firewire: Configure channel and speed at context creation time.
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48 #define descriptor_wait                 (3 << 0)
49
50 struct descriptor {
51         __le16 req_count;
52         __le16 control;
53         __le32 data_address;
54         __le32 branch_address;
55         __le16 res_count;
56         __le16 transfer_status;
57 } __attribute__((aligned(16)));
58
59 struct db_descriptor {
60         __le16 first_size;
61         __le16 control;
62         __le16 second_req_count;
63         __le16 first_req_count;
64         __le32 branch_address;
65         __le16 second_res_count;
66         __le16 first_res_count;
67         __le32 reserved0;
68         __le32 first_buffer;
69         __le32 second_buffer;
70         __le32 reserved1;
71 } __attribute__((aligned(16)));
72
73 #define control_set(regs)       (regs)
74 #define control_clear(regs)     ((regs) + 4)
75 #define command_ptr(regs)       ((regs) + 12)
76 #define context_match(regs)     ((regs) + 16)
77
78 struct ar_buffer {
79         struct descriptor descriptor;
80         struct ar_buffer *next;
81         __le32 data[0];
82 };
83
84 struct ar_context {
85         struct fw_ohci *ohci;
86         struct ar_buffer *current_buffer;
87         struct ar_buffer *last_buffer;
88         void *pointer;
89         u32 regs;
90         struct tasklet_struct tasklet;
91 };
92
93 struct context;
94
95 typedef int (*descriptor_callback_t)(struct context *ctx,
96                                      struct descriptor *d,
97                                      struct descriptor *last);
98 struct context {
99         struct fw_ohci *ohci;
100         u32 regs;
101  
102         struct descriptor *buffer;
103         dma_addr_t buffer_bus;
104         size_t buffer_size;
105         struct descriptor *head_descriptor;
106         struct descriptor *tail_descriptor;
107         struct descriptor *tail_descriptor_last;
108         struct descriptor *prev_descriptor;
109
110         descriptor_callback_t callback;
111
112         struct tasklet_struct tasklet;
113 };
114  
115
116
117 struct at_context {
118         struct fw_ohci *ohci;
119         dma_addr_t descriptor_bus;
120         dma_addr_t buffer_bus;
121         struct fw_packet *current_packet;
122
123         struct list_head list;
124
125         struct {
126                 struct descriptor more;
127                 __le32 header[4];
128                 struct descriptor last;
129         } d;
130
131         u32 regs;
132
133         struct tasklet_struct tasklet;
134 };
135
136 #define it_header_sy(v)          ((v) <<  0)
137 #define it_header_tcode(v)       ((v) <<  4)
138 #define it_header_channel(v)     ((v) <<  8)
139 #define it_header_tag(v)         ((v) << 14)
140 #define it_header_speed(v)       ((v) << 16)
141 #define it_header_data_length(v) ((v) << 16)
142
143 struct iso_context {
144         struct fw_iso_context base;
145         struct context context;
146         void *header;
147         size_t header_length;
148 };
149
150 #define CONFIG_ROM_SIZE 1024
151
152 struct fw_ohci {
153         struct fw_card card;
154
155         u32 version;
156         __iomem char *registers;
157         dma_addr_t self_id_bus;
158         __le32 *self_id_cpu;
159         struct tasklet_struct bus_reset_tasklet;
160         int node_id;
161         int generation;
162         int request_generation;
163
164         /* Spinlock for accessing fw_ohci data.  Never call out of
165          * this driver with this lock held. */
166         spinlock_t lock;
167         u32 self_id_buffer[512];
168
169         /* Config rom buffers */
170         __be32 *config_rom;
171         dma_addr_t config_rom_bus;
172         __be32 *next_config_rom;
173         dma_addr_t next_config_rom_bus;
174         u32 next_header;
175
176         struct ar_context ar_request_ctx;
177         struct ar_context ar_response_ctx;
178         struct at_context at_request_ctx;
179         struct at_context at_response_ctx;
180
181         u32 it_context_mask;
182         struct iso_context *it_context_list;
183         u32 ir_context_mask;
184         struct iso_context *ir_context_list;
185 };
186
187 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
188 {
189         return container_of(card, struct fw_ohci, card);
190 }
191
192 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
193 #define IR_CONTEXT_BUFFER_FILL          0x80000000
194 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
195 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
196 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
197 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
198
199 #define CONTEXT_RUN     0x8000
200 #define CONTEXT_WAKE    0x1000
201 #define CONTEXT_DEAD    0x0800
202 #define CONTEXT_ACTIVE  0x0400
203
204 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
205 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
206 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
207
208 #define FW_OHCI_MAJOR                   240
209 #define OHCI1394_REGISTER_SIZE          0x800
210 #define OHCI_LOOP_COUNT                 500
211 #define OHCI1394_PCI_HCI_Control        0x40
212 #define SELF_ID_BUF_SIZE                0x800
213 #define OHCI_TCODE_PHY_PACKET           0x0e
214 #define OHCI_VERSION_1_1                0x010010
215
216 static char ohci_driver_name[] = KBUILD_MODNAME;
217
218 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
219 {
220         writel(data, ohci->registers + offset);
221 }
222
223 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
224 {
225         return readl(ohci->registers + offset);
226 }
227
228 static inline void flush_writes(const struct fw_ohci *ohci)
229 {
230         /* Do a dummy read to flush writes. */
231         reg_read(ohci, OHCI1394_Version);
232 }
233
234 static int
235 ohci_update_phy_reg(struct fw_card *card, int addr,
236                     int clear_bits, int set_bits)
237 {
238         struct fw_ohci *ohci = fw_ohci(card);
239         u32 val, old;
240
241         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
242         msleep(2);
243         val = reg_read(ohci, OHCI1394_PhyControl);
244         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
245                 fw_error("failed to set phy reg bits.\n");
246                 return -EBUSY;
247         }
248
249         old = OHCI1394_PhyControl_ReadData(val);
250         old = (old & ~clear_bits) | set_bits;
251         reg_write(ohci, OHCI1394_PhyControl,
252                   OHCI1394_PhyControl_Write(addr, old));
253
254         return 0;
255 }
256
257 static int ar_context_add_page(struct ar_context *ctx)
258 {
259         struct device *dev = ctx->ohci->card.device;
260         struct ar_buffer *ab;
261         dma_addr_t ab_bus;
262         size_t offset;
263
264         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
265         if (ab == NULL)
266                 return -ENOMEM;
267
268         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
269         if (dma_mapping_error(ab_bus)) {
270                 free_page((unsigned long) ab);
271                 return -ENOMEM;
272         }
273
274         memset(&ab->descriptor, 0, sizeof ab->descriptor);
275         ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
276                                                     descriptor_status |
277                                                     descriptor_branch_always);
278         offset = offsetof(struct ar_buffer, data);
279         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
280         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
281         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
282         ab->descriptor.branch_address = 0;
283
284         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
285
286         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
287         ctx->last_buffer->next = ab;
288         ctx->last_buffer = ab;
289
290         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
291         flush_writes(ctx->ohci);
292
293         return 0;
294 }
295
296 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
297 {
298         struct fw_ohci *ohci = ctx->ohci;
299         struct fw_packet p;
300         u32 status, length, tcode;
301
302         p.header[0] = le32_to_cpu(buffer[0]);
303         p.header[1] = le32_to_cpu(buffer[1]);
304         p.header[2] = le32_to_cpu(buffer[2]);
305
306         tcode = (p.header[0] >> 4) & 0x0f;
307         switch (tcode) {
308         case TCODE_WRITE_QUADLET_REQUEST:
309         case TCODE_READ_QUADLET_RESPONSE:
310                 p.header[3] = (__force __u32) buffer[3];
311                 p.header_length = 16;
312                 p.payload_length = 0;
313                 break;
314
315         case TCODE_READ_BLOCK_REQUEST :
316                 p.header[3] = le32_to_cpu(buffer[3]);
317                 p.header_length = 16;
318                 p.payload_length = 0;
319                 break;
320
321         case TCODE_WRITE_BLOCK_REQUEST:
322         case TCODE_READ_BLOCK_RESPONSE:
323         case TCODE_LOCK_REQUEST:
324         case TCODE_LOCK_RESPONSE:
325                 p.header[3] = le32_to_cpu(buffer[3]);
326                 p.header_length = 16;
327                 p.payload_length = p.header[3] >> 16;
328                 break;
329
330         case TCODE_WRITE_RESPONSE:
331         case TCODE_READ_QUADLET_REQUEST:
332         case OHCI_TCODE_PHY_PACKET:
333                 p.header_length = 12;
334                 p.payload_length = 0;
335                 break;
336         }
337
338         p.payload = (void *) buffer + p.header_length;
339
340         /* FIXME: What to do about evt_* errors? */
341         length = (p.header_length + p.payload_length + 3) / 4;
342         status = le32_to_cpu(buffer[length]);
343
344         p.ack        = ((status >> 16) & 0x1f) - 16;
345         p.speed      = (status >> 21) & 0x7;
346         p.timestamp  = status & 0xffff;
347         p.generation = ohci->request_generation;
348
349         /* The OHCI bus reset handler synthesizes a phy packet with
350          * the new generation number when a bus reset happens (see
351          * section 8.4.2.3).  This helps us determine when a request
352          * was received and make sure we send the response in the same
353          * generation.  We only need this for requests; for responses
354          * we use the unique tlabel for finding the matching
355          * request. */
356
357         if (p.ack + 16 == 0x09)
358                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
359         else if (ctx == &ohci->ar_request_ctx)
360                 fw_core_handle_request(&ohci->card, &p);
361         else
362                 fw_core_handle_response(&ohci->card, &p);
363
364         return buffer + length + 1;
365 }
366
367 static void ar_context_tasklet(unsigned long data)
368 {
369         struct ar_context *ctx = (struct ar_context *)data;
370         struct fw_ohci *ohci = ctx->ohci;
371         struct ar_buffer *ab;
372         struct descriptor *d;
373         void *buffer, *end;
374
375         ab = ctx->current_buffer;
376         d = &ab->descriptor;
377
378         if (d->res_count == 0) {
379                 size_t size, rest, offset;
380
381                 /* This descriptor is finished and we may have a
382                  * packet split across this and the next buffer. We
383                  * reuse the page for reassembling the split packet. */
384
385                 offset = offsetof(struct ar_buffer, data);
386                 dma_unmap_single(ohci->card.device,
387                                  ab->descriptor.data_address - offset,
388                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
389
390                 buffer = ab;
391                 ab = ab->next;
392                 d = &ab->descriptor;
393                 size = buffer + PAGE_SIZE - ctx->pointer;
394                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
395                 memmove(buffer, ctx->pointer, size);
396                 memcpy(buffer + size, ab->data, rest);
397                 ctx->current_buffer = ab;
398                 ctx->pointer = (void *) ab->data + rest;
399                 end = buffer + size + rest;
400
401                 while (buffer < end)
402                         buffer = handle_ar_packet(ctx, buffer);
403
404                 free_page((unsigned long)buffer);
405                 ar_context_add_page(ctx);
406         } else {
407                 buffer = ctx->pointer;
408                 ctx->pointer = end =
409                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
410
411                 while (buffer < end)
412                         buffer = handle_ar_packet(ctx, buffer);
413         }
414 }
415
416 static int
417 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
418 {
419         struct ar_buffer ab;
420
421         ctx->regs        = regs;
422         ctx->ohci        = ohci;
423         ctx->last_buffer = &ab;
424         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
425
426         ar_context_add_page(ctx);
427         ar_context_add_page(ctx);
428         ctx->current_buffer = ab.next;
429         ctx->pointer = ctx->current_buffer->data;
430
431         reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
432         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
433         flush_writes(ctx->ohci);
434
435         return 0;
436 }
437  
438 static void context_tasklet(unsigned long data)
439 {
440         struct context *ctx = (struct context *) data;
441         struct fw_ohci *ohci = ctx->ohci;
442         struct descriptor *d, *last;
443         u32 address;
444         int z;
445
446         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
447                                 ctx->buffer_size, DMA_TO_DEVICE);
448
449         d    = ctx->tail_descriptor;
450         last = ctx->tail_descriptor_last;
451
452         while (last->branch_address != 0) {
453                 address = le32_to_cpu(last->branch_address);
454                 z = address & 0xf;
455                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
456                 last = (z == 2) ? d : d + z - 1;
457
458                 if (!ctx->callback(ctx, d, last))
459                         break;
460
461                 ctx->tail_descriptor      = d;
462                 ctx->tail_descriptor_last = last;
463         }
464 }
465
466 static int
467 context_init(struct context *ctx, struct fw_ohci *ohci,
468              size_t buffer_size, u32 regs,
469              descriptor_callback_t callback)
470 {
471         ctx->ohci = ohci;
472         ctx->regs = regs;
473         ctx->buffer_size = buffer_size;
474         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
475         if (ctx->buffer == NULL)
476                 return -ENOMEM;
477
478         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
479         ctx->callback = callback;
480
481         ctx->buffer_bus =
482                 dma_map_single(ohci->card.device, ctx->buffer,
483                                buffer_size, DMA_TO_DEVICE);
484         if (dma_mapping_error(ctx->buffer_bus)) {
485                 kfree(ctx->buffer);
486                 return -ENOMEM;
487         }
488
489         ctx->head_descriptor      = ctx->buffer;
490         ctx->prev_descriptor      = ctx->buffer;
491         ctx->tail_descriptor      = ctx->buffer;
492         ctx->tail_descriptor_last = ctx->buffer;
493
494         /* We put a dummy descriptor in the buffer that has a NULL
495          * branch address and looks like it's been sent.  That way we
496          * have a descriptor to append DMA programs to.  Also, the
497          * ring buffer invariant is that it always has at least one
498          * element so that head == tail means buffer full. */
499
500         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
501         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
502         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
503         ctx->head_descriptor++;
504
505         return 0;
506 }
507
508 static void
509 context_release(struct context *ctx)
510 {
511         struct fw_card *card = &ctx->ohci->card;
512
513         dma_unmap_single(card->device, ctx->buffer_bus,
514                          ctx->buffer_size, DMA_TO_DEVICE);
515         kfree(ctx->buffer);
516 }
517
518 static struct descriptor *
519 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
520 {
521         struct descriptor *d, *tail, *end;
522
523         d = ctx->head_descriptor;
524         tail = ctx->tail_descriptor;
525         end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
526
527         if (d + z <= tail) {
528                 goto has_space;
529         } else if (d > tail && d + z <= end) {
530                 goto has_space;
531         } else if (d > tail && ctx->buffer + z <= tail) {
532                 d = ctx->buffer;
533                 goto has_space;
534         }
535
536         return NULL;
537
538  has_space:
539         memset(d, 0, z * sizeof *d);
540         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
541
542         return d;
543 }
544
545 static void context_run(struct context *ctx, u32 extra)
546 {
547         struct fw_ohci *ohci = ctx->ohci;
548
549         reg_write(ohci, command_ptr(ctx->regs),
550                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
551         reg_write(ohci, control_clear(ctx->regs), ~0);
552         reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
553         flush_writes(ohci);
554 }
555
556 static void context_append(struct context *ctx,
557                            struct descriptor *d, int z, int extra)
558 {
559         dma_addr_t d_bus;
560
561         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
562
563         ctx->head_descriptor = d + z + extra;
564         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
565         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
566
567         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
568                                    ctx->buffer_size, DMA_TO_DEVICE);
569
570         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
571         flush_writes(ctx->ohci);
572 }
573
574 static void context_stop(struct context *ctx)
575 {
576         u32 reg;
577         int i;
578
579         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
580         flush_writes(ctx->ohci);
581
582         for (i = 0; i < 10; i++) {
583                 reg = reg_read(ctx->ohci, control_set(ctx->regs));
584                 if ((reg & CONTEXT_ACTIVE) == 0)
585                         break;
586
587                 fw_notify("context_stop: still active (0x%08x)\n", reg);
588                 msleep(1);
589         }
590 }
591
592 static void
593 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
594 {
595         struct fw_packet *p, *next;
596
597         list_for_each_entry_safe(p, next, list, link)
598                 p->callback(p, &ohci->card, p->ack);
599 }
600
601 static void
602 complete_transmission(struct fw_packet *packet,
603                       int ack, struct list_head *list)
604 {
605         list_move_tail(&packet->link, list);
606         packet->ack = ack;
607 }
608
609 /* This function prepares the first packet in the context queue for
610  * transmission.  Must always be called with the ochi->lock held to
611  * ensure proper generation handling and locking around packet queue
612  * manipulation. */
613 static void
614 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
615 {
616         struct fw_packet *packet;
617         struct fw_ohci *ohci = ctx->ohci;
618         int z, tcode;
619
620         packet = fw_packet(ctx->list.next);
621
622         memset(&ctx->d, 0, sizeof ctx->d);
623         if (packet->payload_length > 0) {
624                 packet->payload_bus = dma_map_single(ohci->card.device,
625                                                      packet->payload,
626                                                      packet->payload_length,
627                                                      DMA_TO_DEVICE);
628                 if (dma_mapping_error(packet->payload_bus)) {
629                         complete_transmission(packet, RCODE_SEND_ERROR, list);
630                         return;
631                 }
632
633                 ctx->d.more.control      =
634                         cpu_to_le16(descriptor_output_more |
635                                     descriptor_key_immediate);
636                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
637                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
638                 ctx->d.last.control      =
639                         cpu_to_le16(descriptor_output_last |
640                                     descriptor_irq_always |
641                                     descriptor_branch_always);
642                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
643                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
644                 z = 3;
645         } else {
646                 ctx->d.more.control   =
647                         cpu_to_le16(descriptor_output_last |
648                                     descriptor_key_immediate |
649                                     descriptor_irq_always |
650                                     descriptor_branch_always);
651                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
652                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
653                 z = 2;
654         }
655
656         /* The DMA format for asyncronous link packets is different
657          * from the IEEE1394 layout, so shift the fields around
658          * accordingly.  If header_length is 8, it's a PHY packet, to
659          * which we need to prepend an extra quadlet. */
660         if (packet->header_length > 8) {
661                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
662                                                (packet->speed << 16));
663                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
664                                                (packet->header[0] & 0xffff0000));
665                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
666
667                 tcode = (packet->header[0] >> 4) & 0x0f;
668                 if (TCODE_IS_BLOCK_PACKET(tcode))
669                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
670                 else
671                         ctx->d.header[3] = packet->header[3];
672         } else {
673                 ctx->d.header[0] =
674                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
675                                     (packet->speed << 16));
676                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
677                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
678                 ctx->d.more.req_count = cpu_to_le16(12);
679         }
680
681         /* FIXME: Document how the locking works. */
682         if (ohci->generation == packet->generation) {
683                 reg_write(ctx->ohci, command_ptr(ctx->regs),
684                           ctx->descriptor_bus | z);
685                 reg_write(ctx->ohci, control_set(ctx->regs),
686                           CONTEXT_RUN | CONTEXT_WAKE);
687                 ctx->current_packet = packet;
688         } else {
689                 /* We dont return error codes from this function; all
690                  * transmission errors are reported through the
691                  * callback. */
692                 complete_transmission(packet, RCODE_GENERATION, list);
693         }
694 }
695
696 static void at_context_stop(struct at_context *ctx)
697 {
698         u32 reg;
699
700         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
701
702         reg = reg_read(ctx->ohci, control_set(ctx->regs));
703         if (reg & CONTEXT_ACTIVE)
704                 fw_notify("Tried to stop context, but it is still active "
705                           "(0x%08x).\n", reg);
706 }
707
708 static void at_context_tasklet(unsigned long data)
709 {
710         struct at_context *ctx = (struct at_context *)data;
711         struct fw_ohci *ohci = ctx->ohci;
712         struct fw_packet *packet;
713         LIST_HEAD(list);
714         unsigned long flags;
715         int evt;
716
717         spin_lock_irqsave(&ohci->lock, flags);
718
719         packet = fw_packet(ctx->list.next);
720
721         at_context_stop(ctx);
722
723         /* If the head of the list isn't the packet that just got
724          * transmitted, the packet got cancelled before we finished
725          * transmitting it. */
726         if (ctx->current_packet != packet)
727                 goto skip_to_next;
728
729         if (packet->payload_length > 0) {
730                 dma_unmap_single(ohci->card.device, packet->payload_bus,
731                                  packet->payload_length, DMA_TO_DEVICE);
732                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
733                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
734         }
735         else {
736                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
737                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
738         }
739
740         if (evt < 16) {
741                 switch (evt) {
742                 case OHCI1394_evt_timeout:
743                         /* Async response transmit timed out. */
744                         complete_transmission(packet, RCODE_CANCELLED, &list);
745                         break;
746
747                 case OHCI1394_evt_flushed:
748                         /* The packet was flushed should give same
749                          * error as when we try to use a stale
750                          * generation count. */
751                         complete_transmission(packet,
752                                               RCODE_GENERATION, &list);
753                         break;
754
755                 case OHCI1394_evt_missing_ack:
756                         /* Using a valid (current) generation count,
757                          * but the node is not on the bus or not
758                          * sending acks. */
759                         complete_transmission(packet, RCODE_NO_ACK, &list);
760                         break;
761
762                 default:
763                         complete_transmission(packet, RCODE_SEND_ERROR, &list);
764                         break;
765                 }
766         } else
767                 complete_transmission(packet, evt - 16, &list);
768
769  skip_to_next:
770         /* If more packets are queued, set up the next one. */
771         if (!list_empty(&ctx->list))
772                 at_context_setup_packet(ctx, &list);
773
774         spin_unlock_irqrestore(&ohci->lock, flags);
775
776         do_packet_callbacks(ohci, &list);
777 }
778
779 static int
780 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
781 {
782         INIT_LIST_HEAD(&ctx->list);
783
784         ctx->descriptor_bus =
785                 dma_map_single(ohci->card.device, &ctx->d,
786                                sizeof ctx->d, DMA_TO_DEVICE);
787         if (dma_mapping_error(ctx->descriptor_bus))
788                 return -ENOMEM;
789
790         ctx->regs = regs;
791         ctx->ohci = ohci;
792
793         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
794
795         return 0;
796 }
797
798 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
799 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
800 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
801 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
802 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
803
804 static void
805 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
806 {
807         struct fw_packet response;
808         int tcode, length, i;
809
810         tcode = header_get_tcode(packet->header[0]);
811         if (TCODE_IS_BLOCK_PACKET(tcode))
812                 length = header_get_data_length(packet->header[3]);
813         else
814                 length = 4;
815
816         i = csr - CSR_CONFIG_ROM;
817         if (i + length > CONFIG_ROM_SIZE) {
818                 fw_fill_response(&response, packet->header,
819                                  RCODE_ADDRESS_ERROR, NULL, 0);
820         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
821                 fw_fill_response(&response, packet->header,
822                                  RCODE_TYPE_ERROR, NULL, 0);
823         } else {
824                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
825                                  (void *) ohci->config_rom + i, length);
826         }
827
828         fw_core_handle_response(&ohci->card, &response);
829 }
830
831 static void
832 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
833 {
834         struct fw_packet response;
835         int tcode, length, ext_tcode, sel;
836         __be32 *payload, lock_old;
837         u32 lock_arg, lock_data;
838
839         tcode = header_get_tcode(packet->header[0]);
840         length = header_get_data_length(packet->header[3]);
841         payload = packet->payload;
842         ext_tcode = header_get_extended_tcode(packet->header[3]);
843
844         if (tcode == TCODE_LOCK_REQUEST &&
845             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
846                 lock_arg = be32_to_cpu(payload[0]);
847                 lock_data = be32_to_cpu(payload[1]);
848         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
849                 lock_arg = 0;
850                 lock_data = 0;
851         } else {
852                 fw_fill_response(&response, packet->header,
853                                  RCODE_TYPE_ERROR, NULL, 0);
854                 goto out;
855         }
856
857         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
858         reg_write(ohci, OHCI1394_CSRData, lock_data);
859         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
860         reg_write(ohci, OHCI1394_CSRControl, sel);
861
862         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
863                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
864         else
865                 fw_notify("swap not done yet\n");
866
867         fw_fill_response(&response, packet->header,
868                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
869  out:
870         fw_core_handle_response(&ohci->card, &response);
871 }
872
873 static void
874 handle_local_request(struct at_context *ctx, struct fw_packet *packet)
875 {
876         u64 offset;
877         u32 csr;
878
879         packet->ack = ACK_PENDING;
880         packet->callback(packet, &ctx->ohci->card, packet->ack);
881
882         offset =
883                 ((unsigned long long)
884                  header_get_offset_high(packet->header[1]) << 32) |
885                 packet->header[2];
886         csr = offset - CSR_REGISTER_BASE;
887
888         /* Handle config rom reads. */
889         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
890                 handle_local_rom(ctx->ohci, packet, csr);
891         else switch (csr) {
892         case CSR_BUS_MANAGER_ID:
893         case CSR_BANDWIDTH_AVAILABLE:
894         case CSR_CHANNELS_AVAILABLE_HI:
895         case CSR_CHANNELS_AVAILABLE_LO:
896                 handle_local_lock(ctx->ohci, packet, csr);
897                 break;
898         default:
899                 if (ctx == &ctx->ohci->at_request_ctx)
900                         fw_core_handle_request(&ctx->ohci->card, packet);
901                 else
902                         fw_core_handle_response(&ctx->ohci->card, packet);
903                 break;
904         }
905 }
906
907 static void
908 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
909 {
910         LIST_HEAD(list);
911         unsigned long flags;
912
913         spin_lock_irqsave(&ctx->ohci->lock, flags);
914
915         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
916             ctx->ohci->generation == packet->generation) {
917                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
918                 handle_local_request(ctx, packet);
919                 return;
920         }
921
922         list_add_tail(&packet->link, &ctx->list);
923         if (ctx->list.next == &packet->link)
924                 at_context_setup_packet(ctx, &list);
925
926         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
927
928         do_packet_callbacks(ctx->ohci, &list);
929 }
930
931 static void bus_reset_tasklet(unsigned long data)
932 {
933         struct fw_ohci *ohci = (struct fw_ohci *)data;
934         int self_id_count, i, j, reg;
935         int generation, new_generation;
936         unsigned long flags;
937
938         reg = reg_read(ohci, OHCI1394_NodeID);
939         if (!(reg & OHCI1394_NodeID_idValid)) {
940                 fw_error("node ID not valid, new bus reset in progress\n");
941                 return;
942         }
943         ohci->node_id = reg & 0xffff;
944
945         /* The count in the SelfIDCount register is the number of
946          * bytes in the self ID receive buffer.  Since we also receive
947          * the inverted quadlets and a header quadlet, we shift one
948          * bit extra to get the actual number of self IDs. */
949
950         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
951         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
952
953         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
954                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
955                         fw_error("inconsistent self IDs\n");
956                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
957         }
958
959         /* Check the consistency of the self IDs we just read.  The
960          * problem we face is that a new bus reset can start while we
961          * read out the self IDs from the DMA buffer. If this happens,
962          * the DMA buffer will be overwritten with new self IDs and we
963          * will read out inconsistent data.  The OHCI specification
964          * (section 11.2) recommends a technique similar to
965          * linux/seqlock.h, where we remember the generation of the
966          * self IDs in the buffer before reading them out and compare
967          * it to the current generation after reading them out.  If
968          * the two generations match we know we have a consistent set
969          * of self IDs. */
970
971         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
972         if (new_generation != generation) {
973                 fw_notify("recursive bus reset detected, "
974                           "discarding self ids\n");
975                 return;
976         }
977
978         /* FIXME: Document how the locking works. */
979         spin_lock_irqsave(&ohci->lock, flags);
980
981         ohci->generation = generation;
982         at_context_stop(&ohci->at_request_ctx);
983         at_context_stop(&ohci->at_response_ctx);
984         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
985
986         /* This next bit is unrelated to the AT context stuff but we
987          * have to do it under the spinlock also.  If a new config rom
988          * was set up before this reset, the old one is now no longer
989          * in use and we can free it. Update the config rom pointers
990          * to point to the current config rom and clear the
991          * next_config_rom pointer so a new udpate can take place. */
992
993         if (ohci->next_config_rom != NULL) {
994                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
995                                   ohci->config_rom, ohci->config_rom_bus);
996                 ohci->config_rom      = ohci->next_config_rom;
997                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
998                 ohci->next_config_rom = NULL;
999
1000                 /* Restore config_rom image and manually update
1001                  * config_rom registers.  Writing the header quadlet
1002                  * will indicate that the config rom is ready, so we
1003                  * do that last. */
1004                 reg_write(ohci, OHCI1394_BusOptions,
1005                           be32_to_cpu(ohci->config_rom[2]));
1006                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1007                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1008         }
1009
1010         spin_unlock_irqrestore(&ohci->lock, flags);
1011
1012         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1013                                  self_id_count, ohci->self_id_buffer);
1014 }
1015
1016 static irqreturn_t irq_handler(int irq, void *data)
1017 {
1018         struct fw_ohci *ohci = data;
1019         u32 event, iso_event;
1020         int i;
1021
1022         event = reg_read(ohci, OHCI1394_IntEventClear);
1023
1024         if (!event)
1025                 return IRQ_NONE;
1026
1027         reg_write(ohci, OHCI1394_IntEventClear, event);
1028
1029         if (event & OHCI1394_selfIDComplete)
1030                 tasklet_schedule(&ohci->bus_reset_tasklet);
1031
1032         if (event & OHCI1394_RQPkt)
1033                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1034
1035         if (event & OHCI1394_RSPkt)
1036                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1037
1038         if (event & OHCI1394_reqTxComplete)
1039                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1040
1041         if (event & OHCI1394_respTxComplete)
1042                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1043
1044         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1045         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1046
1047         while (iso_event) {
1048                 i = ffs(iso_event) - 1;
1049                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1050                 iso_event &= ~(1 << i);
1051         }
1052
1053         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1054         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1055
1056         while (iso_event) {
1057                 i = ffs(iso_event) - 1;
1058                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1059                 iso_event &= ~(1 << i);
1060         }
1061
1062         return IRQ_HANDLED;
1063 }
1064
1065 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1066 {
1067         struct fw_ohci *ohci = fw_ohci(card);
1068         struct pci_dev *dev = to_pci_dev(card->device);
1069
1070         /* When the link is not yet enabled, the atomic config rom
1071          * update mechanism described below in ohci_set_config_rom()
1072          * is not active.  We have to update ConfigRomHeader and
1073          * BusOptions manually, and the write to ConfigROMmap takes
1074          * effect immediately.  We tie this to the enabling of the
1075          * link, so we have a valid config rom before enabling - the
1076          * OHCI requires that ConfigROMhdr and BusOptions have valid
1077          * values before enabling.
1078          *
1079          * However, when the ConfigROMmap is written, some controllers
1080          * always read back quadlets 0 and 2 from the config rom to
1081          * the ConfigRomHeader and BusOptions registers on bus reset.
1082          * They shouldn't do that in this initial case where the link
1083          * isn't enabled.  This means we have to use the same
1084          * workaround here, setting the bus header to 0 and then write
1085          * the right values in the bus reset tasklet.
1086          */
1087
1088         ohci->next_config_rom =
1089                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1090                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1091         if (ohci->next_config_rom == NULL)
1092                 return -ENOMEM;
1093
1094         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1095         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1096
1097         ohci->next_header = config_rom[0];
1098         ohci->next_config_rom[0] = 0;
1099         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1100         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1101         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1102
1103         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1104
1105         if (request_irq(dev->irq, irq_handler,
1106                         SA_SHIRQ, ohci_driver_name, ohci)) {
1107                 fw_error("Failed to allocate shared interrupt %d.\n",
1108                          dev->irq);
1109                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1110                                   ohci->config_rom, ohci->config_rom_bus);
1111                 return -EIO;
1112         }
1113
1114         reg_write(ohci, OHCI1394_HCControlSet,
1115                   OHCI1394_HCControl_linkEnable |
1116                   OHCI1394_HCControl_BIBimageValid);
1117         flush_writes(ohci);
1118
1119         /* We are ready to go, initiate bus reset to finish the
1120          * initialization. */
1121
1122         fw_core_initiate_bus_reset(&ohci->card, 1);
1123
1124         return 0;
1125 }
1126
1127 static int
1128 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1129 {
1130         struct fw_ohci *ohci;
1131         unsigned long flags;
1132         int retval = 0;
1133         __be32 *next_config_rom;
1134         dma_addr_t next_config_rom_bus;
1135
1136         ohci = fw_ohci(card);
1137
1138         /* When the OHCI controller is enabled, the config rom update
1139          * mechanism is a bit tricky, but easy enough to use.  See
1140          * section 5.5.6 in the OHCI specification.
1141          *
1142          * The OHCI controller caches the new config rom address in a
1143          * shadow register (ConfigROMmapNext) and needs a bus reset
1144          * for the changes to take place.  When the bus reset is
1145          * detected, the controller loads the new values for the
1146          * ConfigRomHeader and BusOptions registers from the specified
1147          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1148          * shadow register. All automatically and atomically.
1149          *
1150          * Now, there's a twist to this story.  The automatic load of
1151          * ConfigRomHeader and BusOptions doesn't honor the
1152          * noByteSwapData bit, so with a be32 config rom, the
1153          * controller will load be32 values in to these registers
1154          * during the atomic update, even on litte endian
1155          * architectures.  The workaround we use is to put a 0 in the
1156          * header quadlet; 0 is endian agnostic and means that the
1157          * config rom isn't ready yet.  In the bus reset tasklet we
1158          * then set up the real values for the two registers.
1159          *
1160          * We use ohci->lock to avoid racing with the code that sets
1161          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1162          */
1163
1164         next_config_rom =
1165                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1166                                    &next_config_rom_bus, GFP_KERNEL);
1167         if (next_config_rom == NULL)
1168                 return -ENOMEM;
1169
1170         spin_lock_irqsave(&ohci->lock, flags);
1171
1172         if (ohci->next_config_rom == NULL) {
1173                 ohci->next_config_rom = next_config_rom;
1174                 ohci->next_config_rom_bus = next_config_rom_bus;
1175
1176                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1177                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1178                                   length * 4);
1179
1180                 ohci->next_header = config_rom[0];
1181                 ohci->next_config_rom[0] = 0;
1182
1183                 reg_write(ohci, OHCI1394_ConfigROMmap,
1184                           ohci->next_config_rom_bus);
1185         } else {
1186                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1187                                   next_config_rom, next_config_rom_bus);
1188                 retval = -EBUSY;
1189         }
1190
1191         spin_unlock_irqrestore(&ohci->lock, flags);
1192
1193         /* Now initiate a bus reset to have the changes take
1194          * effect. We clean up the old config rom memory and DMA
1195          * mappings in the bus reset tasklet, since the OHCI
1196          * controller could need to access it before the bus reset
1197          * takes effect. */
1198         if (retval == 0)
1199                 fw_core_initiate_bus_reset(&ohci->card, 1);
1200
1201         return retval;
1202 }
1203
1204 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1205 {
1206         struct fw_ohci *ohci = fw_ohci(card);
1207
1208         at_context_transmit(&ohci->at_request_ctx, packet);
1209 }
1210
1211 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1212 {
1213         struct fw_ohci *ohci = fw_ohci(card);
1214
1215         at_context_transmit(&ohci->at_response_ctx, packet);
1216 }
1217
1218 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1219 {
1220         struct fw_ohci *ohci = fw_ohci(card);
1221         LIST_HEAD(list);
1222         unsigned long flags;
1223
1224         spin_lock_irqsave(&ohci->lock, flags);
1225
1226         if (packet->ack == 0) {
1227                 fw_notify("cancelling packet %p (header[0]=%08x)\n",
1228                           packet, packet->header[0]);
1229
1230                 complete_transmission(packet, RCODE_CANCELLED, &list);
1231         }
1232
1233         spin_unlock_irqrestore(&ohci->lock, flags);
1234
1235         do_packet_callbacks(ohci, &list);
1236
1237         /* Return success if we actually cancelled something. */
1238         return list_empty(&list) ? -ENOENT : 0;
1239 }
1240
1241 static int
1242 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1243 {
1244         struct fw_ohci *ohci = fw_ohci(card);
1245         unsigned long flags;
1246         int n, retval = 0;
1247
1248         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
1249          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1250
1251         spin_lock_irqsave(&ohci->lock, flags);
1252
1253         if (ohci->generation != generation) {
1254                 retval = -ESTALE;
1255                 goto out;
1256         }
1257
1258         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1259          * enabled for _all_ nodes on remote buses. */
1260
1261         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1262         if (n < 32)
1263                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1264         else
1265                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1266
1267         flush_writes(ohci);
1268  out:
1269         spin_unlock_irqrestore(&ohci->lock, flags);
1270         return retval;
1271 }
1272  
1273 static int handle_ir_bufferfill_packet(struct context *context,
1274                                        struct descriptor *d,
1275                                        struct descriptor *last)
1276 {
1277         struct iso_context *ctx =
1278                 container_of(context, struct iso_context, context);
1279
1280         if (d->res_count > 0)
1281                 return 0;
1282
1283         if (le16_to_cpu(last->control) & descriptor_irq_always)
1284                 ctx->base.callback(&ctx->base,
1285                                    le16_to_cpu(last->res_count),
1286                                    0, NULL, ctx->base.callback_data);
1287
1288         return 1;
1289 }
1290
1291 static int handle_ir_dualbuffer_packet(struct context *context,
1292                                        struct descriptor *d,
1293                                        struct descriptor *last)
1294 {
1295         struct iso_context *ctx =
1296                 container_of(context, struct iso_context, context);
1297         struct db_descriptor *db = (struct db_descriptor *) d;
1298         size_t header_length;
1299
1300         if (db->first_res_count > 0 && db->second_res_count > 0)
1301                 /* This descriptor isn't done yet, stop iteration. */
1302                 return 0;
1303
1304         header_length = db->first_req_count - db->first_res_count;
1305         if (ctx->header_length + header_length <= PAGE_SIZE)
1306                 memcpy(ctx->header + ctx->header_length, db + 1, header_length);
1307         ctx->header_length += header_length;
1308
1309         if (le16_to_cpu(db->control) & descriptor_irq_always) {
1310                 ctx->base.callback(&ctx->base, 0,
1311                                    ctx->header_length, ctx->header,
1312                                    ctx->base.callback_data);
1313                 ctx->header_length = 0;
1314         }
1315
1316         return 1;
1317 }
1318
1319 #define ISO_BUFFER_SIZE (64 * 1024)
1320
1321 static int handle_it_packet(struct context *context,
1322                             struct descriptor *d,
1323                             struct descriptor *last)
1324 {
1325         struct iso_context *ctx =
1326                 container_of(context, struct iso_context, context);
1327  
1328         if (last->transfer_status == 0)
1329                 /* This descriptor isn't done yet, stop iteration. */
1330                 return 0;
1331
1332         if (le16_to_cpu(last->control) & descriptor_irq_always)
1333                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1334                                    0, NULL, ctx->base.callback_data);
1335
1336         return 1;
1337 }
1338
1339 static struct fw_iso_context *
1340 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1341 {
1342         struct fw_ohci *ohci = fw_ohci(card);
1343         struct iso_context *ctx, *list;
1344         descriptor_callback_t callback;
1345         u32 *mask, regs;
1346         unsigned long flags;
1347         int index, retval = -ENOMEM;
1348
1349         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1350                 mask = &ohci->it_context_mask;
1351                 list = ohci->it_context_list;
1352                 callback = handle_it_packet;
1353         } else {
1354                 mask = &ohci->ir_context_mask;
1355                 list = ohci->ir_context_list;
1356                 if (header_size > 0)
1357                         callback = handle_ir_dualbuffer_packet;
1358                 else
1359                         callback = handle_ir_bufferfill_packet;
1360         }
1361
1362         if (callback == handle_ir_dualbuffer_packet &&
1363             ohci->version < OHCI_VERSION_1_1)
1364                 return ERR_PTR(-EINVAL);
1365
1366         spin_lock_irqsave(&ohci->lock, flags);
1367         index = ffs(*mask) - 1;
1368         if (index >= 0)
1369                 *mask &= ~(1 << index);
1370         spin_unlock_irqrestore(&ohci->lock, flags);
1371
1372         if (index < 0)
1373                 return ERR_PTR(-EBUSY);
1374
1375         if (type == FW_ISO_CONTEXT_TRANSMIT)
1376                 regs = OHCI1394_IsoXmitContextBase(index);
1377         else
1378                 regs = OHCI1394_IsoRcvContextBase(index);
1379  
1380         ctx = &list[index];
1381         memset(ctx, 0, sizeof *ctx);
1382         ctx->header_length = 0;
1383         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1384         if (ctx->header == NULL)
1385                 goto out;
1386
1387         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1388                               regs, callback);
1389         if (retval < 0)
1390                 goto out_with_header;
1391
1392         return &ctx->base;
1393
1394  out_with_header:
1395         free_page((unsigned long)ctx->header);
1396  out:
1397         spin_lock_irqsave(&ohci->lock, flags);
1398         *mask |= 1 << index;
1399         spin_unlock_irqrestore(&ohci->lock, flags);
1400
1401         return ERR_PTR(retval);
1402 }
1403
1404 static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
1405 {
1406         struct iso_context *ctx = container_of(base, struct iso_context, base);
1407         struct fw_ohci *ohci = ctx->context.ohci;
1408         u32 cycle_match = 0, mode;
1409         int index;
1410
1411         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1412                 index = ctx - ohci->it_context_list;
1413                 if (cycle > 0)
1414                         cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1415                                 (cycle & 0x7fff) << 16;
1416
1417                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1418                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1419                 context_run(&ctx->context, cycle_match);
1420         } else {
1421                 index = ctx - ohci->ir_context_list;
1422
1423                 if (ctx->base.header_size > 0)
1424                         mode = IR_CONTEXT_DUAL_BUFFER_MODE;
1425                 else
1426                         mode = IR_CONTEXT_BUFFER_FILL;
1427                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1428                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1429                 reg_write(ohci, context_match(ctx->context.regs),
1430                           0xf0000000 | ctx->base.channel);
1431                 context_run(&ctx->context, mode);
1432         }
1433
1434         return 0;
1435 }
1436
1437 static int ohci_stop_iso(struct fw_iso_context *base)
1438 {
1439         struct fw_ohci *ohci = fw_ohci(base->card);
1440         struct iso_context *ctx = container_of(base, struct iso_context, base);
1441         int index;
1442
1443         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1444                 index = ctx - ohci->it_context_list;
1445                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1446         } else {
1447                 index = ctx - ohci->ir_context_list;
1448                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1449         }
1450         flush_writes(ohci);
1451         context_stop(&ctx->context);
1452
1453         return 0;
1454 }
1455
1456 static void ohci_free_iso_context(struct fw_iso_context *base)
1457 {
1458         struct fw_ohci *ohci = fw_ohci(base->card);
1459         struct iso_context *ctx = container_of(base, struct iso_context, base);
1460         unsigned long flags;
1461         int index;
1462
1463         ohci_stop_iso(base);
1464         context_release(&ctx->context);
1465         free_page((unsigned long)ctx->header);
1466
1467         spin_lock_irqsave(&ohci->lock, flags);
1468
1469         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1470                 index = ctx - ohci->it_context_list;
1471                 ohci->it_context_mask |= 1 << index;
1472         } else {
1473                 index = ctx - ohci->ir_context_list;
1474                 ohci->ir_context_mask |= 1 << index;
1475         }
1476
1477         spin_unlock_irqrestore(&ohci->lock, flags);
1478 }
1479
1480 static int
1481 ohci_queue_iso_transmit(struct fw_iso_context *base,
1482                         struct fw_iso_packet *packet,
1483                         struct fw_iso_buffer *buffer,
1484                         unsigned long payload)
1485 {
1486         struct iso_context *ctx = container_of(base, struct iso_context, base);
1487         struct descriptor *d, *last, *pd;
1488         struct fw_iso_packet *p;
1489         __le32 *header;
1490         dma_addr_t d_bus, page_bus;
1491         u32 z, header_z, payload_z, irq;
1492         u32 payload_index, payload_end_index, next_page_index;
1493         int page, end_page, i, length, offset;
1494
1495         /* FIXME: Cycle lost behavior should be configurable: lose
1496          * packet, retransmit or terminate.. */
1497
1498         p = packet;
1499         payload_index = payload;
1500
1501         if (p->skip)
1502                 z = 1;
1503         else
1504                 z = 2;
1505         if (p->header_length > 0)
1506                 z++;
1507
1508         /* Determine the first page the payload isn't contained in. */
1509         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1510         if (p->payload_length > 0)
1511                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1512         else
1513                 payload_z = 0;
1514
1515         z += payload_z;
1516
1517         /* Get header size in number of descriptors. */
1518         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1519
1520         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1521         if (d == NULL)
1522                 return -ENOMEM;
1523
1524         if (!p->skip) {
1525                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1526                 d[0].req_count = cpu_to_le16(8);
1527
1528                 header = (__le32 *) &d[1];
1529                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1530                                         it_header_tag(p->tag) |
1531                                         it_header_tcode(TCODE_STREAM_DATA) |
1532                                         it_header_channel(ctx->base.channel) |
1533                                         it_header_speed(ctx->base.speed));
1534                 header[1] =
1535                         cpu_to_le32(it_header_data_length(p->header_length +
1536                                                           p->payload_length));
1537         }
1538
1539         if (p->header_length > 0) {
1540                 d[2].req_count    = cpu_to_le16(p->header_length);
1541                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1542                 memcpy(&d[z], p->header, p->header_length);
1543         }
1544
1545         pd = d + z - payload_z;
1546         payload_end_index = payload_index + p->payload_length;
1547         for (i = 0; i < payload_z; i++) {
1548                 page               = payload_index >> PAGE_SHIFT;
1549                 offset             = payload_index & ~PAGE_MASK;
1550                 next_page_index    = (page + 1) << PAGE_SHIFT;
1551                 length             =
1552                         min(next_page_index, payload_end_index) - payload_index;
1553                 pd[i].req_count    = cpu_to_le16(length);
1554
1555                 page_bus = page_private(buffer->pages[page]);
1556                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1557
1558                 payload_index += length;
1559         }
1560
1561         if (p->interrupt)
1562                 irq = descriptor_irq_always;
1563         else
1564                 irq = descriptor_no_irq;
1565
1566         last = z == 2 ? d : d + z - 1;
1567         last->control |= cpu_to_le16(descriptor_output_last |
1568                                      descriptor_status |
1569                                      descriptor_branch_always |
1570                                      irq);
1571
1572         context_append(&ctx->context, d, z, header_z);
1573
1574         return 0;
1575 }
1576
1577 static int
1578 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1579                                   struct fw_iso_packet *packet,
1580                                   struct fw_iso_buffer *buffer,
1581                                   unsigned long payload)
1582 {
1583         struct iso_context *ctx = container_of(base, struct iso_context, base);
1584         struct db_descriptor *db = NULL;
1585         struct descriptor *d;
1586         struct fw_iso_packet *p;
1587         dma_addr_t d_bus, page_bus;
1588         u32 z, header_z, length, rest;
1589         int page, offset;
1590  
1591         /* FIXME: Cycle lost behavior should be configurable: lose
1592          * packet, retransmit or terminate.. */
1593
1594         p = packet;
1595         z = 2;
1596
1597         /* Get header size in number of descriptors. */
1598         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1599         page     = payload >> PAGE_SHIFT;
1600         offset   = payload & ~PAGE_MASK;
1601         rest     = p->payload_length;
1602
1603         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1604         /* FIXME: handle descriptor_wait */
1605         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1606         while (rest > 0) {
1607                 d = context_get_descriptors(&ctx->context,
1608                                             z + header_z, &d_bus);
1609                 if (d == NULL)
1610                         return -ENOMEM;
1611
1612                 db = (struct db_descriptor *) d;
1613                 db->control = cpu_to_le16(descriptor_status |
1614                                           descriptor_branch_always);
1615                 db->first_size = cpu_to_le16(ctx->base.header_size);
1616                 db->first_req_count = cpu_to_le16(p->header_length);
1617                 db->first_res_count = db->first_req_count;
1618                 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
1619                 
1620                 if (offset + rest < PAGE_SIZE)
1621                         length = rest;
1622                 else
1623                         length = PAGE_SIZE - offset;
1624
1625                 db->second_req_count = cpu_to_le16(length);
1626                 db->second_res_count = db->second_req_count;
1627                 page_bus = page_private(buffer->pages[page]);
1628                 db->second_buffer = cpu_to_le32(page_bus + offset);
1629
1630                 if (p->interrupt && length == rest)
1631                         db->control |= cpu_to_le16(descriptor_irq_always);
1632
1633                 context_append(&ctx->context, d, z, header_z);
1634                 offset = (offset + length) & ~PAGE_MASK;
1635                 rest -= length;
1636                 page++;
1637         }
1638
1639         return 0;
1640 }
1641
1642 static int
1643 ohci_queue_iso_receive_bufferfill(struct fw_iso_context *base,
1644                                   struct fw_iso_packet *packet,
1645                                   struct fw_iso_buffer *buffer,
1646                                   unsigned long payload)
1647 {
1648         struct iso_context *ctx = container_of(base, struct iso_context, base);
1649         struct descriptor *d = NULL;
1650         dma_addr_t d_bus, page_bus;
1651         u32 length, rest;
1652         int page, offset;
1653  
1654         page   = payload >> PAGE_SHIFT;
1655         offset = payload & ~PAGE_MASK;
1656         rest   = packet->payload_length;
1657
1658         while (rest > 0) {
1659                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
1660                 if (d == NULL)
1661                         return -ENOMEM;
1662
1663                 d->control = cpu_to_le16(descriptor_input_more |
1664                                          descriptor_status |
1665                                          descriptor_branch_always);
1666                 
1667                 if (offset + rest < PAGE_SIZE)
1668                         length = rest;
1669                 else
1670                         length = PAGE_SIZE - offset;
1671
1672                 page_bus = page_private(buffer->pages[page]);
1673                 d->data_address = cpu_to_le32(page_bus + offset);
1674                 d->req_count = cpu_to_le16(length);
1675                 d->res_count = cpu_to_le16(length);
1676
1677                 if (packet->interrupt && length == rest)
1678                         d->control |= cpu_to_le16(descriptor_irq_always);
1679
1680                 context_append(&ctx->context, d, 1, 0);
1681
1682                 offset = (offset + length) & ~PAGE_MASK;
1683                 rest -= length;
1684                 page++;
1685         }
1686
1687         return 0;
1688 }
1689
1690 static int
1691 ohci_queue_iso(struct fw_iso_context *base,
1692                struct fw_iso_packet *packet,
1693                struct fw_iso_buffer *buffer,
1694                unsigned long payload)
1695 {
1696         struct iso_context *ctx = container_of(base, struct iso_context, base);
1697
1698         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1699                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1700         else if (base->header_size == 0)
1701                 return ohci_queue_iso_receive_bufferfill(base, packet,
1702                                                          buffer, payload);
1703         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1704                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1705                                                          buffer, payload);
1706         else
1707                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1708                 return -EINVAL;
1709 }
1710
1711 static const struct fw_card_driver ohci_driver = {
1712         .name                   = ohci_driver_name,
1713         .enable                 = ohci_enable,
1714         .update_phy_reg         = ohci_update_phy_reg,
1715         .set_config_rom         = ohci_set_config_rom,
1716         .send_request           = ohci_send_request,
1717         .send_response          = ohci_send_response,
1718         .cancel_packet          = ohci_cancel_packet,
1719         .enable_phys_dma        = ohci_enable_phys_dma,
1720
1721         .allocate_iso_context   = ohci_allocate_iso_context,
1722         .free_iso_context       = ohci_free_iso_context,
1723         .queue_iso              = ohci_queue_iso,
1724         .start_iso              = ohci_start_iso,
1725         .stop_iso               = ohci_stop_iso,
1726 };
1727
1728 static int software_reset(struct fw_ohci *ohci)
1729 {
1730         int i;
1731
1732         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1733
1734         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1735                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1736                      OHCI1394_HCControl_softReset) == 0)
1737                         return 0;
1738                 msleep(1);
1739         }
1740
1741         return -EBUSY;
1742 }
1743
1744 /* ---------- pci subsystem interface ---------- */
1745
1746 enum {
1747         CLEANUP_SELF_ID,
1748         CLEANUP_REGISTERS,
1749         CLEANUP_IOMEM,
1750         CLEANUP_DISABLE,
1751         CLEANUP_PUT_CARD,
1752 };
1753
1754 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1755 {
1756         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1757
1758         switch (stage) {
1759         case CLEANUP_SELF_ID:
1760                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1761                                   ohci->self_id_cpu, ohci->self_id_bus);
1762         case CLEANUP_REGISTERS:
1763                 kfree(ohci->it_context_list);
1764                 kfree(ohci->ir_context_list);
1765                 pci_iounmap(dev, ohci->registers);
1766         case CLEANUP_IOMEM:
1767                 pci_release_region(dev, 0);
1768         case CLEANUP_DISABLE:
1769                 pci_disable_device(dev);
1770         case CLEANUP_PUT_CARD:
1771                 fw_card_put(&ohci->card);
1772         }
1773
1774         return code;
1775 }
1776
1777 static int __devinit
1778 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1779 {
1780         struct fw_ohci *ohci;
1781         u32 bus_options, max_receive, link_speed;
1782         u64 guid;
1783         int error_code;
1784         size_t size;
1785
1786         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1787         if (ohci == NULL) {
1788                 fw_error("Could not malloc fw_ohci data.\n");
1789                 return -ENOMEM;
1790         }
1791
1792         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1793
1794         if (pci_enable_device(dev)) {
1795                 fw_error("Failed to enable OHCI hardware.\n");
1796                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1797         }
1798
1799         pci_set_master(dev);
1800         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1801         pci_set_drvdata(dev, ohci);
1802
1803         spin_lock_init(&ohci->lock);
1804
1805         tasklet_init(&ohci->bus_reset_tasklet,
1806                      bus_reset_tasklet, (unsigned long)ohci);
1807
1808         if (pci_request_region(dev, 0, ohci_driver_name)) {
1809                 fw_error("MMIO resource unavailable\n");
1810                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1811         }
1812
1813         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1814         if (ohci->registers == NULL) {
1815                 fw_error("Failed to remap registers\n");
1816                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1817         }
1818
1819         if (software_reset(ohci)) {
1820                 fw_error("Failed to reset ohci card.\n");
1821                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1822         }
1823
1824         /* Now enable LPS, which we need in order to start accessing
1825          * most of the registers.  In fact, on some cards (ALI M5251),
1826          * accessing registers in the SClk domain without LPS enabled
1827          * will lock up the machine.  Wait 50msec to make sure we have
1828          * full link enabled.  */
1829         reg_write(ohci, OHCI1394_HCControlSet,
1830                   OHCI1394_HCControl_LPS |
1831                   OHCI1394_HCControl_postedWriteEnable);
1832         flush_writes(ohci);
1833         msleep(50);
1834
1835         reg_write(ohci, OHCI1394_HCControlClear,
1836                   OHCI1394_HCControl_noByteSwapData);
1837
1838         reg_write(ohci, OHCI1394_LinkControlSet,
1839                   OHCI1394_LinkControl_rcvSelfID |
1840                   OHCI1394_LinkControl_cycleTimerEnable |
1841                   OHCI1394_LinkControl_cycleMaster);
1842
1843         ar_context_init(&ohci->ar_request_ctx, ohci,
1844                         OHCI1394_AsReqRcvContextControlSet);
1845
1846         ar_context_init(&ohci->ar_response_ctx, ohci,
1847                         OHCI1394_AsRspRcvContextControlSet);
1848
1849         at_context_init(&ohci->at_request_ctx, ohci,
1850                         OHCI1394_AsReqTrContextControlSet);
1851
1852         at_context_init(&ohci->at_response_ctx, ohci,
1853                         OHCI1394_AsRspTrContextControlSet);
1854
1855         reg_write(ohci, OHCI1394_ATRetries,
1856                   OHCI1394_MAX_AT_REQ_RETRIES |
1857                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1858                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1859
1860         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1861         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1862         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1863         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1864         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1865
1866         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1867         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1868         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1869         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1870         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1871
1872         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1873                 fw_error("Out of memory for it/ir contexts.\n");
1874                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1875         }
1876
1877         /* self-id dma buffer allocation */
1878         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1879                                                SELF_ID_BUF_SIZE,
1880                                                &ohci->self_id_bus,
1881                                                GFP_KERNEL);
1882         if (ohci->self_id_cpu == NULL) {
1883                 fw_error("Out of memory for self ID buffer.\n");
1884                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1885         }
1886
1887         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1888         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1889         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1890         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1891         reg_write(ohci, OHCI1394_IntMaskSet,
1892                   OHCI1394_selfIDComplete |
1893                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1894                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1895                   OHCI1394_isochRx | OHCI1394_isochTx |
1896                   OHCI1394_masterIntEnable);
1897
1898         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1899         max_receive = (bus_options >> 12) & 0xf;
1900         link_speed = bus_options & 0x7;
1901         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1902                 reg_read(ohci, OHCI1394_GUIDLo);
1903
1904         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1905         if (error_code < 0)
1906                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1907
1908         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1909         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1910                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1911
1912         return 0;
1913 }
1914
1915 static void pci_remove(struct pci_dev *dev)
1916 {
1917         struct fw_ohci *ohci;
1918
1919         ohci = pci_get_drvdata(dev);
1920         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1921         fw_core_remove_card(&ohci->card);
1922
1923         /* FIXME: Fail all pending packets here, now that the upper
1924          * layers can't queue any more. */
1925
1926         software_reset(ohci);
1927         free_irq(dev->irq, ohci);
1928         cleanup(ohci, CLEANUP_SELF_ID, 0);
1929
1930         fw_notify("Removed fw-ohci device.\n");
1931 }
1932
1933 static struct pci_device_id pci_table[] = {
1934         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1935         { }
1936 };
1937
1938 MODULE_DEVICE_TABLE(pci, pci_table);
1939
1940 static struct pci_driver fw_ohci_pci_driver = {
1941         .name           = ohci_driver_name,
1942         .id_table       = pci_table,
1943         .probe          = pci_probe,
1944         .remove         = pci_remove,
1945 };
1946
1947 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1948 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1949 MODULE_LICENSE("GPL");
1950
1951 static int __init fw_ohci_init(void)
1952 {
1953         return pci_register_driver(&fw_ohci_pci_driver);
1954 }
1955
1956 static void __exit fw_ohci_cleanup(void)
1957 {
1958         pci_unregister_driver(&fw_ohci_pci_driver);
1959 }
1960
1961 module_init(fw_ohci_init);
1962 module_exit(fw_ohci_cleanup);