1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
36 #define DRIVERNAPI "-NAPI"
38 #define DRV_VERSION "7.2.9-k2"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
198 static int e1000_resume(struct pci_dev *pdev);
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
251 e1000_init_module(void)
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
302 "Unable to allocate interrupt Error: %d\n", err);
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the netowrk i/f is closed.
383 e1000_release_hw_control(struct e1000_adapter *adapter)
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the netowrk i/f is open.
424 e1000_get_hw_control(struct e1000_adapter *adapter)
429 /* Let firmware know the driver has taken over */
430 switch (adapter->hw.mac_type) {
433 case e1000_80003es2lan:
434 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
439 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440 E1000_WRITE_REG(&adapter->hw, SWSM,
441 swsm | E1000_SWSM_DRV_LOAD);
444 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
454 e1000_up(struct e1000_adapter *adapter)
456 struct net_device *netdev = adapter->netdev;
459 /* hardware has been reset, we need to reload some things */
461 e1000_set_multi(netdev);
463 e1000_restore_vlan(adapter);
465 e1000_configure_tx(adapter);
466 e1000_setup_rctl(adapter);
467 e1000_configure_rx(adapter);
468 /* call E1000_DESC_UNUSED which always leaves
469 * at least 1 descriptor unused to make sure
470 * next_to_use != next_to_clean */
471 for (i = 0; i < adapter->num_rx_queues; i++) {
472 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473 adapter->alloc_rx_buf(adapter, ring,
474 E1000_DESC_UNUSED(ring));
477 adapter->tx_queue_len = netdev->tx_queue_len;
479 #ifdef CONFIG_E1000_NAPI
480 netif_poll_enable(netdev);
482 e1000_irq_enable(adapter);
484 clear_bit(__E1000_DOWN, &adapter->flags);
486 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
491 * e1000_power_up_phy - restore link in case the phy was powered down
492 * @adapter: address of board private structure
494 * The phy may be powered down to save power and turn off link when the
495 * driver is unloaded and wake on lan is not enabled (among others)
496 * *** this routine MUST be followed by a call to e1000_reset ***
500 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 uint16_t mii_reg = 0;
504 /* Just clear the power down bit to wake the phy back up */
505 if (adapter->hw.media_type == e1000_media_type_copper) {
506 /* according to the manual, the phy will retain its
507 * settings across a power-down/up cycle */
508 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
509 mii_reg &= ~MII_CR_POWER_DOWN;
510 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
514 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 /* Power down the PHY so no link is implied when interface is down *
517 * The PHY cannot be powered down if any of the following is TRUE *
520 * (c) SoL/IDER session is active */
521 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
522 adapter->hw.media_type == e1000_media_type_copper) {
523 uint16_t mii_reg = 0;
525 switch (adapter->hw.mac_type) {
528 case e1000_82545_rev_3:
530 case e1000_82546_rev_3:
532 case e1000_82541_rev_2:
534 case e1000_82547_rev_2:
535 if (E1000_READ_REG(&adapter->hw, MANC) &
542 case e1000_80003es2lan:
544 if (e1000_check_mng_mode(&adapter->hw) ||
545 e1000_check_phy_reset_block(&adapter->hw))
551 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
552 mii_reg |= MII_CR_POWER_DOWN;
553 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
561 e1000_down(struct e1000_adapter *adapter)
563 struct net_device *netdev = adapter->netdev;
565 /* signal that we're down so the interrupt handler does not
566 * reschedule our watchdog timer */
567 set_bit(__E1000_DOWN, &adapter->flags);
569 e1000_irq_disable(adapter);
571 del_timer_sync(&adapter->tx_fifo_stall_timer);
572 del_timer_sync(&adapter->watchdog_timer);
573 del_timer_sync(&adapter->phy_info_timer);
575 #ifdef CONFIG_E1000_NAPI
576 netif_poll_disable(netdev);
578 netdev->tx_queue_len = adapter->tx_queue_len;
579 adapter->link_speed = 0;
580 adapter->link_duplex = 0;
581 netif_carrier_off(netdev);
582 netif_stop_queue(netdev);
584 e1000_reset(adapter);
585 e1000_clean_all_tx_rings(adapter);
586 e1000_clean_all_rx_rings(adapter);
590 e1000_reinit_locked(struct e1000_adapter *adapter)
592 WARN_ON(in_interrupt());
593 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597 clear_bit(__E1000_RESETTING, &adapter->flags);
601 e1000_reset(struct e1000_adapter *adapter)
607 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
609 /* Repartition Pba for greater than 9k mtu
610 * To take effect CTRL.RST is required.
613 switch (adapter->hw.mac_type) {
615 case e1000_82547_rev_2:
620 case e1000_80003es2lan:
634 if ((adapter->hw.mac_type != e1000_82573) &&
635 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
636 pba -= 8; /* allocate more FIFO for Tx */
639 if (adapter->hw.mac_type == e1000_82547) {
640 adapter->tx_fifo_head = 0;
641 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
642 adapter->tx_fifo_size =
643 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
644 atomic_set(&adapter->tx_fifo_stall, 0);
647 E1000_WRITE_REG(&adapter->hw, PBA, pba);
649 /* flow control settings */
650 /* Set the FC high water mark to 90% of the FIFO size.
651 * Required to clear last 3 LSB */
652 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
653 /* We can't use 90% on small FIFOs because the remainder
654 * would be less than 1 full frame. In this case, we size
655 * it to allow at least a full frame above the high water
657 if (pba < E1000_PBA_16K)
658 fc_high_water_mark = (pba * 1024) - 1600;
660 adapter->hw.fc_high_water = fc_high_water_mark;
661 adapter->hw.fc_low_water = fc_high_water_mark - 8;
662 if (adapter->hw.mac_type == e1000_80003es2lan)
663 adapter->hw.fc_pause_time = 0xFFFF;
665 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
666 adapter->hw.fc_send_xon = 1;
667 adapter->hw.fc = adapter->hw.original_fc;
669 /* Allow time for pending master requests to run */
670 e1000_reset_hw(&adapter->hw);
671 if (adapter->hw.mac_type >= e1000_82544)
672 E1000_WRITE_REG(&adapter->hw, WUC, 0);
674 /* disable Multiple Reads in Transmit Control Register for debugging */
675 tctl = E1000_READ_REG(hw, TCTL);
676 E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
679 if (e1000_init_hw(&adapter->hw))
680 DPRINTK(PROBE, ERR, "Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
683 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
685 e1000_reset_adaptive(&adapter->hw);
686 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
688 if (!adapter->smart_power_down &&
689 (adapter->hw.mac_type == e1000_82571 ||
690 adapter->hw.mac_type == e1000_82572)) {
691 uint16_t phy_data = 0;
692 /* speed up time to link by disabling smart power down, ignore
693 * the return value of this function because there is nothing
694 * different we would do if it failed */
695 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
697 phy_data &= ~IGP02E1000_PM_SPD;
698 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
702 if ((adapter->en_mng_pt) &&
703 (adapter->hw.mac_type >= e1000_82540) &&
704 (adapter->hw.mac_type < e1000_82571) &&
705 (adapter->hw.media_type == e1000_media_type_copper)) {
706 manc = E1000_READ_REG(&adapter->hw, MANC);
707 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
708 E1000_WRITE_REG(&adapter->hw, MANC, manc);
713 * e1000_probe - Device Initialization Routine
714 * @pdev: PCI device information struct
715 * @ent: entry in e1000_pci_tbl
717 * Returns 0 on success, negative on failure
719 * e1000_probe initializes an adapter identified by a pci_dev structure.
720 * The OS initialization, configuring of the adapter private structure,
721 * and a hardware reset occur.
725 e1000_probe(struct pci_dev *pdev,
726 const struct pci_device_id *ent)
728 struct net_device *netdev;
729 struct e1000_adapter *adapter;
730 unsigned long mmio_start, mmio_len;
731 unsigned long flash_start, flash_len;
733 static int cards_found = 0;
734 static int global_quad_port_a = 0; /* global ksp3 port a indication */
735 int i, err, pci_using_dac;
736 uint16_t eeprom_data = 0;
737 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
738 if ((err = pci_enable_device(pdev)))
741 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
742 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
745 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
746 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
747 E1000_ERR("No usable DMA configuration, aborting\n");
753 if ((err = pci_request_regions(pdev, e1000_driver_name)))
756 pci_set_master(pdev);
759 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
761 goto err_alloc_etherdev;
763 SET_MODULE_OWNER(netdev);
764 SET_NETDEV_DEV(netdev, &pdev->dev);
766 pci_set_drvdata(pdev, netdev);
767 adapter = netdev_priv(netdev);
768 adapter->netdev = netdev;
769 adapter->pdev = pdev;
770 adapter->hw.back = adapter;
771 adapter->msg_enable = (1 << debug) - 1;
773 mmio_start = pci_resource_start(pdev, BAR_0);
774 mmio_len = pci_resource_len(pdev, BAR_0);
777 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
778 if (!adapter->hw.hw_addr)
781 for (i = BAR_1; i <= BAR_5; i++) {
782 if (pci_resource_len(pdev, i) == 0)
784 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
785 adapter->hw.io_base = pci_resource_start(pdev, i);
790 netdev->open = &e1000_open;
791 netdev->stop = &e1000_close;
792 netdev->hard_start_xmit = &e1000_xmit_frame;
793 netdev->get_stats = &e1000_get_stats;
794 netdev->set_multicast_list = &e1000_set_multi;
795 netdev->set_mac_address = &e1000_set_mac;
796 netdev->change_mtu = &e1000_change_mtu;
797 netdev->do_ioctl = &e1000_ioctl;
798 e1000_set_ethtool_ops(netdev);
799 netdev->tx_timeout = &e1000_tx_timeout;
800 netdev->watchdog_timeo = 5 * HZ;
801 #ifdef CONFIG_E1000_NAPI
802 netdev->poll = &e1000_clean;
805 netdev->vlan_rx_register = e1000_vlan_rx_register;
806 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
807 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
808 #ifdef CONFIG_NET_POLL_CONTROLLER
809 netdev->poll_controller = e1000_netpoll;
811 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
813 netdev->mem_start = mmio_start;
814 netdev->mem_end = mmio_start + mmio_len;
815 netdev->base_addr = adapter->hw.io_base;
817 adapter->bd_number = cards_found;
819 /* setup the private structure */
821 if ((err = e1000_sw_init(adapter)))
825 /* Flash BAR mapping must happen after e1000_sw_init
826 * because it depends on mac_type */
827 if ((adapter->hw.mac_type == e1000_ich8lan) &&
828 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
829 flash_start = pci_resource_start(pdev, 1);
830 flash_len = pci_resource_len(pdev, 1);
831 adapter->hw.flash_address = ioremap(flash_start, flash_len);
832 if (!adapter->hw.flash_address)
836 if (e1000_check_phy_reset_block(&adapter->hw))
837 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
839 if (adapter->hw.mac_type >= e1000_82543) {
840 netdev->features = NETIF_F_SG |
844 NETIF_F_HW_VLAN_FILTER;
845 if (adapter->hw.mac_type == e1000_ich8lan)
846 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
850 if ((adapter->hw.mac_type >= e1000_82544) &&
851 (adapter->hw.mac_type != e1000_82547))
852 netdev->features |= NETIF_F_TSO;
854 #ifdef NETIF_F_TSO_IPV6
855 if (adapter->hw.mac_type > e1000_82547_rev_2)
856 netdev->features |= NETIF_F_TSO_IPV6;
860 netdev->features |= NETIF_F_HIGHDMA;
862 netdev->features |= NETIF_F_LLTX;
864 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
866 /* initialize eeprom parameters */
868 if (e1000_init_eeprom_params(&adapter->hw)) {
869 E1000_ERR("EEPROM initialization failed\n");
873 /* before reading the EEPROM, reset the controller to
874 * put the device in a known good starting state */
876 e1000_reset_hw(&adapter->hw);
878 /* make sure the EEPROM is good */
880 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
881 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
885 /* copy the MAC address out of the EEPROM */
887 if (e1000_read_mac_addr(&adapter->hw))
888 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
889 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
890 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
892 if (!is_valid_ether_addr(netdev->perm_addr)) {
893 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
897 e1000_get_bus_info(&adapter->hw);
899 init_timer(&adapter->tx_fifo_stall_timer);
900 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
901 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
903 init_timer(&adapter->watchdog_timer);
904 adapter->watchdog_timer.function = &e1000_watchdog;
905 adapter->watchdog_timer.data = (unsigned long) adapter;
907 init_timer(&adapter->phy_info_timer);
908 adapter->phy_info_timer.function = &e1000_update_phy_info;
909 adapter->phy_info_timer.data = (unsigned long) adapter;
911 INIT_WORK(&adapter->reset_task,
912 (void (*)(void *))e1000_reset_task, netdev);
914 e1000_check_options(adapter);
916 /* Initial Wake on LAN setting
917 * If APM wake is enabled in the EEPROM,
918 * enable the ACPI Magic Packet filter
921 switch (adapter->hw.mac_type) {
922 case e1000_82542_rev2_0:
923 case e1000_82542_rev2_1:
927 e1000_read_eeprom(&adapter->hw,
928 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
929 eeprom_apme_mask = E1000_EEPROM_82544_APM;
932 e1000_read_eeprom(&adapter->hw,
933 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
934 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
937 case e1000_82546_rev_3:
939 case e1000_80003es2lan:
940 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
941 e1000_read_eeprom(&adapter->hw,
942 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
947 e1000_read_eeprom(&adapter->hw,
948 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
951 if (eeprom_data & eeprom_apme_mask)
952 adapter->eeprom_wol |= E1000_WUFC_MAG;
954 /* now that we have the eeprom settings, apply the special cases
955 * where the eeprom may be wrong or the board simply won't support
956 * wake on lan on a particular port */
957 switch (pdev->device) {
958 case E1000_DEV_ID_82546GB_PCIE:
959 adapter->eeprom_wol = 0;
961 case E1000_DEV_ID_82546EB_FIBER:
962 case E1000_DEV_ID_82546GB_FIBER:
963 case E1000_DEV_ID_82571EB_FIBER:
964 /* Wake events only supported on port A for dual fiber
965 * regardless of eeprom setting */
966 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
967 adapter->eeprom_wol = 0;
969 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
970 case E1000_DEV_ID_82571EB_QUAD_COPPER:
971 /* if quad port adapter, disable WoL on all but port A */
972 if (global_quad_port_a != 0)
973 adapter->eeprom_wol = 0;
975 adapter->quad_port_a = 1;
976 /* Reset for multiple quad port adapters */
977 if (++global_quad_port_a == 4)
978 global_quad_port_a = 0;
982 /* initialize the wol settings based on the eeprom settings */
983 adapter->wol = adapter->eeprom_wol;
985 /* print bus type/speed/width info */
987 struct e1000_hw *hw = &adapter->hw;
988 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
989 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
990 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
991 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
992 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
993 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
994 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
995 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
996 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
997 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
998 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1002 for (i = 0; i < 6; i++)
1003 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1005 /* reset the hardware with the new settings */
1006 e1000_reset(adapter);
1008 /* If the controller is 82573 and f/w is AMT, do not set
1009 * DRV_LOAD until the interface is up. For all other cases,
1010 * let the f/w know that the h/w is now under the control
1012 if (adapter->hw.mac_type != e1000_82573 ||
1013 !e1000_check_mng_mode(&adapter->hw))
1014 e1000_get_hw_control(adapter);
1016 strcpy(netdev->name, "eth%d");
1017 if ((err = register_netdev(netdev)))
1020 /* tell the stack to leave us alone until e1000_open() is called */
1021 netif_carrier_off(netdev);
1022 netif_stop_queue(netdev);
1024 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1030 e1000_release_hw_control(adapter);
1032 if (!e1000_check_phy_reset_block(&adapter->hw))
1033 e1000_phy_hw_reset(&adapter->hw);
1035 if (adapter->hw.flash_address)
1036 iounmap(adapter->hw.flash_address);
1038 #ifdef CONFIG_E1000_NAPI
1039 for (i = 0; i < adapter->num_rx_queues; i++)
1040 dev_put(&adapter->polling_netdev[i]);
1043 kfree(adapter->tx_ring);
1044 kfree(adapter->rx_ring);
1045 #ifdef CONFIG_E1000_NAPI
1046 kfree(adapter->polling_netdev);
1049 iounmap(adapter->hw.hw_addr);
1051 free_netdev(netdev);
1053 pci_release_regions(pdev);
1056 pci_disable_device(pdev);
1061 * e1000_remove - Device Removal Routine
1062 * @pdev: PCI device information struct
1064 * e1000_remove is called by the PCI subsystem to alert the driver
1065 * that it should release a PCI device. The could be caused by a
1066 * Hot-Plug event, or because the driver is going to be removed from
1070 static void __devexit
1071 e1000_remove(struct pci_dev *pdev)
1073 struct net_device *netdev = pci_get_drvdata(pdev);
1074 struct e1000_adapter *adapter = netdev_priv(netdev);
1076 #ifdef CONFIG_E1000_NAPI
1080 flush_scheduled_work();
1082 if (adapter->hw.mac_type >= e1000_82540 &&
1083 adapter->hw.mac_type < e1000_82571 &&
1084 adapter->hw.media_type == e1000_media_type_copper) {
1085 manc = E1000_READ_REG(&adapter->hw, MANC);
1086 if (manc & E1000_MANC_SMBUS_EN) {
1087 manc |= E1000_MANC_ARP_EN;
1088 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1092 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1093 * would have already happened in close and is redundant. */
1094 e1000_release_hw_control(adapter);
1096 unregister_netdev(netdev);
1097 #ifdef CONFIG_E1000_NAPI
1098 for (i = 0; i < adapter->num_rx_queues; i++)
1099 dev_put(&adapter->polling_netdev[i]);
1102 if (!e1000_check_phy_reset_block(&adapter->hw))
1103 e1000_phy_hw_reset(&adapter->hw);
1105 kfree(adapter->tx_ring);
1106 kfree(adapter->rx_ring);
1107 #ifdef CONFIG_E1000_NAPI
1108 kfree(adapter->polling_netdev);
1111 iounmap(adapter->hw.hw_addr);
1112 if (adapter->hw.flash_address)
1113 iounmap(adapter->hw.flash_address);
1114 pci_release_regions(pdev);
1116 free_netdev(netdev);
1118 pci_disable_device(pdev);
1122 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1123 * @adapter: board private structure to initialize
1125 * e1000_sw_init initializes the Adapter private data structure.
1126 * Fields are initialized based on PCI device information and
1127 * OS network device settings (MTU size).
1130 static int __devinit
1131 e1000_sw_init(struct e1000_adapter *adapter)
1133 struct e1000_hw *hw = &adapter->hw;
1134 struct net_device *netdev = adapter->netdev;
1135 struct pci_dev *pdev = adapter->pdev;
1136 #ifdef CONFIG_E1000_NAPI
1140 /* PCI config space info */
1142 hw->vendor_id = pdev->vendor;
1143 hw->device_id = pdev->device;
1144 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1145 hw->subsystem_id = pdev->subsystem_device;
1147 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1149 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1152 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1164 switch (hw->mac_type) {
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1175 e1000_set_media_type(hw);
1177 hw->wait_autoneg_complete = FALSE;
1178 hw->tbi_compatibility_en = TRUE;
1179 hw->adaptive_ifs = TRUE;
1181 /* Copper options */
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = FALSE;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1197 #ifdef CONFIG_E1000_NAPI
1198 for (i = 0; i < adapter->num_rx_queues; i++) {
1199 adapter->polling_netdev[i].priv = adapter;
1200 adapter->polling_netdev[i].poll = &e1000_clean;
1201 adapter->polling_netdev[i].weight = 64;
1202 dev_hold(&adapter->polling_netdev[i]);
1203 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1205 spin_lock_init(&adapter->tx_queue_lock);
1208 atomic_set(&adapter->irq_sem, 1);
1209 spin_lock_init(&adapter->stats_lock);
1211 set_bit(__E1000_DOWN, &adapter->flags);
1217 * e1000_alloc_queues - Allocate memory for all rings
1218 * @adapter: board private structure to initialize
1220 * We allocate one ring per queue at run-time since we don't know the
1221 * number of queues at compile-time. The polling_netdev array is
1222 * intended for Multiqueue, but should work fine with a single queue.
1225 static int __devinit
1226 e1000_alloc_queues(struct e1000_adapter *adapter)
1230 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1231 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1232 if (!adapter->tx_ring)
1234 memset(adapter->tx_ring, 0, size);
1236 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1237 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1238 if (!adapter->rx_ring) {
1239 kfree(adapter->tx_ring);
1242 memset(adapter->rx_ring, 0, size);
1244 #ifdef CONFIG_E1000_NAPI
1245 size = sizeof(struct net_device) * adapter->num_rx_queues;
1246 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1247 if (!adapter->polling_netdev) {
1248 kfree(adapter->tx_ring);
1249 kfree(adapter->rx_ring);
1252 memset(adapter->polling_netdev, 0, size);
1255 return E1000_SUCCESS;
1259 * e1000_open - Called when a network interface is made active
1260 * @netdev: network interface device structure
1262 * Returns 0 on success, negative value on failure
1264 * The open entry point is called when a network interface is made
1265 * active by the system (IFF_UP). At this point all resources needed
1266 * for transmit and receive operations are allocated, the interrupt
1267 * handler is registered with the OS, the watchdog timer is started,
1268 * and the stack is notified that the interface is ready.
1272 e1000_open(struct net_device *netdev)
1274 struct e1000_adapter *adapter = netdev_priv(netdev);
1277 /* disallow open during test */
1278 if (test_bit(__E1000_TESTING, &adapter->flags))
1281 /* allocate transmit descriptors */
1283 if ((err = e1000_setup_all_tx_resources(adapter)))
1286 /* allocate receive descriptors */
1288 if ((err = e1000_setup_all_rx_resources(adapter)))
1291 err = e1000_request_irq(adapter);
1295 e1000_power_up_phy(adapter);
1297 if ((err = e1000_up(adapter)))
1299 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1300 if ((adapter->hw.mng_cookie.status &
1301 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1302 e1000_update_mng_vlan(adapter);
1305 /* If AMT is enabled, let the firmware know that the network
1306 * interface is now open */
1307 if (adapter->hw.mac_type == e1000_82573 &&
1308 e1000_check_mng_mode(&adapter->hw))
1309 e1000_get_hw_control(adapter);
1311 return E1000_SUCCESS;
1314 e1000_power_down_phy(adapter);
1315 e1000_free_irq(adapter);
1317 e1000_free_all_rx_resources(adapter);
1319 e1000_free_all_tx_resources(adapter);
1321 e1000_reset(adapter);
1327 * e1000_close - Disables a network interface
1328 * @netdev: network interface device structure
1330 * Returns 0, this is not allowed to fail
1332 * The close entry point is called when an interface is de-activated
1333 * by the OS. The hardware is still under the drivers control, but
1334 * needs to be disabled. A global MAC reset is issued to stop the
1335 * hardware, and all transmit and receive resources are freed.
1339 e1000_close(struct net_device *netdev)
1341 struct e1000_adapter *adapter = netdev_priv(netdev);
1343 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1344 e1000_down(adapter);
1345 e1000_power_down_phy(adapter);
1346 e1000_free_irq(adapter);
1348 e1000_free_all_tx_resources(adapter);
1349 e1000_free_all_rx_resources(adapter);
1351 /* kill manageability vlan ID if supported, but not if a vlan with
1352 * the same ID is registered on the host OS (let 8021q kill it) */
1353 if ((adapter->hw.mng_cookie.status &
1354 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1356 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1357 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1360 /* If AMT is enabled, let the firmware know that the network
1361 * interface is now closed */
1362 if (adapter->hw.mac_type == e1000_82573 &&
1363 e1000_check_mng_mode(&adapter->hw))
1364 e1000_release_hw_control(adapter);
1370 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1371 * @adapter: address of board private structure
1372 * @start: address of beginning of memory
1373 * @len: length of memory
1376 e1000_check_64k_bound(struct e1000_adapter *adapter,
1377 void *start, unsigned long len)
1379 unsigned long begin = (unsigned long) start;
1380 unsigned long end = begin + len;
1382 /* First rev 82545 and 82546 need to not allow any memory
1383 * write location to cross 64k boundary due to errata 23 */
1384 if (adapter->hw.mac_type == e1000_82545 ||
1385 adapter->hw.mac_type == e1000_82546) {
1386 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1393 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1394 * @adapter: board private structure
1395 * @txdr: tx descriptor ring (for a specific queue) to setup
1397 * Return 0 on success, negative on failure
1401 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1402 struct e1000_tx_ring *txdr)
1404 struct pci_dev *pdev = adapter->pdev;
1407 size = sizeof(struct e1000_buffer) * txdr->count;
1408 txdr->buffer_info = vmalloc(size);
1409 if (!txdr->buffer_info) {
1411 "Unable to allocate memory for the transmit descriptor ring\n");
1414 memset(txdr->buffer_info, 0, size);
1416 /* round up to nearest 4K */
1418 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1419 E1000_ROUNDUP(txdr->size, 4096);
1421 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1424 vfree(txdr->buffer_info);
1426 "Unable to allocate memory for the transmit descriptor ring\n");
1430 /* Fix for errata 23, can't cross 64kB boundary */
1431 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1432 void *olddesc = txdr->desc;
1433 dma_addr_t olddma = txdr->dma;
1434 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1435 "at %p\n", txdr->size, txdr->desc);
1436 /* Try again, without freeing the previous */
1437 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1438 /* Failed allocation, critical failure */
1440 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1441 goto setup_tx_desc_die;
1444 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1446 pci_free_consistent(pdev, txdr->size, txdr->desc,
1448 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1450 "Unable to allocate aligned memory "
1451 "for the transmit descriptor ring\n");
1452 vfree(txdr->buffer_info);
1455 /* Free old allocation, new allocation was successful */
1456 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1459 memset(txdr->desc, 0, txdr->size);
1461 txdr->next_to_use = 0;
1462 txdr->next_to_clean = 0;
1463 spin_lock_init(&txdr->tx_lock);
1469 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1470 * (Descriptors) for all queues
1471 * @adapter: board private structure
1473 * Return 0 on success, negative on failure
1477 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1481 for (i = 0; i < adapter->num_tx_queues; i++) {
1482 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1485 "Allocation for Tx Queue %u failed\n", i);
1486 for (i-- ; i >= 0; i--)
1487 e1000_free_tx_resources(adapter,
1488 &adapter->tx_ring[i]);
1497 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1498 * @adapter: board private structure
1500 * Configure the Tx unit of the MAC after a reset.
1504 e1000_configure_tx(struct e1000_adapter *adapter)
1507 struct e1000_hw *hw = &adapter->hw;
1508 uint32_t tdlen, tctl, tipg, tarc;
1509 uint32_t ipgr1, ipgr2;
1511 /* Setup the HW Tx Head and Tail descriptor pointers */
1513 switch (adapter->num_tx_queues) {
1516 tdba = adapter->tx_ring[0].dma;
1517 tdlen = adapter->tx_ring[0].count *
1518 sizeof(struct e1000_tx_desc);
1519 E1000_WRITE_REG(hw, TDLEN, tdlen);
1520 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1521 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1522 E1000_WRITE_REG(hw, TDT, 0);
1523 E1000_WRITE_REG(hw, TDH, 0);
1524 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1525 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1529 /* Set the default values for the Tx Inter Packet Gap timer */
1531 if (hw->media_type == e1000_media_type_fiber ||
1532 hw->media_type == e1000_media_type_internal_serdes)
1533 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1535 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1537 switch (hw->mac_type) {
1538 case e1000_82542_rev2_0:
1539 case e1000_82542_rev2_1:
1540 tipg = DEFAULT_82542_TIPG_IPGT;
1541 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1542 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1544 case e1000_80003es2lan:
1545 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1546 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1549 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1550 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1553 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1554 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1555 E1000_WRITE_REG(hw, TIPG, tipg);
1557 /* Set the Tx Interrupt Delay register */
1559 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1560 if (hw->mac_type >= e1000_82540)
1561 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1563 /* Program the Transmit Control Register */
1565 tctl = E1000_READ_REG(hw, TCTL);
1566 tctl &= ~E1000_TCTL_CT;
1567 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1568 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1570 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1571 tarc = E1000_READ_REG(hw, TARC0);
1573 E1000_WRITE_REG(hw, TARC0, tarc);
1574 } else if (hw->mac_type == e1000_80003es2lan) {
1575 tarc = E1000_READ_REG(hw, TARC0);
1577 E1000_WRITE_REG(hw, TARC0, tarc);
1578 tarc = E1000_READ_REG(hw, TARC1);
1580 E1000_WRITE_REG(hw, TARC1, tarc);
1583 e1000_config_collision_dist(hw);
1585 /* Setup Transmit Descriptor Settings for eop descriptor */
1586 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1589 if (hw->mac_type < e1000_82543)
1590 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1592 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1594 /* Cache if we're 82544 running in PCI-X because we'll
1595 * need this to apply a workaround later in the send path. */
1596 if (hw->mac_type == e1000_82544 &&
1597 hw->bus_type == e1000_bus_type_pcix)
1598 adapter->pcix_82544 = 1;
1600 E1000_WRITE_REG(hw, TCTL, tctl);
1605 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1606 * @adapter: board private structure
1607 * @rxdr: rx descriptor ring (for a specific queue) to setup
1609 * Returns 0 on success, negative on failure
1613 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1614 struct e1000_rx_ring *rxdr)
1616 struct pci_dev *pdev = adapter->pdev;
1619 size = sizeof(struct e1000_buffer) * rxdr->count;
1620 rxdr->buffer_info = vmalloc(size);
1621 if (!rxdr->buffer_info) {
1623 "Unable to allocate memory for the receive descriptor ring\n");
1626 memset(rxdr->buffer_info, 0, size);
1628 size = sizeof(struct e1000_ps_page) * rxdr->count;
1629 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1630 if (!rxdr->ps_page) {
1631 vfree(rxdr->buffer_info);
1633 "Unable to allocate memory for the receive descriptor ring\n");
1636 memset(rxdr->ps_page, 0, size);
1638 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1639 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1640 if (!rxdr->ps_page_dma) {
1641 vfree(rxdr->buffer_info);
1642 kfree(rxdr->ps_page);
1644 "Unable to allocate memory for the receive descriptor ring\n");
1647 memset(rxdr->ps_page_dma, 0, size);
1649 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1650 desc_len = sizeof(struct e1000_rx_desc);
1652 desc_len = sizeof(union e1000_rx_desc_packet_split);
1654 /* Round up to nearest 4K */
1656 rxdr->size = rxdr->count * desc_len;
1657 E1000_ROUNDUP(rxdr->size, 4096);
1659 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1663 "Unable to allocate memory for the receive descriptor ring\n");
1665 vfree(rxdr->buffer_info);
1666 kfree(rxdr->ps_page);
1667 kfree(rxdr->ps_page_dma);
1671 /* Fix for errata 23, can't cross 64kB boundary */
1672 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1673 void *olddesc = rxdr->desc;
1674 dma_addr_t olddma = rxdr->dma;
1675 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1676 "at %p\n", rxdr->size, rxdr->desc);
1677 /* Try again, without freeing the previous */
1678 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1679 /* Failed allocation, critical failure */
1681 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1683 "Unable to allocate memory "
1684 "for the receive descriptor ring\n");
1685 goto setup_rx_desc_die;
1688 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1690 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1692 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1694 "Unable to allocate aligned memory "
1695 "for the receive descriptor ring\n");
1696 goto setup_rx_desc_die;
1698 /* Free old allocation, new allocation was successful */
1699 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1702 memset(rxdr->desc, 0, rxdr->size);
1704 rxdr->next_to_clean = 0;
1705 rxdr->next_to_use = 0;
1711 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1712 * (Descriptors) for all queues
1713 * @adapter: board private structure
1715 * Return 0 on success, negative on failure
1719 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1723 for (i = 0; i < adapter->num_rx_queues; i++) {
1724 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1727 "Allocation for Rx Queue %u failed\n", i);
1728 for (i-- ; i >= 0; i--)
1729 e1000_free_rx_resources(adapter,
1730 &adapter->rx_ring[i]);
1739 * e1000_setup_rctl - configure the receive control registers
1740 * @adapter: Board private structure
1742 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1743 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1745 e1000_setup_rctl(struct e1000_adapter *adapter)
1747 uint32_t rctl, rfctl;
1748 uint32_t psrctl = 0;
1749 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1753 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1755 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1757 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1758 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1759 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1761 if (adapter->hw.tbi_compatibility_on == 1)
1762 rctl |= E1000_RCTL_SBP;
1764 rctl &= ~E1000_RCTL_SBP;
1766 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1767 rctl &= ~E1000_RCTL_LPE;
1769 rctl |= E1000_RCTL_LPE;
1771 /* Setup buffer sizes */
1772 rctl &= ~E1000_RCTL_SZ_4096;
1773 rctl |= E1000_RCTL_BSEX;
1774 switch (adapter->rx_buffer_len) {
1775 case E1000_RXBUFFER_256:
1776 rctl |= E1000_RCTL_SZ_256;
1777 rctl &= ~E1000_RCTL_BSEX;
1779 case E1000_RXBUFFER_512:
1780 rctl |= E1000_RCTL_SZ_512;
1781 rctl &= ~E1000_RCTL_BSEX;
1783 case E1000_RXBUFFER_1024:
1784 rctl |= E1000_RCTL_SZ_1024;
1785 rctl &= ~E1000_RCTL_BSEX;
1787 case E1000_RXBUFFER_2048:
1789 rctl |= E1000_RCTL_SZ_2048;
1790 rctl &= ~E1000_RCTL_BSEX;
1792 case E1000_RXBUFFER_4096:
1793 rctl |= E1000_RCTL_SZ_4096;
1795 case E1000_RXBUFFER_8192:
1796 rctl |= E1000_RCTL_SZ_8192;
1798 case E1000_RXBUFFER_16384:
1799 rctl |= E1000_RCTL_SZ_16384;
1803 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1804 /* 82571 and greater support packet-split where the protocol
1805 * header is placed in skb->data and the packet data is
1806 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1807 * In the case of a non-split, skb->data is linearly filled,
1808 * followed by the page buffers. Therefore, skb->data is
1809 * sized to hold the largest protocol header.
1811 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1812 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1814 adapter->rx_ps_pages = pages;
1816 adapter->rx_ps_pages = 0;
1818 if (adapter->rx_ps_pages) {
1819 /* Configure extra packet-split registers */
1820 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1821 rfctl |= E1000_RFCTL_EXTEN;
1822 /* disable IPv6 packet split support */
1823 rfctl |= E1000_RFCTL_IPV6_DIS;
1824 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1826 rctl |= E1000_RCTL_DTYP_PS;
1828 psrctl |= adapter->rx_ps_bsize0 >>
1829 E1000_PSRCTL_BSIZE0_SHIFT;
1831 switch (adapter->rx_ps_pages) {
1833 psrctl |= PAGE_SIZE <<
1834 E1000_PSRCTL_BSIZE3_SHIFT;
1836 psrctl |= PAGE_SIZE <<
1837 E1000_PSRCTL_BSIZE2_SHIFT;
1839 psrctl |= PAGE_SIZE >>
1840 E1000_PSRCTL_BSIZE1_SHIFT;
1844 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1847 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1854 * Configure the Rx unit of the MAC after a reset.
1858 e1000_configure_rx(struct e1000_adapter *adapter)
1861 struct e1000_hw *hw = &adapter->hw;
1862 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1864 if (adapter->rx_ps_pages) {
1865 /* this is a 32 byte descriptor */
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(union e1000_rx_desc_packet_split);
1868 adapter->clean_rx = e1000_clean_rx_irq_ps;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1871 rdlen = adapter->rx_ring[0].count *
1872 sizeof(struct e1000_rx_desc);
1873 adapter->clean_rx = e1000_clean_rx_irq;
1874 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1877 /* disable receives while setting up the descriptors */
1878 rctl = E1000_READ_REG(hw, RCTL);
1879 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1881 /* set the Receive Delay Timer Register */
1882 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1884 if (hw->mac_type >= e1000_82540) {
1885 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1886 if (adapter->itr > 1)
1887 E1000_WRITE_REG(hw, ITR,
1888 1000000000 / (adapter->itr * 256));
1891 if (hw->mac_type >= e1000_82571) {
1892 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1893 /* Reset delay timers after every interrupt */
1894 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1895 #ifdef CONFIG_E1000_NAPI
1896 /* Auto-Mask interrupts upon ICR read. */
1897 ctrl_ext |= E1000_CTRL_EXT_IAME;
1899 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1900 E1000_WRITE_REG(hw, IAM, ~0);
1901 E1000_WRITE_FLUSH(hw);
1904 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1905 * the Base and Length of the Rx Descriptor Ring */
1906 switch (adapter->num_rx_queues) {
1909 rdba = adapter->rx_ring[0].dma;
1910 E1000_WRITE_REG(hw, RDLEN, rdlen);
1911 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1912 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1913 E1000_WRITE_REG(hw, RDT, 0);
1914 E1000_WRITE_REG(hw, RDH, 0);
1915 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1916 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1921 if (hw->mac_type >= e1000_82543) {
1922 rxcsum = E1000_READ_REG(hw, RXCSUM);
1923 if (adapter->rx_csum == TRUE) {
1924 rxcsum |= E1000_RXCSUM_TUOFL;
1926 /* Enable 82571 IPv4 payload checksum for UDP fragments
1927 * Must be used in conjunction with packet-split. */
1928 if ((hw->mac_type >= e1000_82571) &&
1929 (adapter->rx_ps_pages)) {
1930 rxcsum |= E1000_RXCSUM_IPPCSE;
1933 rxcsum &= ~E1000_RXCSUM_TUOFL;
1934 /* don't need to clear IPPCSE as it defaults to 0 */
1936 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1939 /* Enable Receives */
1940 E1000_WRITE_REG(hw, RCTL, rctl);
1944 * e1000_free_tx_resources - Free Tx Resources per Queue
1945 * @adapter: board private structure
1946 * @tx_ring: Tx descriptor ring for a specific queue
1948 * Free all transmit software resources
1952 e1000_free_tx_resources(struct e1000_adapter *adapter,
1953 struct e1000_tx_ring *tx_ring)
1955 struct pci_dev *pdev = adapter->pdev;
1957 e1000_clean_tx_ring(adapter, tx_ring);
1959 vfree(tx_ring->buffer_info);
1960 tx_ring->buffer_info = NULL;
1962 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1964 tx_ring->desc = NULL;
1968 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1969 * @adapter: board private structure
1971 * Free all transmit software resources
1975 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1979 for (i = 0; i < adapter->num_tx_queues; i++)
1980 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1984 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1985 struct e1000_buffer *buffer_info)
1987 if (buffer_info->dma) {
1988 pci_unmap_page(adapter->pdev,
1990 buffer_info->length,
1993 if (buffer_info->skb)
1994 dev_kfree_skb_any(buffer_info->skb);
1995 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2005 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2006 struct e1000_tx_ring *tx_ring)
2008 struct e1000_buffer *buffer_info;
2012 /* Free all the Tx ring sk_buffs */
2014 for (i = 0; i < tx_ring->count; i++) {
2015 buffer_info = &tx_ring->buffer_info[i];
2016 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2019 size = sizeof(struct e1000_buffer) * tx_ring->count;
2020 memset(tx_ring->buffer_info, 0, size);
2022 /* Zero out the descriptor ring */
2024 memset(tx_ring->desc, 0, tx_ring->size);
2026 tx_ring->next_to_use = 0;
2027 tx_ring->next_to_clean = 0;
2028 tx_ring->last_tx_tso = 0;
2030 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2031 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2040 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2044 for (i = 0; i < adapter->num_tx_queues; i++)
2045 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2049 * e1000_free_rx_resources - Free Rx Resources
2050 * @adapter: board private structure
2051 * @rx_ring: ring to clean the resources from
2053 * Free all receive software resources
2057 e1000_free_rx_resources(struct e1000_adapter *adapter,
2058 struct e1000_rx_ring *rx_ring)
2060 struct pci_dev *pdev = adapter->pdev;
2062 e1000_clean_rx_ring(adapter, rx_ring);
2064 vfree(rx_ring->buffer_info);
2065 rx_ring->buffer_info = NULL;
2066 kfree(rx_ring->ps_page);
2067 rx_ring->ps_page = NULL;
2068 kfree(rx_ring->ps_page_dma);
2069 rx_ring->ps_page_dma = NULL;
2071 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2073 rx_ring->desc = NULL;
2077 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2078 * @adapter: board private structure
2080 * Free all receive software resources
2084 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2088 for (i = 0; i < adapter->num_rx_queues; i++)
2089 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2093 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2094 * @adapter: board private structure
2095 * @rx_ring: ring to free buffers from
2099 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2100 struct e1000_rx_ring *rx_ring)
2102 struct e1000_buffer *buffer_info;
2103 struct e1000_ps_page *ps_page;
2104 struct e1000_ps_page_dma *ps_page_dma;
2105 struct pci_dev *pdev = adapter->pdev;
2109 /* Free all the Rx ring sk_buffs */
2110 for (i = 0; i < rx_ring->count; i++) {
2111 buffer_info = &rx_ring->buffer_info[i];
2112 if (buffer_info->skb) {
2113 pci_unmap_single(pdev,
2115 buffer_info->length,
2116 PCI_DMA_FROMDEVICE);
2118 dev_kfree_skb(buffer_info->skb);
2119 buffer_info->skb = NULL;
2121 ps_page = &rx_ring->ps_page[i];
2122 ps_page_dma = &rx_ring->ps_page_dma[i];
2123 for (j = 0; j < adapter->rx_ps_pages; j++) {
2124 if (!ps_page->ps_page[j]) break;
2125 pci_unmap_page(pdev,
2126 ps_page_dma->ps_page_dma[j],
2127 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2128 ps_page_dma->ps_page_dma[j] = 0;
2129 put_page(ps_page->ps_page[j]);
2130 ps_page->ps_page[j] = NULL;
2134 size = sizeof(struct e1000_buffer) * rx_ring->count;
2135 memset(rx_ring->buffer_info, 0, size);
2136 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2137 memset(rx_ring->ps_page, 0, size);
2138 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2139 memset(rx_ring->ps_page_dma, 0, size);
2141 /* Zero out the descriptor ring */
2143 memset(rx_ring->desc, 0, rx_ring->size);
2145 rx_ring->next_to_clean = 0;
2146 rx_ring->next_to_use = 0;
2148 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2149 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2153 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2154 * @adapter: board private structure
2158 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2162 for (i = 0; i < adapter->num_rx_queues; i++)
2163 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2166 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2167 * and memory write and invalidate disabled for certain operations
2170 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2172 struct net_device *netdev = adapter->netdev;
2175 e1000_pci_clear_mwi(&adapter->hw);
2177 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2178 rctl |= E1000_RCTL_RST;
2179 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2180 E1000_WRITE_FLUSH(&adapter->hw);
2183 if (netif_running(netdev))
2184 e1000_clean_all_rx_rings(adapter);
2188 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2190 struct net_device *netdev = adapter->netdev;
2193 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2194 rctl &= ~E1000_RCTL_RST;
2195 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2196 E1000_WRITE_FLUSH(&adapter->hw);
2199 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2200 e1000_pci_set_mwi(&adapter->hw);
2202 if (netif_running(netdev)) {
2203 /* No need to loop, because 82542 supports only 1 queue */
2204 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2205 e1000_configure_rx(adapter);
2206 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2211 * e1000_set_mac - Change the Ethernet Address of the NIC
2212 * @netdev: network interface device structure
2213 * @p: pointer to an address structure
2215 * Returns 0 on success, negative on failure
2219 e1000_set_mac(struct net_device *netdev, void *p)
2221 struct e1000_adapter *adapter = netdev_priv(netdev);
2222 struct sockaddr *addr = p;
2224 if (!is_valid_ether_addr(addr->sa_data))
2225 return -EADDRNOTAVAIL;
2227 /* 82542 2.0 needs to be in reset to write receive address registers */
2229 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2230 e1000_enter_82542_rst(adapter);
2232 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2235 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2237 /* With 82571 controllers, LAA may be overwritten (with the default)
2238 * due to controller reset from the other port. */
2239 if (adapter->hw.mac_type == e1000_82571) {
2240 /* activate the work around */
2241 adapter->hw.laa_is_present = 1;
2243 /* Hold a copy of the LAA in RAR[14] This is done so that
2244 * between the time RAR[0] gets clobbered and the time it
2245 * gets fixed (in e1000_watchdog), the actual LAA is in one
2246 * of the RARs and no incoming packets directed to this port
2247 * are dropped. Eventaully the LAA will be in RAR[0] and
2249 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2250 E1000_RAR_ENTRIES - 1);
2253 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2254 e1000_leave_82542_rst(adapter);
2260 * e1000_set_multi - Multicast and Promiscuous mode set
2261 * @netdev: network interface device structure
2263 * The set_multi entry point is called whenever the multicast address
2264 * list or the network interface flags are updated. This routine is
2265 * responsible for configuring the hardware for proper multicast,
2266 * promiscuous mode, and all-multi behavior.
2270 e1000_set_multi(struct net_device *netdev)
2272 struct e1000_adapter *adapter = netdev_priv(netdev);
2273 struct e1000_hw *hw = &adapter->hw;
2274 struct dev_mc_list *mc_ptr;
2276 uint32_t hash_value;
2277 int i, rar_entries = E1000_RAR_ENTRIES;
2278 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2279 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2280 E1000_NUM_MTA_REGISTERS;
2282 if (adapter->hw.mac_type == e1000_ich8lan)
2283 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2285 /* reserve RAR[14] for LAA over-write work-around */
2286 if (adapter->hw.mac_type == e1000_82571)
2289 /* Check for Promiscuous and All Multicast modes */
2291 rctl = E1000_READ_REG(hw, RCTL);
2293 if (netdev->flags & IFF_PROMISC) {
2294 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2295 } else if (netdev->flags & IFF_ALLMULTI) {
2296 rctl |= E1000_RCTL_MPE;
2297 rctl &= ~E1000_RCTL_UPE;
2299 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2302 E1000_WRITE_REG(hw, RCTL, rctl);
2304 /* 82542 2.0 needs to be in reset to write receive address registers */
2306 if (hw->mac_type == e1000_82542_rev2_0)
2307 e1000_enter_82542_rst(adapter);
2309 /* load the first 14 multicast address into the exact filters 1-14
2310 * RAR 0 is used for the station MAC adddress
2311 * if there are not 14 addresses, go ahead and clear the filters
2312 * -- with 82571 controllers only 0-13 entries are filled here
2314 mc_ptr = netdev->mc_list;
2316 for (i = 1; i < rar_entries; i++) {
2318 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2319 mc_ptr = mc_ptr->next;
2321 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2322 E1000_WRITE_FLUSH(hw);
2323 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2324 E1000_WRITE_FLUSH(hw);
2328 /* clear the old settings from the multicast hash table */
2330 for (i = 0; i < mta_reg_count; i++) {
2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2332 E1000_WRITE_FLUSH(hw);
2335 /* load any remaining addresses into the hash table */
2337 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2338 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2339 e1000_mta_set(hw, hash_value);
2342 if (hw->mac_type == e1000_82542_rev2_0)
2343 e1000_leave_82542_rst(adapter);
2346 /* Need to wait a few seconds after link up to get diagnostic information from
2350 e1000_update_phy_info(unsigned long data)
2352 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2353 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2357 * e1000_82547_tx_fifo_stall - Timer Call-back
2358 * @data: pointer to adapter cast into an unsigned long
2362 e1000_82547_tx_fifo_stall(unsigned long data)
2364 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2365 struct net_device *netdev = adapter->netdev;
2368 if (atomic_read(&adapter->tx_fifo_stall)) {
2369 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2370 E1000_READ_REG(&adapter->hw, TDH)) &&
2371 (E1000_READ_REG(&adapter->hw, TDFT) ==
2372 E1000_READ_REG(&adapter->hw, TDFH)) &&
2373 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2374 E1000_READ_REG(&adapter->hw, TDFHS))) {
2375 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2376 E1000_WRITE_REG(&adapter->hw, TCTL,
2377 tctl & ~E1000_TCTL_EN);
2378 E1000_WRITE_REG(&adapter->hw, TDFT,
2379 adapter->tx_head_addr);
2380 E1000_WRITE_REG(&adapter->hw, TDFH,
2381 adapter->tx_head_addr);
2382 E1000_WRITE_REG(&adapter->hw, TDFTS,
2383 adapter->tx_head_addr);
2384 E1000_WRITE_REG(&adapter->hw, TDFHS,
2385 adapter->tx_head_addr);
2386 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2387 E1000_WRITE_FLUSH(&adapter->hw);
2389 adapter->tx_fifo_head = 0;
2390 atomic_set(&adapter->tx_fifo_stall, 0);
2391 netif_wake_queue(netdev);
2393 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2399 * e1000_watchdog - Timer Call-back
2400 * @data: pointer to adapter cast into an unsigned long
2403 e1000_watchdog(unsigned long data)
2405 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2406 struct net_device *netdev = adapter->netdev;
2407 struct e1000_tx_ring *txdr = adapter->tx_ring;
2408 uint32_t link, tctl;
2411 ret_val = e1000_check_for_link(&adapter->hw);
2412 if ((ret_val == E1000_ERR_PHY) &&
2413 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2414 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2415 /* See e1000_kumeran_lock_loss_workaround() */
2417 "Gigabit has been disabled, downgrading speed\n");
2419 if (adapter->hw.mac_type == e1000_82573) {
2420 e1000_enable_tx_pkt_filtering(&adapter->hw);
2421 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2422 e1000_update_mng_vlan(adapter);
2425 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2426 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2427 link = !adapter->hw.serdes_link_down;
2429 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2432 if (!netif_carrier_ok(netdev)) {
2433 boolean_t txb2b = 1;
2434 e1000_get_speed_and_duplex(&adapter->hw,
2435 &adapter->link_speed,
2436 &adapter->link_duplex);
2438 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2439 adapter->link_speed,
2440 adapter->link_duplex == FULL_DUPLEX ?
2441 "Full Duplex" : "Half Duplex");
2443 /* tweak tx_queue_len according to speed/duplex
2444 * and adjust the timeout factor */
2445 netdev->tx_queue_len = adapter->tx_queue_len;
2446 adapter->tx_timeout_factor = 1;
2447 switch (adapter->link_speed) {
2450 netdev->tx_queue_len = 10;
2451 adapter->tx_timeout_factor = 8;
2455 netdev->tx_queue_len = 100;
2456 /* maybe add some timeout factor ? */
2460 if ((adapter->hw.mac_type == e1000_82571 ||
2461 adapter->hw.mac_type == e1000_82572) &&
2463 #define SPEED_MODE_BIT (1 << 21)
2465 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2466 tarc0 &= ~SPEED_MODE_BIT;
2467 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2471 /* disable TSO for pcie and 10/100 speeds, to avoid
2472 * some hardware issues */
2473 if (!adapter->tso_force &&
2474 adapter->hw.bus_type == e1000_bus_type_pci_express){
2475 switch (adapter->link_speed) {
2479 "10/100 speed: disabling TSO\n");
2480 netdev->features &= ~NETIF_F_TSO;
2483 netdev->features |= NETIF_F_TSO;
2492 /* enable transmits in the hardware, need to do this
2493 * after setting TARC0 */
2494 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2495 tctl |= E1000_TCTL_EN;
2496 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2498 netif_carrier_on(netdev);
2499 netif_wake_queue(netdev);
2500 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2501 adapter->smartspeed = 0;
2504 if (netif_carrier_ok(netdev)) {
2505 adapter->link_speed = 0;
2506 adapter->link_duplex = 0;
2507 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2508 netif_carrier_off(netdev);
2509 netif_stop_queue(netdev);
2510 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2512 /* 80003ES2LAN workaround--
2513 * For packet buffer work-around on link down event;
2514 * disable receives in the ISR and
2515 * reset device here in the watchdog
2517 if (adapter->hw.mac_type == e1000_80003es2lan)
2519 schedule_work(&adapter->reset_task);
2522 e1000_smartspeed(adapter);
2525 e1000_update_stats(adapter);
2527 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2528 adapter->tpt_old = adapter->stats.tpt;
2529 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2530 adapter->colc_old = adapter->stats.colc;
2532 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2533 adapter->gorcl_old = adapter->stats.gorcl;
2534 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2535 adapter->gotcl_old = adapter->stats.gotcl;
2537 e1000_update_adaptive(&adapter->hw);
2539 if (!netif_carrier_ok(netdev)) {
2540 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2541 /* We've lost link, so the controller stops DMA,
2542 * but we've got queued Tx work that's never going
2543 * to get done, so reset controller to flush Tx.
2544 * (Do the reset outside of interrupt context). */
2545 adapter->tx_timeout_count++;
2546 schedule_work(&adapter->reset_task);
2550 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2551 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2552 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2553 * asymmetrical Tx or Rx gets ITR=8000; everyone
2554 * else is between 2000-8000. */
2555 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2557 adapter->gotcl - adapter->gorcl :
2558 adapter->gorcl - adapter->gotcl) / 10000;
2559 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2563 /* Cause software interrupt to ensure rx ring is cleaned */
2564 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2566 /* Force detection of hung controller every watchdog period */
2567 adapter->detect_tx_hung = TRUE;
2569 /* With 82571 controllers, LAA may be overwritten due to controller
2570 * reset from the other port. Set the appropriate LAA in RAR[0] */
2571 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2572 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2574 /* Reset the timer */
2575 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2578 #define E1000_TX_FLAGS_CSUM 0x00000001
2579 #define E1000_TX_FLAGS_VLAN 0x00000002
2580 #define E1000_TX_FLAGS_TSO 0x00000004
2581 #define E1000_TX_FLAGS_IPV4 0x00000008
2582 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2583 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2586 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2587 struct sk_buff *skb)
2590 struct e1000_context_desc *context_desc;
2591 struct e1000_buffer *buffer_info;
2593 uint32_t cmd_length = 0;
2594 uint16_t ipcse = 0, tucse, mss;
2595 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2598 if (skb_is_gso(skb)) {
2599 if (skb_header_cloned(skb)) {
2600 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2605 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2606 mss = skb_shinfo(skb)->gso_size;
2607 if (skb->protocol == htons(ETH_P_IP)) {
2608 skb->nh.iph->tot_len = 0;
2609 skb->nh.iph->check = 0;
2611 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2616 cmd_length = E1000_TXD_CMD_IP;
2617 ipcse = skb->h.raw - skb->data - 1;
2618 #ifdef NETIF_F_TSO_IPV6
2619 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2620 skb->nh.ipv6h->payload_len = 0;
2622 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2623 &skb->nh.ipv6h->daddr,
2630 ipcss = skb->nh.raw - skb->data;
2631 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2632 tucss = skb->h.raw - skb->data;
2633 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2636 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2637 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2639 i = tx_ring->next_to_use;
2640 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2641 buffer_info = &tx_ring->buffer_info[i];
2643 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2644 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2645 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2646 context_desc->upper_setup.tcp_fields.tucss = tucss;
2647 context_desc->upper_setup.tcp_fields.tucso = tucso;
2648 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2649 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2650 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2651 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2653 buffer_info->time_stamp = jiffies;
2655 if (++i == tx_ring->count) i = 0;
2656 tx_ring->next_to_use = i;
2666 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2667 struct sk_buff *skb)
2669 struct e1000_context_desc *context_desc;
2670 struct e1000_buffer *buffer_info;
2674 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2675 css = skb->h.raw - skb->data;
2677 i = tx_ring->next_to_use;
2678 buffer_info = &tx_ring->buffer_info[i];
2679 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2681 context_desc->upper_setup.tcp_fields.tucss = css;
2682 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2683 context_desc->upper_setup.tcp_fields.tucse = 0;
2684 context_desc->tcp_seg_setup.data = 0;
2685 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2687 buffer_info->time_stamp = jiffies;
2689 if (unlikely(++i == tx_ring->count)) i = 0;
2690 tx_ring->next_to_use = i;
2698 #define E1000_MAX_TXD_PWR 12
2699 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2702 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2703 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2704 unsigned int nr_frags, unsigned int mss)
2706 struct e1000_buffer *buffer_info;
2707 unsigned int len = skb->len;
2708 unsigned int offset = 0, size, count = 0, i;
2710 len -= skb->data_len;
2712 i = tx_ring->next_to_use;
2715 buffer_info = &tx_ring->buffer_info[i];
2716 size = min(len, max_per_txd);
2718 /* Workaround for Controller erratum --
2719 * descriptor for non-tso packet in a linear SKB that follows a
2720 * tso gets written back prematurely before the data is fully
2721 * DMA'd to the controller */
2722 if (!skb->data_len && tx_ring->last_tx_tso &&
2724 tx_ring->last_tx_tso = 0;
2728 /* Workaround for premature desc write-backs
2729 * in TSO mode. Append 4-byte sentinel desc */
2730 if (unlikely(mss && !nr_frags && size == len && size > 8))
2733 /* work-around for errata 10 and it applies
2734 * to all controllers in PCI-X mode
2735 * The fix is to make sure that the first descriptor of a
2736 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2738 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2739 (size > 2015) && count == 0))
2742 /* Workaround for potential 82544 hang in PCI-X. Avoid
2743 * terminating buffers within evenly-aligned dwords. */
2744 if (unlikely(adapter->pcix_82544 &&
2745 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2749 buffer_info->length = size;
2751 pci_map_single(adapter->pdev,
2755 buffer_info->time_stamp = jiffies;
2760 if (unlikely(++i == tx_ring->count)) i = 0;
2763 for (f = 0; f < nr_frags; f++) {
2764 struct skb_frag_struct *frag;
2766 frag = &skb_shinfo(skb)->frags[f];
2768 offset = frag->page_offset;
2771 buffer_info = &tx_ring->buffer_info[i];
2772 size = min(len, max_per_txd);
2774 /* Workaround for premature desc write-backs
2775 * in TSO mode. Append 4-byte sentinel desc */
2776 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2779 /* Workaround for potential 82544 hang in PCI-X.
2780 * Avoid terminating buffers within evenly-aligned
2782 if (unlikely(adapter->pcix_82544 &&
2783 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2787 buffer_info->length = size;
2789 pci_map_page(adapter->pdev,
2794 buffer_info->time_stamp = jiffies;
2799 if (unlikely(++i == tx_ring->count)) i = 0;
2803 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2804 tx_ring->buffer_info[i].skb = skb;
2805 tx_ring->buffer_info[first].next_to_watch = i;
2811 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2812 int tx_flags, int count)
2814 struct e1000_tx_desc *tx_desc = NULL;
2815 struct e1000_buffer *buffer_info;
2816 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2819 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2820 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2822 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2824 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2825 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2828 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2829 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2830 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2833 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2834 txd_lower |= E1000_TXD_CMD_VLE;
2835 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2838 i = tx_ring->next_to_use;
2841 buffer_info = &tx_ring->buffer_info[i];
2842 tx_desc = E1000_TX_DESC(*tx_ring, i);
2843 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2844 tx_desc->lower.data =
2845 cpu_to_le32(txd_lower | buffer_info->length);
2846 tx_desc->upper.data = cpu_to_le32(txd_upper);
2847 if (unlikely(++i == tx_ring->count)) i = 0;
2850 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2852 /* Force memory writes to complete before letting h/w
2853 * know there are new descriptors to fetch. (Only
2854 * applicable for weak-ordered memory model archs,
2855 * such as IA-64). */
2858 tx_ring->next_to_use = i;
2859 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2863 * 82547 workaround to avoid controller hang in half-duplex environment.
2864 * The workaround is to avoid queuing a large packet that would span
2865 * the internal Tx FIFO ring boundary by notifying the stack to resend
2866 * the packet at a later time. This gives the Tx FIFO an opportunity to
2867 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2868 * to the beginning of the Tx FIFO.
2871 #define E1000_FIFO_HDR 0x10
2872 #define E1000_82547_PAD_LEN 0x3E0
2875 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2877 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2878 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2880 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2882 if (adapter->link_duplex != HALF_DUPLEX)
2883 goto no_fifo_stall_required;
2885 if (atomic_read(&adapter->tx_fifo_stall))
2888 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2889 atomic_set(&adapter->tx_fifo_stall, 1);
2893 no_fifo_stall_required:
2894 adapter->tx_fifo_head += skb_fifo_len;
2895 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2896 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2900 #define MINIMUM_DHCP_PACKET_SIZE 282
2902 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2904 struct e1000_hw *hw = &adapter->hw;
2905 uint16_t length, offset;
2906 if (vlan_tx_tag_present(skb)) {
2907 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2908 ( adapter->hw.mng_cookie.status &
2909 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2912 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2913 struct ethhdr *eth = (struct ethhdr *) skb->data;
2914 if ((htons(ETH_P_IP) == eth->h_proto)) {
2915 const struct iphdr *ip =
2916 (struct iphdr *)((uint8_t *)skb->data+14);
2917 if (IPPROTO_UDP == ip->protocol) {
2918 struct udphdr *udp =
2919 (struct udphdr *)((uint8_t *)ip +
2921 if (ntohs(udp->dest) == 67) {
2922 offset = (uint8_t *)udp + 8 - skb->data;
2923 length = skb->len - offset;
2925 return e1000_mng_write_dhcp_info(hw,
2935 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2937 struct e1000_adapter *adapter = netdev_priv(netdev);
2938 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2940 netif_stop_queue(netdev);
2941 /* Herbert's original patch had:
2942 * smp_mb__after_netif_stop_queue();
2943 * but since that doesn't exist yet, just open code it. */
2946 /* We need to check again in a case another CPU has just
2947 * made room available. */
2948 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2952 netif_start_queue(netdev);
2956 static int e1000_maybe_stop_tx(struct net_device *netdev,
2957 struct e1000_tx_ring *tx_ring, int size)
2959 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2961 return __e1000_maybe_stop_tx(netdev, size);
2964 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2966 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2968 struct e1000_adapter *adapter = netdev_priv(netdev);
2969 struct e1000_tx_ring *tx_ring;
2970 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2971 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2972 unsigned int tx_flags = 0;
2973 unsigned int len = skb->len;
2974 unsigned long flags;
2975 unsigned int nr_frags = 0;
2976 unsigned int mss = 0;
2980 len -= skb->data_len;
2982 /* This goes back to the question of how to logically map a tx queue
2983 * to a flow. Right now, performance is impacted slightly negatively
2984 * if using multiple tx queues. If the stack breaks away from a
2985 * single qdisc implementation, we can look at this again. */
2986 tx_ring = adapter->tx_ring;
2988 if (unlikely(skb->len <= 0)) {
2989 dev_kfree_skb_any(skb);
2990 return NETDEV_TX_OK;
2994 mss = skb_shinfo(skb)->gso_size;
2995 /* The controller does a simple calculation to
2996 * make sure there is enough room in the FIFO before
2997 * initiating the DMA for each buffer. The calc is:
2998 * 4 = ceil(buffer len/mss). To make sure we don't
2999 * overrun the FIFO, adjust the max buffer len if mss
3003 max_per_txd = min(mss << 2, max_per_txd);
3004 max_txd_pwr = fls(max_per_txd) - 1;
3006 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3007 * points to just header, pull a few bytes of payload from
3008 * frags into skb->data */
3009 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3010 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3011 switch (adapter->hw.mac_type) {
3012 unsigned int pull_size;
3017 pull_size = min((unsigned int)4, skb->data_len);
3018 if (!__pskb_pull_tail(skb, pull_size)) {
3020 "__pskb_pull_tail failed.\n");
3021 dev_kfree_skb_any(skb);
3022 return NETDEV_TX_OK;
3024 len = skb->len - skb->data_len;
3033 /* reserve a descriptor for the offload context */
3034 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3038 if (skb->ip_summed == CHECKSUM_PARTIAL)
3043 /* Controller Erratum workaround */
3044 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3048 count += TXD_USE_COUNT(len, max_txd_pwr);
3050 if (adapter->pcix_82544)
3053 /* work-around for errata 10 and it applies to all controllers
3054 * in PCI-X mode, so add one more descriptor to the count
3056 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3060 nr_frags = skb_shinfo(skb)->nr_frags;
3061 for (f = 0; f < nr_frags; f++)
3062 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3064 if (adapter->pcix_82544)
3068 if (adapter->hw.tx_pkt_filtering &&
3069 (adapter->hw.mac_type == e1000_82573))
3070 e1000_transfer_dhcp_info(adapter, skb);
3072 local_irq_save(flags);
3073 if (!spin_trylock(&tx_ring->tx_lock)) {
3074 /* Collision - tell upper layer to requeue */
3075 local_irq_restore(flags);
3076 return NETDEV_TX_LOCKED;
3079 /* need: count + 2 desc gap to keep tail from touching
3080 * head, otherwise try next time */
3081 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3082 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3083 return NETDEV_TX_BUSY;
3086 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3087 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3088 netif_stop_queue(netdev);
3089 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3090 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3091 return NETDEV_TX_BUSY;
3095 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3096 tx_flags |= E1000_TX_FLAGS_VLAN;
3097 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3100 first = tx_ring->next_to_use;
3102 tso = e1000_tso(adapter, tx_ring, skb);
3104 dev_kfree_skb_any(skb);
3105 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3106 return NETDEV_TX_OK;
3110 tx_ring->last_tx_tso = 1;
3111 tx_flags |= E1000_TX_FLAGS_TSO;
3112 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3113 tx_flags |= E1000_TX_FLAGS_CSUM;
3115 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3116 * 82571 hardware supports TSO capabilities for IPv6 as well...
3117 * no longer assume, we must. */
3118 if (likely(skb->protocol == htons(ETH_P_IP)))
3119 tx_flags |= E1000_TX_FLAGS_IPV4;
3121 e1000_tx_queue(adapter, tx_ring, tx_flags,
3122 e1000_tx_map(adapter, tx_ring, skb, first,
3123 max_per_txd, nr_frags, mss));
3125 netdev->trans_start = jiffies;
3127 /* Make sure there is space in the ring for the next send. */
3128 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3130 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3131 return NETDEV_TX_OK;
3135 * e1000_tx_timeout - Respond to a Tx Hang
3136 * @netdev: network interface device structure
3140 e1000_tx_timeout(struct net_device *netdev)
3142 struct e1000_adapter *adapter = netdev_priv(netdev);
3144 /* Do the reset outside of interrupt context */
3145 adapter->tx_timeout_count++;
3146 schedule_work(&adapter->reset_task);
3150 e1000_reset_task(struct net_device *netdev)
3152 struct e1000_adapter *adapter = netdev_priv(netdev);
3154 e1000_reinit_locked(adapter);
3158 * e1000_get_stats - Get System Network Statistics
3159 * @netdev: network interface device structure
3161 * Returns the address of the device statistics structure.
3162 * The statistics are actually updated from the timer callback.
3165 static struct net_device_stats *
3166 e1000_get_stats(struct net_device *netdev)
3168 struct e1000_adapter *adapter = netdev_priv(netdev);
3170 /* only return the current stats */
3171 return &adapter->net_stats;
3175 * e1000_change_mtu - Change the Maximum Transfer Unit
3176 * @netdev: network interface device structure
3177 * @new_mtu: new value for maximum frame size
3179 * Returns 0 on success, negative on failure
3183 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3185 struct e1000_adapter *adapter = netdev_priv(netdev);
3186 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3187 uint16_t eeprom_data = 0;
3189 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3190 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3191 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3195 /* Adapter-specific max frame size limits. */
3196 switch (adapter->hw.mac_type) {
3197 case e1000_undefined ... e1000_82542_rev2_1:
3199 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3200 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3205 /* Jumbo Frames not supported if:
3206 * - this is not an 82573L device
3207 * - ASPM is enabled in any way (0x1A bits 3:2) */
3208 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3210 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3211 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3212 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3214 "Jumbo Frames not supported.\n");
3219 /* ERT will be enabled later to enable wire speed receives */
3221 /* fall through to get support */
3224 case e1000_80003es2lan:
3225 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3226 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3227 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3232 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3236 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3237 * means we reserve 2 more, this pushes us to allocate from the next
3239 * i.e. RXBUFFER_2048 --> size-4096 slab */
3241 if (max_frame <= E1000_RXBUFFER_256)
3242 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3243 else if (max_frame <= E1000_RXBUFFER_512)
3244 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3245 else if (max_frame <= E1000_RXBUFFER_1024)
3246 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3247 else if (max_frame <= E1000_RXBUFFER_2048)
3248 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3249 else if (max_frame <= E1000_RXBUFFER_4096)
3250 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3251 else if (max_frame <= E1000_RXBUFFER_8192)
3252 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3253 else if (max_frame <= E1000_RXBUFFER_16384)
3254 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3256 /* adjust allocation if LPE protects us, and we aren't using SBP */
3257 if (!adapter->hw.tbi_compatibility_on &&
3258 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3259 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3260 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3262 netdev->mtu = new_mtu;
3264 if (netif_running(netdev))
3265 e1000_reinit_locked(adapter);
3267 adapter->hw.max_frame_size = max_frame;
3273 * e1000_update_stats - Update the board statistics counters
3274 * @adapter: board private structure
3278 e1000_update_stats(struct e1000_adapter *adapter)
3280 struct e1000_hw *hw = &adapter->hw;
3281 struct pci_dev *pdev = adapter->pdev;
3282 unsigned long flags;
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3288 * Prevent stats update while adapter is being reset, or if the pci
3289 * connection is down.
3291 if (adapter->link_speed == 0)
3293 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3296 spin_lock_irqsave(&adapter->stats_lock, flags);
3298 /* these counters are modified from e1000_adjust_tbi_stats,
3299 * called from the interrupt context, so they must only
3300 * be written while holding adapter->stats_lock
3303 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3304 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3305 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3306 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3307 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3308 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3309 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3311 if (adapter->hw.mac_type != e1000_ich8lan) {
3312 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3313 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3314 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3315 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3316 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3317 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3320 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3321 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3322 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3323 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3324 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3325 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3326 adapter->stats.dc += E1000_READ_REG(hw, DC);
3327 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3328 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3329 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3330 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3331 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3332 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3333 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3334 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3335 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3336 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3337 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3338 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3339 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3340 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3341 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3342 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3343 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3344 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3345 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3347 if (adapter->hw.mac_type != e1000_ich8lan) {
3348 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3349 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3350 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3351 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3352 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3353 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3356 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3357 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3359 /* used for adaptive IFS */
3361 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3362 adapter->stats.tpt += hw->tx_packet_delta;
3363 hw->collision_delta = E1000_READ_REG(hw, COLC);
3364 adapter->stats.colc += hw->collision_delta;
3366 if (hw->mac_type >= e1000_82543) {
3367 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3368 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3369 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3370 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3371 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3372 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3374 if (hw->mac_type > e1000_82547_rev_2) {
3375 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3376 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3378 if (adapter->hw.mac_type != e1000_ich8lan) {
3379 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3380 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3381 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3382 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3383 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3384 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3385 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3389 /* Fill out the OS statistics structure */
3391 adapter->net_stats.rx_packets = adapter->stats.gprc;
3392 adapter->net_stats.tx_packets = adapter->stats.gptc;
3393 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3394 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3395 adapter->net_stats.multicast = adapter->stats.mprc;
3396 adapter->net_stats.collisions = adapter->stats.colc;
3400 /* RLEC on some newer hardware can be incorrect so build
3401 * our own version based on RUC and ROC */
3402 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3403 adapter->stats.crcerrs + adapter->stats.algnerrc +
3404 adapter->stats.ruc + adapter->stats.roc +
3405 adapter->stats.cexterr;
3406 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3407 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3408 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3409 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3410 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3413 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3414 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3415 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3416 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3417 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3419 /* Tx Dropped needs to be maintained elsewhere */
3423 if (hw->media_type == e1000_media_type_copper) {
3424 if ((adapter->link_speed == SPEED_1000) &&
3425 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3426 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3427 adapter->phy_stats.idle_errors += phy_tmp;
3430 if ((hw->mac_type <= e1000_82546) &&
3431 (hw->phy_type == e1000_phy_m88) &&
3432 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3433 adapter->phy_stats.receive_errors += phy_tmp;
3436 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3440 * e1000_intr - Interrupt Handler
3441 * @irq: interrupt number
3442 * @data: pointer to a network interface device structure
3446 e1000_intr(int irq, void *data)
3448 struct net_device *netdev = data;
3449 struct e1000_adapter *adapter = netdev_priv(netdev);
3450 struct e1000_hw *hw = &adapter->hw;
3451 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3452 #ifndef CONFIG_E1000_NAPI
3455 /* Interrupt Auto-Mask...upon reading ICR,
3456 * interrupts are masked. No need for the
3457 * IMC write, but it does mean we should
3458 * account for it ASAP. */
3459 if (likely(hw->mac_type >= e1000_82571))
3460 atomic_inc(&adapter->irq_sem);
3463 if (unlikely(!icr)) {
3464 #ifdef CONFIG_E1000_NAPI
3465 if (hw->mac_type >= e1000_82571)
3466 e1000_irq_enable(adapter);
3468 return IRQ_NONE; /* Not our interrupt */
3471 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3472 hw->get_link_status = 1;
3473 /* 80003ES2LAN workaround--
3474 * For packet buffer work-around on link down event;
3475 * disable receives here in the ISR and
3476 * reset adapter in watchdog
3478 if (netif_carrier_ok(netdev) &&
3479 (adapter->hw.mac_type == e1000_80003es2lan)) {
3480 /* disable receives */
3481 rctl = E1000_READ_REG(hw, RCTL);
3482 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3484 /* guard against interrupt when we're going down */
3485 if (!test_bit(__E1000_DOWN, &adapter->flags))
3486 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3489 #ifdef CONFIG_E1000_NAPI
3490 if (unlikely(hw->mac_type < e1000_82571)) {
3491 atomic_inc(&adapter->irq_sem);
3492 E1000_WRITE_REG(hw, IMC, ~0);
3493 E1000_WRITE_FLUSH(hw);
3495 if (likely(netif_rx_schedule_prep(netdev)))
3496 __netif_rx_schedule(netdev);
3498 e1000_irq_enable(adapter);
3500 /* Writing IMC and IMS is needed for 82547.
3501 * Due to Hub Link bus being occupied, an interrupt
3502 * de-assertion message is not able to be sent.
3503 * When an interrupt assertion message is generated later,
3504 * two messages are re-ordered and sent out.
3505 * That causes APIC to think 82547 is in de-assertion
3506 * state, while 82547 is in assertion state, resulting
3507 * in dead lock. Writing IMC forces 82547 into
3508 * de-assertion state.
3510 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3511 atomic_inc(&adapter->irq_sem);
3512 E1000_WRITE_REG(hw, IMC, ~0);
3515 for (i = 0; i < E1000_MAX_INTR; i++)
3516 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3517 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3520 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3521 e1000_irq_enable(adapter);
3528 #ifdef CONFIG_E1000_NAPI
3530 * e1000_clean - NAPI Rx polling callback
3531 * @adapter: board private structure
3535 e1000_clean(struct net_device *poll_dev, int *budget)
3537 struct e1000_adapter *adapter;
3538 int work_to_do = min(*budget, poll_dev->quota);
3539 int tx_cleaned = 0, work_done = 0;
3541 /* Must NOT use netdev_priv macro here. */
3542 adapter = poll_dev->priv;
3544 /* Keep link state information with original netdev */
3545 if (!netif_carrier_ok(poll_dev))
3548 /* e1000_clean is called per-cpu. This lock protects
3549 * tx_ring[0] from being cleaned by multiple cpus
3550 * simultaneously. A failure obtaining the lock means
3551 * tx_ring[0] is currently being cleaned anyway. */
3552 if (spin_trylock(&adapter->tx_queue_lock)) {
3553 tx_cleaned = e1000_clean_tx_irq(adapter,
3554 &adapter->tx_ring[0]);
3555 spin_unlock(&adapter->tx_queue_lock);
3558 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3559 &work_done, work_to_do);
3561 *budget -= work_done;
3562 poll_dev->quota -= work_done;
3564 /* If no Tx and not enough Rx work done, exit the polling mode */
3565 if ((!tx_cleaned && (work_done == 0)) ||
3566 !netif_running(poll_dev)) {
3568 netif_rx_complete(poll_dev);
3569 e1000_irq_enable(adapter);
3578 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3579 * @adapter: board private structure
3583 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3584 struct e1000_tx_ring *tx_ring)
3586 struct net_device *netdev = adapter->netdev;
3587 struct e1000_tx_desc *tx_desc, *eop_desc;
3588 struct e1000_buffer *buffer_info;
3589 unsigned int i, eop;
3590 #ifdef CONFIG_E1000_NAPI
3591 unsigned int count = 0;
3593 boolean_t cleaned = FALSE;
3595 i = tx_ring->next_to_clean;
3596 eop = tx_ring->buffer_info[i].next_to_watch;
3597 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3599 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3600 for (cleaned = FALSE; !cleaned; ) {
3601 tx_desc = E1000_TX_DESC(*tx_ring, i);
3602 buffer_info = &tx_ring->buffer_info[i];
3603 cleaned = (i == eop);
3605 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3606 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3608 if (unlikely(++i == tx_ring->count)) i = 0;
3612 eop = tx_ring->buffer_info[i].next_to_watch;
3613 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3614 #ifdef CONFIG_E1000_NAPI
3615 #define E1000_TX_WEIGHT 64
3616 /* weight of a sort for tx, to avoid endless transmit cleanup */
3617 if (count++ == E1000_TX_WEIGHT) break;
3621 tx_ring->next_to_clean = i;
3623 #define TX_WAKE_THRESHOLD 32
3624 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3625 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3626 /* Make sure that anybody stopping the queue after this
3627 * sees the new next_to_clean.
3630 if (netif_queue_stopped(netdev))
3631 netif_wake_queue(netdev);
3634 if (adapter->detect_tx_hung) {
3635 /* Detect a transmit hang in hardware, this serializes the
3636 * check with the clearing of time_stamp and movement of i */
3637 adapter->detect_tx_hung = FALSE;
3638 if (tx_ring->buffer_info[eop].dma &&
3639 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3640 (adapter->tx_timeout_factor * HZ))
3641 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3642 E1000_STATUS_TXOFF)) {
3644 /* detected Tx unit hang */
3645 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3649 " next_to_use <%x>\n"
3650 " next_to_clean <%x>\n"
3651 "buffer_info[next_to_clean]\n"
3652 " time_stamp <%lx>\n"
3653 " next_to_watch <%x>\n"
3655 " next_to_watch.status <%x>\n",
3656 (unsigned long)((tx_ring - adapter->tx_ring) /
3657 sizeof(struct e1000_tx_ring)),
3658 readl(adapter->hw.hw_addr + tx_ring->tdh),
3659 readl(adapter->hw.hw_addr + tx_ring->tdt),
3660 tx_ring->next_to_use,
3661 tx_ring->next_to_clean,
3662 tx_ring->buffer_info[eop].time_stamp,
3665 eop_desc->upper.fields.status);
3666 netif_stop_queue(netdev);
3673 * e1000_rx_checksum - Receive Checksum Offload for 82543
3674 * @adapter: board private structure
3675 * @status_err: receive descriptor status and error fields
3676 * @csum: receive descriptor csum field
3677 * @sk_buff: socket buffer with received data
3681 e1000_rx_checksum(struct e1000_adapter *adapter,
3682 uint32_t status_err, uint32_t csum,
3683 struct sk_buff *skb)
3685 uint16_t status = (uint16_t)status_err;
3686 uint8_t errors = (uint8_t)(status_err >> 24);
3687 skb->ip_summed = CHECKSUM_NONE;
3689 /* 82543 or newer only */
3690 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3691 /* Ignore Checksum bit is set */
3692 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3693 /* TCP/UDP checksum error bit is set */
3694 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3695 /* let the stack verify checksum errors */
3696 adapter->hw_csum_err++;
3699 /* TCP/UDP Checksum has not been calculated */
3700 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3701 if (!(status & E1000_RXD_STAT_TCPCS))
3704 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3707 /* It must be a TCP or UDP packet with a valid checksum */
3708 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3709 /* TCP checksum is good */
3710 skb->ip_summed = CHECKSUM_UNNECESSARY;
3711 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3712 /* IP fragment with UDP payload */
3713 /* Hardware complements the payload checksum, so we undo it
3714 * and then put the value in host order for further stack use.
3716 csum = ntohl(csum ^ 0xFFFF);
3718 skb->ip_summed = CHECKSUM_COMPLETE;
3720 adapter->hw_csum_good++;
3724 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3725 * @adapter: board private structure
3729 #ifdef CONFIG_E1000_NAPI
3730 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3731 struct e1000_rx_ring *rx_ring,
3732 int *work_done, int work_to_do)
3734 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3735 struct e1000_rx_ring *rx_ring)
3738 struct net_device *netdev = adapter->netdev;
3739 struct pci_dev *pdev = adapter->pdev;
3740 struct e1000_rx_desc *rx_desc, *next_rxd;
3741 struct e1000_buffer *buffer_info, *next_buffer;
3742 unsigned long flags;
3746 int cleaned_count = 0;
3747 boolean_t cleaned = FALSE;
3749 i = rx_ring->next_to_clean;
3750 rx_desc = E1000_RX_DESC(*rx_ring, i);
3751 buffer_info = &rx_ring->buffer_info[i];
3753 while (rx_desc->status & E1000_RXD_STAT_DD) {
3754 struct sk_buff *skb;
3756 #ifdef CONFIG_E1000_NAPI
3757 if (*work_done >= work_to_do)
3761 status = rx_desc->status;
3762 skb = buffer_info->skb;
3763 buffer_info->skb = NULL;
3765 prefetch(skb->data - NET_IP_ALIGN);
3767 if (++i == rx_ring->count) i = 0;
3768 next_rxd = E1000_RX_DESC(*rx_ring, i);
3771 next_buffer = &rx_ring->buffer_info[i];
3775 pci_unmap_single(pdev,
3777 buffer_info->length,
3778 PCI_DMA_FROMDEVICE);
3780 length = le16_to_cpu(rx_desc->length);
3782 /* adjust length to remove Ethernet CRC */
3785 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3786 /* All receives must fit into a single buffer */
3787 E1000_DBG("%s: Receive packet consumed multiple"
3788 " buffers\n", netdev->name);
3790 buffer_info->skb = skb;
3794 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3795 last_byte = *(skb->data + length - 1);
3796 if (TBI_ACCEPT(&adapter->hw, status,
3797 rx_desc->errors, length, last_byte)) {
3798 spin_lock_irqsave(&adapter->stats_lock, flags);
3799 e1000_tbi_adjust_stats(&adapter->hw,
3802 spin_unlock_irqrestore(&adapter->stats_lock,
3807 buffer_info->skb = skb;
3812 /* code added for copybreak, this should improve
3813 * performance for small packets with large amounts
3814 * of reassembly being done in the stack */
3815 #define E1000_CB_LENGTH 256
3816 if (length < E1000_CB_LENGTH) {
3817 struct sk_buff *new_skb =
3818 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3820 skb_reserve(new_skb, NET_IP_ALIGN);
3821 memcpy(new_skb->data - NET_IP_ALIGN,
3822 skb->data - NET_IP_ALIGN,
3823 length + NET_IP_ALIGN);
3824 /* save the skb in buffer_info as good */
3825 buffer_info->skb = skb;
3827 skb_put(skb, length);
3830 skb_put(skb, length);
3832 /* end copybreak code */
3834 /* Receive Checksum Offload */
3835 e1000_rx_checksum(adapter,
3836 (uint32_t)(status) |
3837 ((uint32_t)(rx_desc->errors) << 24),
3838 le16_to_cpu(rx_desc->csum), skb);
3840 skb->protocol = eth_type_trans(skb, netdev);
3841 #ifdef CONFIG_E1000_NAPI
3842 if (unlikely(adapter->vlgrp &&
3843 (status & E1000_RXD_STAT_VP))) {
3844 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3845 le16_to_cpu(rx_desc->special) &
3846 E1000_RXD_SPC_VLAN_MASK);
3848 netif_receive_skb(skb);
3850 #else /* CONFIG_E1000_NAPI */
3851 if (unlikely(adapter->vlgrp &&
3852 (status & E1000_RXD_STAT_VP))) {
3853 vlan_hwaccel_rx(skb, adapter->vlgrp,
3854 le16_to_cpu(rx_desc->special) &
3855 E1000_RXD_SPC_VLAN_MASK);
3859 #endif /* CONFIG_E1000_NAPI */
3860 netdev->last_rx = jiffies;
3863 rx_desc->status = 0;
3865 /* return some buffers to hardware, one at a time is too slow */
3866 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3867 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3871 /* use prefetched values */
3873 buffer_info = next_buffer;
3875 rx_ring->next_to_clean = i;
3877 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3879 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3885 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3886 * @adapter: board private structure
3890 #ifdef CONFIG_E1000_NAPI
3891 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3892 struct e1000_rx_ring *rx_ring,
3893 int *work_done, int work_to_do)
3895 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3896 struct e1000_rx_ring *rx_ring)
3899 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3900 struct net_device *netdev = adapter->netdev;
3901 struct pci_dev *pdev = adapter->pdev;
3902 struct e1000_buffer *buffer_info, *next_buffer;
3903 struct e1000_ps_page *ps_page;
3904 struct e1000_ps_page_dma *ps_page_dma;
3905 struct sk_buff *skb;
3907 uint32_t length, staterr;
3908 int cleaned_count = 0;
3909 boolean_t cleaned = FALSE;
3911 i = rx_ring->next_to_clean;
3912 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3913 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3914 buffer_info = &rx_ring->buffer_info[i];
3916 while (staterr & E1000_RXD_STAT_DD) {
3917 ps_page = &rx_ring->ps_page[i];
3918 ps_page_dma = &rx_ring->ps_page_dma[i];
3919 #ifdef CONFIG_E1000_NAPI
3920 if (unlikely(*work_done >= work_to_do))
3924 skb = buffer_info->skb;
3926 /* in the packet split case this is header only */
3927 prefetch(skb->data - NET_IP_ALIGN);
3929 if (++i == rx_ring->count) i = 0;
3930 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3933 next_buffer = &rx_ring->buffer_info[i];
3937 pci_unmap_single(pdev, buffer_info->dma,
3938 buffer_info->length,
3939 PCI_DMA_FROMDEVICE);
3941 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3942 E1000_DBG("%s: Packet Split buffers didn't pick up"
3943 " the full packet\n", netdev->name);
3944 dev_kfree_skb_irq(skb);
3948 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3949 dev_kfree_skb_irq(skb);
3953 length = le16_to_cpu(rx_desc->wb.middle.length0);
3955 if (unlikely(!length)) {
3956 E1000_DBG("%s: Last part of the packet spanning"
3957 " multiple descriptors\n", netdev->name);
3958 dev_kfree_skb_irq(skb);
3963 skb_put(skb, length);
3966 /* this looks ugly, but it seems compiler issues make it
3967 more efficient than reusing j */
3968 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3970 /* page alloc/put takes too long and effects small packet
3971 * throughput, so unsplit small packets and save the alloc/put*/
3972 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3974 /* there is no documentation about how to call
3975 * kmap_atomic, so we can't hold the mapping
3977 pci_dma_sync_single_for_cpu(pdev,
3978 ps_page_dma->ps_page_dma[0],
3980 PCI_DMA_FROMDEVICE);
3981 vaddr = kmap_atomic(ps_page->ps_page[0],
3982 KM_SKB_DATA_SOFTIRQ);
3983 memcpy(skb->tail, vaddr, l1);
3984 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3985 pci_dma_sync_single_for_device(pdev,
3986 ps_page_dma->ps_page_dma[0],
3987 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3988 /* remove the CRC */
3995 for (j = 0; j < adapter->rx_ps_pages; j++) {
3996 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3998 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3999 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4000 ps_page_dma->ps_page_dma[j] = 0;
4001 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4003 ps_page->ps_page[j] = NULL;
4005 skb->data_len += length;
4006 skb->truesize += length;
4009 /* strip the ethernet crc, problem is we're using pages now so
4010 * this whole operation can get a little cpu intensive */
4011 pskb_trim(skb, skb->len - 4);
4014 e1000_rx_checksum(adapter, staterr,
4015 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4016 skb->protocol = eth_type_trans(skb, netdev);
4018 if (likely(rx_desc->wb.upper.header_status &
4019 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4020 adapter->rx_hdr_split++;
4021 #ifdef CONFIG_E1000_NAPI
4022 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4023 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4024 le16_to_cpu(rx_desc->wb.middle.vlan) &
4025 E1000_RXD_SPC_VLAN_MASK);
4027 netif_receive_skb(skb);
4029 #else /* CONFIG_E1000_NAPI */
4030 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4031 vlan_hwaccel_rx(skb, adapter->vlgrp,
4032 le16_to_cpu(rx_desc->wb.middle.vlan) &
4033 E1000_RXD_SPC_VLAN_MASK);
4037 #endif /* CONFIG_E1000_NAPI */
4038 netdev->last_rx = jiffies;
4041 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4042 buffer_info->skb = NULL;
4044 /* return some buffers to hardware, one at a time is too slow */
4045 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4046 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4050 /* use prefetched values */
4052 buffer_info = next_buffer;
4054 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4056 rx_ring->next_to_clean = i;
4058 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4060 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4066 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4067 * @adapter: address of board private structure
4071 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4072 struct e1000_rx_ring *rx_ring,
4075 struct net_device *netdev = adapter->netdev;
4076 struct pci_dev *pdev = adapter->pdev;
4077 struct e1000_rx_desc *rx_desc;
4078 struct e1000_buffer *buffer_info;
4079 struct sk_buff *skb;
4081 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4083 i = rx_ring->next_to_use;
4084 buffer_info = &rx_ring->buffer_info[i];
4086 while (cleaned_count--) {
4087 skb = buffer_info->skb;
4093 skb = netdev_alloc_skb(netdev, bufsz);
4094 if (unlikely(!skb)) {
4095 /* Better luck next round */
4096 adapter->alloc_rx_buff_failed++;
4100 /* Fix for errata 23, can't cross 64kB boundary */
4101 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4102 struct sk_buff *oldskb = skb;
4103 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4104 "at %p\n", bufsz, skb->data);
4105 /* Try again, without freeing the previous */
4106 skb = netdev_alloc_skb(netdev, bufsz);
4107 /* Failed allocation, critical failure */
4109 dev_kfree_skb(oldskb);
4113 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4116 dev_kfree_skb(oldskb);
4117 break; /* while !buffer_info->skb */
4120 /* Use new allocation */
4121 dev_kfree_skb(oldskb);
4123 /* Make buffer alignment 2 beyond a 16 byte boundary
4124 * this will result in a 16 byte aligned IP header after
4125 * the 14 byte MAC header is removed
4127 skb_reserve(skb, NET_IP_ALIGN);
4129 buffer_info->skb = skb;
4130 buffer_info->length = adapter->rx_buffer_len;
4132 buffer_info->dma = pci_map_single(pdev,
4134 adapter->rx_buffer_len,
4135 PCI_DMA_FROMDEVICE);
4137 /* Fix for errata 23, can't cross 64kB boundary */
4138 if (!e1000_check_64k_bound(adapter,
4139 (void *)(unsigned long)buffer_info->dma,
4140 adapter->rx_buffer_len)) {
4141 DPRINTK(RX_ERR, ERR,
4142 "dma align check failed: %u bytes at %p\n",
4143 adapter->rx_buffer_len,
4144 (void *)(unsigned long)buffer_info->dma);
4146 buffer_info->skb = NULL;
4148 pci_unmap_single(pdev, buffer_info->dma,
4149 adapter->rx_buffer_len,
4150 PCI_DMA_FROMDEVICE);
4152 break; /* while !buffer_info->skb */
4154 rx_desc = E1000_RX_DESC(*rx_ring, i);
4155 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4157 if (unlikely(++i == rx_ring->count))
4159 buffer_info = &rx_ring->buffer_info[i];
4162 if (likely(rx_ring->next_to_use != i)) {
4163 rx_ring->next_to_use = i;
4164 if (unlikely(i-- == 0))
4165 i = (rx_ring->count - 1);
4167 /* Force memory writes to complete before letting h/w
4168 * know there are new descriptors to fetch. (Only
4169 * applicable for weak-ordered memory model archs,
4170 * such as IA-64). */
4172 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4177 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4178 * @adapter: address of board private structure
4182 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4183 struct e1000_rx_ring *rx_ring,
4186 struct net_device *netdev = adapter->netdev;
4187 struct pci_dev *pdev = adapter->pdev;
4188 union e1000_rx_desc_packet_split *rx_desc;
4189 struct e1000_buffer *buffer_info;
4190 struct e1000_ps_page *ps_page;
4191 struct e1000_ps_page_dma *ps_page_dma;
4192 struct sk_buff *skb;
4195 i = rx_ring->next_to_use;
4196 buffer_info = &rx_ring->buffer_info[i];
4197 ps_page = &rx_ring->ps_page[i];
4198 ps_page_dma = &rx_ring->ps_page_dma[i];
4200 while (cleaned_count--) {
4201 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4203 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4204 if (j < adapter->rx_ps_pages) {
4205 if (likely(!ps_page->ps_page[j])) {
4206 ps_page->ps_page[j] =
4207 alloc_page(GFP_ATOMIC);
4208 if (unlikely(!ps_page->ps_page[j])) {
4209 adapter->alloc_rx_buff_failed++;
4212 ps_page_dma->ps_page_dma[j] =
4214 ps_page->ps_page[j],
4216 PCI_DMA_FROMDEVICE);
4218 /* Refresh the desc even if buffer_addrs didn't
4219 * change because each write-back erases
4222 rx_desc->read.buffer_addr[j+1] =
4223 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4225 rx_desc->read.buffer_addr[j+1] = ~0;
4228 skb = netdev_alloc_skb(netdev,
4229 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4231 if (unlikely(!skb)) {
4232 adapter->alloc_rx_buff_failed++;
4236 /* Make buffer alignment 2 beyond a 16 byte boundary
4237 * this will result in a 16 byte aligned IP header after
4238 * the 14 byte MAC header is removed
4240 skb_reserve(skb, NET_IP_ALIGN);
4242 buffer_info->skb = skb;
4243 buffer_info->length = adapter->rx_ps_bsize0;
4244 buffer_info->dma = pci_map_single(pdev, skb->data,
4245 adapter->rx_ps_bsize0,
4246 PCI_DMA_FROMDEVICE);
4248 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4250 if (unlikely(++i == rx_ring->count)) i = 0;
4251 buffer_info = &rx_ring->buffer_info[i];
4252 ps_page = &rx_ring->ps_page[i];
4253 ps_page_dma = &rx_ring->ps_page_dma[i];
4257 if (likely(rx_ring->next_to_use != i)) {
4258 rx_ring->next_to_use = i;
4259 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4261 /* Force memory writes to complete before letting h/w
4262 * know there are new descriptors to fetch. (Only
4263 * applicable for weak-ordered memory model archs,
4264 * such as IA-64). */
4266 /* Hardware increments by 16 bytes, but packet split
4267 * descriptors are 32 bytes...so we increment tail
4270 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4275 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4280 e1000_smartspeed(struct e1000_adapter *adapter)
4282 uint16_t phy_status;
4285 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4286 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4289 if (adapter->smartspeed == 0) {
4290 /* If Master/Slave config fault is asserted twice,
4291 * we assume back-to-back */
4292 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4293 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4294 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4295 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4296 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4297 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4298 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4299 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4301 adapter->smartspeed++;
4302 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4303 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4305 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4306 MII_CR_RESTART_AUTO_NEG);
4307 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4312 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4313 /* If still no link, perhaps using 2/3 pair cable */
4314 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4315 phy_ctrl |= CR_1000T_MS_ENABLE;
4316 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4317 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4318 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4319 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4320 MII_CR_RESTART_AUTO_NEG);
4321 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4324 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4325 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4326 adapter->smartspeed = 0;
4337 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4343 return e1000_mii_ioctl(netdev, ifr, cmd);
4357 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4359 struct e1000_adapter *adapter = netdev_priv(netdev);
4360 struct mii_ioctl_data *data = if_mii(ifr);
4364 unsigned long flags;
4366 if (adapter->hw.media_type != e1000_media_type_copper)
4371 data->phy_id = adapter->hw.phy_addr;
4374 if (!capable(CAP_NET_ADMIN))
4376 spin_lock_irqsave(&adapter->stats_lock, flags);
4377 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4379 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4382 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4385 if (!capable(CAP_NET_ADMIN))
4387 if (data->reg_num & ~(0x1F))
4389 mii_reg = data->val_in;
4390 spin_lock_irqsave(&adapter->stats_lock, flags);
4391 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4393 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4396 if (adapter->hw.media_type == e1000_media_type_copper) {
4397 switch (data->reg_num) {
4399 if (mii_reg & MII_CR_POWER_DOWN)
4401 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4402 adapter->hw.autoneg = 1;
4403 adapter->hw.autoneg_advertised = 0x2F;
4406 spddplx = SPEED_1000;
4407 else if (mii_reg & 0x2000)
4408 spddplx = SPEED_100;
4411 spddplx += (mii_reg & 0x100)
4414 retval = e1000_set_spd_dplx(adapter,
4417 spin_unlock_irqrestore(
4418 &adapter->stats_lock,
4423 if (netif_running(adapter->netdev))
4424 e1000_reinit_locked(adapter);
4426 e1000_reset(adapter);
4428 case M88E1000_PHY_SPEC_CTRL:
4429 case M88E1000_EXT_PHY_SPEC_CTRL:
4430 if (e1000_phy_reset(&adapter->hw)) {
4431 spin_unlock_irqrestore(
4432 &adapter->stats_lock, flags);
4438 switch (data->reg_num) {
4440 if (mii_reg & MII_CR_POWER_DOWN)
4442 if (netif_running(adapter->netdev))
4443 e1000_reinit_locked(adapter);
4445 e1000_reset(adapter);
4449 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4454 return E1000_SUCCESS;
4458 e1000_pci_set_mwi(struct e1000_hw *hw)
4460 struct e1000_adapter *adapter = hw->back;
4461 int ret_val = pci_set_mwi(adapter->pdev);
4464 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4468 e1000_pci_clear_mwi(struct e1000_hw *hw)
4470 struct e1000_adapter *adapter = hw->back;
4472 pci_clear_mwi(adapter->pdev);
4476 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4478 struct e1000_adapter *adapter = hw->back;
4480 pci_read_config_word(adapter->pdev, reg, value);
4484 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 struct e1000_adapter *adapter = hw->back;
4488 pci_write_config_word(adapter->pdev, reg, *value);
4492 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4494 struct e1000_adapter *adapter = hw->back;
4495 uint16_t cap_offset;
4497 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4499 return -E1000_ERR_CONFIG;
4501 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4503 return E1000_SUCCESS;
4508 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4514 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4516 struct e1000_adapter *adapter = netdev_priv(netdev);
4517 uint32_t ctrl, rctl;
4519 e1000_irq_disable(adapter);
4520 adapter->vlgrp = grp;
4523 /* enable VLAN tag insert/strip */
4524 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4525 ctrl |= E1000_CTRL_VME;
4526 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4528 if (adapter->hw.mac_type != e1000_ich8lan) {
4529 /* enable VLAN receive filtering */
4530 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4531 rctl |= E1000_RCTL_VFE;
4532 rctl &= ~E1000_RCTL_CFIEN;
4533 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4534 e1000_update_mng_vlan(adapter);
4537 /* disable VLAN tag insert/strip */
4538 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4539 ctrl &= ~E1000_CTRL_VME;
4540 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4542 if (adapter->hw.mac_type != e1000_ich8lan) {
4543 /* disable VLAN filtering */
4544 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4545 rctl &= ~E1000_RCTL_VFE;
4546 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4547 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4548 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4549 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4554 e1000_irq_enable(adapter);
4558 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4560 struct e1000_adapter *adapter = netdev_priv(netdev);
4561 uint32_t vfta, index;
4563 if ((adapter->hw.mng_cookie.status &
4564 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4565 (vid == adapter->mng_vlan_id))
4567 /* add VID to filter table */
4568 index = (vid >> 5) & 0x7F;
4569 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4570 vfta |= (1 << (vid & 0x1F));
4571 e1000_write_vfta(&adapter->hw, index, vfta);
4575 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4577 struct e1000_adapter *adapter = netdev_priv(netdev);
4578 uint32_t vfta, index;
4580 e1000_irq_disable(adapter);
4583 adapter->vlgrp->vlan_devices[vid] = NULL;
4585 e1000_irq_enable(adapter);
4587 if ((adapter->hw.mng_cookie.status &
4588 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4589 (vid == adapter->mng_vlan_id)) {
4590 /* release control to f/w */
4591 e1000_release_hw_control(adapter);
4595 /* remove VID from filter table */
4596 index = (vid >> 5) & 0x7F;
4597 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4598 vfta &= ~(1 << (vid & 0x1F));
4599 e1000_write_vfta(&adapter->hw, index, vfta);
4603 e1000_restore_vlan(struct e1000_adapter *adapter)
4605 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4607 if (adapter->vlgrp) {
4609 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4610 if (!adapter->vlgrp->vlan_devices[vid])
4612 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4618 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4620 adapter->hw.autoneg = 0;
4622 /* Fiber NICs only allow 1000 gbps Full duplex */
4623 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4624 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4625 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4630 case SPEED_10 + DUPLEX_HALF:
4631 adapter->hw.forced_speed_duplex = e1000_10_half;
4633 case SPEED_10 + DUPLEX_FULL:
4634 adapter->hw.forced_speed_duplex = e1000_10_full;
4636 case SPEED_100 + DUPLEX_HALF:
4637 adapter->hw.forced_speed_duplex = e1000_100_half;
4639 case SPEED_100 + DUPLEX_FULL:
4640 adapter->hw.forced_speed_duplex = e1000_100_full;
4642 case SPEED_1000 + DUPLEX_FULL:
4643 adapter->hw.autoneg = 1;
4644 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4646 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4648 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4655 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4656 * bus we're on (PCI(X) vs. PCI-E)
4658 #define PCIE_CONFIG_SPACE_LEN 256
4659 #define PCI_CONFIG_SPACE_LEN 64
4661 e1000_pci_save_state(struct e1000_adapter *adapter)
4663 struct pci_dev *dev = adapter->pdev;
4667 if (adapter->hw.mac_type >= e1000_82571)
4668 size = PCIE_CONFIG_SPACE_LEN;
4670 size = PCI_CONFIG_SPACE_LEN;
4672 WARN_ON(adapter->config_space != NULL);
4674 adapter->config_space = kmalloc(size, GFP_KERNEL);
4675 if (!adapter->config_space) {
4676 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4679 for (i = 0; i < (size / 4); i++)
4680 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4685 e1000_pci_restore_state(struct e1000_adapter *adapter)
4687 struct pci_dev *dev = adapter->pdev;
4691 if (adapter->config_space == NULL)
4694 if (adapter->hw.mac_type >= e1000_82571)
4695 size = PCIE_CONFIG_SPACE_LEN;
4697 size = PCI_CONFIG_SPACE_LEN;
4698 for (i = 0; i < (size / 4); i++)
4699 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4700 kfree(adapter->config_space);
4701 adapter->config_space = NULL;
4704 #endif /* CONFIG_PM */
4707 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4709 struct net_device *netdev = pci_get_drvdata(pdev);
4710 struct e1000_adapter *adapter = netdev_priv(netdev);
4711 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4712 uint32_t wufc = adapter->wol;
4717 netif_device_detach(netdev);
4719 if (netif_running(netdev)) {
4720 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4721 e1000_down(adapter);
4725 /* Implement our own version of pci_save_state(pdev) because pci-
4726 * express adapters have 256-byte config spaces. */
4727 retval = e1000_pci_save_state(adapter);
4732 status = E1000_READ_REG(&adapter->hw, STATUS);
4733 if (status & E1000_STATUS_LU)
4734 wufc &= ~E1000_WUFC_LNKC;
4737 e1000_setup_rctl(adapter);
4738 e1000_set_multi(netdev);
4740 /* turn on all-multi mode if wake on multicast is enabled */
4741 if (wufc & E1000_WUFC_MC) {
4742 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4743 rctl |= E1000_RCTL_MPE;
4744 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4747 if (adapter->hw.mac_type >= e1000_82540) {
4748 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4749 /* advertise wake from D3Cold */
4750 #define E1000_CTRL_ADVD3WUC 0x00100000
4751 /* phy power management enable */
4752 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4753 ctrl |= E1000_CTRL_ADVD3WUC |
4754 E1000_CTRL_EN_PHY_PWR_MGMT;
4755 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4758 if (adapter->hw.media_type == e1000_media_type_fiber ||
4759 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4760 /* keep the laser running in D3 */
4761 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4762 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4763 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4766 /* Allow time for pending master requests to run */
4767 e1000_disable_pciex_master(&adapter->hw);
4769 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4770 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4771 pci_enable_wake(pdev, PCI_D3hot, 1);
4772 pci_enable_wake(pdev, PCI_D3cold, 1);
4774 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4775 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4776 pci_enable_wake(pdev, PCI_D3hot, 0);
4777 pci_enable_wake(pdev, PCI_D3cold, 0);
4780 if (adapter->hw.mac_type >= e1000_82540 &&
4781 adapter->hw.mac_type < e1000_82571 &&
4782 adapter->hw.media_type == e1000_media_type_copper) {
4783 manc = E1000_READ_REG(&adapter->hw, MANC);
4784 if (manc & E1000_MANC_SMBUS_EN) {
4785 manc |= E1000_MANC_ARP_EN;
4786 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4787 pci_enable_wake(pdev, PCI_D3hot, 1);
4788 pci_enable_wake(pdev, PCI_D3cold, 1);
4792 if (adapter->hw.phy_type == e1000_phy_igp_3)
4793 e1000_phy_powerdown_workaround(&adapter->hw);
4795 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4796 * would have already happened in close and is redundant. */
4797 e1000_release_hw_control(adapter);
4799 pci_disable_device(pdev);
4801 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4808 e1000_resume(struct pci_dev *pdev)
4810 struct net_device *netdev = pci_get_drvdata(pdev);
4811 struct e1000_adapter *adapter = netdev_priv(netdev);
4814 pci_set_power_state(pdev, PCI_D0);
4815 e1000_pci_restore_state(adapter);
4816 if ((err = pci_enable_device(pdev))) {
4817 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4820 pci_set_master(pdev);
4822 pci_enable_wake(pdev, PCI_D3hot, 0);
4823 pci_enable_wake(pdev, PCI_D3cold, 0);
4825 e1000_reset(adapter);
4826 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4828 if (netif_running(netdev))
4831 netif_device_attach(netdev);
4833 if (adapter->hw.mac_type >= e1000_82540 &&
4834 adapter->hw.mac_type < e1000_82571 &&
4835 adapter->hw.media_type == e1000_media_type_copper) {
4836 manc = E1000_READ_REG(&adapter->hw, MANC);
4837 manc &= ~(E1000_MANC_ARP_EN);
4838 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4841 /* If the controller is 82573 and f/w is AMT, do not set
4842 * DRV_LOAD until the interface is up. For all other cases,
4843 * let the f/w know that the h/w is now under the control
4845 if (adapter->hw.mac_type != e1000_82573 ||
4846 !e1000_check_mng_mode(&adapter->hw))
4847 e1000_get_hw_control(adapter);
4853 static void e1000_shutdown(struct pci_dev *pdev)
4855 e1000_suspend(pdev, PMSG_SUSPEND);
4858 #ifdef CONFIG_NET_POLL_CONTROLLER
4860 * Polling 'interrupt' - used by things like netconsole to send skbs
4861 * without having to re-enable interrupts. It's not called while
4862 * the interrupt routine is executing.
4865 e1000_netpoll(struct net_device *netdev)
4867 struct e1000_adapter *adapter = netdev_priv(netdev);
4869 disable_irq(adapter->pdev->irq);
4870 e1000_intr(adapter->pdev->irq, netdev);
4871 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4872 #ifndef CONFIG_E1000_NAPI
4873 adapter->clean_rx(adapter, adapter->rx_ring);
4875 enable_irq(adapter->pdev->irq);
4880 * e1000_io_error_detected - called when PCI error is detected
4881 * @pdev: Pointer to PCI device
4882 * @state: The current pci conneection state
4884 * This function is called after a PCI bus error affecting
4885 * this device has been detected.
4887 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4889 struct net_device *netdev = pci_get_drvdata(pdev);
4890 struct e1000_adapter *adapter = netdev->priv;
4892 netif_device_detach(netdev);
4894 if (netif_running(netdev))
4895 e1000_down(adapter);
4896 pci_disable_device(pdev);
4898 /* Request a slot slot reset. */
4899 return PCI_ERS_RESULT_NEED_RESET;
4903 * e1000_io_slot_reset - called after the pci bus has been reset.
4904 * @pdev: Pointer to PCI device
4906 * Restart the card from scratch, as if from a cold-boot. Implementation
4907 * resembles the first-half of the e1000_resume routine.
4909 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4911 struct net_device *netdev = pci_get_drvdata(pdev);
4912 struct e1000_adapter *adapter = netdev->priv;
4914 if (pci_enable_device(pdev)) {
4915 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4916 return PCI_ERS_RESULT_DISCONNECT;
4918 pci_set_master(pdev);
4920 pci_enable_wake(pdev, PCI_D3hot, 0);
4921 pci_enable_wake(pdev, PCI_D3cold, 0);
4923 e1000_reset(adapter);
4924 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4926 return PCI_ERS_RESULT_RECOVERED;
4930 * e1000_io_resume - called when traffic can start flowing again.
4931 * @pdev: Pointer to PCI device
4933 * This callback is called when the error recovery driver tells us that
4934 * its OK to resume normal operation. Implementation resembles the
4935 * second-half of the e1000_resume routine.
4937 static void e1000_io_resume(struct pci_dev *pdev)
4939 struct net_device *netdev = pci_get_drvdata(pdev);
4940 struct e1000_adapter *adapter = netdev->priv;
4941 uint32_t manc, swsm;
4943 if (netif_running(netdev)) {
4944 if (e1000_up(adapter)) {
4945 printk("e1000: can't bring device back up after reset\n");
4950 netif_device_attach(netdev);
4952 if (adapter->hw.mac_type >= e1000_82540 &&
4953 adapter->hw.mac_type < e1000_82571 &&
4954 adapter->hw.media_type == e1000_media_type_copper) {
4955 manc = E1000_READ_REG(&adapter->hw, MANC);
4956 manc &= ~(E1000_MANC_ARP_EN);
4957 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4960 switch (adapter->hw.mac_type) {
4962 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4963 E1000_WRITE_REG(&adapter->hw, SWSM,
4964 swsm | E1000_SWSM_DRV_LOAD);
4970 if (netif_running(netdev))
4971 mod_timer(&adapter->watchdog_timer, jiffies);