2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/thread_info.h>
26 #include <linux/unistd.h>
27 #include <linux/efi.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
32 #include <asm/delay.h>
36 #include <asm/kdebug.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
49 # include <asm/perfmon.h>
54 void (*ia64_mark_idle)(int);
55 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
57 unsigned long boot_option_idle_override = 0;
58 EXPORT_SYMBOL(boot_option_idle_override);
61 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
63 unsigned long ip, sp, bsp;
64 char buf[128]; /* don't make it so big that it overflows the stack! */
66 printk("\nCall Trace:\n");
68 unw_get_ip(info, &ip);
72 unw_get_sp(info, &sp);
73 unw_get_bsp(info, &bsp);
74 snprintf(buf, sizeof(buf),
76 " sp=%016lx bsp=%016lx\n",
78 print_symbol(buf, ip);
79 } while (unw_unwind(info) >= 0);
83 show_stack (struct task_struct *task, unsigned long *sp)
86 unw_init_running(ia64_do_show_stack, NULL);
88 struct unw_frame_info info;
90 unw_init_from_blocked_task(&info, task);
91 ia64_do_show_stack(&info, NULL);
98 show_stack(NULL, NULL);
101 EXPORT_SYMBOL(dump_stack);
104 show_regs (struct pt_regs *regs)
106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
109 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
112 print_symbol("ip is at %s\n", ip);
113 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
114 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
115 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
116 regs->ar_rnat, regs->ar_bspstore, regs->pr);
117 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
118 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
119 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
120 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
121 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
122 regs->f6.u.bits[1], regs->f6.u.bits[0],
123 regs->f7.u.bits[1], regs->f7.u.bits[0]);
124 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
125 regs->f8.u.bits[1], regs->f8.u.bits[0],
126 regs->f9.u.bits[1], regs->f9.u.bits[0]);
127 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
128 regs->f10.u.bits[1], regs->f10.u.bits[0],
129 regs->f11.u.bits[1], regs->f11.u.bits[0]);
131 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
132 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
133 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
134 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
135 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
136 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
137 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
138 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
139 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
141 if (user_mode(regs)) {
142 /* print the stacked registers */
143 unsigned long val, *bsp, ndirty;
144 int i, sof, is_nat = 0;
146 sof = regs->cr_ifs & 0x7f; /* size of frame */
147 ndirty = (regs->loadrs >> 19);
148 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
149 for (i = 0; i < sof; ++i) {
150 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
151 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
152 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
155 show_stack(NULL, NULL);
159 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
161 if (fsys_mode(current, &scr->pt)) {
162 /* defer signal-handling etc. until we return to privilege-level 0. */
163 if (!ia64_psr(&scr->pt)->lp)
164 ia64_psr(&scr->pt)->lp = 1;
168 #ifdef CONFIG_PERFMON
169 if (current->thread.pfm_needs_checking)
173 /* deal with pending signal delivery */
174 if (test_thread_flag(TIF_SIGPENDING))
175 ia64_do_signal(oldset, scr, in_syscall);
178 static int pal_halt = 1;
179 static int can_do_pal_halt = 1;
181 static int __init nohalt_setup(char * str)
183 pal_halt = can_do_pal_halt = 0;
186 __setup("nohalt", nohalt_setup);
189 update_pal_halt_status(int status)
191 can_do_pal_halt = pal_halt && status;
195 * We use this if we don't have any better idle routine..
201 while (!need_resched()) {
209 #ifdef CONFIG_HOTPLUG_CPU
210 /* We don't actually take CPU down, just spin without interrupts. */
211 static inline void play_dead(void)
213 extern void ia64_cpu_local_tick (void);
214 unsigned int this_cpu = smp_processor_id();
217 __get_cpu_var(cpu_state) = CPU_DEAD;
222 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
224 * The above is a point of no-return, the processor is
225 * expected to be in SAL loop now.
230 static inline void play_dead(void)
234 #endif /* CONFIG_HOTPLUG_CPU */
236 void cpu_idle_wait(void)
238 unsigned int cpu, this_cpu = get_cpu();
241 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
245 for_each_online_cpu(cpu) {
246 per_cpu(cpu_idle_state, cpu) = 1;
250 __get_cpu_var(cpu_idle_state) = 0;
255 for_each_online_cpu(cpu) {
256 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
259 cpus_and(map, map, cpu_online_map);
260 } while (!cpus_empty(map));
262 EXPORT_SYMBOL_GPL(cpu_idle_wait);
264 void __attribute__((noreturn))
267 void (*mark_idle)(int) = ia64_mark_idle;
268 int cpu = smp_processor_id();
270 /* endless idle loop with no priority at all */
272 if (can_do_pal_halt) {
273 current_thread_info()->status &= ~TS_POLLING;
275 * TS_POLLING-cleared state must be visible before we
280 current_thread_info()->status |= TS_POLLING;
283 if (!need_resched()) {
288 if (__get_cpu_var(cpu_idle_state))
289 __get_cpu_var(cpu_idle_state) = 0;
305 preempt_enable_no_resched();
309 if (cpu_is_offline(cpu))
315 ia64_save_extra (struct task_struct *task)
317 #ifdef CONFIG_PERFMON
321 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
322 ia64_save_debug_regs(&task->thread.dbr[0]);
324 #ifdef CONFIG_PERFMON
325 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
328 info = __get_cpu_var(pfm_syst_info);
329 if (info & PFM_CPUINFO_SYST_WIDE)
330 pfm_syst_wide_update_task(task, info, 0);
333 #ifdef CONFIG_IA32_SUPPORT
334 if (IS_IA32_PROCESS(task_pt_regs(task)))
335 ia32_save_state(task);
340 ia64_load_extra (struct task_struct *task)
342 #ifdef CONFIG_PERFMON
346 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
347 ia64_load_debug_regs(&task->thread.dbr[0]);
349 #ifdef CONFIG_PERFMON
350 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
353 info = __get_cpu_var(pfm_syst_info);
354 if (info & PFM_CPUINFO_SYST_WIDE)
355 pfm_syst_wide_update_task(task, info, 1);
358 #ifdef CONFIG_IA32_SUPPORT
359 if (IS_IA32_PROCESS(task_pt_regs(task)))
360 ia32_load_state(task);
365 * Copy the state of an ia-64 thread.
367 * We get here through the following call chain:
369 * from user-level: from kernel:
371 * <clone syscall> <some kernel call frames>
374 * copy_thread copy_thread
376 * This means that the stack layout is as follows:
378 * +---------------------+ (highest addr)
380 * +---------------------+
381 * | struct switch_stack |
382 * +---------------------+
385 * | | <-- sp (lowest addr)
386 * +---------------------+
388 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
389 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
390 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
391 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
392 * the stack is page aligned and the page size is at least 4KB, this is always the case,
393 * so there is nothing to worry about.
396 copy_thread (int nr, unsigned long clone_flags,
397 unsigned long user_stack_base, unsigned long user_stack_size,
398 struct task_struct *p, struct pt_regs *regs)
400 extern char ia64_ret_from_clone, ia32_ret_from_clone;
401 struct switch_stack *child_stack, *stack;
402 unsigned long rbs, child_rbs, rbs_size;
403 struct pt_regs *child_ptregs;
408 * For SMP idle threads, fork_by_hand() calls do_fork with
415 stack = ((struct switch_stack *) regs) - 1;
417 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
418 child_stack = (struct switch_stack *) child_ptregs - 1;
420 /* copy parent's switch_stack & pt_regs to child: */
421 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
423 rbs = (unsigned long) current + IA64_RBS_OFFSET;
424 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
425 rbs_size = stack->ar_bspstore - rbs;
427 /* copy the parent's register backing store to the child: */
428 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
430 if (likely(user_mode(child_ptregs))) {
431 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
432 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
433 if (user_stack_base) {
434 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
435 child_ptregs->ar_bspstore = user_stack_base;
436 child_ptregs->ar_rnat = 0;
437 child_ptregs->loadrs = 0;
441 * Note: we simply preserve the relative position of
442 * the stack pointer here. There is no need to
443 * allocate a scratch area here, since that will have
444 * been taken care of by the caller of sys_clone()
447 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
448 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
450 child_stack->ar_bspstore = child_rbs + rbs_size;
451 if (IS_IA32_PROCESS(regs))
452 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
454 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
456 /* copy parts of thread_struct: */
457 p->thread.ksp = (unsigned long) child_stack - 16;
459 /* stop some PSR bits from being inherited.
460 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
461 * therefore we must specify them explicitly here and not include them in
462 * IA64_PSR_BITS_TO_CLEAR.
464 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
465 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
468 * NOTE: The calling convention considers all floating point
469 * registers in the high partition (fph) to be scratch. Since
470 * the only way to get to this point is through a system call,
471 * we know that the values in fph are all dead. Hence, there
472 * is no need to inherit the fph state from the parent to the
473 * child and all we have to do is to make sure that
474 * IA64_THREAD_FPH_VALID is cleared in the child.
476 * XXX We could push this optimization a bit further by
477 * clearing IA64_THREAD_FPH_VALID on ANY system call.
478 * However, it's not clear this is worth doing. Also, it
479 * would be a slight deviation from the normal Linux system
480 * call behavior where scratch registers are preserved across
481 * system calls (unless used by the system call itself).
483 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
484 | IA64_THREAD_PM_VALID)
485 # define THREAD_FLAGS_TO_SET 0
486 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
487 | THREAD_FLAGS_TO_SET);
488 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
489 #ifdef CONFIG_IA32_SUPPORT
491 * If we're cloning an IA32 task then save the IA32 extra
492 * state from the current task to the new task
494 if (IS_IA32_PROCESS(task_pt_regs(current))) {
496 if (clone_flags & CLONE_SETTLS)
497 retval = ia32_clone_tls(p, child_ptregs);
499 /* Copy partially mapped page list */
501 retval = ia32_copy_partial_page_list(p, clone_flags);
505 #ifdef CONFIG_PERFMON
506 if (current->thread.pfm_context)
507 pfm_inherit(p, child_ptregs);
513 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
515 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
516 elf_greg_t *dst = arg;
521 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
523 if (unw_unwind_to_user(info) < 0)
526 unw_get_sp(info, &sp);
527 pt = (struct pt_regs *) (sp + 16);
529 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
531 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
534 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
540 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
541 * predicate registers (p0-p63)
544 * ar.rsc ar.bsp ar.bspstore ar.rnat
545 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
549 for (i = 1, mask = (1UL << i); i < 32; ++i) {
550 unw_get_gr(info, i, &dst[i], &nat);
556 unw_get_pr(info, &dst[33]);
558 for (i = 0; i < 8; ++i)
559 unw_get_br(info, i, &dst[34 + i]);
561 unw_get_rp(info, &ip);
562 dst[42] = ip + ia64_psr(pt)->ri;
564 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
566 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
568 * For bsp and bspstore, unw_get_ar() would return the kernel
569 * addresses, but we need the user-level addresses instead:
571 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
572 dst[47] = pt->ar_bspstore;
574 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
575 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
576 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
577 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
578 unw_get_ar(info, UNW_AR_LC, &dst[53]);
579 unw_get_ar(info, UNW_AR_EC, &dst[54]);
580 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
581 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
585 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
587 elf_fpreg_t *dst = arg;
590 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
592 if (unw_unwind_to_user(info) < 0)
595 /* f0 is 0.0, f1 is 1.0 */
597 for (i = 2; i < 32; ++i)
598 unw_get_fr(info, i, dst + i);
600 ia64_flush_fph(task);
601 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
602 memcpy(dst + 32, task->thread.fph, 96*16);
606 do_copy_regs (struct unw_frame_info *info, void *arg)
608 do_copy_task_regs(current, info, arg);
612 do_dump_fpu (struct unw_frame_info *info, void *arg)
614 do_dump_task_fpu(current, info, arg);
618 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
620 struct unw_frame_info tcore_info;
622 if (current == task) {
623 unw_init_running(do_copy_regs, regs);
625 memset(&tcore_info, 0, sizeof(tcore_info));
626 unw_init_from_blocked_task(&tcore_info, task);
627 do_copy_task_regs(task, &tcore_info, regs);
633 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
635 unw_init_running(do_copy_regs, dst);
639 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
641 struct unw_frame_info tcore_info;
643 if (current == task) {
644 unw_init_running(do_dump_fpu, dst);
646 memset(&tcore_info, 0, sizeof(tcore_info));
647 unw_init_from_blocked_task(&tcore_info, task);
648 do_dump_task_fpu(task, &tcore_info, dst);
654 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
656 unw_init_running(do_dump_fpu, dst);
657 return 1; /* f0-f31 are always valid so we always return 1 */
661 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
662 struct pt_regs *regs)
667 fname = getname(filename);
668 error = PTR_ERR(fname);
671 error = do_execve(fname, argv, envp, regs);
678 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
680 extern void start_kernel_thread (void);
681 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
683 struct switch_stack sw;
687 memset(®s, 0, sizeof(regs));
688 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
689 regs.pt.r1 = helper_fptr[1]; /* set GP */
690 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
691 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
692 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
693 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
694 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
695 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
696 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
697 regs.sw.pr = (1 << PRED_KERNEL_STACK);
698 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
700 EXPORT_SYMBOL(kernel_thread);
702 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
704 kernel_thread_helper (int (*fn)(void *), void *arg)
706 #ifdef CONFIG_IA32_SUPPORT
707 if (IS_IA32_PROCESS(task_pt_regs(current))) {
708 /* A kernel thread is always a 64-bit process. */
709 current->thread.map_base = DEFAULT_MAP_BASE;
710 current->thread.task_size = DEFAULT_TASK_SIZE;
711 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
712 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
719 * Flush thread state. This is called when a thread does an execve().
724 /* drop floating-point and debug-register state if it exists: */
725 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
726 ia64_drop_fpu(current);
727 #ifdef CONFIG_IA32_SUPPORT
728 if (IS_IA32_PROCESS(task_pt_regs(current))) {
729 ia32_drop_partial_page_list(current);
730 current->thread.task_size = IA32_PAGE_OFFSET;
737 * Clean up state associated with current thread. This is called when
738 * the thread calls exit().
744 ia64_drop_fpu(current);
745 #ifdef CONFIG_PERFMON
746 /* if needed, stop monitoring and flush state to perfmon context */
747 if (current->thread.pfm_context)
748 pfm_exit_thread(current);
750 /* free debug register resources */
751 if (current->thread.flags & IA64_THREAD_DBG_VALID)
752 pfm_release_debug_registers(current);
754 if (IS_IA32_PROCESS(task_pt_regs(current)))
755 ia32_drop_partial_page_list(current);
759 get_wchan (struct task_struct *p)
761 struct unw_frame_info info;
766 * Note: p may not be a blocked task (it could be current or
767 * another process running on some other CPU. Rather than
768 * trying to determine if p is really blocked, we just assume
769 * it's blocked and rely on the unwind routines to fail
770 * gracefully if the process wasn't really blocked after all.
773 unw_init_from_blocked_task(&info, p);
775 if (unw_unwind(&info) < 0)
777 unw_get_ip(&info, &ip);
778 if (!in_sched_functions(ip))
780 } while (count++ < 16);
787 pal_power_mgmt_info_u_t power_info[8];
788 unsigned long min_power;
789 int i, min_power_state;
791 if (ia64_pal_halt_info(power_info) != 0)
795 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
796 for (i = 1; i < 8; ++i)
797 if (power_info[i].pal_power_mgmt_info_s.im
798 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
799 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
804 ia64_pal_halt(min_power_state);
807 void machine_shutdown(void)
809 #ifdef CONFIG_HOTPLUG_CPU
812 for_each_online_cpu(cpu) {
813 if (cpu != smp_processor_id())
818 kexec_disable_iosapic();
823 machine_restart (char *restart_cmd)
825 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
826 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
832 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
837 machine_power_off (void)