2 * include/asm-s390/pgtable.h
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
16 #include <asm-generic/4level-fixup.h>
19 * The Linux memory management assumes a three-level page table setup. For
20 * s390 31 bit we "fold" the mid level into the top-level page table, so
21 * that we physically have the same two-level page table as the s390 mmu
22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
23 * the hardware provides (region first and region second tables are not
26 * The "pgd_xxx()" functions are trivial for a folded two-level
27 * setup: the pgd is never bad, and a pmd always exists (as it's folded
30 * This file contains the functions and defines necessary to modify and use
31 * the S390 page table tree.
35 #include <asm/processor.h>
36 #include <linux/threads.h>
38 struct vm_area_struct; /* forward declaration (include/linux/mm.h) */
40 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
41 extern void paging_init(void);
44 * The S390 doesn't have any external MMU info: the kernel page
45 * tables contain all the necessary information.
47 #define update_mmu_cache(vma, address, pte) do { } while (0)
50 * ZERO_PAGE is a global shared page that is always zero: used
51 * for zero-mapped memory areas etc..
53 extern char empty_zero_page[PAGE_SIZE];
54 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
55 #endif /* !__ASSEMBLY__ */
58 * PMD_SHIFT determines the size of the area a second-level page
60 * PGDIR_SHIFT determines what a third-level page table entry can map
64 # define PGDIR_SHIFT 22
67 # define PGDIR_SHIFT 31
68 #endif /* __s390x__ */
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
73 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76 * entries per page directory level: the S390 is two-level, so
77 * we don't really have any PMD directory physically.
78 * for S390 segment-table entries are combined to one PGD
79 * that leads to 1024 pte per pgd
82 # define PTRS_PER_PTE 1024
83 # define PTRS_PER_PMD 1
84 # define PTRS_PER_PGD 512
86 # define PTRS_PER_PTE 512
87 # define PTRS_PER_PMD 1024
88 # define PTRS_PER_PGD 2048
89 #endif /* __s390x__ */
92 * pgd entries used up by user/kernel:
95 # define USER_PTRS_PER_PGD 512
96 # define USER_PGD_PTRS 512
97 # define KERNEL_PGD_PTRS 512
99 # define USER_PTRS_PER_PGD 2048
100 # define USER_PGD_PTRS 2048
101 # define KERNEL_PGD_PTRS 2048
102 #endif /* __s390x__ */
104 #define FIRST_USER_ADDRESS 0
106 #define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108 #define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
110 #define pgd_ERROR(e) \
111 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
115 * Just any arbitrary offset to the start of the vmalloc VM area: the
116 * current 8MB value just means that there will be a 8MB "hole" after the
117 * physical memory until the kernel virtual memory starts. That means that
118 * any out-of-bounds memory accesses will hopefully be caught.
119 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
120 * area for the same reason. ;)
122 #define VMALLOC_OFFSET (8*1024*1024)
123 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \
124 & ~(VMALLOC_OFFSET-1))
126 # define VMALLOC_END (0x7fffffffL)
127 #else /* __s390x__ */
128 # define VMALLOC_END (0x40000000000L)
129 #endif /* __s390x__ */
133 * A 31 bit pagetable entry of S390 has following format:
136 * 00000000001111111111222222222233
137 * 01234567890123456789012345678901
139 * I Page-Invalid Bit: Page is not available for address-translation
140 * P Page-Protection Bit: Store access not possible for page
142 * A 31 bit segmenttable entry of S390 has following format:
143 * | P-table origin | |PTL
145 * 00000000001111111111222222222233
146 * 01234567890123456789012345678901
148 * I Segment-Invalid Bit: Segment is not available for address-translation
149 * C Common-Segment Bit: Segment is not private (PoP 3-30)
150 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 * The 31 bit segmenttable origin of S390 has following format:
154 * |S-table origin | | STL |
156 * 00000000001111111111222222222233
157 * 01234567890123456789012345678901
159 * X Space-Switch event:
160 * G Segment-Invalid Bit: *
161 * P Private-Space Bit: Segment is not private (PoP 3-30)
162 * S Storage-Alteration:
163 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 * A 64 bit pagetable entry of S390 has following format:
167 * 0000000000111111111122222222223333333333444444444455555555556666
168 * 0123456789012345678901234567890123456789012345678901234567890123
170 * I Page-Invalid Bit: Page is not available for address-translation
171 * P Page-Protection Bit: Store access not possible for page
173 * A 64 bit segmenttable entry of S390 has following format:
174 * | P-table origin | TT
175 * 0000000000111111111122222222223333333333444444444455555555556666
176 * 0123456789012345678901234567890123456789012345678901234567890123
178 * I Segment-Invalid Bit: Segment is not available for address-translation
179 * C Common-Segment Bit: Segment is not private (PoP 3-30)
180 * P Page-Protection Bit: Store access not possible for page
183 * A 64 bit region table entry of S390 has following format:
184 * | S-table origin | TF TTTL
185 * 0000000000111111111122222222223333333333444444444455555555556666
186 * 0123456789012345678901234567890123456789012345678901234567890123
188 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * The 64 bit regiontable origin of S390 has following format:
194 * | region table origon | DTTL
195 * 0000000000111111111122222222223333333333444444444455555555556666
196 * 0123456789012345678901234567890123456789012345678901234567890123
198 * X Space-Switch event:
199 * G Segment-Invalid Bit:
200 * P Private-Space Bit:
201 * S Storage-Alteration:
205 * A storage key has the following format:
209 * F : fetch protection bit
214 /* Hardware bits in the page table entry */
215 #define _PAGE_RO 0x200 /* HW read-only */
216 #define _PAGE_INVALID 0x400 /* HW invalid */
218 /* Mask and four different kinds of invalid pages. */
219 #define _PAGE_INVALID_MASK 0x601
220 #define _PAGE_INVALID_EMPTY 0x400
221 #define _PAGE_INVALID_NONE 0x401
222 #define _PAGE_INVALID_SWAP 0x600
223 #define _PAGE_INVALID_FILE 0x601
227 /* Bits in the segment table entry */
228 #define _PAGE_TABLE_LEN 0xf /* only full page-tables */
229 #define _PAGE_TABLE_COM 0x10 /* common page-table */
230 #define _PAGE_TABLE_INV 0x20 /* invalid page-table */
231 #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */
233 /* Bits int the storage key */
234 #define _PAGE_CHANGED 0x02 /* HW changed bit */
235 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
237 #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */
238 #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */
241 * User and Kernel pagetables are identical
243 #define _PAGE_TABLE _PAGE_TABLE_LEN
244 #define _KERNPG_TABLE _PAGE_TABLE_LEN
247 * The Kernel segment-tables includes the User segment-table
250 #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100)
251 #define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN
253 #define USER_STD_MASK 0x00000080UL
255 #else /* __s390x__ */
257 /* Bits in the segment table entry */
258 #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */
259 #define _PMD_ENTRY 0x00
261 /* Bits in the region third table entry */
262 #define _PGD_ENTRY_INV 0x20 /* invalid region table entry */
263 #define _PGD_ENTRY 0x07
266 * User and kernel page directory
268 #define _REGION_THIRD 0x4
269 #define _REGION_THIRD_LEN 0x3
270 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
271 #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN)
273 #define USER_STD_MASK 0x0000000000000080UL
275 /* Bits in the storage key */
276 #define _PAGE_CHANGED 0x02 /* HW changed bit */
277 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
279 #endif /* __s390x__ */
282 * No mapping available
284 #define PAGE_NONE_SHARED __pgprot(_PAGE_INVALID_NONE)
285 #define PAGE_NONE_PRIVATE __pgprot(_PAGE_INVALID_NONE)
286 #define PAGE_RO_SHARED __pgprot(_PAGE_RO)
287 #define PAGE_RO_PRIVATE __pgprot(_PAGE_RO)
288 #define PAGE_COPY __pgprot(_PAGE_RO)
289 #define PAGE_SHARED __pgprot(0)
290 #define PAGE_KERNEL __pgprot(0)
293 * The S390 can't do page protection for execute, and considers that the
294 * same are read. Also, write permissions imply read permissions. This is
295 * the closest we can get..
298 #define __P000 PAGE_NONE_PRIVATE
299 #define __P001 PAGE_RO_PRIVATE
300 #define __P010 PAGE_COPY
301 #define __P011 PAGE_COPY
302 #define __P100 PAGE_RO_PRIVATE
303 #define __P101 PAGE_RO_PRIVATE
304 #define __P110 PAGE_COPY
305 #define __P111 PAGE_COPY
307 #define __S000 PAGE_NONE_SHARED
308 #define __S001 PAGE_RO_SHARED
309 #define __S010 PAGE_SHARED
310 #define __S011 PAGE_SHARED
311 #define __S100 PAGE_RO_SHARED
312 #define __S101 PAGE_RO_SHARED
313 #define __S110 PAGE_SHARED
314 #define __S111 PAGE_SHARED
317 * Certain architectures need to do special things when PTEs
318 * within a page table are directly modified. Thus, the following
319 * hook is made available.
321 extern inline void set_pte(pte_t *pteptr, pte_t pteval)
325 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
328 * pgd/pmd/pte query functions
332 extern inline int pgd_present(pgd_t pgd) { return 1; }
333 extern inline int pgd_none(pgd_t pgd) { return 0; }
334 extern inline int pgd_bad(pgd_t pgd) { return 0; }
336 extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; }
337 extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; }
338 extern inline int pmd_bad(pmd_t pmd)
340 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE;
343 #else /* __s390x__ */
345 extern inline int pgd_present(pgd_t pgd)
347 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY;
350 extern inline int pgd_none(pgd_t pgd)
352 return pgd_val(pgd) & _PGD_ENTRY_INV;
355 extern inline int pgd_bad(pgd_t pgd)
357 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY;
360 extern inline int pmd_present(pmd_t pmd)
362 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY;
365 extern inline int pmd_none(pmd_t pmd)
367 return pmd_val(pmd) & _PMD_ENTRY_INV;
370 extern inline int pmd_bad(pmd_t pmd)
372 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY;
375 #endif /* __s390x__ */
377 extern inline int pte_none(pte_t pte)
379 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_EMPTY;
382 extern inline int pte_present(pte_t pte)
384 return !(pte_val(pte) & _PAGE_INVALID) ||
385 (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_NONE;
388 extern inline int pte_file(pte_t pte)
390 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_FILE;
393 #define pte_same(a,b) (pte_val(a) == pte_val(b))
396 * query functions pte_write/pte_dirty/pte_young only work if
397 * pte_present() is true. Undefined behaviour if not..
399 extern inline int pte_write(pte_t pte)
401 return (pte_val(pte) & _PAGE_RO) == 0;
404 extern inline int pte_dirty(pte_t pte)
406 /* A pte is neither clean nor dirty on s/390. The dirty bit
407 * is in the storage key. See page_test_and_clear_dirty for
413 extern inline int pte_young(pte_t pte)
415 /* A pte is neither young nor old on s/390. The young bit
416 * is in the storage key. See page_test_and_clear_young for
422 extern inline int pte_read(pte_t pte)
424 /* All pages are readable since we don't use the fetch
425 * protection bit in the storage key.
431 * pgd/pmd/pte modification functions
436 extern inline void pgd_clear(pgd_t * pgdp) { }
438 extern inline void pmd_clear(pmd_t * pmdp)
440 pmd_val(pmdp[0]) = _PAGE_TABLE_INV;
441 pmd_val(pmdp[1]) = _PAGE_TABLE_INV;
442 pmd_val(pmdp[2]) = _PAGE_TABLE_INV;
443 pmd_val(pmdp[3]) = _PAGE_TABLE_INV;
446 #else /* __s390x__ */
448 extern inline void pgd_clear(pgd_t * pgdp)
450 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY;
453 extern inline void pmd_clear(pmd_t * pmdp)
455 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
456 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY;
459 #endif /* __s390x__ */
461 extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
463 pte_val(*ptep) = _PAGE_INVALID_EMPTY;
467 * The following pte modification functions only work if
468 * pte_present() is true. Undefined behaviour if not..
470 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
472 pte_val(pte) &= PAGE_MASK;
473 pte_val(pte) |= pgprot_val(newprot);
477 extern inline pte_t pte_wrprotect(pte_t pte)
479 /* Do not clobber _PAGE_INVALID_NONE pages! */
480 if (!(pte_val(pte) & _PAGE_INVALID))
481 pte_val(pte) |= _PAGE_RO;
485 extern inline pte_t pte_mkwrite(pte_t pte)
487 pte_val(pte) &= ~_PAGE_RO;
491 extern inline pte_t pte_mkclean(pte_t pte)
493 /* The only user of pte_mkclean is the fork() code.
494 We must *not* clear the *physical* page dirty bit
495 just because fork() wants to clear the dirty bit in
496 *one* of the page's mappings. So we just do nothing. */
500 extern inline pte_t pte_mkdirty(pte_t pte)
502 /* We do not explicitly set the dirty bit because the
503 * sske instruction is slow. It is faster to let the
504 * next instruction set the dirty bit.
509 extern inline pte_t pte_mkold(pte_t pte)
511 /* S/390 doesn't keep its dirty/referenced bit in the pte.
512 * There is no point in clearing the real referenced bit.
517 extern inline pte_t pte_mkyoung(pte_t pte)
519 /* S/390 doesn't keep its dirty/referenced bit in the pte.
520 * There is no point in setting the real referenced bit.
525 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
531 ptep_clear_flush_young(struct vm_area_struct *vma,
532 unsigned long address, pte_t *ptep)
534 /* No need to flush TLB; bits are in storage key */
535 return ptep_test_and_clear_young(vma, address, ptep);
538 static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
544 ptep_clear_flush_dirty(struct vm_area_struct *vma,
545 unsigned long address, pte_t *ptep)
547 /* No need to flush TLB; bits are in storage key */
548 return ptep_test_and_clear_dirty(vma, address, ptep);
551 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
554 pte_clear(mm, addr, ptep);
559 ptep_clear_flush(struct vm_area_struct *vma,
560 unsigned long address, pte_t *ptep)
564 if (!(pte_val(pte) & _PAGE_INVALID)) {
565 /* S390 has 1mb segments, we are emulating 4MB segments */
566 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
567 __asm__ __volatile__ ("ipte %2,%3"
568 : "=m" (*ptep) : "m" (*ptep),
569 "a" (pto), "a" (address) );
571 #else /* __s390x__ */
572 if (!(pte_val(pte) & _PAGE_INVALID))
573 __asm__ __volatile__ ("ipte %2,%3"
574 : "=m" (*ptep) : "m" (*ptep),
575 "a" (ptep), "a" (address) );
576 #endif /* __s390x__ */
577 pte_val(*ptep) = _PAGE_INVALID_EMPTY;
581 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
583 pte_t old_pte = *ptep;
584 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
588 ptep_establish(struct vm_area_struct *vma,
589 unsigned long address, pte_t *ptep,
592 ptep_clear_flush(vma, address, ptep);
593 set_pte(ptep, entry);
596 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
597 ptep_establish(__vma, __address, __ptep, __entry)
600 * Test and clear dirty bit in storage key.
601 * We can't clear the changed bit atomically. This is a potential
602 * race against modification of the referenced bit. This function
603 * should therefore only be called if it is not mapped in any
606 #define page_test_and_clear_dirty(_page) \
608 struct page *__page = (_page); \
609 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
610 int __skey = page_get_storage_key(__physpage); \
611 if (__skey & _PAGE_CHANGED) \
612 page_set_storage_key(__physpage, __skey & ~_PAGE_CHANGED);\
613 (__skey & _PAGE_CHANGED); \
617 * Test and clear referenced bit in storage key.
619 #define page_test_and_clear_young(page) \
621 struct page *__page = (page); \
622 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
624 asm volatile ("rrbe 0,%1\n\t" \
627 : "=d" (__ccode) : "a" (__physpage) : "cc" ); \
632 * Conversion functions: convert a page and protection to a page entry,
633 * and a page entry and page directory to the page they refer to.
635 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
638 pte_val(__pte) = physpage + pgprot_val(pgprot);
642 #define mk_pte(pg, pgprot) \
644 struct page *__page = (pg); \
645 pgprot_t __pgprot = (pgprot); \
646 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
647 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
651 #define pfn_pte(pfn, pgprot) \
653 pgprot_t __pgprot = (pgprot); \
654 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
655 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
659 #define SetPageUptodate(_page) \
661 struct page *__page = (_page); \
662 if (!test_and_set_bit(PG_uptodate, &__page->flags)) \
663 page_test_and_clear_dirty(_page); \
668 #define pfn_pmd(pfn, pgprot) \
670 pgprot_t __pgprot = (pgprot); \
671 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
672 pmd_t __pmd = __pmd(__physpage + pgprot_val(__pgprot)); \
676 #endif /* __s390x__ */
678 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
679 #define pte_page(x) pfn_to_page(pte_pfn(x))
681 #define pmd_page_kernel(pmd) (pmd_val(pmd) & PAGE_MASK)
683 #define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT))
685 #define pgd_page_kernel(pgd) (pgd_val(pgd) & PAGE_MASK)
687 /* to find an entry in a page-table-directory */
688 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
689 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
691 /* to find an entry in a kernel page-table-directory */
692 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
696 /* Find an entry in the second-level page table.. */
697 extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
699 return (pmd_t *) dir;
702 #else /* __s390x__ */
704 /* Find an entry in the second-level page table.. */
705 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
706 #define pmd_offset(dir,addr) \
707 ((pmd_t *) pgd_page_kernel(*(dir)) + pmd_index(addr))
709 #endif /* __s390x__ */
711 /* Find an entry in the third-level page table.. */
712 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
713 #define pte_offset_kernel(pmd, address) \
714 ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address))
715 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
716 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
717 #define pte_unmap(pte) do { } while (0)
718 #define pte_unmap_nested(pte) do { } while (0)
721 * 31 bit swap entry format:
722 * A page-table entry has some bits we have to treat in a special way.
723 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
724 * exception will occur instead of a page translation exception. The
725 * specifiation exception has the bad habit not to store necessary
726 * information in the lowcore.
727 * Bit 21 and bit 22 are the page invalid bit and the page protection
728 * bit. We set both to indicate a swapped page.
729 * Bit 30 and 31 are used to distinguish the different page types. For
730 * a swapped page these bits need to be zero.
731 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
732 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
733 * plus 24 for the offset.
734 * 0| offset |0110|o|type |00|
735 * 0 0000000001111111111 2222 2 22222 33
736 * 0 1234567890123456789 0123 4 56789 01
738 * 64 bit swap entry format:
739 * A page-table entry has some bits we have to treat in a special way.
740 * Bits 52 and bit 55 have to be zero, otherwise an specification
741 * exception will occur instead of a page translation exception. The
742 * specifiation exception has the bad habit not to store necessary
743 * information in the lowcore.
744 * Bit 53 and bit 54 are the page invalid bit and the page protection
745 * bit. We set both to indicate a swapped page.
746 * Bit 62 and 63 are used to distinguish the different page types. For
747 * a swapped page these bits need to be zero.
748 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
749 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
750 * plus 56 for the offset.
751 * | offset |0110|o|type |00|
752 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
753 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
756 #define __SWP_OFFSET_MASK (~0UL >> 12)
758 #define __SWP_OFFSET_MASK (~0UL >> 11)
760 extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
763 offset &= __SWP_OFFSET_MASK;
764 pte_val(pte) = _PAGE_INVALID_SWAP | ((type & 0x1f) << 2) |
765 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
769 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
770 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
771 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
773 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
774 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
777 # define PTE_FILE_MAX_BITS 26
778 #else /* __s390x__ */
779 # define PTE_FILE_MAX_BITS 59
780 #endif /* __s390x__ */
782 #define pte_to_pgoff(__pte) \
783 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
785 #define pgoff_to_pte(__off) \
786 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
787 | _PAGE_INVALID_FILE })
789 #endif /* !__ASSEMBLY__ */
791 #define kern_addr_valid(addr) (1)
794 * No page table caches to initialise
796 #define pgtable_cache_init() do { } while (0)
798 #define __HAVE_ARCH_PTEP_ESTABLISH
799 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
800 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
801 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
802 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
803 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
804 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
805 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
806 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
807 #define __HAVE_ARCH_PTE_SAME
808 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
809 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
810 #include <asm-generic/pgtable.h>
812 #endif /* _S390_PAGE_H */