous transfer.
272          *
273          * It should be doable, though. Just not now...
274          */
275         spi_writel(as, IER, ieval);
276         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
277 }
278
279 static void atmel_spi_next_message(struct spi_master *master)
280 {
281         struct atmel_spi        *as = spi_master_get_devdata(master);
282         struct spi_message      *msg;
283         struct spi_device       *spi;
284
285         BUG_ON(as->current_transfer);
286
287         msg = list_entry(as->queue.next, struct spi_message, queue);
288         spi = msg->spi;
289
290         dev_dbg(master->dev.parent, "start message %p for %s\n",
291                         msg, spi->dev.bus_id);
292
293         /* select chip if it's not still active */
294         if (as->stay) {
295                 if (as->stay != spi) {
296                         cs_deactivate(as, as->stay);
297                         cs_activate(as, spi);
298                 }
299                 as->stay = NULL;
300         } else
301                 cs_activate(as, spi);
302
303         atmel_spi_next_xfer(master, msg);
304 }
305
306 /*
307  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
308  *  - The buffer is either valid for CPU access, else NULL
309  *  - If the buffer is valid, so is its DMA addresss
310  *
311  * This driver manages the dma addresss unless message->is_dma_mapped.
312  */
313 static int
314 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
315 {
316         struct device   *dev = &as->pdev->dev;
317
318         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
319         if (xfer->tx_buf) {
320                 xfer->tx_dma = dma_map_single(dev,
321                                 (void *) xfer->tx_buf, xfer->len,
322                                 DMA_TO_DEVICE);
323                 if (dma_mapping_error(dev, xfer->tx_dma))
324                         return -ENOMEM;
325         }
326         if (xfer->rx_buf) {
327                 xfer->rx_dma = dma_map_single(dev,
328                                 xfer->rx_buf, xfer->len,
329                                 DMA_FROM_DEVICE);
330                 if (dma_mapping_error(dev, xfer->rx_dma)) {
331                         if (xfer->tx_buf)
332                                 dma_unmap_single(dev,
333                                                 xfer->tx_dma, xfer->len,
334                                                 DMA_TO_DEVICE);
335                         return -ENOMEM;
336                 }
337         }
338         return 0;
339 }
340
341 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
342                                      struct spi_transfer *xfer)
343 {
344         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
345                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
346                                  xfer->len, DMA_TO_DEVICE);
347         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
348                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
349                                  xfer->len, DMA_FROM_DEVICE);
350 }
351
352 static void
353 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
354                 struct spi_message *msg, int status, int stay)
355 {
356         if (!stay || status < 0)
357                 cs_deactivate(as, msg->spi);
358         else
359                 as->stay = msg->spi;
360
361         list_del(&msg->queue);
362         msg->status = status;
363
364         dev_dbg(master->dev.parent,
365                 "xfer complete: %u bytes transferred\n",
366                 msg->actual_length);
367
368         spin_unlock(&as->lock);
369         msg->complete(msg->context);
370         spin_lock(&as->lock);
371
372         as->current_transfer = NULL;
373         as->next_transfer = NULL;
374
375         /* continue if needed */
376         if (list_empty(&as->queue) || as->stopping)
377                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
378         else
379                 atmel_spi_next_message(master);
380 }
381
382 static irqreturn_t
383 atmel_spi_interrupt(int irq, void *dev_id)
384 {
385         struct spi_master       *master = dev_id;
386         struct atmel_spi        *as = spi_master_get_devdata(master);
387         struct spi_message      *msg;
388         struct spi_transfer     *xfer;
389         u32                     status, pending, imr;
390         int                     ret = IRQ_NONE;
391
392         spin_lock(&as->lock);
393
394         xfer = as->current_transfer;
395         msg = list_entry(as->queue.next, struct spi_message, queue);
396
397         imr = spi_readl(as, IMR);
398         status = spi_readl(as, SR);
399         pending = status & imr;
400
401         if (pending & SPI_BIT(OVRES)) {
402                 int timeout;
403
404                 ret = IRQ_HANDLED;
405
406                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
407                                      | SPI_BIT(OVRES)));
408
409                 /*
410                  * When we get an overrun, we disregard the current
411                  * transfer. Data will not be copied back from any
412                  * bounce buffer and msg->actual_len will not be
413                  * updated with the last xfer.
414                  *
415                  * We will also not process any remaning transfers in
416                  * the message.
417                  *
418                  * First, stop the transfer and unmap the DMA buffers.
419                  */
420                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
421                 if (!msg->is_dma_mapped)
422                         atmel_spi_dma_unmap_xfer(master, xfer);
423
424                 /* REVISIT: udelay in irq is unfriendly */
425                 if (xfer->delay_usecs)
426                         udelay(xfer->delay_usecs);
427
428                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
429                          spi_readl(as, TCR), spi_readl(as, RCR));
430
431                 /*
432                  * Clean up DMA registers and make sure the data
433                  * registers are empty.
434                  */
435                 spi_writel(as, RNCR, 0);
436                 spi_writel(as, TNCR, 0);
437                 spi_writel(as, RCR, 0);
438                 spi_writel(as, TCR, 0);
439                 for (timeout = 1000; timeout; timeout--)
440                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
441                                 break;
442                 if (!timeout)
443                         dev_warn(master->dev.parent,
444                                  "timeout waiting for TXEMPTY");
445                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
446                         spi_readl(as, RDR);
447
448                 /* Clear any overrun happening while cleaning up */
449                 spi_readl(as, SR);
450
451                 atmel_spi_msg_done(master, as, msg, -EIO, 0);
452         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
453                 ret = IRQ_HANDLED;
454
455                 spi_writel(as, IDR, pending);
456
457                 if (as->current_remaining_bytes == 0) {
458                         msg->actual_length += xfer->len;
459
460                         if (!msg->is_dma_mapped)
461                                 atmel_spi_dma_unmap_xfer(master, xfer);
462
463                         /* REVISIT: udelay in irq is unfriendly */
464                         if (xfer->delay_usecs)
465                                 udelay(xfer->delay_usecs);
466
467                         if (atmel_spi_xfer_is_last(msg, xfer)) {
468                                 /* report completed message */
469                                 atmel_spi_msg_done(master, as, msg, 0,
470                                                 xfer->cs_change);
471                         } else {
472                                 if (xfer->cs_change) {
473                                         cs_deactivate(as, msg->spi);
474                                         udelay(1);
475                                         cs_activate(as, msg->spi);
476                                 }
477
478                                 /*
479                                  * Not done yet. Submit the next transfer.
480                                  *
481                                  * FIXME handle protocol options for xfer
482                                  */
483                                 atmel_spi_next_xfer(master, msg);
484                         }
485                 } else {
486                         /*
487                          * Keep going, we still have data to send in
488                          * the current transfer.
489                          */
490                         atmel_spi_next_xfer(master, msg);
491                 }
492         }
493
494         spin_unlock(&as->lock);
495
496         return ret;
497 }
498
499 /* the spi->mode bits understood by this driver: */
500 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
501
502 static int atmel_spi_setup(struct spi_device *spi)
503 {
504         struct atmel_spi        *as;
505         u32                     scbr, csr;
506         unsigned int            bits = spi->bits_per_word;
507         unsigned long           bus_hz;
508         unsigned int            npcs_pin;
509         int                     ret;
510
511         as = spi_master_get_devdata(spi->master);
512
513         if (as->stopping)
514                 return -ESHUTDOWN;
515
516         if (spi->chip_select > spi->master->num_chipselect) {
517                 dev_dbg(&spi->dev,
518                                 "setup: invalid chipselect %u (%u defined)\n",
519                                 spi->chip_select, spi->master->num_chipselect);
520                 return -EINVAL;
521         }
522
523         if (bits == 0)
524                 bits = 8;
525         if (bits < 8 || bits > 16) {
526                 dev_dbg(&spi->dev,
527                                 "setup: invalid bits_per_word %u (8 to 16)\n",
528                                 bits);
529                 return -EINVAL;
530         }
531
532         if (spi->mode & ~MODEBITS) {
533                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
534                         spi->mode & ~MODEBITS);
535                 return -EINVAL;
536         }
537
538         /* see notes above re chipselect */
539         if (cpu_is_at91rm9200()
540                         && spi->chip_select == 0
541                         && (spi->mode & SPI_CS_HIGH)) {
542                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
543                 return -EINVAL;
544         }
545
546         /*
547          * Pre-new_1 chips start out at half the peripheral
548          * bus speed.
549          */
550         bus_hz = clk_get_rate(as->clk);
551         if (!as->new_1)
552                 bus_hz /= 2;
553
554         if (spi->max_speed_hz) {
555                 /*
556                  * Calculate the lowest divider that satisfies the
557                  * constraint, assuming div32/fdiv/mbz == 0.
558                  */
559                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
560
561                 /*
562                  * If the resulting divider doesn't fit into the
563                  * register bitfield, we can't satisfy the constraint.
564                  */
565                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
566                         dev_dbg(&spi->dev,
567                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
568                                 spi->max_speed_hz, scbr, bus_hz/255);
569                         return -EINVAL;
570                 }
571         } else
572                 /* speed zero means "as slow as possible" */
573                 scbr = 0xff;
574
575         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
576         if (spi->mode & SPI_CPOL)
577                 csr |= SPI_BIT(CPOL);
578         if (!(spi->mode & SPI_CPHA))
579                 csr |= SPI_BIT(NCPHA);
580
581         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
582          *
583          * DLYBCT would add delays between words, slowing down transfers.
584          * It could potentially be useful to cope with DMA bottlenecks, but
585          * in those cases it's probably best to just use a lower bitrate.
586          */
587         csr |= SPI_BF(DLYBS, 0);
588         csr |= SPI_BF(DLYBCT, 0);
589
590         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
591         npcs_pin = (unsigned int)spi->controller_data;
592         if (!spi->controller_state) {
593                 ret = gpio_request(npcs_pin, spi->dev.bus_id);
594                 if (ret)
595                         return ret;
596                 spi->controller_state = (void *)npcs_pin;
597                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
598         } else {
599                 unsigned long           flags;
600
601                 spin_lock_irqsave(&as->lock, flags);
602                 if (as->stay == spi)
603                         as->stay = NULL;
604                 cs_deactivate(as, spi);
605                 spin_unlock_irqrestore(&as->lock, flags);
606         }
607
608         dev_dbg(&spi->dev,
609                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
610                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
611
612         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
613
614         return 0;
615 }
616
617 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
618 {
619         struct atmel_spi        *as;
620         struct spi_transfer     *xfer;
621         unsigned long           flags;
622         struct device           *controller = spi->master->dev.parent;
623
624         as = spi_master_get_devdata(spi->master);
625
626         dev_dbg(controller, "new message %p submitted for %s\n",
627                         msg, spi->dev.bus_id);
628
629         if (unlikely(list_empty(&msg->transfers)
630                         || !spi->max_speed_hz))
631                 return -EINVAL;
632
633         if (as->stopping)
634                 return -ESHUTDOWN;
635
636         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
637                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
638                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
639                         return -EINVAL;
640                 }
641
642                 /* FIXME implement these protocol options!! */
643                 if (xfer->bits_per_word || xfer->speed_hz) {
644                         dev_dbg(&spi->dev, "no protocol options yet\n");
645                         return -ENOPROTOOPT;
646                 }
647
648                 /*
649                  * DMA map early, for performance (empties dcache ASAP) and
650                  * better fault reporting.  This is a DMA-only driver.
651                  *
652                  * NOTE that if dma_unmap_single() ever starts to do work on
653                  * platforms supported by this driver, we would need to clean
654                  * up mappings for previously-mapped transfers.
655                  */
656                 if (!msg->is_dma_mapped) {
657                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
658                                 return -ENOMEM;
659                 }
660         }
661
662 #ifdef VERBOSE
663         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
664                 dev_dbg(controller,
665                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
666                         xfer, xfer->len,
667                         xfer->tx_buf, xfer->tx_dma,
668                         xfer->rx_buf, xfer->rx_dma);
669         }
670 #endif
671
672         msg->status = -EINPROGRESS;
673         msg->actual_length = 0;
674
675         spin_lock_irqsave(&as->lock, flags);
676         list_add_tail(&msg->queue, &as->queue);
677         if (!as->current_transfer)
678                 atmel_spi_next_message(spi->master);
679         spin_unlock_irqrestore(&as->lock, flags);
680
681         return 0;
682 }
683
684 static void atmel_spi_cleanup(struct spi_device *spi)
685 {
686         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
687         unsigned                gpio = (unsigned) spi->controller_data;
688         unsigned long           flags;
689
690         if (!spi->controller_state)
691                 return;
692
693         spin_lock_irqsave(&as->lock, flags);
694         if (as->stay == spi) {
695                 as->stay = NULL;
696                 cs_deactivate(as, spi);
697         }
698         spin_unlock_irqrestore(&as->lock, flags);
699
700         gpio_free(gpio);
701 }
702
703 /*-------------------------------------------------------------------------*/
704
705 static int __init atmel_spi_probe(struct platform_device *pdev)
706 {
707         struct resource         *regs;
708         int                     irq;
709         struct clk              *clk;
710         int                     ret;
711         struct spi_master       *master;
712         struct atmel_spi        *as;
713
714         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
715         if (!regs)
716                 return -ENXIO;
717
718         irq = platform_get_irq(pdev, 0);
719         if (irq < 0)
720                 return irq;
721
722         clk = clk_get(&pdev->dev, "spi_clk");
723         if (IS_ERR(clk))
724                 return PTR_ERR(clk);
725
726         /* setup spi core then atmel-specific driver state */
727         ret = -ENOMEM;
728         master = spi_alloc_master(&pdev->dev, sizeof *as);
729         if (!master)
730                 goto out_free;
731
732         master->bus_num = pdev->id;
733         master->num_chipselect = 4;
734         master->setup = atmel_spi_setup;
735         master->transfer = atmel_spi_transfer;
736         master->cleanup = atmel_spi_cleanup;
737         platform_set_drvdata(pdev, master);
738
739         as = spi_master_get_devdata(master);
740
741         /*
742          * Scratch buffer is used for throwaway rx and tx data.
743          * It's coherent to minimize dcache pollution.
744          */
745         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
746                                         &as->buffer_dma, GFP_KERNEL);
747         if (!as->buffer)
748                 goto out_free;
749
750         spin_lock_init(&as->lock);
751         INIT_LIST_HEAD(&as->queue);
752         as->pdev = pdev;
753         as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
754         if (!as->regs)
755                 goto out_free_buffer;
756         as->irq = irq;
757         as->clk = clk;
758         if (!cpu_is_at91rm9200())
759                 as->new_1 = 1;
760
761         ret = request_irq(irq, atmel_spi_interrupt, 0,
762                         pdev->dev.bus_id, master);
763         if (ret)
764                 goto out_unmap_regs;
765
766         /* Initialize the hardware */
767         clk_enable(clk);
768         spi_writel(as, CR, SPI_BIT(SWRST));
769         spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
770         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
771         spi_writel(as, CR, SPI_BIT(SPIEN));
772
773         /* go! */
774         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
775                         (unsigned long)regs->start, irq);
776
777         ret = spi_register_master(master);
778         if (ret)
779                 goto out_reset_hw;
780
781         return 0;
782
783 out_reset_hw:
784         spi_writel(as, CR, SPI_BIT(SWRST));
785         clk_disable(clk);
786         free_irq(irq, master);
787 out_unmap_regs:
788         iounmap(as->regs);
789 out_free_buffer:
790         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
791                         as->buffer_dma);
792 out_free:
793         clk_put(clk);
794         spi_master_put(master);
795         return ret;
796 }
797
798 static int __exit atmel_spi_remove(struct platform_device *pdev)
799 {
800         struct spi_master       *master = platform_get_drvdata(pdev);
801         struct atmel_spi        *as = spi_master_get_devdata(master);
802         struct spi_message      *msg;
803
804         /* reset the hardware and block queue progress */
805         spin_lock_irq(&as->lock);
806         as->stopping = 1;
807         spi_writel(as, CR, SPI_BIT(SWRST));
808         spi_readl(as, SR);
809         spin_unlock_irq(&as->lock);
810
811         /* Terminate remaining queued transfers */
812         list_for_each_entry(msg, &as->queue, queue) {
813                 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
814                  * but we shouldn't depend on that...
815                  */
816                 msg->status = -ESHUTDOWN;
817                 msg->complete(msg->context);
818         }
819
820         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
821                         as->buffer_dma);
822
823         clk_disable(as->clk);
824         clk_put(as->clk);
825         free_irq(as->irq, master);
826         iounmap(as->regs);
827
828         spi_unregister_master(master);
829
830         return 0;
831 }
832
833 #ifdef  CONFIG_PM
834
835 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
836 {
837         struct spi_master       *master = platform_get_drvdata(pdev);
838         struct atmel_spi        *as = spi_master_get_devdata(master);
839
840         clk_disable(as->clk);
841         return 0;
842 }
843
844 static int atmel_spi_resume(struct platform_device *pdev)
845 {
846         struct spi_master       *master = platform_get_drvdata(pdev);
847         struct atmel_spi        *as = spi_master_get_devdata(master);
848
849         clk_enable(as->clk);
850         return 0;
851 }
852
853 #else
854 #define atmel_spi_suspend       NULL
855 #define atmel_spi_resume        NULL
856 #endif
857
858
859 static struct platform_driver atmel_spi_driver = {
860         .driver         = {
861                 .name   = "atmel_spi",
862                 .owner  = THIS_MODULE,
863         },
864         .suspend        = atmel_spi_suspend,
865         .resume         = atmel_spi_resume,
866         .remove         = __exit_p(atmel_spi_remove),
867 };
868
869 static int __init atmel_spi_init(void)
870 {
871         return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
872 }
873 module_init(atmel_spi_init);
874
875 static void __exit atmel_spi_exit(void)
876 {
877         platform_driver_unregister(&atmel_spi_driver);
878 }
879 module_exit(atmel_spi_exit);
880
881 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
882 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
883 MODULE_LICENSE("GPL");
884 MODULE_ALIAS("platform:atmel_spi");