2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2007 Axis Communications AB
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/jiffies.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
20 #include <asm/delay.h>
23 #include <asm/irq_regs.h>
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
39 unsigned long timer_regs[NR_CPUS] =
47 extern void update_xtime_from_cmos(void);
48 extern int set_rtc_mmss(unsigned long nowtime);
49 extern int setup_irq(int, struct irqaction *);
52 #ifdef CONFIG_CPU_FREQ
54 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
57 static struct notifier_block cris_time_freq_notifier_block = {
58 .notifier_call = cris_time_freq_notifier,
62 unsigned long get_ns_in_jiffie(void)
64 reg_timer_r_tmr0_data data;
67 data = REG_RD(timer, regi_timer0, r_tmr0_data);
68 ns = (TIMER0_DIV - data) * 10;
72 unsigned long do_slow_gettimeoffset(void)
75 unsigned long usec_count = 0;
77 /* For the first call after boot */
78 static unsigned long count_p = TIMER0_DIV;
79 static unsigned long jiffies_p = 0;
81 /* Cache volatile jiffies temporarily; we have IRQs turned off. */
82 unsigned long jiffies_t;
84 /* The timer interrupt comes from Etrax timer 0. In order to get
85 * better precision, we check the current value. It might have
86 * underflowed already though. */
87 count = REG_RD(timer, regi_timer0, r_tmr0_data);
90 /* Avoiding timer inconsistencies (they are rare, but they happen)
91 * There is one problem that must be avoided here:
92 * 1. the timer counter underflows
94 if( jiffies_t == jiffies_p ) {
95 if( count > count_p ) {
96 /* Timer wrapped, use new count and prescale.
97 * Increase the time corresponding to one jiffy.
99 usec_count = 1000000/HZ;
102 jiffies_p = jiffies_t;
104 /* Convert timer value to usec */
105 /* 100 MHz timer, divide by 100 to get usec */
106 usec_count += (TIMER0_DIV - count) / 100;
110 /* From timer MDS describing the hardware watchdog:
111 * 4.3.1 Watchdog Operation
112 * The watchdog timer is an 8-bit timer with a configurable start value.
113 * Once started the watchdog counts downwards with a frequency of 763 Hz
114 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
115 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
118 /* This gives us 1.3 ms to do something useful when the NMI comes */
120 /* Right now, starting the watchdog is the same as resetting it */
121 #define start_watchdog reset_watchdog
123 #if defined(CONFIG_ETRAX_WATCHDOG)
124 static short int watchdog_key = 42; /* arbitrary 7 bit number */
127 /* Number of pages to consider "out of memory". It is normal that the memory
128 * is used though, so set this really low. */
129 #define WATCHDOG_MIN_FREE_PAGES 8
134 #if defined(CONFIG_ETRAX_WATCHDOG)
135 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
137 /* Only keep watchdog happy as long as we have memory left! */
138 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
139 /* Reset the watchdog with the inverse of the old key */
140 /* Invert key, which is 7 bits */
141 watchdog_key ^= ETRAX_WD_KEY_MASK;
142 wd_ctrl.cnt = ETRAX_WD_CNT;
143 wd_ctrl.cmd = regk_timer_start;
144 wd_ctrl.key = watchdog_key;
145 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
150 /* stop the watchdog - we still need the correct key */
155 #if defined(CONFIG_ETRAX_WATCHDOG)
156 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
157 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
158 wd_ctrl.cnt = ETRAX_WD_CNT;
159 wd_ctrl.cmd = regk_timer_stop;
160 wd_ctrl.key = watchdog_key;
161 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
165 extern void show_registers(struct pt_regs *regs);
168 handle_watchdog_bite(struct pt_regs* regs)
170 #if defined(CONFIG_ETRAX_WATCHDOG)
171 extern int cause_of_death;
173 oops_in_progress = 1;
174 printk(KERN_WARNING "Watchdog bite\n");
176 /* Check if forced restart or unexpected watchdog */
177 if (cause_of_death == 0xbedead) {
178 #ifdef CONFIG_CRIS_MACH_ARTPEC3
179 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
180 * us to go to lower frequency for the reset to be reliable
182 reg_clkgen_rw_clk_ctrl ctrl =
183 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
185 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
190 /* Unexpected watchdog, stop the watchdog and dump registers. */
192 printk(KERN_WARNING "Oops: bitten by watchdog\n");
193 show_registers(regs);
194 oops_in_progress = 0;
195 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
198 while(1) /* nothing */;
202 /* Last time the cmos clock got updated. */
203 static long last_rtc_update = 0;
206 * timer_interrupt() needs to keep up the real-time clock,
207 * as well as call the "do_timer()" routine every clocktick.
209 extern void cris_do_profile(struct pt_regs *regs);
211 static inline irqreturn_t
212 timer_interrupt(int irq, void *dev_id)
214 struct pt_regs *regs = get_irq_regs();
215 int cpu = smp_processor_id();
216 reg_timer_r_masked_intr masked_intr;
217 reg_timer_rw_ack_intr ack_intr = { 0 };
219 /* Check if the timer interrupt is for us (a tmr0 int) */
220 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
221 if (!masked_intr.tmr0)
224 /* Acknowledge the timer irq. */
226 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
228 /* Reset watchdog otherwise it resets us! */
231 /* Update statistics. */
232 update_process_times(user_mode(regs));
234 cris_do_profile(regs); /* Save profiling information */
236 /* The master CPU is responsible for the time keeping. */
240 /* Call the real timer interrupt handler */
244 * If we have an externally synchronized Linux clock, then update
245 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
246 * called as close as possible to 500 ms before the new second starts.
248 * The division here is not time critical since it will run once in
251 if ((time_status & STA_UNSYNC) == 0 &&
252 xtime.tv_sec > last_rtc_update + 660 &&
253 (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
254 (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
255 if (set_rtc_mmss(xtime.tv_sec) == 0)
256 last_rtc_update = xtime.tv_sec;
258 /* Do it again in 60 s */
259 last_rtc_update = xtime.tv_sec - 600;
264 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
265 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
267 static struct irqaction irq_timer = {
268 .handler = timer_interrupt,
269 .flags = IRQF_SHARED | IRQF_DISABLED,
270 .mask = CPU_MASK_NONE,
275 cris_timer_init(void)
277 int cpu = smp_processor_id();
278 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
279 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
280 reg_timer_rw_intr_mask timer_intr_mask;
282 /* Setup the etrax timers.
283 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
284 * We use timer0, so timer1 is free.
285 * The trig timer is used by the fasttimer API if enabled.
288 tmr0_ctrl.op = regk_timer_ld;
289 tmr0_ctrl.freq = regk_timer_f100;
290 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
291 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
292 tmr0_ctrl.op = regk_timer_run;
293 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
295 /* Enable the timer irq. */
296 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
297 timer_intr_mask.tmr0 = 1;
298 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
304 reg_intr_vect_rw_mask intr_mask;
306 /* Probe for the RTC and read it if it exists.
307 * Before the RTC can be probed the loops_per_usec variable needs
308 * to be initialized to make usleep work. A better value for
309 * loops_per_usec is calculated by the kernel later once the
315 /* No RTC, start at 1980 */
320 /* Get the current time */
322 update_xtime_from_cmos();
326 * Initialize wall_to_monotonic such that adding it to
327 * xtime will yield zero, the tv_nsec field must be normalized
328 * (i.e., 0 <= nsec < NSEC_PER_SEC).
330 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
332 /* Start CPU local timer. */
335 /* Enable the timer irq in global config. */
336 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
337 intr_mask.timer0 = 1;
338 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
340 /* Now actually register the timer irq handler that calls
341 * timer_interrupt(). */
342 setup_irq(TIMER0_INTR_VECT, &irq_timer);
344 /* Enable watchdog if we should use one. */
346 #if defined(CONFIG_ETRAX_WATCHDOG)
347 printk(KERN_INFO "Enabling watchdog...\n");
350 /* If we use the hardware watchdog, we want to trap it as an NMI
351 * and dump registers before it resets us. For this to happen, we
352 * must set the "m" NMI enable flag (which once set, is unset only
353 * when an NMI is taken). */
356 local_save_flags(flags);
357 flags |= (1<<30); /* NMI M flag is at bit 30 */
358 local_irq_restore(flags);
362 #ifdef CONFIG_CPU_FREQ
363 cpufreq_register_notifier(&cris_time_freq_notifier_block,
364 CPUFREQ_TRANSITION_NOTIFIER);
368 #ifdef CONFIG_CPU_FREQ
370 cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
373 struct cpufreq_freqs *freqs = data;
374 if (val == CPUFREQ_POSTCHANGE) {
375 reg_timer_r_tmr0_data data;
376 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
378 data = REG_RD(timer, timer_regs[freqs->cpu],
381 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);