1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
67 #include <linux/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
73 #include <asm/div64.h>
77 #include "s2io-regs.h"
79 #define DRV_VERSION "2.0.14.2"
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
88 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
113 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 mac_info_t *mac_control;
117 mac_control = &sp->mac_control;
118 if (rxb_size <= rxd_count[sp->rxd_mode])
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_data_octets"},
140 {"tmac_pause_ctrl_frms"},
144 {"tmac_any_err_frms"},
145 {"tmac_ttl_less_fb_octets"},
146 {"tmac_vld_ip_octets"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
160 {"rmac_out_rng_len_err_frms"},
162 {"rmac_pause_ctrl_frms"},
163 {"rmac_unsup_ctrl_frms"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
167 {"rmac_discarded_frms"},
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
174 {"rmac_jabber_frms"},
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
188 {"rmac_err_drp_udp"},
189 {"rmac_xgmii_err_sym"},
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
209 {"rmac_accepted_ip"},
213 {"new_rd_req_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
218 {"new_wr_req_rtry_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
285 static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
288 nic_t *nic = dev->priv;
291 spin_lock_irqsave(&nic->tx_lock, flags);
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 nic_t *nic = dev->priv;
302 spin_lock_irqsave(&nic->tx_lock, flags);
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
309 * Constants to be programmed into the Xena's registers, to configure
314 static const u64 herc_act_dtx_cfg[] = {
316 0x8000051536750000ULL, 0x80000515367500E0ULL,
318 0x8000051536750004ULL, 0x80000515367500E4ULL,
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
335 static const u64 xena_dtx_cfg[] = {
337 0x8000051500000000ULL, 0x80000515000000E0ULL,
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 0x8002051500000000ULL, 0x80020515000000E0ULL,
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
352 * Constants for Fixing the MacAddress problem seen mostly on
355 static const u64 fix_mac[] = {
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
373 /* Module Loadable parameters. */
374 static unsigned int tx_fifo_num = 1;
375 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
376 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
377 static unsigned int rx_ring_num = 1;
378 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
379 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
380 static unsigned int rts_frm_len[MAX_RX_RINGS] =
381 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
382 static unsigned int rx_ring_mode = 1;
383 static unsigned int use_continuous_tx_intrs = 1;
384 static unsigned int rmac_pause_time = 0x100;
385 static unsigned int mc_pause_threshold_q0q3 = 187;
386 static unsigned int mc_pause_threshold_q4q7 = 187;
387 static unsigned int shared_splits;
388 static unsigned int tmac_util_period = 5;
389 static unsigned int rmac_util_period = 5;
390 static unsigned int bimodal = 0;
391 static unsigned int l3l4hdr_size = 128;
392 #ifndef CONFIG_S2IO_NAPI
393 static unsigned int indicate_max_pkts;
395 /* Frequency of Rx desc syncs expressed as power of 2 */
396 static unsigned int rxsync_frequency = 3;
397 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
398 static unsigned int intr_type = 0;
399 /* Large receive offload feature */
400 static unsigned int lro = 0;
401 /* Max pkts to be aggregated by LRO at one time. If not specified,
402 * aggregation happens until we hit max IP pkt size(64K)
404 static unsigned int lro_max_pkts = 0xFFFF;
408 * This table lists all the devices that this driver supports.
410 static struct pci_device_id s2io_tbl[] __devinitdata = {
411 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
412 PCI_ANY_ID, PCI_ANY_ID},
413 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
414 PCI_ANY_ID, PCI_ANY_ID},
415 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
416 PCI_ANY_ID, PCI_ANY_ID},
417 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
418 PCI_ANY_ID, PCI_ANY_ID},
422 MODULE_DEVICE_TABLE(pci, s2io_tbl);
424 static struct pci_driver s2io_driver = {
426 .id_table = s2io_tbl,
427 .probe = s2io_init_nic,
428 .remove = __devexit_p(s2io_rem_nic),
431 /* A simplifier macro used both by init and free shared_mem Fns(). */
432 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
435 * init_shared_mem - Allocation and Initialization of Memory
436 * @nic: Device private variable.
437 * Description: The function allocates all the memory areas shared
438 * between the NIC and the driver. This includes Tx descriptors,
439 * Rx descriptors and the statistics block.
442 static int init_shared_mem(struct s2io_nic *nic)
445 void *tmp_v_addr, *tmp_v_addr_next;
446 dma_addr_t tmp_p_addr, tmp_p_addr_next;
447 RxD_block_t *pre_rxd_blk = NULL;
448 int i, j, blk_cnt, rx_sz, tx_sz;
449 int lst_size, lst_per_page;
450 struct net_device *dev = nic->dev;
454 mac_info_t *mac_control;
455 struct config_param *config;
457 mac_control = &nic->mac_control;
458 config = &nic->config;
461 /* Allocation and initialization of TXDLs in FIOFs */
463 for (i = 0; i < config->tx_fifo_num; i++) {
464 size += config->tx_cfg[i].fifo_len;
466 if (size > MAX_AVAILABLE_TXDS) {
467 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
469 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
473 lst_size = (sizeof(TxD_t) * config->max_txds);
474 tx_sz = lst_size * size;
475 lst_per_page = PAGE_SIZE / lst_size;
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 int fifo_len = config->tx_cfg[i].fifo_len;
479 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
480 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
482 if (!mac_control->fifos[i].list_info) {
484 "Malloc failed for list_info\n");
487 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
492 mac_control->fifos[i].tx_curr_put_info.offset = 0;
493 mac_control->fifos[i].tx_curr_put_info.fifo_len =
494 config->tx_cfg[i].fifo_len - 1;
495 mac_control->fifos[i].tx_curr_get_info.offset = 0;
496 mac_control->fifos[i].tx_curr_get_info.fifo_len =
497 config->tx_cfg[i].fifo_len - 1;
498 mac_control->fifos[i].fifo_no = i;
499 mac_control->fifos[i].nic = nic;
500 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
502 for (j = 0; j < page_num; j++) {
506 tmp_v = pci_alloc_consistent(nic->pdev,
510 "pci_alloc_consistent ");
511 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
514 /* If we got a zero DMA address(can happen on
515 * certain platforms like PPC), reallocate.
516 * Store virtual address of page we don't want,
520 mac_control->zerodma_virt_addr = tmp_v;
522 "%s: Zero DMA address for TxDL. ", dev->name);
524 "Virtual address %p\n", tmp_v);
525 tmp_v = pci_alloc_consistent(nic->pdev,
529 "pci_alloc_consistent ");
530 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
534 while (k < lst_per_page) {
535 int l = (j * lst_per_page) + k;
536 if (l == config->tx_cfg[i].fifo_len)
538 mac_control->fifos[i].list_info[l].list_virt_addr =
539 tmp_v + (k * lst_size);
540 mac_control->fifos[i].list_info[l].list_phy_addr =
541 tmp_p + (k * lst_size);
547 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
548 if (!nic->ufo_in_band_v)
551 /* Allocation and initialization of RXDs in Rings */
553 for (i = 0; i < config->rx_ring_num; i++) {
554 if (config->rx_cfg[i].num_rxd %
555 (rxd_count[nic->rxd_mode] + 1)) {
556 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
557 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
559 DBG_PRINT(ERR_DBG, "RxDs per Block");
562 size += config->rx_cfg[i].num_rxd;
563 mac_control->rings[i].block_count =
564 config->rx_cfg[i].num_rxd /
565 (rxd_count[nic->rxd_mode] + 1 );
566 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
567 mac_control->rings[i].block_count;
569 if (nic->rxd_mode == RXD_MODE_1)
570 size = (size * (sizeof(RxD1_t)));
572 size = (size * (sizeof(RxD3_t)));
575 for (i = 0; i < config->rx_ring_num; i++) {
576 mac_control->rings[i].rx_curr_get_info.block_index = 0;
577 mac_control->rings[i].rx_curr_get_info.offset = 0;
578 mac_control->rings[i].rx_curr_get_info.ring_len =
579 config->rx_cfg[i].num_rxd - 1;
580 mac_control->rings[i].rx_curr_put_info.block_index = 0;
581 mac_control->rings[i].rx_curr_put_info.offset = 0;
582 mac_control->rings[i].rx_curr_put_info.ring_len =
583 config->rx_cfg[i].num_rxd - 1;
584 mac_control->rings[i].nic = nic;
585 mac_control->rings[i].ring_no = i;
587 blk_cnt = config->rx_cfg[i].num_rxd /
588 (rxd_count[nic->rxd_mode] + 1);
589 /* Allocating all the Rx blocks */
590 for (j = 0; j < blk_cnt; j++) {
591 rx_block_info_t *rx_blocks;
594 rx_blocks = &mac_control->rings[i].rx_blocks[j];
595 size = SIZE_OF_BLOCK; //size is always page size
596 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
598 if (tmp_v_addr == NULL) {
600 * In case of failure, free_shared_mem()
601 * is called, which should free any
602 * memory that was alloced till the
605 rx_blocks->block_virt_addr = tmp_v_addr;
608 memset(tmp_v_addr, 0, size);
609 rx_blocks->block_virt_addr = tmp_v_addr;
610 rx_blocks->block_dma_addr = tmp_p_addr;
611 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
612 rxd_count[nic->rxd_mode],
614 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
615 rx_blocks->rxds[l].virt_addr =
616 rx_blocks->block_virt_addr +
617 (rxd_size[nic->rxd_mode] * l);
618 rx_blocks->rxds[l].dma_addr =
619 rx_blocks->block_dma_addr +
620 (rxd_size[nic->rxd_mode] * l);
623 /* Interlinking all Rx Blocks */
624 for (j = 0; j < blk_cnt; j++) {
626 mac_control->rings[i].rx_blocks[j].block_virt_addr;
628 mac_control->rings[i].rx_blocks[(j + 1) %
629 blk_cnt].block_virt_addr;
631 mac_control->rings[i].rx_blocks[j].block_dma_addr;
633 mac_control->rings[i].rx_blocks[(j + 1) %
634 blk_cnt].block_dma_addr;
636 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
637 pre_rxd_blk->reserved_2_pNext_RxD_block =
638 (unsigned long) tmp_v_addr_next;
639 pre_rxd_blk->pNext_RxD_Blk_physical =
640 (u64) tmp_p_addr_next;
643 if (nic->rxd_mode >= RXD_MODE_3A) {
645 * Allocation of Storages for buffer addresses in 2BUFF mode
646 * and the buffers as well.
648 for (i = 0; i < config->rx_ring_num; i++) {
649 blk_cnt = config->rx_cfg[i].num_rxd /
650 (rxd_count[nic->rxd_mode]+ 1);
651 mac_control->rings[i].ba =
652 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
654 if (!mac_control->rings[i].ba)
656 for (j = 0; j < blk_cnt; j++) {
658 mac_control->rings[i].ba[j] =
659 kmalloc((sizeof(buffAdd_t) *
660 (rxd_count[nic->rxd_mode] + 1)),
662 if (!mac_control->rings[i].ba[j])
664 while (k != rxd_count[nic->rxd_mode]) {
665 ba = &mac_control->rings[i].ba[j][k];
667 ba->ba_0_org = (void *) kmalloc
668 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
671 tmp = (unsigned long)ba->ba_0_org;
673 tmp &= ~((unsigned long) ALIGN_SIZE);
674 ba->ba_0 = (void *) tmp;
676 ba->ba_1_org = (void *) kmalloc
677 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
680 tmp = (unsigned long) ba->ba_1_org;
682 tmp &= ~((unsigned long) ALIGN_SIZE);
683 ba->ba_1 = (void *) tmp;
690 /* Allocation and initialization of Statistics block */
691 size = sizeof(StatInfo_t);
692 mac_control->stats_mem = pci_alloc_consistent
693 (nic->pdev, size, &mac_control->stats_mem_phy);
695 if (!mac_control->stats_mem) {
697 * In case of failure, free_shared_mem() is called, which
698 * should free any memory that was alloced till the
703 mac_control->stats_mem_sz = size;
705 tmp_v_addr = mac_control->stats_mem;
706 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
707 memset(tmp_v_addr, 0, size);
708 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
709 (unsigned long long) tmp_p_addr);
715 * free_shared_mem - Free the allocated Memory
716 * @nic: Device private variable.
717 * Description: This function is to free all memory locations allocated by
718 * the init_shared_mem() function and return it to the kernel.
721 static void free_shared_mem(struct s2io_nic *nic)
723 int i, j, blk_cnt, size;
725 dma_addr_t tmp_p_addr;
726 mac_info_t *mac_control;
727 struct config_param *config;
728 int lst_size, lst_per_page;
729 struct net_device *dev = nic->dev;
734 mac_control = &nic->mac_control;
735 config = &nic->config;
737 lst_size = (sizeof(TxD_t) * config->max_txds);
738 lst_per_page = PAGE_SIZE / lst_size;
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
743 for (j = 0; j < page_num; j++) {
744 int mem_blks = (j * lst_per_page);
745 if (!mac_control->fifos[i].list_info)
747 if (!mac_control->fifos[i].list_info[mem_blks].
750 pci_free_consistent(nic->pdev, PAGE_SIZE,
751 mac_control->fifos[i].
754 mac_control->fifos[i].
758 /* If we got a zero DMA address during allocation,
761 if (mac_control->zerodma_virt_addr) {
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->zerodma_virt_addr,
766 "%s: Freeing TxDL with zero DMA addr. ",
768 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
769 mac_control->zerodma_virt_addr);
771 kfree(mac_control->fifos[i].list_info);
774 size = SIZE_OF_BLOCK;
775 for (i = 0; i < config->rx_ring_num; i++) {
776 blk_cnt = mac_control->rings[i].block_count;
777 for (j = 0; j < blk_cnt; j++) {
778 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
780 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
782 if (tmp_v_addr == NULL)
784 pci_free_consistent(nic->pdev, size,
785 tmp_v_addr, tmp_p_addr);
786 kfree(mac_control->rings[i].rx_blocks[j].rxds);
790 if (nic->rxd_mode >= RXD_MODE_3A) {
791 /* Freeing buffer storage addresses in 2BUFF mode. */
792 for (i = 0; i < config->rx_ring_num; i++) {
793 blk_cnt = config->rx_cfg[i].num_rxd /
794 (rxd_count[nic->rxd_mode] + 1);
795 for (j = 0; j < blk_cnt; j++) {
797 if (!mac_control->rings[i].ba[j])
799 while (k != rxd_count[nic->rxd_mode]) {
801 &mac_control->rings[i].ba[j][k];
806 kfree(mac_control->rings[i].ba[j]);
808 kfree(mac_control->rings[i].ba);
812 if (mac_control->stats_mem) {
813 pci_free_consistent(nic->pdev,
814 mac_control->stats_mem_sz,
815 mac_control->stats_mem,
816 mac_control->stats_mem_phy);
818 if (nic->ufo_in_band_v)
819 kfree(nic->ufo_in_band_v);
823 * s2io_verify_pci_mode -
826 static int s2io_verify_pci_mode(nic_t *nic)
828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
829 register u64 val64 = 0;
832 val64 = readq(&bar0->pci_mode);
833 mode = (u8)GET_PCI_MODE(val64);
835 if ( val64 & PCI_MODE_UNKNOWN_MODE)
836 return -1; /* Unknown PCI mode */
840 #define NEC_VENID 0x1033
841 #define NEC_DEVID 0x0125
842 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844 struct pci_dev *tdev = NULL;
845 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
846 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
847 if (tdev->bus == s2io_pdev->bus->parent)
854 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
856 * s2io_print_pci_mode -
858 static int s2io_print_pci_mode(nic_t *nic)
860 XENA_dev_config_t __iomem *bar0 = nic->bar0;
861 register u64 val64 = 0;
863 struct config_param *config = &nic->config;
865 val64 = readq(&bar0->pci_mode);
866 mode = (u8)GET_PCI_MODE(val64);
868 if ( val64 & PCI_MODE_UNKNOWN_MODE)
869 return -1; /* Unknown PCI mode */
871 config->bus_speed = bus_speed[mode];
873 if (s2io_on_nec_bridge(nic->pdev)) {
874 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
879 if (val64 & PCI_MODE_32_BITS) {
880 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
882 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
886 case PCI_MODE_PCI_33:
887 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
889 case PCI_MODE_PCI_66:
890 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
892 case PCI_MODE_PCIX_M1_66:
893 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
895 case PCI_MODE_PCIX_M1_100:
896 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
898 case PCI_MODE_PCIX_M1_133:
899 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
901 case PCI_MODE_PCIX_M2_66:
902 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
904 case PCI_MODE_PCIX_M2_100:
905 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
907 case PCI_MODE_PCIX_M2_133:
908 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
911 return -1; /* Unsupported bus speed */
918 * init_nic - Initialization of hardware
919 * @nic: device peivate variable
920 * Description: The function sequentially configures every block
921 * of the H/W from their reset values.
922 * Return Value: SUCCESS on success and
923 * '-1' on failure (endian settings incorrect).
926 static int init_nic(struct s2io_nic *nic)
928 XENA_dev_config_t __iomem *bar0 = nic->bar0;
929 struct net_device *dev = nic->dev;
930 register u64 val64 = 0;
934 mac_info_t *mac_control;
935 struct config_param *config;
937 unsigned long long mem_share;
940 mac_control = &nic->mac_control;
941 config = &nic->config;
943 /* to set the swapper controle on the card */
944 if(s2io_set_swapper(nic)) {
945 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
950 * Herc requires EOI to be removed from reset before XGXS, so..
952 if (nic->device_type & XFRAME_II_DEVICE) {
953 val64 = 0xA500000000ULL;
954 writeq(val64, &bar0->sw_reset);
956 val64 = readq(&bar0->sw_reset);
959 /* Remove XGXS from reset state */
961 writeq(val64, &bar0->sw_reset);
963 val64 = readq(&bar0->sw_reset);
965 /* Enable Receiving broadcasts */
966 add = &bar0->mac_cfg;
967 val64 = readq(&bar0->mac_cfg);
968 val64 |= MAC_RMAC_BCAST_ENABLE;
969 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
970 writel((u32) val64, add);
971 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
972 writel((u32) (val64 >> 32), (add + 4));
974 /* Read registers in all blocks */
975 val64 = readq(&bar0->mac_int_mask);
976 val64 = readq(&bar0->mc_int_mask);
977 val64 = readq(&bar0->xgxs_int_mask);
981 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
983 if (nic->device_type & XFRAME_II_DEVICE) {
984 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
985 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
986 &bar0->dtx_control, UF);
988 msleep(1); /* Necessary!! */
992 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
993 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
994 &bar0->dtx_control, UF);
995 val64 = readq(&bar0->dtx_control);
1000 /* Tx DMA Initialization */
1002 writeq(val64, &bar0->tx_fifo_partition_0);
1003 writeq(val64, &bar0->tx_fifo_partition_1);
1004 writeq(val64, &bar0->tx_fifo_partition_2);
1005 writeq(val64, &bar0->tx_fifo_partition_3);
1008 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1010 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1011 13) | vBIT(config->tx_cfg[i].fifo_priority,
1014 if (i == (config->tx_fifo_num - 1)) {
1021 writeq(val64, &bar0->tx_fifo_partition_0);
1025 writeq(val64, &bar0->tx_fifo_partition_1);
1029 writeq(val64, &bar0->tx_fifo_partition_2);
1033 writeq(val64, &bar0->tx_fifo_partition_3);
1039 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1040 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1042 if ((nic->device_type == XFRAME_I_DEVICE) &&
1043 (get_xena_rev_id(nic->pdev) < 4))
1044 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1046 val64 = readq(&bar0->tx_fifo_partition_0);
1047 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1048 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1051 * Initialization of Tx_PA_CONFIG register to ignore packet
1052 * integrity checking.
1054 val64 = readq(&bar0->tx_pa_cfg);
1055 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1056 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1057 writeq(val64, &bar0->tx_pa_cfg);
1059 /* Rx DMA intialization. */
1061 for (i = 0; i < config->rx_ring_num; i++) {
1063 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1066 writeq(val64, &bar0->rx_queue_priority);
1069 * Allocating equal share of memory to all the
1073 if (nic->device_type & XFRAME_II_DEVICE)
1078 for (i = 0; i < config->rx_ring_num; i++) {
1081 mem_share = (mem_size / config->rx_ring_num +
1082 mem_size % config->rx_ring_num);
1083 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1086 mem_share = (mem_size / config->rx_ring_num);
1087 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1090 mem_share = (mem_size / config->rx_ring_num);
1091 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1094 mem_share = (mem_size / config->rx_ring_num);
1095 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1098 mem_share = (mem_size / config->rx_ring_num);
1099 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1102 mem_share = (mem_size / config->rx_ring_num);
1103 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1106 mem_share = (mem_size / config->rx_ring_num);
1107 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1110 mem_share = (mem_size / config->rx_ring_num);
1111 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1115 writeq(val64, &bar0->rx_queue_cfg);
1118 * Filling Tx round robin registers
1119 * as per the number of FIFOs
1121 switch (config->tx_fifo_num) {
1123 val64 = 0x0000000000000000ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 writeq(val64, &bar0->tx_w_round_robin_2);
1127 writeq(val64, &bar0->tx_w_round_robin_3);
1128 writeq(val64, &bar0->tx_w_round_robin_4);
1131 val64 = 0x0000010000010000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_0);
1133 val64 = 0x0100000100000100ULL;
1134 writeq(val64, &bar0->tx_w_round_robin_1);
1135 val64 = 0x0001000001000001ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_2);
1137 val64 = 0x0000010000010000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_3);
1139 val64 = 0x0100000000000000ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_4);
1143 val64 = 0x0001000102000001ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_0);
1145 val64 = 0x0001020000010001ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_1);
1147 val64 = 0x0200000100010200ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_2);
1149 val64 = 0x0001000102000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_3);
1151 val64 = 0x0001020000000000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_4);
1155 val64 = 0x0001020300010200ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_0);
1157 val64 = 0x0100000102030001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_1);
1159 val64 = 0x0200010000010203ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_2);
1161 val64 = 0x0001020001000001ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_3);
1163 val64 = 0x0203000100000000ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_4);
1167 val64 = 0x0001000203000102ULL;
1168 writeq(val64, &bar0->tx_w_round_robin_0);
1169 val64 = 0x0001020001030004ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_1);
1171 val64 = 0x0001000203000102ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_2);
1173 val64 = 0x0001020001030004ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_3);
1175 val64 = 0x0001000000000000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_4);
1179 val64 = 0x0001020304000102ULL;
1180 writeq(val64, &bar0->tx_w_round_robin_0);
1181 val64 = 0x0304050001020001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_1);
1183 val64 = 0x0203000100000102ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_2);
1185 val64 = 0x0304000102030405ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_3);
1187 val64 = 0x0001000200000000ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_4);
1191 val64 = 0x0001020001020300ULL;
1192 writeq(val64, &bar0->tx_w_round_robin_0);
1193 val64 = 0x0102030400010203ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_1);
1195 val64 = 0x0405060001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_2);
1197 val64 = 0x0304050000010200ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_3);
1199 val64 = 0x0102030000000000ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_4);
1203 val64 = 0x0001020300040105ULL;
1204 writeq(val64, &bar0->tx_w_round_robin_0);
1205 val64 = 0x0200030106000204ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_1);
1207 val64 = 0x0103000502010007ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_2);
1209 val64 = 0x0304010002060500ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_3);
1211 val64 = 0x0103020400000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_4);
1216 /* Enable Tx FIFO partition 0. */
1217 val64 = readq(&bar0->tx_fifo_partition_0);
1218 val64 |= (TX_FIFO_PARTITION_EN);
1219 writeq(val64, &bar0->tx_fifo_partition_0);
1221 /* Filling the Rx round robin registers as per the
1222 * number of Rings and steering based on QoS.
1224 switch (config->rx_ring_num) {
1226 val64 = 0x8080808080808080ULL;
1227 writeq(val64, &bar0->rts_qos_steering);
1230 val64 = 0x0000010000010000ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_0);
1232 val64 = 0x0100000100000100ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_1);
1234 val64 = 0x0001000001000001ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_2);
1236 val64 = 0x0000010000010000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_3);
1238 val64 = 0x0100000000000000ULL;
1239 writeq(val64, &bar0->rx_w_round_robin_4);
1241 val64 = 0x8080808040404040ULL;
1242 writeq(val64, &bar0->rts_qos_steering);
1245 val64 = 0x0001000102000001ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_0);
1247 val64 = 0x0001020000010001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_1);
1249 val64 = 0x0200000100010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_2);
1251 val64 = 0x0001000102000001ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_3);
1253 val64 = 0x0001020000000000ULL;
1254 writeq(val64, &bar0->rx_w_round_robin_4);
1256 val64 = 0x8080804040402020ULL;
1257 writeq(val64, &bar0->rts_qos_steering);
1260 val64 = 0x0001020300010200ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_0);
1262 val64 = 0x0100000102030001ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_1);
1264 val64 = 0x0200010000010203ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_2);
1266 val64 = 0x0001020001000001ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_3);
1268 val64 = 0x0203000100000000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_4);
1271 val64 = 0x8080404020201010ULL;
1272 writeq(val64, &bar0->rts_qos_steering);
1275 val64 = 0x0001000203000102ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_0);
1277 val64 = 0x0001020001030004ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_1);
1279 val64 = 0x0001000203000102ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_2);
1281 val64 = 0x0001020001030004ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_3);
1283 val64 = 0x0001000000000000ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_4);
1286 val64 = 0x8080404020201008ULL;
1287 writeq(val64, &bar0->rts_qos_steering);
1290 val64 = 0x0001020304000102ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_0);
1292 val64 = 0x0304050001020001ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_1);
1294 val64 = 0x0203000100000102ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_2);
1296 val64 = 0x0304000102030405ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_3);
1298 val64 = 0x0001000200000000ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_4);
1301 val64 = 0x8080404020100804ULL;
1302 writeq(val64, &bar0->rts_qos_steering);
1305 val64 = 0x0001020001020300ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_0);
1307 val64 = 0x0102030400010203ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_1);
1309 val64 = 0x0405060001020001ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_2);
1311 val64 = 0x0304050000010200ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_3);
1313 val64 = 0x0102030000000000ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_4);
1316 val64 = 0x8080402010080402ULL;
1317 writeq(val64, &bar0->rts_qos_steering);
1320 val64 = 0x0001020300040105ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_0);
1322 val64 = 0x0200030106000204ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_1);
1324 val64 = 0x0103000502010007ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_2);
1326 val64 = 0x0304010002060500ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_3);
1328 val64 = 0x0103020400000000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_4);
1331 val64 = 0x8040201008040201ULL;
1332 writeq(val64, &bar0->rts_qos_steering);
1338 for (i = 0; i < 8; i++)
1339 writeq(val64, &bar0->rts_frm_len_n[i]);
1341 /* Set the default rts frame length for the rings configured */
1342 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1343 for (i = 0 ; i < config->rx_ring_num ; i++)
1344 writeq(val64, &bar0->rts_frm_len_n[i]);
1346 /* Set the frame length for the configured rings
1347 * desired by the user
1349 for (i = 0; i < config->rx_ring_num; i++) {
1350 /* If rts_frm_len[i] == 0 then it is assumed that user not
1351 * specified frame length steering.
1352 * If the user provides the frame length then program
1353 * the rts_frm_len register for those values or else
1354 * leave it as it is.
1356 if (rts_frm_len[i] != 0) {
1357 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1358 &bar0->rts_frm_len_n[i]);
1362 /* Program statistics memory */
1363 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1365 if (nic->device_type == XFRAME_II_DEVICE) {
1366 val64 = STAT_BC(0x320);
1367 writeq(val64, &bar0->stat_byte_cnt);
1371 * Initializing the sampling rate for the device to calculate the
1372 * bandwidth utilization.
1374 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1375 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1376 writeq(val64, &bar0->mac_link_util);
1380 * Initializing the Transmit and Receive Traffic Interrupt
1384 * TTI Initialization. Default Tx timer gets us about
1385 * 250 interrupts per sec. Continuous interrupts are enabled
1388 if (nic->device_type == XFRAME_II_DEVICE) {
1389 int count = (nic->config.bus_speed * 125)/2;
1390 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1393 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1395 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1396 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1397 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1398 if (use_continuous_tx_intrs)
1399 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1400 writeq(val64, &bar0->tti_data1_mem);
1402 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1403 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1404 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1405 writeq(val64, &bar0->tti_data2_mem);
1407 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1408 writeq(val64, &bar0->tti_command_mem);
1411 * Once the operation completes, the Strobe bit of the command
1412 * register will be reset. We poll for this particular condition
1413 * We wait for a maximum of 500ms for the operation to complete,
1414 * if it's not complete by then we return error.
1418 val64 = readq(&bar0->tti_command_mem);
1419 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1423 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1431 if (nic->config.bimodal) {
1433 for (k = 0; k < config->rx_ring_num; k++) {
1434 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1435 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1436 writeq(val64, &bar0->tti_command_mem);
1439 * Once the operation completes, the Strobe bit of the command
1440 * register will be reset. We poll for this particular condition
1441 * We wait for a maximum of 500ms for the operation to complete,
1442 * if it's not complete by then we return error.
1446 val64 = readq(&bar0->tti_command_mem);
1447 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1452 "%s: TTI init Failed\n",
1462 /* RTI Initialization */
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1465 * Programmed to generate Apprx 500 Intrs per
1468 int count = (nic->config.bus_speed * 125)/4;
1469 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1471 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1473 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1474 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1475 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1477 writeq(val64, &bar0->rti_data1_mem);
1479 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1480 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1481 if (nic->intr_type == MSI_X)
1482 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1483 RTI_DATA2_MEM_RX_UFC_D(0x40));
1485 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1486 RTI_DATA2_MEM_RX_UFC_D(0x80));
1487 writeq(val64, &bar0->rti_data2_mem);
1489 for (i = 0; i < config->rx_ring_num; i++) {
1490 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1491 | RTI_CMD_MEM_OFFSET(i);
1492 writeq(val64, &bar0->rti_command_mem);
1495 * Once the operation completes, the Strobe bit of the
1496 * command register will be reset. We poll for this
1497 * particular condition. We wait for a maximum of 500ms
1498 * for the operation to complete, if it's not complete
1499 * by then we return error.
1503 val64 = readq(&bar0->rti_command_mem);
1504 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1508 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1519 * Initializing proper values as Pause threshold into all
1520 * the 8 Queues on Rx side.
1522 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1525 /* Disable RMAC PAD STRIPPING */
1526 add = &bar0->mac_cfg;
1527 val64 = readq(&bar0->mac_cfg);
1528 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1529 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1530 writel((u32) (val64), add);
1531 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1532 writel((u32) (val64 >> 32), (add + 4));
1533 val64 = readq(&bar0->mac_cfg);
1535 /* Enable FCS stripping by adapter */
1536 add = &bar0->mac_cfg;
1537 val64 = readq(&bar0->mac_cfg);
1538 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 writeq(val64, &bar0->mac_cfg);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1549 * Set the time value to be inserted in the pause frame
1550 * generated by xena.
1552 val64 = readq(&bar0->rmac_pause_cfg);
1553 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1554 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1555 writeq(val64, &bar0->rmac_pause_cfg);
1558 * Set the Threshold Limit for Generating the pause frame
1559 * If the amount of data in any Queue exceeds ratio of
1560 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1561 * pause frame is generated
1564 for (i = 0; i < 4; i++) {
1566 (((u64) 0xFF00 | nic->mac_control.
1567 mc_pause_threshold_q0q3)
1570 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1573 for (i = 0; i < 4; i++) {
1575 (((u64) 0xFF00 | nic->mac_control.
1576 mc_pause_threshold_q4q7)
1579 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1582 * TxDMA will stop Read request if the number of read split has
1583 * exceeded the limit pointed by shared_splits
1585 val64 = readq(&bar0->pic_control);
1586 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1587 writeq(val64, &bar0->pic_control);
1589 if (nic->config.bus_speed == 266) {
1590 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1591 writeq(0x0, &bar0->read_retry_delay);
1592 writeq(0x0, &bar0->write_retry_delay);
1596 * Programming the Herc to split every write transaction
1597 * that does not start on an ADB to reduce disconnects.
1599 if (nic->device_type == XFRAME_II_DEVICE) {
1600 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1601 writeq(val64, &bar0->misc_control);
1602 val64 = readq(&bar0->pic_control2);
1603 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1604 writeq(val64, &bar0->pic_control2);
1606 if (strstr(nic->product_name, "CX4")) {
1607 val64 = TMAC_AVG_IPG(0x17);
1608 writeq(val64, &bar0->tmac_avg_ipg);
1613 #define LINK_UP_DOWN_INTERRUPT 1
1614 #define MAC_RMAC_ERR_TIMER 2
1616 static int s2io_link_fault_indication(nic_t *nic)
1618 if (nic->intr_type != INTA)
1619 return MAC_RMAC_ERR_TIMER;
1620 if (nic->device_type == XFRAME_II_DEVICE)
1621 return LINK_UP_DOWN_INTERRUPT;
1623 return MAC_RMAC_ERR_TIMER;
1627 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1628 * @nic: device private variable,
1629 * @mask: A mask indicating which Intr block must be modified and,
1630 * @flag: A flag indicating whether to enable or disable the Intrs.
1631 * Description: This function will either disable or enable the interrupts
1632 * depending on the flag argument. The mask argument can be used to
1633 * enable/disable any Intr block.
1634 * Return Value: NONE.
1637 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1639 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1640 register u64 val64 = 0, temp64 = 0;
1642 /* Top level interrupt classification */
1643 /* PIC Interrupts */
1644 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1645 /* Enable PIC Intrs in the general intr mask register */
1646 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1647 if (flag == ENABLE_INTRS) {
1648 temp64 = readq(&bar0->general_int_mask);
1649 temp64 &= ~((u64) val64);
1650 writeq(temp64, &bar0->general_int_mask);
1652 * If Hercules adapter enable GPIO otherwise
1653 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1654 * interrupts for now.
1657 if (s2io_link_fault_indication(nic) ==
1658 LINK_UP_DOWN_INTERRUPT ) {
1659 temp64 = readq(&bar0->pic_int_mask);
1660 temp64 &= ~((u64) PIC_INT_GPIO);
1661 writeq(temp64, &bar0->pic_int_mask);
1662 temp64 = readq(&bar0->gpio_int_mask);
1663 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1664 writeq(temp64, &bar0->gpio_int_mask);
1666 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1669 * No MSI Support is available presently, so TTI and
1670 * RTI interrupts are also disabled.
1672 } else if (flag == DISABLE_INTRS) {
1674 * Disable PIC Intrs in the general
1675 * intr mask register
1677 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1678 temp64 = readq(&bar0->general_int_mask);
1680 writeq(val64, &bar0->general_int_mask);
1684 /* DMA Interrupts */
1685 /* Enabling/Disabling Tx DMA interrupts */
1686 if (mask & TX_DMA_INTR) {
1687 /* Enable TxDMA Intrs in the general intr mask register */
1688 val64 = TXDMA_INT_M;
1689 if (flag == ENABLE_INTRS) {
1690 temp64 = readq(&bar0->general_int_mask);
1691 temp64 &= ~((u64) val64);
1692 writeq(temp64, &bar0->general_int_mask);
1694 * Keep all interrupts other than PFC interrupt
1695 * and PCC interrupt disabled in DMA level.
1697 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1699 writeq(val64, &bar0->txdma_int_mask);
1701 * Enable only the MISC error 1 interrupt in PFC block
1703 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1704 writeq(val64, &bar0->pfc_err_mask);
1706 * Enable only the FB_ECC error interrupt in PCC block
1708 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1709 writeq(val64, &bar0->pcc_err_mask);
1710 } else if (flag == DISABLE_INTRS) {
1712 * Disable TxDMA Intrs in the general intr mask
1715 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1716 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1717 temp64 = readq(&bar0->general_int_mask);
1719 writeq(val64, &bar0->general_int_mask);
1723 /* Enabling/Disabling Rx DMA interrupts */
1724 if (mask & RX_DMA_INTR) {
1725 /* Enable RxDMA Intrs in the general intr mask register */
1726 val64 = RXDMA_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1732 * All RxDMA block interrupts are disabled for now
1735 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1736 } else if (flag == DISABLE_INTRS) {
1738 * Disable RxDMA Intrs in the general intr mask
1741 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1744 writeq(val64, &bar0->general_int_mask);
1748 /* MAC Interrupts */
1749 /* Enabling/Disabling MAC interrupts */
1750 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1751 val64 = TXMAC_INT_M | RXMAC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1757 * All MAC block error interrupts are disabled for now
1760 } else if (flag == DISABLE_INTRS) {
1762 * Disable MAC Intrs in the general intr mask register
1764 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1765 writeq(DISABLE_ALL_INTRS,
1766 &bar0->mac_rmac_err_mask);
1768 temp64 = readq(&bar0->general_int_mask);
1770 writeq(val64, &bar0->general_int_mask);
1774 /* XGXS Interrupts */
1775 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1776 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1777 if (flag == ENABLE_INTRS) {
1778 temp64 = readq(&bar0->general_int_mask);
1779 temp64 &= ~((u64) val64);
1780 writeq(temp64, &bar0->general_int_mask);
1782 * All XGXS block error interrupts are disabled for now
1785 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1786 } else if (flag == DISABLE_INTRS) {
1788 * Disable MC Intrs in the general intr mask register
1790 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1791 temp64 = readq(&bar0->general_int_mask);
1793 writeq(val64, &bar0->general_int_mask);
1797 /* Memory Controller(MC) interrupts */
1798 if (mask & MC_INTR) {
1800 if (flag == ENABLE_INTRS) {
1801 temp64 = readq(&bar0->general_int_mask);
1802 temp64 &= ~((u64) val64);
1803 writeq(temp64, &bar0->general_int_mask);
1805 * Enable all MC Intrs.
1807 writeq(0x0, &bar0->mc_int_mask);
1808 writeq(0x0, &bar0->mc_err_mask);
1809 } else if (flag == DISABLE_INTRS) {
1811 * Disable MC Intrs in the general intr mask register
1813 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1814 temp64 = readq(&bar0->general_int_mask);
1816 writeq(val64, &bar0->general_int_mask);
1821 /* Tx traffic interrupts */
1822 if (mask & TX_TRAFFIC_INTR) {
1823 val64 = TXTRAFFIC_INT_M;
1824 if (flag == ENABLE_INTRS) {
1825 temp64 = readq(&bar0->general_int_mask);
1826 temp64 &= ~((u64) val64);
1827 writeq(temp64, &bar0->general_int_mask);
1829 * Enable all the Tx side interrupts
1830 * writing 0 Enables all 64 TX interrupt levels
1832 writeq(0x0, &bar0->tx_traffic_mask);
1833 } else if (flag == DISABLE_INTRS) {
1835 * Disable Tx Traffic Intrs in the general intr mask
1838 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1839 temp64 = readq(&bar0->general_int_mask);
1841 writeq(val64, &bar0->general_int_mask);
1845 /* Rx traffic interrupts */
1846 if (mask & RX_TRAFFIC_INTR) {
1847 val64 = RXTRAFFIC_INT_M;
1848 if (flag == ENABLE_INTRS) {
1849 temp64 = readq(&bar0->general_int_mask);
1850 temp64 &= ~((u64) val64);
1851 writeq(temp64, &bar0->general_int_mask);
1852 /* writing 0 Enables all 8 RX interrupt levels */
1853 writeq(0x0, &bar0->rx_traffic_mask);
1854 } else if (flag == DISABLE_INTRS) {
1856 * Disable Rx Traffic Intrs in the general intr mask
1859 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1860 temp64 = readq(&bar0->general_int_mask);
1862 writeq(val64, &bar0->general_int_mask);
1867 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1871 if (flag == FALSE) {
1872 if ((!herc && (rev_id >= 4)) || herc) {
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1874 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1875 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1879 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1880 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1881 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1886 if ((!herc && (rev_id >= 4)) || herc) {
1887 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1889 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1890 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1891 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1895 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1896 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1897 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1898 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1899 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1908 * verify_xena_quiescence - Checks whether the H/W is ready
1909 * @val64 : Value read from adapter status register.
1910 * @flag : indicates if the adapter enable bit was ever written once
1912 * Description: Returns whether the H/W is ready to go or not. Depending
1913 * on whether adapter enable bit was written or not the comparison
1914 * differs and the calling function passes the input argument flag to
1916 * Return: 1 If xena is quiescence
1917 * 0 If Xena is not quiescence
1920 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1923 u64 tmp64 = ~((u64) val64);
1924 int rev_id = get_xena_rev_id(sp->pdev);
1926 herc = (sp->device_type == XFRAME_II_DEVICE);
1929 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1930 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1931 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1932 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1933 ADAPTER_STATUS_P_PLL_LOCK))) {
1934 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1941 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1942 * @sp: Pointer to device specifc structure
1944 * New procedure to clear mac address reading problems on Alpha platforms
1948 static void fix_mac_address(nic_t * sp)
1950 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1954 while (fix_mac[i] != END_SIGN) {
1955 writeq(fix_mac[i++], &bar0->gpio_control);
1957 val64 = readq(&bar0->gpio_control);
1962 * start_nic - Turns the device on
1963 * @nic : device private variable.
1965 * This function actually turns the device on. Before this function is
1966 * called,all Registers are configured from their reset states
1967 * and shared memory is allocated but the NIC is still quiescent. On
1968 * calling this function, the device interrupts are cleared and the NIC is
1969 * literally switched on by writing into the adapter control register.
1971 * SUCCESS on success and -1 on failure.
1974 static int start_nic(struct s2io_nic *nic)
1976 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1977 struct net_device *dev = nic->dev;
1978 register u64 val64 = 0;
1980 mac_info_t *mac_control;
1981 struct config_param *config;
1983 mac_control = &nic->mac_control;
1984 config = &nic->config;
1986 /* PRC Initialization and configuration */
1987 for (i = 0; i < config->rx_ring_num; i++) {
1988 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1989 &bar0->prc_rxd0_n[i]);
1991 val64 = readq(&bar0->prc_ctrl_n[i]);
1992 if (nic->config.bimodal)
1993 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1994 if (nic->rxd_mode == RXD_MODE_1)
1995 val64 |= PRC_CTRL_RC_ENABLED;
1997 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1998 if (nic->device_type == XFRAME_II_DEVICE)
1999 val64 |= PRC_CTRL_GROUP_READS;
2000 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2001 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2002 writeq(val64, &bar0->prc_ctrl_n[i]);
2005 if (nic->rxd_mode == RXD_MODE_3B) {
2006 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2007 val64 = readq(&bar0->rx_pa_cfg);
2008 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2009 writeq(val64, &bar0->rx_pa_cfg);
2013 * Enabling MC-RLDRAM. After enabling the device, we timeout
2014 * for around 100ms, which is approximately the time required
2015 * for the device to be ready for operation.
2017 val64 = readq(&bar0->mc_rldram_mrs);
2018 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2019 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2020 val64 = readq(&bar0->mc_rldram_mrs);
2022 msleep(100); /* Delay by around 100 ms. */
2024 /* Enabling ECC Protection. */
2025 val64 = readq(&bar0->adapter_control);
2026 val64 &= ~ADAPTER_ECC_EN;
2027 writeq(val64, &bar0->adapter_control);
2030 * Clearing any possible Link state change interrupts that
2031 * could have popped up just before Enabling the card.
2033 val64 = readq(&bar0->mac_rmac_err_reg);
2035 writeq(val64, &bar0->mac_rmac_err_reg);
2038 * Verify if the device is ready to be enabled, if so enable
2041 val64 = readq(&bar0->adapter_status);
2042 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2043 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2044 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2045 (unsigned long long) val64);
2050 * With some switches, link might be already up at this point.
2051 * Because of this weird behavior, when we enable laser,
2052 * we may not get link. We need to handle this. We cannot
2053 * figure out which switch is misbehaving. So we are forced to
2054 * make a global change.
2057 /* Enabling Laser. */
2058 val64 = readq(&bar0->adapter_control);
2059 val64 |= ADAPTER_EOI_TX_ON;
2060 writeq(val64, &bar0->adapter_control);
2062 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2064 * Dont see link state interrupts initally on some switches,
2065 * so directly scheduling the link state task here.
2067 schedule_work(&nic->set_link_task);
2069 /* SXE-002: Initialize link and activity LED */
2070 subid = nic->pdev->subsystem_device;
2071 if (((subid & 0xFF) >= 0x07) &&
2072 (nic->device_type == XFRAME_I_DEVICE)) {
2073 val64 = readq(&bar0->gpio_control);
2074 val64 |= 0x0000800000000000ULL;
2075 writeq(val64, &bar0->gpio_control);
2076 val64 = 0x0411040400000000ULL;
2077 writeq(val64, (void __iomem *)bar0 + 0x2700);
2083 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2085 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2087 nic_t *nic = fifo_data->nic;
2088 struct sk_buff *skb;
2093 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2094 pci_unmap_single(nic->pdev, (dma_addr_t)
2095 txds->Buffer_Pointer, sizeof(u64),
2100 skb = (struct sk_buff *) ((unsigned long)
2101 txds->Host_Control);
2103 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2106 pci_unmap_single(nic->pdev, (dma_addr_t)
2107 txds->Buffer_Pointer,
2108 skb->len - skb->data_len,
2110 frg_cnt = skb_shinfo(skb)->nr_frags;
2113 for (j = 0; j < frg_cnt; j++, txds++) {
2114 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2115 if (!txds->Buffer_Pointer)
2117 pci_unmap_page(nic->pdev, (dma_addr_t)
2118 txds->Buffer_Pointer,
2119 frag->size, PCI_DMA_TODEVICE);
2122 txdlp->Host_Control = 0;
2127 * free_tx_buffers - Free all queued Tx buffers
2128 * @nic : device private variable.
2130 * Free all queued Tx buffers.
2131 * Return Value: void
2134 static void free_tx_buffers(struct s2io_nic *nic)
2136 struct net_device *dev = nic->dev;
2137 struct sk_buff *skb;
2140 mac_info_t *mac_control;
2141 struct config_param *config;
2144 mac_control = &nic->mac_control;
2145 config = &nic->config;
2147 for (i = 0; i < config->tx_fifo_num; i++) {
2148 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2149 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2151 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2158 "%s:forcibly freeing %d skbs on FIFO%d\n",
2160 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2161 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2166 * stop_nic - To stop the nic
2167 * @nic ; device private variable.
2169 * This function does exactly the opposite of what the start_nic()
2170 * function does. This function is called to stop the device.
2175 static void stop_nic(struct s2io_nic *nic)
2177 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2178 register u64 val64 = 0;
2180 mac_info_t *mac_control;
2181 struct config_param *config;
2183 mac_control = &nic->mac_control;
2184 config = &nic->config;
2186 /* Disable all interrupts */
2187 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2188 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2189 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2190 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2192 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2193 val64 = readq(&bar0->adapter_control);
2194 val64 &= ~(ADAPTER_CNTL_EN);
2195 writeq(val64, &bar0->adapter_control);
2198 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2200 struct net_device *dev = nic->dev;
2201 struct sk_buff *frag_list;
2204 /* Buffer-1 receives L3/L4 headers */
2205 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2206 (nic->pdev, skb->data, l3l4hdr_size + 4,
2207 PCI_DMA_FROMDEVICE);
2209 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2210 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2211 if (skb_shinfo(skb)->frag_list == NULL) {
2212 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2215 frag_list = skb_shinfo(skb)->frag_list;
2216 frag_list->next = NULL;
2217 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2218 frag_list->data = tmp;
2219 frag_list->tail = tmp;
2221 /* Buffer-2 receives L4 data payload */
2222 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2223 frag_list->data, dev->mtu,
2224 PCI_DMA_FROMDEVICE);
2225 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2226 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2232 * fill_rx_buffers - Allocates the Rx side skbs
2233 * @nic: device private variable
2234 * @ring_no: ring number
2236 * The function allocates Rx side skbs and puts the physical
2237 * address of these buffers into the RxD buffer pointers, so that the NIC
2238 * can DMA the received frame into these locations.
2239 * The NIC supports 3 receive modes, viz
2241 * 2. three buffer and
2242 * 3. Five buffer modes.
2243 * Each mode defines how many fragments the received frame will be split
2244 * up into by the NIC. The frame is split into L3 header, L4 Header,
2245 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2246 * is split into 3 fragments. As of now only single buffer mode is
2249 * SUCCESS on success or an appropriate -ve value on failure.
2252 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2254 struct net_device *dev = nic->dev;
2255 struct sk_buff *skb;
2257 int off, off1, size, block_no, block_no1;
2260 mac_info_t *mac_control;
2261 struct config_param *config;
2264 #ifndef CONFIG_S2IO_NAPI
2265 unsigned long flags;
2267 RxD_t *first_rxdp = NULL;
2269 mac_control = &nic->mac_control;
2270 config = &nic->config;
2271 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2272 atomic_read(&nic->rx_bufs_left[ring_no]);
2274 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2275 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2276 while (alloc_tab < alloc_cnt) {
2277 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2279 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2281 rxdp = mac_control->rings[ring_no].
2282 rx_blocks[block_no].rxds[off].virt_addr;
2284 if ((block_no == block_no1) && (off == off1) &&
2285 (rxdp->Host_Control)) {
2286 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2288 DBG_PRINT(INTR_DBG, " info equated\n");
2291 if (off && (off == rxd_count[nic->rxd_mode])) {
2292 mac_control->rings[ring_no].rx_curr_put_info.
2294 if (mac_control->rings[ring_no].rx_curr_put_info.
2295 block_index == mac_control->rings[ring_no].
2297 mac_control->rings[ring_no].rx_curr_put_info.
2299 block_no = mac_control->rings[ring_no].
2300 rx_curr_put_info.block_index;
2301 if (off == rxd_count[nic->rxd_mode])
2303 mac_control->rings[ring_no].rx_curr_put_info.
2305 rxdp = mac_control->rings[ring_no].
2306 rx_blocks[block_no].block_virt_addr;
2307 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2310 #ifndef CONFIG_S2IO_NAPI
2311 spin_lock_irqsave(&nic->put_lock, flags);
2312 mac_control->rings[ring_no].put_pos =
2313 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2314 spin_unlock_irqrestore(&nic->put_lock, flags);
2316 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2317 ((nic->rxd_mode >= RXD_MODE_3A) &&
2318 (rxdp->Control_2 & BIT(0)))) {
2319 mac_control->rings[ring_no].rx_curr_put_info.
2323 /* calculate size of skb based on ring mode */
2324 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2325 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2326 if (nic->rxd_mode == RXD_MODE_1)
2327 size += NET_IP_ALIGN;
2328 else if (nic->rxd_mode == RXD_MODE_3B)
2329 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2331 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2334 skb = dev_alloc_skb(size);
2336 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2337 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2340 first_rxdp->Control_1 |= RXD_OWN_XENA;
2344 if (nic->rxd_mode == RXD_MODE_1) {
2345 /* 1 buffer mode - normal operation mode */
2346 memset(rxdp, 0, sizeof(RxD1_t));
2347 skb_reserve(skb, NET_IP_ALIGN);
2348 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2349 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2350 PCI_DMA_FROMDEVICE);
2351 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2353 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2355 * 2 or 3 buffer mode -
2356 * Both 2 buffer mode and 3 buffer mode provides 128
2357 * byte aligned receive buffers.
2359 * 3 buffer mode provides header separation where in
2360 * skb->data will have L3/L4 headers where as
2361 * skb_shinfo(skb)->frag_list will have the L4 data
2365 memset(rxdp, 0, sizeof(RxD3_t));
2366 ba = &mac_control->rings[ring_no].ba[block_no][off];
2367 skb_reserve(skb, BUF0_LEN);
2368 tmp = (u64)(unsigned long) skb->data;
2371 skb->data = (void *) (unsigned long)tmp;
2372 skb->tail = (void *) (unsigned long)tmp;
2374 ((RxD3_t*)rxdp)->Buffer0_ptr =
2375 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2376 PCI_DMA_FROMDEVICE);
2377 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2378 if (nic->rxd_mode == RXD_MODE_3B) {
2379 /* Two buffer mode */
2382 * Buffer2 will have L3/L4 header plus
2385 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2386 (nic->pdev, skb->data, dev->mtu + 4,
2387 PCI_DMA_FROMDEVICE);
2389 /* Buffer-1 will be dummy buffer not used */
2390 ((RxD3_t*)rxdp)->Buffer1_ptr =
2391 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2392 PCI_DMA_FROMDEVICE);
2393 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2394 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2398 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2399 dev_kfree_skb_irq(skb);
2402 first_rxdp->Control_1 |=
2408 rxdp->Control_2 |= BIT(0);
2410 rxdp->Host_Control = (unsigned long) (skb);
2411 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2412 rxdp->Control_1 |= RXD_OWN_XENA;
2414 if (off == (rxd_count[nic->rxd_mode] + 1))
2416 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2418 rxdp->Control_2 |= SET_RXD_MARKER;
2419 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2422 first_rxdp->Control_1 |= RXD_OWN_XENA;
2426 atomic_inc(&nic->rx_bufs_left[ring_no]);
2431 /* Transfer ownership of first descriptor to adapter just before
2432 * exiting. Before that, use memory barrier so that ownership
2433 * and other fields are seen by adapter correctly.
2437 first_rxdp->Control_1 |= RXD_OWN_XENA;
2443 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2445 struct net_device *dev = sp->dev;
2447 struct sk_buff *skb;
2449 mac_info_t *mac_control;
2452 mac_control = &sp->mac_control;
2453 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2454 rxdp = mac_control->rings[ring_no].
2455 rx_blocks[blk].rxds[j].virt_addr;
2456 skb = (struct sk_buff *)
2457 ((unsigned long) rxdp->Host_Control);
2461 if (sp->rxd_mode == RXD_MODE_1) {
2462 pci_unmap_single(sp->pdev, (dma_addr_t)
2463 ((RxD1_t*)rxdp)->Buffer0_ptr,
2465 HEADER_ETHERNET_II_802_3_SIZE
2466 + HEADER_802_2_SIZE +
2468 PCI_DMA_FROMDEVICE);
2469 memset(rxdp, 0, sizeof(RxD1_t));
2470 } else if(sp->rxd_mode == RXD_MODE_3B) {
2471 ba = &mac_control->rings[ring_no].
2473 pci_unmap_single(sp->pdev, (dma_addr_t)
2474 ((RxD3_t*)rxdp)->Buffer0_ptr,
2476 PCI_DMA_FROMDEVICE);
2477 pci_unmap_single(sp->pdev, (dma_addr_t)
2478 ((RxD3_t*)rxdp)->Buffer1_ptr,
2480 PCI_DMA_FROMDEVICE);
2481 pci_unmap_single(sp->pdev, (dma_addr_t)
2482 ((RxD3_t*)rxdp)->Buffer2_ptr,
2484 PCI_DMA_FROMDEVICE);
2485 memset(rxdp, 0, sizeof(RxD3_t));
2487 pci_unmap_single(sp->pdev, (dma_addr_t)
2488 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2489 PCI_DMA_FROMDEVICE);
2490 pci_unmap_single(sp->pdev, (dma_addr_t)
2491 ((RxD3_t*)rxdp)->Buffer1_ptr,
2493 PCI_DMA_FROMDEVICE);
2494 pci_unmap_single(sp->pdev, (dma_addr_t)
2495 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2496 PCI_DMA_FROMDEVICE);
2497 memset(rxdp, 0, sizeof(RxD3_t));
2500 atomic_dec(&sp->rx_bufs_left[ring_no]);
2505 * free_rx_buffers - Frees all Rx buffers
2506 * @sp: device private variable.
2508 * This function will free all Rx buffers allocated by host.
2513 static void free_rx_buffers(struct s2io_nic *sp)
2515 struct net_device *dev = sp->dev;
2516 int i, blk = 0, buf_cnt = 0;
2517 mac_info_t *mac_control;
2518 struct config_param *config;
2520 mac_control = &sp->mac_control;
2521 config = &sp->config;
2523 for (i = 0; i < config->rx_ring_num; i++) {
2524 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2525 free_rxd_blk(sp,i,blk);
2527 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2528 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2529 mac_control->rings[i].rx_curr_put_info.offset = 0;
2530 mac_control->rings[i].rx_curr_get_info.offset = 0;
2531 atomic_set(&sp->rx_bufs_left[i], 0);
2532 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2533 dev->name, buf_cnt, i);
2538 * s2io_poll - Rx interrupt handler for NAPI support
2539 * @dev : pointer to the device structure.
2540 * @budget : The number of packets that were budgeted to be processed
2541 * during one pass through the 'Poll" function.
2543 * Comes into picture only if NAPI support has been incorporated. It does
2544 * the same thing that rx_intr_handler does, but not in a interrupt context
2545 * also It will process only a given number of packets.
2547 * 0 on success and 1 if there are No Rx packets to be processed.
2550 #if defined(CONFIG_S2IO_NAPI)
2551 static int s2io_poll(struct net_device *dev, int *budget)
2553 nic_t *nic = dev->priv;
2554 int pkt_cnt = 0, org_pkts_to_process;
2555 mac_info_t *mac_control;
2556 struct config_param *config;
2557 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2558 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2561 atomic_inc(&nic->isr_cnt);
2562 mac_control = &nic->mac_control;
2563 config = &nic->config;
2565 nic->pkts_to_process = *budget;
2566 if (nic->pkts_to_process > dev->quota)
2567 nic->pkts_to_process = dev->quota;
2568 org_pkts_to_process = nic->pkts_to_process;
2570 writeq(val64, &bar0->rx_traffic_int);
2571 val64 = readl(&bar0->rx_traffic_int);
2573 for (i = 0; i < config->rx_ring_num; i++) {
2574 rx_intr_handler(&mac_control->rings[i]);
2575 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2576 if (!nic->pkts_to_process) {
2577 /* Quota for the current iteration has been met */
2584 dev->quota -= pkt_cnt;
2586 netif_rx_complete(dev);
2588 for (i = 0; i < config->rx_ring_num; i++) {
2589 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2590 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2591 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2595 /* Re enable the Rx interrupts. */
2596 writeq(0x0, &bar0->rx_traffic_mask);
2597 val64 = readl(&bar0->rx_traffic_mask);
2598 atomic_dec(&nic->isr_cnt);
2602 dev->quota -= pkt_cnt;
2605 for (i = 0; i < config->rx_ring_num; i++) {
2606 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2607 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2608 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2612 atomic_dec(&nic->isr_cnt);
2618 * s2io_netpoll - Rx interrupt service handler for netpoll support
2619 * @dev : pointer to the device structure.
2621 * Polling 'interrupt' - used by things like netconsole to send skbs
2622 * without having to re-enable interrupts. It's not called while
2623 * the interrupt routine is executing.
2626 #ifdef CONFIG_NET_POLL_CONTROLLER
2627 static void s2io_netpoll(struct net_device *dev)
2629 nic_t *nic = dev->priv;
2630 mac_info_t *mac_control;
2631 struct config_param *config;
2632 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2636 disable_irq(dev->irq);
2638 atomic_inc(&nic->isr_cnt);
2639 mac_control = &nic->mac_control;
2640 config = &nic->config;
2642 val64 = readq(&bar0->rx_traffic_int);
2643 writeq(val64, &bar0->rx_traffic_int);
2645 for (i = 0; i < config->rx_ring_num; i++)
2646 rx_intr_handler(&mac_control->rings[i]);
2648 for (i = 0; i < config->rx_ring_num; i++) {
2649 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2650 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2651 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2655 atomic_dec(&nic->isr_cnt);
2656 enable_irq(dev->irq);
2662 * rx_intr_handler - Rx interrupt handler
2663 * @nic: device private variable.
2665 * If the interrupt is because of a received frame or if the
2666 * receive ring contains fresh as yet un-processed frames,this function is
2667 * called. It picks out the RxD at which place the last Rx processing had
2668 * stopped and sends the skb to the OSM's Rx handler and then increments
2673 static void rx_intr_handler(ring_info_t *ring_data)
2675 nic_t *nic = ring_data->nic;
2676 struct net_device *dev = (struct net_device *) nic->dev;
2677 int get_block, put_block, put_offset;
2678 rx_curr_get_info_t get_info, put_info;
2680 struct sk_buff *skb;
2681 #ifndef CONFIG_S2IO_NAPI
2686 spin_lock(&nic->rx_lock);
2687 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2688 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2689 __FUNCTION__, dev->name);
2690 spin_unlock(&nic->rx_lock);
2694 get_info = ring_data->rx_curr_get_info;
2695 get_block = get_info.block_index;
2696 put_info = ring_data->rx_curr_put_info;
2697 put_block = put_info.block_index;
2698 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2699 #ifndef CONFIG_S2IO_NAPI
2700 spin_lock(&nic->put_lock);
2701 put_offset = ring_data->put_pos;
2702 spin_unlock(&nic->put_lock);
2704 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2707 while (RXD_IS_UP2DT(rxdp)) {
2708 /* If your are next to put index then it's FIFO full condition */
2709 if ((get_block == put_block) &&
2710 (get_info.offset + 1) == put_info.offset) {
2711 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2714 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2716 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2718 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2719 spin_unlock(&nic->rx_lock);
2722 if (nic->rxd_mode == RXD_MODE_1) {
2723 pci_unmap_single(nic->pdev, (dma_addr_t)
2724 ((RxD1_t*)rxdp)->Buffer0_ptr,
2726 HEADER_ETHERNET_II_802_3_SIZE +
2729 PCI_DMA_FROMDEVICE);
2730 } else if (nic->rxd_mode == RXD_MODE_3B) {
2731 pci_unmap_single(nic->pdev, (dma_addr_t)
2732 ((RxD3_t*)rxdp)->Buffer0_ptr,
2733 BUF0_LEN, PCI_DMA_FROMDEVICE);
2734 pci_unmap_single(nic->pdev, (dma_addr_t)
2735 ((RxD3_t*)rxdp)->Buffer1_ptr,
2736 BUF1_LEN, PCI_DMA_FROMDEVICE);
2737 pci_unmap_single(nic->pdev, (dma_addr_t)
2738 ((RxD3_t*)rxdp)->Buffer2_ptr,
2740 PCI_DMA_FROMDEVICE);
2742 pci_unmap_single(nic->pdev, (dma_addr_t)
2743 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2744 PCI_DMA_FROMDEVICE);
2745 pci_unmap_single(nic->pdev, (dma_addr_t)
2746 ((RxD3_t*)rxdp)->Buffer1_ptr,
2748 PCI_DMA_FROMDEVICE);
2749 pci_unmap_single(nic->pdev, (dma_addr_t)
2750 ((RxD3_t*)rxdp)->Buffer2_ptr,
2751 dev->mtu, PCI_DMA_FROMDEVICE);
2753 prefetch(skb->data);
2754 rx_osm_handler(ring_data, rxdp);
2756 ring_data->rx_curr_get_info.offset = get_info.offset;
2757 rxdp = ring_data->rx_blocks[get_block].
2758 rxds[get_info.offset].virt_addr;
2759 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2760 get_info.offset = 0;
2761 ring_data->rx_curr_get_info.offset = get_info.offset;
2763 if (get_block == ring_data->block_count)
2765 ring_data->rx_curr_get_info.block_index = get_block;
2766 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2769 #ifdef CONFIG_S2IO_NAPI
2770 nic->pkts_to_process -= 1;
2771 if (!nic->pkts_to_process)
2775 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2780 /* Clear all LRO sessions before exiting */
2781 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2782 lro_t *lro = &nic->lro0_n[i];
2784 update_L3L4_header(nic, lro);
2785 queue_rx_frame(lro->parent);
2786 clear_lro_session(lro);
2791 spin_unlock(&nic->rx_lock);
2795 * tx_intr_handler - Transmit interrupt handler
2796 * @nic : device private variable
2798 * If an interrupt was raised to indicate DMA complete of the
2799 * Tx packet, this function is called. It identifies the last TxD
2800 * whose buffer was freed and frees all skbs whose data have already
2801 * DMA'ed into the NICs internal memory.
2806 static void tx_intr_handler(fifo_info_t *fifo_data)
2808 nic_t *nic = fifo_data->nic;
2809 struct net_device *dev = (struct net_device *) nic->dev;
2810 tx_curr_get_info_t get_info, put_info;
2811 struct sk_buff *skb;
2814 get_info = fifo_data->tx_curr_get_info;
2815 put_info = fifo_data->tx_curr_put_info;
2816 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2818 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2819 (get_info.offset != put_info.offset) &&
2820 (txdlp->Host_Control)) {
2821 /* Check for TxD errors */
2822 if (txdlp->Control_1 & TXD_T_CODE) {
2823 unsigned long long err;
2824 err = txdlp->Control_1 & TXD_T_CODE;
2826 nic->mac_control.stats_info->sw_stat.
2829 if ((err >> 48) == 0xA) {
2830 DBG_PRINT(TX_DBG, "TxD returned due \
2831 to loss of link\n");
2834 DBG_PRINT(ERR_DBG, "***TxD error \
2839 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2841 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2843 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2847 /* Updating the statistics block */
2848 nic->stats.tx_bytes += skb->len;
2849 dev_kfree_skb_irq(skb);
2852 if (get_info.offset == get_info.fifo_len + 1)
2853 get_info.offset = 0;
2854 txdlp = (TxD_t *) fifo_data->list_info
2855 [get_info.offset].list_virt_addr;
2856 fifo_data->tx_curr_get_info.offset =
2860 spin_lock(&nic->tx_lock);
2861 if (netif_queue_stopped(dev))
2862 netif_wake_queue(dev);
2863 spin_unlock(&nic->tx_lock);
2867 * s2io_mdio_write - Function to write in to MDIO registers
2868 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2869 * @addr : address value
2870 * @value : data value
2871 * @dev : pointer to net_device structure
2873 * This function is used to write values to the MDIO registers
2876 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2879 nic_t *sp = dev->priv;
2880 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2882 //address transaction
2883 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2884 | MDIO_MMD_DEV_ADDR(mmd_type)
2885 | MDIO_MMS_PRT_ADDR(0x0);
2886 writeq(val64, &bar0->mdio_control);
2887 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2888 writeq(val64, &bar0->mdio_control);
2893 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2894 | MDIO_MMD_DEV_ADDR(mmd_type)
2895 | MDIO_MMS_PRT_ADDR(0x0)
2896 | MDIO_MDIO_DATA(value)
2897 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2898 writeq(val64, &bar0->mdio_control);
2899 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2900 writeq(val64, &bar0->mdio_control);
2904 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2905 | MDIO_MMD_DEV_ADDR(mmd_type)
2906 | MDIO_MMS_PRT_ADDR(0x0)
2907 | MDIO_OP(MDIO_OP_READ_TRANS);
2908 writeq(val64, &bar0->mdio_control);
2909 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2910 writeq(val64, &bar0->mdio_control);
2916 * s2io_mdio_read - Function to write in to MDIO registers
2917 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2918 * @addr : address value
2919 * @dev : pointer to net_device structure
2921 * This function is used to read values to the MDIO registers
2924 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2928 nic_t *sp = dev->priv;
2929 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2931 /* address transaction */
2932 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2933 | MDIO_MMD_DEV_ADDR(mmd_type)
2934 | MDIO_MMS_PRT_ADDR(0x0);
2935 writeq(val64, &bar0->mdio_control);
2936 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2937 writeq(val64, &bar0->mdio_control);
2940 /* Data transaction */
2942 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2943 | MDIO_MMD_DEV_ADDR(mmd_type)
2944 | MDIO_MMS_PRT_ADDR(0x0)
2945 | MDIO_OP(MDIO_OP_READ_TRANS);
2946 writeq(val64, &bar0->mdio_control);
2947 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2948 writeq(val64, &bar0->mdio_control);
2951 /* Read the value from regs */
2952 rval64 = readq(&bar0->mdio_control);
2953 rval64 = rval64 & 0xFFFF0000;
2954 rval64 = rval64 >> 16;
2958 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2959 * @counter : couter value to be updated
2960 * @flag : flag to indicate the status
2961 * @type : counter type
2963 * This function is to check the status of the xpak counters value
2967 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2972 for(i = 0; i <index; i++)
2977 *counter = *counter + 1;
2978 val64 = *regs_stat & mask;
2979 val64 = val64 >> (index * 0x2);
2986 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2987 "service. Excessive temperatures may "
2988 "result in premature transceiver "
2992 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2993 "service Excessive bias currents may "
2994 "indicate imminent laser diode "
2998 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2999 "service Excessive laser output "
3000 "power may saturate far-end "
3004 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3009 val64 = val64 << (index * 0x2);
3010 *regs_stat = (*regs_stat & (~mask)) | (val64);
3013 *regs_stat = *regs_stat & (~mask);
3018 * s2io_updt_xpak_counter - Function to update the xpak counters
3019 * @dev : pointer to net_device struct
3021 * This function is to upate the status of the xpak counters value
3024 static void s2io_updt_xpak_counter(struct net_device *dev)
3032 nic_t *sp = dev->priv;
3033 StatInfo_t *stat_info = sp->mac_control.stats_info;
3035 /* Check the communication with the MDIO slave */
3038 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3039 if((val64 == 0xFFFF) || (val64 == 0x0000))
3041 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3042 "Returned %llx\n", (unsigned long long)val64);
3046 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3049 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3050 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3051 (unsigned long long)val64);
3055 /* Loading the DOM register to MDIO register */
3057 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3058 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3060 /* Reading the Alarm flags */
3063 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3065 flag = CHECKBIT(val64, 0x7);
3067 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3068 &stat_info->xpak_stat.xpak_regs_stat,
3071 if(CHECKBIT(val64, 0x6))
3072 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3074 flag = CHECKBIT(val64, 0x3);
3076 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3077 &stat_info->xpak_stat.xpak_regs_stat,
3080 if(CHECKBIT(val64, 0x2))
3081 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3083 flag = CHECKBIT(val64, 0x1);
3085 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3086 &stat_info->xpak_stat.xpak_regs_stat,
3089 if(CHECKBIT(val64, 0x0))
3090 stat_info->xpak_stat.alarm_laser_output_power_low++;
3092 /* Reading the Warning flags */
3095 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3097 if(CHECKBIT(val64, 0x7))
3098 stat_info->xpak_stat.warn_transceiver_temp_high++;
3100 if(CHECKBIT(val64, 0x6))
3101 stat_info->xpak_stat.warn_transceiver_temp_low++;
3103 if(CHECKBIT(val64, 0x3))
3104 stat_info->xpak_stat.warn_laser_bias_current_high++;
3106 if(CHECKBIT(val64, 0x2))
3107 stat_info->xpak_stat.warn_laser_bias_current_low++;
3109 if(CHECKBIT(val64, 0x1))
3110 stat_info->xpak_stat.warn_laser_output_power_high++;
3112 if(CHECKBIT(val64, 0x0))
3113 stat_info->xpak_stat.warn_laser_output_power_low++;
3117 * alarm_intr_handler - Alarm Interrrupt handler
3118 * @nic: device private variable
3119 * Description: If the interrupt was neither because of Rx packet or Tx
3120 * complete, this function is called. If the interrupt was to indicate
3121 * a loss of link, the OSM link status handler is invoked for any other
3122 * alarm interrupt the block that raised the interrupt is displayed
3123 * and a H/W reset is issued.
3128 static void alarm_intr_handler(struct s2io_nic *nic)
3130 struct net_device *dev = (struct net_device *) nic->dev;
3131 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3132 register u64 val64 = 0, err_reg = 0;
3135 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3136 /* Handling the XPAK counters update */
3137 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3138 /* waiting for an hour */
3139 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3141 s2io_updt_xpak_counter(dev);
3142 /* reset the count to zero */
3143 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3146 /* Handling link status change error Intr */
3147 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3148 err_reg = readq(&bar0->mac_rmac_err_reg);
3149 writeq(err_reg, &bar0->mac_rmac_err_reg);
3150 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3151 schedule_work(&nic->set_link_task);
3155 /* Handling Ecc errors */
3156 val64 = readq(&bar0->mc_err_reg);
3157 writeq(val64, &bar0->mc_err_reg);
3158 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3159 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3160 nic->mac_control.stats_info->sw_stat.
3162 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3164 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3165 if (nic->device_type != XFRAME_II_DEVICE) {
3166 /* Reset XframeI only if critical error */
3167 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3168 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3169 netif_stop_queue(dev);
3170 schedule_work(&nic->rst_timer_task);
3171 nic->mac_control.stats_info->sw_stat.
3176 nic->mac_control.stats_info->sw_stat.
3181 /* In case of a serious error, the device will be Reset. */
3182 val64 = readq(&bar0->serr_source);
3183 if (val64 & SERR_SOURCE_ANY) {
3184 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3185 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3186 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3187 (unsigned long long)val64);
3188 netif_stop_queue(dev);
3189 schedule_work(&nic->rst_timer_task);
3190 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3194 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3195 * Error occurs, the adapter will be recycled by disabling the
3196 * adapter enable bit and enabling it again after the device
3197 * becomes Quiescent.
3199 val64 = readq(&bar0->pcc_err_reg);
3200 writeq(val64, &bar0->pcc_err_reg);
3201 if (val64 & PCC_FB_ECC_DB_ERR) {
3202 u64 ac = readq(&bar0->adapter_control);
3203 ac &= ~(ADAPTER_CNTL_EN);
3204 writeq(ac, &bar0->adapter_control);
3205 ac = readq(&bar0->adapter_control);
3206 schedule_work(&nic->set_link_task);
3208 /* Check for data parity error */
3209 val64 = readq(&bar0->pic_int_status);
3210 if (val64 & PIC_INT_GPIO) {
3211 val64 = readq(&bar0->gpio_int_reg);
3212 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3213 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3214 schedule_work(&nic->rst_timer_task);
3215 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3219 /* Check for ring full counter */
3220 if (nic->device_type & XFRAME_II_DEVICE) {
3221 val64 = readq(&bar0->ring_bump_counter1);
3222 for (i=0; i<4; i++) {
3223 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3224 cnt >>= 64 - ((i+1)*16);
3225 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3229 val64 = readq(&bar0->ring_bump_counter2);
3230 for (i=0; i<4; i++) {
3231 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3232 cnt >>= 64 - ((i+1)*16);
3233 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3238 /* Other type of interrupts are not being handled now, TODO */
3242 * wait_for_cmd_complete - waits for a command to complete.
3243 * @sp : private member of the device structure, which is a pointer to the
3244 * s2io_nic structure.
3245 * Description: Function that waits for a command to Write into RMAC
3246 * ADDR DATA registers to be completed and returns either success or
3247 * error depending on whether the command was complete or not.
3249 * SUCCESS on success and FAILURE on failure.
3252 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3254 int ret = FAILURE, cnt = 0;
3258 val64 = readq(addr);
3259 if (!(val64 & busy_bit)) {
3276 * s2io_reset - Resets the card.
3277 * @sp : private member of the device structure.
3278 * Description: Function to Reset the card. This function then also
3279 * restores the previously saved PCI configuration space registers as
3280 * the card reset also resets the configuration space.
3285 static void s2io_reset(nic_t * sp)
3287 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3291 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3292 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3294 val64 = SW_RESET_ALL;
3295 writeq(val64, &bar0->sw_reset);
3298 * At this stage, if the PCI write is indeed completed, the
3299 * card is reset and so is the PCI Config space of the device.
3300 * So a read cannot be issued at this stage on any of the
3301 * registers to ensure the write into "sw_reset" register
3303 * Question: Is there any system call that will explicitly force
3304 * all the write commands still pending on the bus to be pushed
3306 * As of now I'am just giving a 250ms delay and hoping that the
3307 * PCI write to sw_reset register is done by this time.
3310 if (strstr(sp->product_name, "CX4")) {
3314 /* Restore the PCI state saved during initialization. */
3315 pci_restore_state(sp->pdev);
3316 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3322 /* Set swapper to enable I/O register access */
3323 s2io_set_swapper(sp);
3325 /* Restore the MSIX table entries from local variables */
3326 restore_xmsi_data(sp);
3328 /* Clear certain PCI/PCI-X fields after reset */
3329 if (sp->device_type == XFRAME_II_DEVICE) {
3330 /* Clear parity err detect bit */
3331 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3333 /* Clearing PCIX Ecc status register */
3334 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3336 /* Clearing PCI_STATUS error reflected here */
3337 writeq(BIT(62), &bar0->txpic_int_reg);
3340 /* Reset device statistics maintained by OS */
3341 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3343 /* SXE-002: Configure link and activity LED to turn it off */
3344 subid = sp->pdev->subsystem_device;
3345 if (((subid & 0xFF) >= 0x07) &&
3346 (sp->device_type == XFRAME_I_DEVICE)) {
3347 val64 = readq(&bar0->gpio_control);
3348 val64 |= 0x0000800000000000ULL;
3349 writeq(val64, &bar0->gpio_control);
3350 val64 = 0x0411040400000000ULL;
3351 writeq(val64, (void __iomem *)bar0 + 0x2700);
3355 * Clear spurious ECC interrupts that would have occured on
3356 * XFRAME II cards after reset.
3358 if (sp->device_type == XFRAME_II_DEVICE) {
3359 val64 = readq(&bar0->pcc_err_reg);
3360 writeq(val64, &bar0->pcc_err_reg);
3363 sp->device_enabled_once = FALSE;
3367 * s2io_set_swapper - to set the swapper controle on the card
3368 * @sp : private member of the device structure,
3369 * pointer to the s2io_nic structure.
3370 * Description: Function to set the swapper control on the card
3371 * correctly depending on the 'endianness' of the system.
3373 * SUCCESS on success and FAILURE on failure.
3376 static int s2io_set_swapper(nic_t * sp)
3378 struct net_device *dev = sp->dev;
3379 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3380 u64 val64, valt, valr;
3383 * Set proper endian settings and verify the same by reading
3384 * the PIF Feed-back register.
3387 val64 = readq(&bar0->pif_rd_swapper_fb);
3388 if (val64 != 0x0123456789ABCDEFULL) {
3390 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3391 0x8100008181000081ULL, /* FE=1, SE=0 */
3392 0x4200004242000042ULL, /* FE=0, SE=1 */
3393 0}; /* FE=0, SE=0 */
3396 writeq(value[i], &bar0->swapper_ctrl);
3397 val64 = readq(&bar0->pif_rd_swapper_fb);
3398 if (val64 == 0x0123456789ABCDEFULL)
3403 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3405 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3406 (unsigned long long) val64);
3411 valr = readq(&bar0->swapper_ctrl);
3414 valt = 0x0123456789ABCDEFULL;
3415 writeq(valt, &bar0->xmsi_address);
3416 val64 = readq(&bar0->xmsi_address);
3420 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3421 0x0081810000818100ULL, /* FE=1, SE=0 */
3422 0x0042420000424200ULL, /* FE=0, SE=1 */
3423 0}; /* FE=0, SE=0 */
3426 writeq((value[i] | valr), &bar0->swapper_ctrl);
3427 writeq(valt, &bar0->xmsi_address);
3428 val64 = readq(&bar0->xmsi_address);
3434 unsigned long long x = val64;
3435 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3436 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3440 val64 = readq(&bar0->swapper_ctrl);
3441 val64 &= 0xFFFF000000000000ULL;
3445 * The device by default set to a big endian format, so a
3446 * big endian driver need not set anything.
3448 val64 |= (SWAPPER_CTRL_TXP_FE |
3449 SWAPPER_CTRL_TXP_SE |
3450 SWAPPER_CTRL_TXD_R_FE |
3451 SWAPPER_CTRL_TXD_W_FE |
3452 SWAPPER_CTRL_TXF_R_FE |
3453 SWAPPER_CTRL_RXD_R_FE |
3454 SWAPPER_CTRL_RXD_W_FE |
3455 SWAPPER_CTRL_RXF_W_FE |
3456 SWAPPER_CTRL_XMSI_FE |
3457 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3458 if (sp->intr_type == INTA)
3459 val64 |= SWAPPER_CTRL_XMSI_SE;
3460 writeq(val64, &bar0->swapper_ctrl);
3463 * Initially we enable all bits to make it accessible by the
3464 * driver, then we selectively enable only those bits that
3467 val64 |= (SWAPPER_CTRL_TXP_FE |
3468 SWAPPER_CTRL_TXP_SE |
3469 SWAPPER_CTRL_TXD_R_FE |
3470 SWAPPER_CTRL_TXD_R_SE |
3471 SWAPPER_CTRL_TXD_W_FE |
3472 SWAPPER_CTRL_TXD_W_SE |
3473 SWAPPER_CTRL_TXF_R_FE |
3474 SWAPPER_CTRL_RXD_R_FE |
3475 SWAPPER_CTRL_RXD_R_SE |
3476 SWAPPER_CTRL_RXD_W_FE |
3477 SWAPPER_CTRL_RXD_W_SE |
3478 SWAPPER_CTRL_RXF_W_FE |
3479 SWAPPER_CTRL_XMSI_FE |
3480 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3481 if (sp->intr_type == INTA)
3482 val64 |= SWAPPER_CTRL_XMSI_SE;
3483 writeq(val64, &bar0->swapper_ctrl);
3485 val64 = readq(&bar0->swapper_ctrl);
3488 * Verifying if endian settings are accurate by reading a
3489 * feedback register.
3491 val64 = readq(&bar0->pif_rd_swapper_fb);
3492 if (val64 != 0x0123456789ABCDEFULL) {
3493 /* Endian settings are incorrect, calls for another dekko. */
3494 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3496 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3497 (unsigned long long) val64);
3504 static int wait_for_msix_trans(nic_t *nic, int i)
3506 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3508 int ret = 0, cnt = 0;
3511 val64 = readq(&bar0->xmsi_access);
3512 if (!(val64 & BIT(15)))
3518 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3525 static void restore_xmsi_data(nic_t *nic)
3527 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3531 for (i=0; i< nic->avail_msix_vectors; i++) {
3532 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3533 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3534 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3535 writeq(val64, &bar0->xmsi_access);
3536 if (wait_for_msix_trans(nic, i)) {
3537 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3543 static void store_xmsi_data(nic_t *nic)
3545 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3546 u64 val64, addr, data;
3549 /* Store and display */
3550 for (i=0; i< nic->avail_msix_vectors; i++) {
3551 val64 = (BIT(15) | vBIT(i, 26, 6));
3552 writeq(val64, &bar0->xmsi_access);
3553 if (wait_for_msix_trans(nic, i)) {
3554 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3557 addr = readq(&bar0->xmsi_address);
3558 data = readq(&bar0->xmsi_data);
3560 nic->msix_info[i].addr = addr;
3561 nic->msix_info[i].data = data;
3566 int s2io_enable_msi(nic_t *nic)
3568 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3569 u16 msi_ctrl, msg_val;
3570 struct config_param *config = &nic->config;
3571 struct net_device *dev = nic->dev;
3572 u64 val64, tx_mat, rx_mat;
3575 val64 = readq(&bar0->pic_control);
3577 writeq(val64, &bar0->pic_control);
3579 err = pci_enable_msi(nic->pdev);
3581 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3587 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3588 * for interrupt handling.
3590 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3592 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3593 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3595 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3597 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3599 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3600 tx_mat = readq(&bar0->tx_mat0_n[0]);
3601 for (i=0; i<config->tx_fifo_num; i++) {
3602 tx_mat |= TX_MAT_SET(i, 1);
3604 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3606 rx_mat = readq(&bar0->rx_mat);
3607 for (i=0; i<config->rx_ring_num; i++) {
3608 rx_mat |= RX_MAT_SET(i, 1);
3610 writeq(rx_mat, &bar0->rx_mat);
3612 dev->irq = nic->pdev->irq;
3616 static int s2io_enable_msi_x(nic_t *nic)
3618 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3620 u16 msi_control; /* Temp variable */
3621 int ret, i, j, msix_indx = 1;
3623 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3625 if (nic->entries == NULL) {
3626 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3629 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3632 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3634 if (nic->s2io_entries == NULL) {
3635 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3636 kfree(nic->entries);
3639 memset(nic->s2io_entries, 0,
3640 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3642 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3643 nic->entries[i].entry = i;
3644 nic->s2io_entries[i].entry = i;
3645 nic->s2io_entries[i].arg = NULL;
3646 nic->s2io_entries[i].in_use = 0;
3649 tx_mat = readq(&bar0->tx_mat0_n[0]);
3650 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3651 tx_mat |= TX_MAT_SET(i, msix_indx);
3652 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3653 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3654 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3656 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3658 if (!nic->config.bimodal) {
3659 rx_mat = readq(&bar0->rx_mat);
3660 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3661 rx_mat |= RX_MAT_SET(j, msix_indx);
3662 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3663 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3664 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3666 writeq(rx_mat, &bar0->rx_mat);
3668 tx_mat = readq(&bar0->tx_mat0_n[7]);
3669 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3670 tx_mat |= TX_MAT_SET(i, msix_indx);
3671 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3672 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3673 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3675 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3678 nic->avail_msix_vectors = 0;
3679 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3680 /* We fail init if error or we get less vectors than min required */
3681 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3682 nic->avail_msix_vectors = ret;
3683 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3686 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3687 kfree(nic->entries);
3688 kfree(nic->s2io_entries);
3689 nic->entries = NULL;
3690 nic->s2io_entries = NULL;
3691 nic->avail_msix_vectors = 0;
3694 if (!nic->avail_msix_vectors)
3695 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3698 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3699 * in the herc NIC. (Temp change, needs to be removed later)
3701 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3702 msi_control |= 0x1; /* Enable MSI */
3703 pci_write_config_word(nic->pdev, 0x42, msi_control);
3708 /* ********************************************************* *
3709 * Functions defined below concern the OS part of the driver *
3710 * ********************************************************* */
3713 * s2io_open - open entry point of the driver
3714 * @dev : pointer to the device structure.
3716 * This function is the open entry point of the driver. It mainly calls a
3717 * function to allocate Rx buffers and inserts them into the buffer
3718 * descriptors and then enables the Rx part of the NIC.
3720 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3724 static int s2io_open(struct net_device *dev)
3726 nic_t *sp = dev->priv;
3730 * Make sure you have link off by default every time
3731 * Nic is initialized
3733 netif_carrier_off(dev);
3734 sp->last_link_state = 0;
3736 /* Initialize H/W and enable interrupts */
3737 err = s2io_card_up(sp);
3739 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3741 goto hw_init_failed;
3744 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3745 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3748 goto hw_init_failed;
3751 netif_start_queue(dev);
3755 if (sp->intr_type == MSI_X) {
3758 if (sp->s2io_entries)
3759 kfree(sp->s2io_entries);
3765 * s2io_close -close entry point of the driver
3766 * @dev : device pointer.
3768 * This is the stop entry point of the driver. It needs to undo exactly
3769 * whatever was done by the open entry point,thus it's usually referred to
3770 * as the close function.Among other things this function mainly stops the
3771 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3773 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3777 static int s2io_close(struct net_device *dev)
3779 nic_t *sp = dev->priv;
3781 flush_scheduled_work();
3782 netif_stop_queue(dev);
3783 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3786 sp->device_close_flag = TRUE; /* Device is shut down. */
3791 * s2io_xmit - Tx entry point of te driver
3792 * @skb : the socket buffer containing the Tx data.
3793 * @dev : device pointer.
3795 * This function is the Tx entry point of the driver. S2IO NIC supports
3796 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3797 * NOTE: when device cant queue the pkt,just the trans_start variable will
3800 * 0 on success & 1 on failure.
3803 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3805 nic_t *sp = dev->priv;
3806 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3809 TxFIFO_element_t __iomem *tx_fifo;
3810 unsigned long flags;
3815 int vlan_priority = 0;
3816 mac_info_t *mac_control;
3817 struct config_param *config;
3819 mac_control = &sp->mac_control;
3820 config = &sp->config;
3822 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3823 spin_lock_irqsave(&sp->tx_lock, flags);
3824 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3825 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3827 spin_unlock_irqrestore(&sp->tx_lock, flags);
3834 /* Get Fifo number to Transmit based on vlan priority */
3835 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3836 vlan_tag = vlan_tx_tag_get(skb);
3837 vlan_priority = vlan_tag >> 13;
3838 queue = config->fifo_mapping[vlan_priority];
3841 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3842 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3843 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3846 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3847 /* Avoid "put" pointer going beyond "get" pointer */
3848 if (txdp->Host_Control ||
3849 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3850 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3851 netif_stop_queue(dev);
3853 spin_unlock_irqrestore(&sp->tx_lock, flags);
3857 /* A buffer with no data will be dropped */
3859 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3861 spin_unlock_irqrestore(&sp->tx_lock, flags);
3865 txdp->Control_1 = 0;
3866 txdp->Control_2 = 0;
3868 mss = skb_shinfo(skb)->gso_size;
3869 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3870 txdp->Control_1 |= TXD_TCP_LSO_EN;
3871 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3874 if (skb->ip_summed == CHECKSUM_HW) {
3876 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3879 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3880 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3881 txdp->Control_2 |= config->tx_intr_type;
3883 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3884 txdp->Control_2 |= TXD_VLAN_ENABLE;
3885 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3888 frg_len = skb->len - skb->data_len;
3889 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP) {
3892 ufo_size = skb_shinfo(skb)->gso_size;
3894 txdp->Control_1 |= TXD_UFO_EN;
3895 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3896 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3898 sp->ufo_in_band_v[put_off] =
3899 (u64)skb_shinfo(skb)->ip6_frag_id;
3901 sp->ufo_in_band_v[put_off] =
3902 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3904 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3905 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3907 sizeof(u64), PCI_DMA_TODEVICE);
3909 txdp->Control_1 = 0;
3910 txdp->Control_2 = 0;
3913 txdp->Buffer_Pointer = pci_map_single
3914 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3915 txdp->Host_Control = (unsigned long) skb;
3916 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3918 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
3919 txdp->Control_1 |= TXD_UFO_EN;
3921 frg_cnt = skb_shinfo(skb)->nr_frags;
3922 /* For fragmented SKB. */
3923 for (i = 0; i < frg_cnt; i++) {
3924 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3925 /* A '0' length fragment will be ignored */
3929 txdp->Buffer_Pointer = (u64) pci_map_page
3930 (sp->pdev, frag->page, frag->page_offset,
3931 frag->size, PCI_DMA_TODEVICE);
3932 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3933 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
3934 txdp->Control_1 |= TXD_UFO_EN;
3936 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3938 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
3939 frg_cnt++; /* as Txd0 was used for inband header */
3941 tx_fifo = mac_control->tx_FIFO_start[queue];
3942 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3943 writeq(val64, &tx_fifo->TxDL_Pointer);
3945 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3950 val64 |= TX_FIFO_SPECIAL_FUNC;
3952 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
3953 val64 |= TX_FIFO_SPECIAL_FUNC;
3954 writeq(val64, &tx_fifo->List_Control);
3959 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3961 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3963 /* Avoid "put" pointer going beyond "get" pointer */
3964 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3965 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3967 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3969 netif_stop_queue(dev);
3972 dev->trans_start = jiffies;
3973 spin_unlock_irqrestore(&sp->tx_lock, flags);
3979 s2io_alarm_handle(unsigned long data)
3981 nic_t *sp = (nic_t *)data;
3983 alarm_intr_handler(sp);
3984 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3988 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3990 struct net_device *dev = (struct net_device *) dev_id;
3991 nic_t *sp = dev->priv;
3994 mac_info_t *mac_control;
3995 struct config_param *config;
3997 atomic_inc(&sp->isr_cnt);
3998 mac_control = &sp->mac_control;
3999 config = &sp->config;
4000 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4002 /* If Intr is because of Rx Traffic */
4003 for (i = 0; i < config->rx_ring_num; i++)
4004 rx_intr_handler(&mac_control->rings[i]);
4006 /* If Intr is because of Tx Traffic */
4007 for (i = 0; i < config->tx_fifo_num; i++)
4008 tx_intr_handler(&mac_control->fifos[i]);
4011 * If the Rx buffer count is below the panic threshold then
4012 * reallocate the buffers from the interrupt handler itself,
4013 * else schedule a tasklet to reallocate the buffers.
4015 for (i = 0; i < config->rx_ring_num; i++) {
4017 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4018 int level = rx_buffer_level(sp, rxb_size, i);
4020 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4021 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4023 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4024 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4025 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4027 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4028 clear_bit(0, (&sp->tasklet_status));
4029 atomic_dec(&sp->isr_cnt);
4032 clear_bit(0, (&sp->tasklet_status));
4033 } else if (level == LOW) {
4034 tasklet_schedule(&sp->task);
4037 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4038 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4040 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4045 atomic_dec(&sp->isr_cnt);
4050 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4052 ring_info_t *ring = (ring_info_t *)dev_id;
4053 nic_t *sp = ring->nic;
4054 struct net_device *dev = (struct net_device *) dev_id;
4055 int rxb_size, level, rng_n;
4057 atomic_inc(&sp->isr_cnt);
4058 rx_intr_handler(ring);
4060 rng_n = ring->ring_no;
4062 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4063 level = rx_buffer_level(sp, rxb_size, rng_n);
4065 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4067 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4068 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4069 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4070 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4072 clear_bit(0, (&sp->tasklet_status));
4075 clear_bit(0, (&sp->tasklet_status));
4076 } else if (level == LOW) {
4077 tasklet_schedule(&sp->task);
4080 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4081 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4082 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4085 atomic_dec(&sp->isr_cnt);
4091 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4093 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4094 nic_t *sp = fifo->nic;
4096 atomic_inc(&sp->isr_cnt);
4097 tx_intr_handler(fifo);
4098 atomic_dec(&sp->isr_cnt);
4101 static void s2io_txpic_intr_handle(nic_t *sp)
4103 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4106 val64 = readq(&bar0->pic_int_status);
4107 if (val64 & PIC_INT_GPIO) {
4108 val64 = readq(&bar0->gpio_int_reg);
4109 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4110 (val64 & GPIO_INT_REG_LINK_UP)) {
4112 * This is unstable state so clear both up/down
4113 * interrupt and adapter to re-evaluate the link state.
4115 val64 |= GPIO_INT_REG_LINK_DOWN;
4116 val64 |= GPIO_INT_REG_LINK_UP;
4117 writeq(val64, &bar0->gpio_int_reg);
4118 val64 = readq(&bar0->gpio_int_mask);
4119 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4120 GPIO_INT_MASK_LINK_DOWN);
4121 writeq(val64, &bar0->gpio_int_mask);
4123 else if (val64 & GPIO_INT_REG_LINK_UP) {
4124 val64 = readq(&bar0->adapter_status);
4125 if (verify_xena_quiescence(sp, val64,
4126 sp->device_enabled_once)) {
4127 /* Enable Adapter */
4128 val64 = readq(&bar0->adapter_control);
4129 val64 |= ADAPTER_CNTL_EN;
4130 writeq(val64, &bar0->adapter_control);
4131 val64 |= ADAPTER_LED_ON;
4132 writeq(val64, &bar0->adapter_control);
4133 if (!sp->device_enabled_once)
4134 sp->device_enabled_once = 1;
4136 s2io_link(sp, LINK_UP);
4138 * unmask link down interrupt and mask link-up
4141 val64 = readq(&bar0->gpio_int_mask);
4142 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4143 val64 |= GPIO_INT_MASK_LINK_UP;
4144 writeq(val64, &bar0->gpio_int_mask);
4147 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4148 val64 = readq(&bar0->adapter_status);
4149 if (verify_xena_quiescence(sp, val64,
4150 sp->device_enabled_once)) {
4151 s2io_link(sp, LINK_DOWN);
4152 /* Link is down so unmaks link up interrupt */
4153 val64 = readq(&bar0->gpio_int_mask);
4154 val64 &= ~GPIO_INT_MASK_LINK_UP;
4155 val64 |= GPIO_INT_MASK_LINK_DOWN;
4156 writeq(val64, &bar0->gpio_int_mask);
4160 val64 = readq(&bar0->gpio_int_mask);
4164 * s2io_isr - ISR handler of the device .
4165 * @irq: the irq of the device.
4166 * @dev_id: a void pointer to the dev structure of the NIC.
4167 * @pt_regs: pointer to the registers pushed on the stack.
4168 * Description: This function is the ISR handler of the device. It
4169 * identifies the reason for the interrupt and calls the relevant
4170 * service routines. As a contongency measure, this ISR allocates the
4171 * recv buffers, if their numbers are below the panic value which is
4172 * presently set to 25% of the original number of rcv buffers allocated.
4174 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4175 * IRQ_NONE: will be returned if interrupt is not from our device
4177 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4179 struct net_device *dev = (struct net_device *) dev_id;
4180 nic_t *sp = dev->priv;
4181 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4183 u64 reason = 0, val64, org_mask;
4184 mac_info_t *mac_control;
4185 struct config_param *config;
4187 atomic_inc(&sp->isr_cnt);
4188 mac_control = &sp->mac_control;
4189 config = &sp->config;
4192 * Identify the cause for interrupt and call the appropriate
4193 * interrupt handler. Causes for the interrupt could be;
4197 * 4. Error in any functional blocks of the NIC.
4199 reason = readq(&bar0->general_int_status);
4202 /* The interrupt was not raised by Xena. */
4203 atomic_dec(&sp->isr_cnt);
4207 val64 = 0xFFFFFFFFFFFFFFFFULL;
4208 /* Store current mask before masking all interrupts */
4209 org_mask = readq(&bar0->general_int_mask);
4210 writeq(val64, &bar0->general_int_mask);
4212 #ifdef CONFIG_S2IO_NAPI
4213 if (reason & GEN_INTR_RXTRAFFIC) {
4214 if (netif_rx_schedule_prep(dev)) {
4215 writeq(val64, &bar0->rx_traffic_mask);
4216 __netif_rx_schedule(dev);
4221 * Rx handler is called by default, without checking for the
4222 * cause of interrupt.
4223 * rx_traffic_int reg is an R1 register, writing all 1's
4224 * will ensure that the actual interrupt causing bit get's
4225 * cleared and hence a read can be avoided.
4227 writeq(val64, &bar0->rx_traffic_int);
4228 for (i = 0; i < config->rx_ring_num; i++) {
4229 rx_intr_handler(&mac_control->rings[i]);
4234 * tx_traffic_int reg is an R1 register, writing all 1's
4235 * will ensure that the actual interrupt causing bit get's
4236 * cleared and hence a read can be avoided.
4238 writeq(val64, &bar0->tx_traffic_int);
4240 for (i = 0; i < config->tx_fifo_num; i++)
4241 tx_intr_handler(&mac_control->fifos[i]);
4243 if (reason & GEN_INTR_TXPIC)
4244 s2io_txpic_intr_handle(sp);
4246 * If the Rx buffer count is below the panic threshold then
4247 * reallocate the buffers from the interrupt handler itself,
4248 * else schedule a tasklet to reallocate the buffers.
4250 #ifndef CONFIG_S2IO_NAPI
4251 for (i = 0; i < config->rx_ring_num; i++) {
4254 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4255 int level = rx_buffer_level(sp, rxb_size, i);
4257 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4258 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4260 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4261 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4262 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4264 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4265 clear_bit(0, (&sp->tasklet_status));
4266 atomic_dec(&sp->isr_cnt);
4267 writeq(org_mask, &bar0->general_int_mask);
4270 clear_bit(0, (&sp->tasklet_status));
4271 } else if (level == LOW) {
4272 tasklet_schedule(&sp->task);
4275 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4276 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4278 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4283 writeq(org_mask, &bar0->general_int_mask);
4284 atomic_dec(&sp->isr_cnt);
4291 static void s2io_updt_stats(nic_t *sp)
4293 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4297 if (atomic_read(&sp->card_state) == CARD_UP) {
4298 /* Apprx 30us on a 133 MHz bus */
4299 val64 = SET_UPDT_CLICKS(10) |
4300 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4301 writeq(val64, &bar0->stat_cfg);
4304 val64 = readq(&bar0->stat_cfg);
4305 if (!(val64 & BIT(0)))
4309 break; /* Updt failed */
4315 * s2io_get_stats - Updates the device statistics structure.
4316 * @dev : pointer to the device structure.
4318 * This function updates the device statistics structure in the s2io_nic
4319 * structure and returns a pointer to the same.
4321 * pointer to the updated net_device_stats structure.
4324 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4326 nic_t *sp = dev->priv;
4327 mac_info_t *mac_control;
4328 struct config_param *config;
4331 mac_control = &sp->mac_control;
4332 config = &sp->config;
4334 /* Configure Stats for immediate updt */
4335 s2io_updt_stats(sp);
4337 sp->stats.tx_packets =
4338 le32_to_cpu(mac_control->stats_info->tmac_frms);
4339 sp->stats.tx_errors =
4340 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4341 sp->stats.rx_errors =
4342 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4343 sp->stats.multicast =
4344 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4345 sp->stats.rx_length_errors =
4346 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4348 return (&sp->stats);
4352 * s2io_set_multicast - entry point for multicast address enable/disable.
4353 * @dev : pointer to the device structure
4355 * This function is a driver entry point which gets called by the kernel
4356 * whenever multicast addresses must be enabled/disabled. This also gets
4357 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4358 * determine, if multicast address must be enabled or if promiscuous mode
4359 * is to be disabled etc.
4364 static void s2io_set_multicast(struct net_device *dev)
4367 struct dev_mc_list *mclist;
4368 nic_t *sp = dev->priv;
4369 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4370 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4372 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4375 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4376 /* Enable all Multicast addresses */
4377 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4378 &bar0->rmac_addr_data0_mem);
4379 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4380 &bar0->rmac_addr_data1_mem);
4381 val64 = RMAC_ADDR_CMD_MEM_WE |
4382 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4383 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4384 writeq(val64, &bar0->rmac_addr_cmd_mem);
4385 /* Wait till command completes */
4386 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4387 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4390 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4391 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4392 /* Disable all Multicast addresses */
4393 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4394 &bar0->rmac_addr_data0_mem);
4395 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4396 &bar0->rmac_addr_data1_mem);
4397 val64 = RMAC_ADDR_CMD_MEM_WE |
4398 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4399 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4400 writeq(val64, &bar0->rmac_addr_cmd_mem);
4401 /* Wait till command completes */
4402 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4403 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4406 sp->all_multi_pos = 0;
4409 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4410 /* Put the NIC into promiscuous mode */
4411 add = &bar0->mac_cfg;
4412 val64 = readq(&bar0->mac_cfg);
4413 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4415 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4416 writel((u32) val64, add);
4417 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4418 writel((u32) (val64 >> 32), (add + 4));
4420 val64 = readq(&bar0->mac_cfg);
4421 sp->promisc_flg = 1;
4422 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4424 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4425 /* Remove the NIC from promiscuous mode */
4426 add = &bar0->mac_cfg;
4427 val64 = readq(&bar0->mac_cfg);
4428 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4430 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4431 writel((u32) val64, add);
4432 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4433 writel((u32) (val64 >> 32), (add + 4));
4435 val64 = readq(&bar0->mac_cfg);
4436 sp->promisc_flg = 0;
4437 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4441 /* Update individual M_CAST address list */
4442 if ((!sp->m_cast_flg) && dev->mc_count) {
4444 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4445 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4447 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4448 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4452 prev_cnt = sp->mc_addr_count;
4453 sp->mc_addr_count = dev->mc_count;
4455 /* Clear out the previous list of Mc in the H/W. */
4456 for (i = 0; i < prev_cnt; i++) {
4457 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4458 &bar0->rmac_addr_data0_mem);
4459 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4460 &bar0->rmac_addr_data1_mem);
4461 val64 = RMAC_ADDR_CMD_MEM_WE |
4462 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4463 RMAC_ADDR_CMD_MEM_OFFSET
4464 (MAC_MC_ADDR_START_OFFSET + i);
4465 writeq(val64, &bar0->rmac_addr_cmd_mem);
4467 /* Wait for command completes */
4468 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4469 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4470 DBG_PRINT(ERR_DBG, "%s: Adding ",
4472 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4477 /* Create the new Rx filter list and update the same in H/W. */
4478 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4479 i++, mclist = mclist->next) {
4480 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4483 for (j = 0; j < ETH_ALEN; j++) {
4484 mac_addr |= mclist->dmi_addr[j];
4488 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4489 &bar0->rmac_addr_data0_mem);
4490 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4491 &bar0->rmac_addr_data1_mem);
4492 val64 = RMAC_ADDR_CMD_MEM_WE |
4493 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4494 RMAC_ADDR_CMD_MEM_OFFSET
4495 (i + MAC_MC_ADDR_START_OFFSET);
4496 writeq(val64, &bar0->rmac_addr_cmd_mem);
4498 /* Wait for command completes */
4499 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4500 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4501 DBG_PRINT(ERR_DBG, "%s: Adding ",
4503 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4511 * s2io_set_mac_addr - Programs the Xframe mac address
4512 * @dev : pointer to the device structure.
4513 * @addr: a uchar pointer to the new mac address which is to be set.
4514 * Description : This procedure will program the Xframe to receive
4515 * frames with new Mac Address
4516 * Return value: SUCCESS on success and an appropriate (-)ve integer
4517 * as defined in errno.h file on failure.
4520 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4522 nic_t *sp = dev->priv;
4523 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4524 register u64 val64, mac_addr = 0;
4528 * Set the new MAC address as the new unicast filter and reflect this
4529 * change on the device address registered with the OS. It will be
4532 for (i = 0; i < ETH_ALEN; i++) {
4534 mac_addr |= addr[i];
4537 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4538 &bar0->rmac_addr_data0_mem);
4541 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4542 RMAC_ADDR_CMD_MEM_OFFSET(0);
4543 writeq(val64, &bar0->rmac_addr_cmd_mem);
4544 /* Wait till command completes */
4545 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4546 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4547 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4555 * s2io_ethtool_sset - Sets different link parameters.
4556 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4557 * @info: pointer to the structure with parameters given by ethtool to set
4560 * The function sets different link parameters provided by the user onto
4566 static int s2io_ethtool_sset(struct net_device *dev,
4567 struct ethtool_cmd *info)
4569 nic_t *sp = dev->priv;
4570 if ((info->autoneg == AUTONEG_ENABLE) ||
4571 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4574 s2io_close(sp->dev);
4582 * s2io_ethtol_gset - Return link specific information.
4583 * @sp : private member of the device structure, pointer to the
4584 * s2io_nic structure.
4585 * @info : pointer to the structure with parameters given by ethtool
4586 * to return link information.
4588 * Returns link specific information like speed, duplex etc.. to ethtool.
4590 * return 0 on success.
4593 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4595 nic_t *sp = dev->priv;
4596 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4597 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4598 info->port = PORT_FIBRE;
4599 /* info->transceiver?? TODO */
4601 if (netif_carrier_ok(sp->dev)) {
4602 info->speed = 10000;
4603 info->duplex = DUPLEX_FULL;
4609 info->autoneg = AUTONEG_DISABLE;
4614 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4615 * @sp : private member of the device structure, which is a pointer to the
4616 * s2io_nic structure.
4617 * @info : pointer to the structure with parameters given by ethtool to
4618 * return driver information.
4620 * Returns driver specefic information like name, version etc.. to ethtool.
4625 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4626 struct ethtool_drvinfo *info)
4628 nic_t *sp = dev->priv;
4630 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4631 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4632 strncpy(info->fw_version, "", sizeof(info->fw_version));
4633 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4634 info->regdump_len = XENA_REG_SPACE;
4635 info->eedump_len = XENA_EEPROM_SPACE;
4636 info->testinfo_len = S2IO_TEST_LEN;
4637 info->n_stats = S2IO_STAT_LEN;
4641 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4642 * @sp: private member of the device structure, which is a pointer to the
4643 * s2io_nic structure.
4644 * @regs : pointer to the structure with parameters given by ethtool for
4645 * dumping the registers.
4646 * @reg_space: The input argumnet into which all the registers are dumped.
4648 * Dumps the entire register space of xFrame NIC into the user given
4654 static void s2io_ethtool_gregs(struct net_device *dev,
4655 struct ethtool_regs *regs, void *space)
4659 u8 *reg_space = (u8 *) space;
4660 nic_t *sp = dev->priv;
4662 regs->len = XENA_REG_SPACE;
4663 regs->version = sp->pdev->subsystem_device;
4665 for (i = 0; i < regs->len; i += 8) {
4666 reg = readq(sp->bar0 + i);
4667 memcpy((reg_space + i), ®, 8);
4672 * s2io_phy_id - timer function that alternates adapter LED.
4673 * @data : address of the private member of the device structure, which
4674 * is a pointer to the s2io_nic structure, provided as an u32.
4675 * Description: This is actually the timer function that alternates the
4676 * adapter LED bit of the adapter control bit to set/reset every time on
4677 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4678 * once every second.
4680 static void s2io_phy_id(unsigned long data)
4682 nic_t *sp = (nic_t *) data;
4683 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4687 subid = sp->pdev->subsystem_device;
4688 if ((sp->device_type == XFRAME_II_DEVICE) ||
4689 ((subid & 0xFF) >= 0x07)) {
4690 val64 = readq(&bar0->gpio_control);
4691 val64 ^= GPIO_CTRL_GPIO_0;
4692 writeq(val64, &bar0->gpio_control);
4694 val64 = readq(&bar0->adapter_control);
4695 val64 ^= ADAPTER_LED_ON;
4696 writeq(val64, &bar0->adapter_control);
4699 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4703 * s2io_ethtool_idnic - To physically identify the nic on the system.
4704 * @sp : private member of the device structure, which is a pointer to the
4705 * s2io_nic structure.
4706 * @id : pointer to the structure with identification parameters given by
4708 * Description: Used to physically identify the NIC on the system.
4709 * The Link LED will blink for a time specified by the user for
4711 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4712 * identification is possible only if it's link is up.
4714 * int , returns 0 on success
4717 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4719 u64 val64 = 0, last_gpio_ctrl_val;
4720 nic_t *sp = dev->priv;
4721 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4724 subid = sp->pdev->subsystem_device;
4725 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4726 if ((sp->device_type == XFRAME_I_DEVICE) &&
4727 ((subid & 0xFF) < 0x07)) {
4728 val64 = readq(&bar0->adapter_control);
4729 if (!(val64 & ADAPTER_CNTL_EN)) {
4731 "Adapter Link down, cannot blink LED\n");
4735 if (sp->id_timer.function == NULL) {
4736 init_timer(&sp->id_timer);
4737 sp->id_timer.function = s2io_phy_id;
4738 sp->id_timer.data = (unsigned long) sp;
4740 mod_timer(&sp->id_timer, jiffies);
4742 msleep_interruptible(data * HZ);
4744 msleep_interruptible(MAX_FLICKER_TIME);
4745 del_timer_sync(&sp->id_timer);
4747 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4748 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4749 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4756 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4757 * @sp : private member of the device structure, which is a pointer to the
4758 * s2io_nic structure.
4759 * @ep : pointer to the structure with pause parameters given by ethtool.
4761 * Returns the Pause frame generation and reception capability of the NIC.
4765 static void s2io_ethtool_getpause_data(struct net_device *dev,
4766 struct ethtool_pauseparam *ep)
4769 nic_t *sp = dev->priv;
4770 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4772 val64 = readq(&bar0->rmac_pause_cfg);
4773 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4774 ep->tx_pause = TRUE;
4775 if (val64 & RMAC_PAUSE_RX_ENABLE)
4776 ep->rx_pause = TRUE;
4777 ep->autoneg = FALSE;
4781 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4782 * @sp : private member of the device structure, which is a pointer to the
4783 * s2io_nic structure.
4784 * @ep : pointer to the structure with pause parameters given by ethtool.
4786 * It can be used to set or reset Pause frame generation or reception
4787 * support of the NIC.
4789 * int, returns 0 on Success
4792 static int s2io_ethtool_setpause_data(struct net_device *dev,
4793 struct ethtool_pauseparam *ep)
4796 nic_t *sp = dev->priv;
4797 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4799 val64 = readq(&bar0->rmac_pause_cfg);
4801 val64 |= RMAC_PAUSE_GEN_ENABLE;
4803 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4805 val64 |= RMAC_PAUSE_RX_ENABLE;
4807 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4808 writeq(val64, &bar0->rmac_pause_cfg);
4813 * read_eeprom - reads 4 bytes of data from user given offset.
4814 * @sp : private member of the device structure, which is a pointer to the
4815 * s2io_nic structure.
4816 * @off : offset at which the data must be written
4817 * @data : Its an output parameter where the data read at the given
4820 * Will read 4 bytes of data from the user given offset and return the
4822 * NOTE: Will allow to read only part of the EEPROM visible through the
4825 * -1 on failure and 0 on success.
4828 #define S2IO_DEV_ID 5
4829 static int read_eeprom(nic_t * sp, int off, u64 * data)
4834 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4836 if (sp->device_type == XFRAME_I_DEVICE) {
4837 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4838 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4839 I2C_CONTROL_CNTL_START;
4840 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4842 while (exit_cnt < 5) {
4843 val64 = readq(&bar0->i2c_control);
4844 if (I2C_CONTROL_CNTL_END(val64)) {
4845 *data = I2C_CONTROL_GET_DATA(val64);
4854 if (sp->device_type == XFRAME_II_DEVICE) {
4855 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4856 SPI_CONTROL_BYTECNT(0x3) |
4857 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4858 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4859 val64 |= SPI_CONTROL_REQ;
4860 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4861 while (exit_cnt < 5) {
4862 val64 = readq(&bar0->spi_control);
4863 if (val64 & SPI_CONTROL_NACK) {
4866 } else if (val64 & SPI_CONTROL_DONE) {
4867 *data = readq(&bar0->spi_data);
4880 * write_eeprom - actually writes the relevant part of the data value.
4881 * @sp : private member of the device structure, which is a pointer to the
4882 * s2io_nic structure.
4883 * @off : offset at which the data must be written
4884 * @data : The data that is to be written
4885 * @cnt : Number of bytes of the data that are actually to be written into
4886 * the Eeprom. (max of 3)
4888 * Actually writes the relevant part of the data value into the Eeprom
4889 * through the I2C bus.
4891 * 0 on success, -1 on failure.
4894 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4896 int exit_cnt = 0, ret = -1;
4898 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4900 if (sp->device_type == XFRAME_I_DEVICE) {
4901 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4902 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4903 I2C_CONTROL_CNTL_START;
4904 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4906 while (exit_cnt < 5) {
4907 val64 = readq(&bar0->i2c_control);
4908 if (I2C_CONTROL_CNTL_END(val64)) {
4909 if (!(val64 & I2C_CONTROL_NACK))
4918 if (sp->device_type == XFRAME_II_DEVICE) {
4919 int write_cnt = (cnt == 8) ? 0 : cnt;
4920 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4922 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4923 SPI_CONTROL_BYTECNT(write_cnt) |
4924 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4925 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4926 val64 |= SPI_CONTROL_REQ;
4927 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4928 while (exit_cnt < 5) {
4929 val64 = readq(&bar0->spi_control);
4930 if (val64 & SPI_CONTROL_NACK) {
4933 } else if (val64 & SPI_CONTROL_DONE) {
4943 static void s2io_vpd_read(nic_t *nic)
4945 u8 vpd_data[256],data;
4946 int i=0, cnt, fail = 0;
4947 int vpd_addr = 0x80;
4949 if (nic->device_type == XFRAME_II_DEVICE) {
4950 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4954 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4958 for (i = 0; i < 256; i +=4 ) {
4959 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4960 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4961 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4962 for (cnt = 0; cnt <5; cnt++) {
4964 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4969 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4973 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4974 (u32 *)&vpd_data[i]);
4976 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4977 memset(nic->product_name, 0, vpd_data[1]);
4978 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4983 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4984 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4985 * @eeprom : pointer to the user level structure provided by ethtool,
4986 * containing all relevant information.
4987 * @data_buf : user defined value to be written into Eeprom.
4988 * Description: Reads the values stored in the Eeprom at given offset
4989 * for a given length. Stores these values int the input argument data
4990 * buffer 'data_buf' and returns these to the caller (ethtool.)
4995 static int s2io_ethtool_geeprom(struct net_device *dev,
4996 struct ethtool_eeprom *eeprom, u8 * data_buf)
5000 nic_t *sp = dev->priv;
5002 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5004 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5005 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5007 for (i = 0; i < eeprom->len; i += 4) {
5008 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5009 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5013 memcpy((data_buf + i), &valid, 4);
5019 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5020 * @sp : private member of the device structure, which is a pointer to the
5021 * s2io_nic structure.
5022 * @eeprom : pointer to the user level structure provided by ethtool,
5023 * containing all relevant information.
5024 * @data_buf ; user defined value to be written into Eeprom.
5026 * Tries to write the user provided value in the Eeprom, at the offset
5027 * given by the user.
5029 * 0 on success, -EFAULT on failure.
5032 static int s2io_ethtool_seeprom(struct net_device *dev,
5033 struct ethtool_eeprom *eeprom,
5036 int len = eeprom->len, cnt = 0;
5037 u64 valid = 0, data;
5038 nic_t *sp = dev->priv;
5040 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5042 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5043 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5049 data = (u32) data_buf[cnt] & 0x000000FF;
5051 valid = (u32) (data << 24);
5055 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5057 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5059 "write into the specified offset\n");
5070 * s2io_register_test - reads and writes into all clock domains.
5071 * @sp : private member of the device structure, which is a pointer to the
5072 * s2io_nic structure.
5073 * @data : variable that returns the result of each of the test conducted b
5076 * Read and write into all clock domains. The NIC has 3 clock domains,
5077 * see that registers in all the three regions are accessible.
5082 static int s2io_register_test(nic_t * sp, uint64_t * data)
5084 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5085 u64 val64 = 0, exp_val;
5088 val64 = readq(&bar0->pif_rd_swapper_fb);
5089 if (val64 != 0x123456789abcdefULL) {
5091 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5094 val64 = readq(&bar0->rmac_pause_cfg);
5095 if (val64 != 0xc000ffff00000000ULL) {
5097 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5100 val64 = readq(&bar0->rx_queue_cfg);
5101 if (sp->device_type == XFRAME_II_DEVICE)
5102 exp_val = 0x0404040404040404ULL;
5104 exp_val = 0x0808080808080808ULL;
5105 if (val64 != exp_val) {
5107 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5110 val64 = readq(&bar0->xgxs_efifo_cfg);
5111 if (val64 != 0x000000001923141EULL) {
5113 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5116 val64 = 0x5A5A5A5A5A5A5A5AULL;
5117 writeq(val64, &bar0->xmsi_data);
5118 val64 = readq(&bar0->xmsi_data);
5119 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5121 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5124 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5125 writeq(val64, &bar0->xmsi_data);
5126 val64 = readq(&bar0->xmsi_data);
5127 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5129 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5137 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5138 * @sp : private member of the device structure, which is a pointer to the
5139 * s2io_nic structure.
5140 * @data:variable that returns the result of each of the test conducted by
5143 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5149 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5152 u64 ret_data, org_4F0, org_7F0;
5153 u8 saved_4F0 = 0, saved_7F0 = 0;
5154 struct net_device *dev = sp->dev;
5156 /* Test Write Error at offset 0 */
5157 /* Note that SPI interface allows write access to all areas
5158 * of EEPROM. Hence doing all negative testing only for Xframe I.
5160 if (sp->device_type == XFRAME_I_DEVICE)
5161 if (!write_eeprom(sp, 0, 0, 3))
5164 /* Save current values at offsets 0x4F0 and 0x7F0 */
5165 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5167 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5170 /* Test Write at offset 4f0 */
5171 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5173 if (read_eeprom(sp, 0x4F0, &ret_data))
5176 if (ret_data != 0x012345) {
5177 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5178 "Data written %llx Data read %llx\n",
5179 dev->name, (unsigned long long)0x12345,
5180 (unsigned long long)ret_data);
5184 /* Reset the EEPROM data go FFFF */
5185 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5187 /* Test Write Request Error at offset 0x7c */
5188 if (sp->device_type == XFRAME_I_DEVICE)
5189 if (!write_eeprom(sp, 0x07C, 0, 3))
5192 /* Test Write Request at offset 0x7f0 */
5193 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5195 if (read_eeprom(sp, 0x7F0, &ret_data))
5198 if (ret_data != 0x012345) {
5199 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5200 "Data written %llx Data read %llx\n",
5201 dev->name, (unsigned long long)0x12345,
5202 (unsigned long long)ret_data);
5206 /* Reset the EEPROM data go FFFF */
5207 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5209 if (sp->device_type == XFRAME_I_DEVICE) {
5210 /* Test Write Error at offset 0x80 */
5211 if (!write_eeprom(sp, 0x080, 0, 3))
5214 /* Test Write Error at offset 0xfc */
5215 if (!write_eeprom(sp, 0x0FC, 0, 3))
5218 /* Test Write Error at offset 0x100 */
5219 if (!write_eeprom(sp, 0x100, 0, 3))
5222 /* Test Write Error at offset 4ec */
5223 if (!write_eeprom(sp, 0x4EC, 0, 3))
5227 /* Restore values at offsets 0x4F0 and 0x7F0 */
5229 write_eeprom(sp, 0x4F0, org_4F0, 3);
5231 write_eeprom(sp, 0x7F0, org_7F0, 3);
5238 * s2io_bist_test - invokes the MemBist test of the card .
5239 * @sp : private member of the device structure, which is a pointer to the
5240 * s2io_nic structure.
5241 * @data:variable that returns the result of each of the test conducted by
5244 * This invokes the MemBist test of the card. We give around
5245 * 2 secs time for the Test to complete. If it's still not complete
5246 * within this peiod, we consider that the test failed.
5248 * 0 on success and -1 on failure.
5251 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5254 int cnt = 0, ret = -1;
5256 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5257 bist |= PCI_BIST_START;
5258 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5261 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5262 if (!(bist & PCI_BIST_START)) {
5263 *data = (bist & PCI_BIST_CODE_MASK);
5275 * s2io-link_test - verifies the link state of the nic
5276 * @sp ; private member of the device structure, which is a pointer to the
5277 * s2io_nic structure.
5278 * @data: variable that returns the result of each of the test conducted by
5281 * The function verifies the link state of the NIC and updates the input
5282 * argument 'data' appropriately.
5287 static int s2io_link_test(nic_t * sp, uint64_t * data)
5289 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5292 val64 = readq(&bar0->adapter_status);
5293 if(!(LINK_IS_UP(val64)))
5302 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5303 * @sp - private member of the device structure, which is a pointer to the
5304 * s2io_nic structure.
5305 * @data - variable that returns the result of each of the test
5306 * conducted by the driver.
5308 * This is one of the offline test that tests the read and write
5309 * access to the RldRam chip on the NIC.
5314 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5316 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5318 int cnt, iteration = 0, test_fail = 0;
5320 val64 = readq(&bar0->adapter_control);
5321 val64 &= ~ADAPTER_ECC_EN;
5322 writeq(val64, &bar0->adapter_control);
5324 val64 = readq(&bar0->mc_rldram_test_ctrl);
5325 val64 |= MC_RLDRAM_TEST_MODE;
5326 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5328 val64 = readq(&bar0->mc_rldram_mrs);
5329 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5330 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5332 val64 |= MC_RLDRAM_MRS_ENABLE;
5333 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5335 while (iteration < 2) {
5336 val64 = 0x55555555aaaa0000ULL;
5337 if (iteration == 1) {
5338 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5340 writeq(val64, &bar0->mc_rldram_test_d0);
5342 val64 = 0xaaaa5a5555550000ULL;
5343 if (iteration == 1) {
5344 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5346 writeq(val64, &bar0->mc_rldram_test_d1);
5348 val64 = 0x55aaaaaaaa5a0000ULL;
5349 if (iteration == 1) {
5350 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5352 writeq(val64, &bar0->mc_rldram_test_d2);
5354 val64 = (u64) (0x0000003ffffe0100ULL);
5355 writeq(val64, &bar0->mc_rldram_test_add);
5357 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5359 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5361 for (cnt = 0; cnt < 5; cnt++) {
5362 val64 = readq(&bar0->mc_rldram_test_ctrl);
5363 if (val64 & MC_RLDRAM_TEST_DONE)
5371 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5372 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5374 for (cnt = 0; cnt < 5; cnt++) {
5375 val64 = readq(&bar0->mc_rldram_test_ctrl);
5376 if (val64 & MC_RLDRAM_TEST_DONE)
5384 val64 = readq(&bar0->mc_rldram_test_ctrl);
5385 if (!(val64 & MC_RLDRAM_TEST_PASS))
5393 /* Bring the adapter out of test mode */
5394 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5400 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5401 * @sp : private member of the device structure, which is a pointer to the
5402 * s2io_nic structure.
5403 * @ethtest : pointer to a ethtool command specific structure that will be
5404 * returned to the user.
5405 * @data : variable that returns the result of each of the test
5406 * conducted by the driver.
5408 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5409 * the health of the card.
5414 static void s2io_ethtool_test(struct net_device *dev,
5415 struct ethtool_test *ethtest,
5418 nic_t *sp = dev->priv;
5419 int orig_state = netif_running(sp->dev);
5421 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5422 /* Offline Tests. */
5424 s2io_close(sp->dev);
5426 if (s2io_register_test(sp, &data[0]))
5427 ethtest->flags |= ETH_TEST_FL_FAILED;
5431 if (s2io_rldram_test(sp, &data[3]))
5432 ethtest->flags |= ETH_TEST_FL_FAILED;
5436 if (s2io_eeprom_test(sp, &data[1]))
5437 ethtest->flags |= ETH_TEST_FL_FAILED;
5439 if (s2io_bist_test(sp, &data[4]))
5440 ethtest->flags |= ETH_TEST_FL_FAILED;
5450 "%s: is not up, cannot run test\n",
5459 if (s2io_link_test(sp, &data[2]))
5460 ethtest->flags |= ETH_TEST_FL_FAILED;
5469 static void s2io_get_ethtool_stats(struct net_device *dev,
5470 struct ethtool_stats *estats,
5474 nic_t *sp = dev->priv;
5475 StatInfo_t *stat_info = sp->mac_control.stats_info;
5477 s2io_updt_stats(sp);
5479 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5480 le32_to_cpu(stat_info->tmac_frms);
5482 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5483 le32_to_cpu(stat_info->tmac_data_octets);
5484 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5486 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5487 le32_to_cpu(stat_info->tmac_mcst_frms);
5489 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5490 le32_to_cpu(stat_info->tmac_bcst_frms);
5491 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5493 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5494 le32_to_cpu(stat_info->tmac_ttl_octets);
5496 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5497 le32_to_cpu(stat_info->tmac_ucst_frms);
5499 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->tmac_nucst_frms);
5502 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5503 le32_to_cpu(stat_info->tmac_any_err_frms);
5504 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5507 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5508 le32_to_cpu(stat_info->tmac_vld_ip);
5510 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5511 le32_to_cpu(stat_info->tmac_drop_ip);
5513 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5514 le32_to_cpu(stat_info->tmac_icmp);
5516 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5517 le32_to_cpu(stat_info->tmac_rst_tcp);
5518 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5519 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5520 le32_to_cpu(stat_info->tmac_udp);
5522 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5523 le32_to_cpu(stat_info->rmac_vld_frms);
5525 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5526 le32_to_cpu(stat_info->rmac_data_octets);
5527 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5530 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5533 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5535 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5536 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5538 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5539 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5541 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5542 le32_to_cpu(stat_info->rmac_ttl_octets);
5544 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5545 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5547 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5548 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5550 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_discarded_frms);
5553 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5554 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5555 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5556 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5558 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5559 le32_to_cpu(stat_info->rmac_usized_frms);
5561 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5562 le32_to_cpu(stat_info->rmac_osized_frms);
5564 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5565 le32_to_cpu(stat_info->rmac_frag_frms);
5567 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5568 le32_to_cpu(stat_info->rmac_jabber_frms);
5569 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5570 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5571 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5576 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5577 le32_to_cpu(stat_info->rmac_ip);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5579 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5581 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5582 le32_to_cpu(stat_info->rmac_drop_ip);
5584 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5585 le32_to_cpu(stat_info->rmac_icmp);
5586 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5588 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5589 le32_to_cpu(stat_info->rmac_udp);
5591 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5592 le32_to_cpu(stat_info->rmac_err_drp_udp);
5593 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5594 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5595 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5596 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5597 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5598 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5599 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5600 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5601 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5602 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5603 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5604 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5605 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5606 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5607 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5608 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5609 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5611 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5612 le32_to_cpu(stat_info->rmac_pause_cnt);
5613 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5614 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5616 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5617 le32_to_cpu(stat_info->rmac_accepted_ip);
5618 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5619 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5620 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5621 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5622 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5623 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5624 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5625 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5626 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5627 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5628 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5629 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5630 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5631 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5632 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5633 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5634 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5635 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5636 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5637 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5638 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5639 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5640 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5641 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5642 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5645 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5646 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5647 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5648 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5649 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5650 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5651 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5652 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5654 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5655 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5656 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5657 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5658 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5659 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5660 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5661 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5662 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5663 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5664 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5665 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5666 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5667 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5668 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5669 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5670 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5671 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5672 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5673 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5674 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5675 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5676 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5677 if (stat_info->sw_stat.num_aggregations) {
5678 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5681 * Since 64-bit divide does not work on all platforms,
5682 * do repeated subtraction.
5684 while (tmp >= stat_info->sw_stat.num_aggregations) {
5685 tmp -= stat_info->sw_stat.num_aggregations;
5688 tmp_stats[i++] = count;
5694 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5696 return (XENA_REG_SPACE);
5700 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5702 nic_t *sp = dev->priv;
5704 return (sp->rx_csum);
5707 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5709 nic_t *sp = dev->priv;
5719 static int s2io_get_eeprom_len(struct net_device *dev)
5721 return (XENA_EEPROM_SPACE);
5724 static int s2io_ethtool_self_test_count(struct net_device *dev)
5726 return (S2IO_TEST_LEN);
5729 static void s2io_ethtool_get_strings(struct net_device *dev,
5730 u32 stringset, u8 * data)
5732 switch (stringset) {
5734 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5737 memcpy(data, ðtool_stats_keys,
5738 sizeof(ethtool_stats_keys));
5741 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5743 return (S2IO_STAT_LEN);
5746 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5749 dev->features |= NETIF_F_IP_CSUM;
5751 dev->features &= ~NETIF_F_IP_CSUM;
5757 static struct ethtool_ops netdev_ethtool_ops = {
5758 .get_settings = s2io_ethtool_gset,
5759 .set_settings = s2io_ethtool_sset,
5760 .get_drvinfo = s2io_ethtool_gdrvinfo,
5761 .get_regs_len = s2io_ethtool_get_regs_len,
5762 .get_regs = s2io_ethtool_gregs,
5763 .get_link = ethtool_op_get_link,
5764 .get_eeprom_len = s2io_get_eeprom_len,
5765 .get_eeprom = s2io_ethtool_geeprom,
5766 .set_eeprom = s2io_ethtool_seeprom,
5767 .get_pauseparam = s2io_ethtool_getpause_data,
5768 .set_pauseparam = s2io_ethtool_setpause_data,
5769 .get_rx_csum = s2io_ethtool_get_rx_csum,
5770 .set_rx_csum = s2io_ethtool_set_rx_csum,
5771 .get_tx_csum = ethtool_op_get_tx_csum,
5772 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5773 .get_sg = ethtool_op_get_sg,
5774 .set_sg = ethtool_op_set_sg,
5776 .get_tso = ethtool_op_get_tso,
5777 .set_tso = ethtool_op_set_tso,
5779 .get_ufo = ethtool_op_get_ufo,
5780 .set_ufo = ethtool_op_set_ufo,
5781 .self_test_count = s2io_ethtool_self_test_count,
5782 .self_test = s2io_ethtool_test,
5783 .get_strings = s2io_ethtool_get_strings,
5784 .phys_id = s2io_ethtool_idnic,
5785 .get_stats_count = s2io_ethtool_get_stats_count,
5786 .get_ethtool_stats = s2io_get_ethtool_stats
5790 * s2io_ioctl - Entry point for the Ioctl
5791 * @dev : Device pointer.
5792 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5793 * a proprietary structure used to pass information to the driver.
5794 * @cmd : This is used to distinguish between the different commands that
5795 * can be passed to the IOCTL functions.
5797 * Currently there are no special functionality supported in IOCTL, hence
5798 * function always return EOPNOTSUPPORTED
5801 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5807 * s2io_change_mtu - entry point to change MTU size for the device.
5808 * @dev : device pointer.
5809 * @new_mtu : the new MTU size for the device.
5810 * Description: A driver entry point to change MTU size for the device.
5811 * Before changing the MTU the device must be stopped.
5813 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5817 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5819 nic_t *sp = dev->priv;
5821 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5822 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5828 if (netif_running(dev)) {
5830 netif_stop_queue(dev);
5831 if (s2io_card_up(sp)) {
5832 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5835 if (netif_queue_stopped(dev))
5836 netif_wake_queue(dev);
5837 } else { /* Device is down */
5838 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5839 u64 val64 = new_mtu;
5841 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5848 * s2io_tasklet - Bottom half of the ISR.
5849 * @dev_adr : address of the device structure in dma_addr_t format.
5851 * This is the tasklet or the bottom half of the ISR. This is
5852 * an extension of the ISR which is scheduled by the scheduler to be run
5853 * when the load on the CPU is low. All low priority tasks of the ISR can
5854 * be pushed into the tasklet. For now the tasklet is used only to
5855 * replenish the Rx buffers in the Rx buffer descriptors.
5860 static void s2io_tasklet(unsigned long dev_addr)
5862 struct net_device *dev = (struct net_device *) dev_addr;
5863 nic_t *sp = dev->priv;
5865 mac_info_t *mac_control;
5866 struct config_param *config;
5868 mac_control = &sp->mac_control;
5869 config = &sp->config;
5871 if (!TASKLET_IN_USE) {
5872 for (i = 0; i < config->rx_ring_num; i++) {
5873 ret = fill_rx_buffers(sp, i);
5874 if (ret == -ENOMEM) {
5875 DBG_PRINT(ERR_DBG, "%s: Out of ",
5877 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5879 } else if (ret == -EFILL) {
5881 "%s: Rx Ring %d is full\n",
5886 clear_bit(0, (&sp->tasklet_status));
5891 * s2io_set_link - Set the LInk status
5892 * @data: long pointer to device private structue
5893 * Description: Sets the link status for the adapter
5896 static void s2io_set_link(unsigned long data)
5898 nic_t *nic = (nic_t *) data;
5899 struct net_device *dev = nic->dev;
5900 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5904 if (test_and_set_bit(0, &(nic->link_state))) {
5905 /* The card is being reset, no point doing anything */
5909 subid = nic->pdev->subsystem_device;
5910 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5912 * Allow a small delay for the NICs self initiated
5913 * cleanup to complete.
5918 val64 = readq(&bar0->adapter_status);
5919 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5920 if (LINK_IS_UP(val64)) {
5921 val64 = readq(&bar0->adapter_control);
5922 val64 |= ADAPTER_CNTL_EN;
5923 writeq(val64, &bar0->adapter_control);
5924 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5926 val64 = readq(&bar0->gpio_control);
5927 val64 |= GPIO_CTRL_GPIO_0;
5928 writeq(val64, &bar0->gpio_control);
5929 val64 = readq(&bar0->gpio_control);
5931 val64 |= ADAPTER_LED_ON;
5932 writeq(val64, &bar0->adapter_control);
5934 if (s2io_link_fault_indication(nic) ==
5935 MAC_RMAC_ERR_TIMER) {
5936 val64 = readq(&bar0->adapter_status);
5937 if (!LINK_IS_UP(val64)) {
5938 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5939 DBG_PRINT(ERR_DBG, " Link down");
5940 DBG_PRINT(ERR_DBG, "after ");
5941 DBG_PRINT(ERR_DBG, "enabling ");
5942 DBG_PRINT(ERR_DBG, "device \n");
5945 if (nic->device_enabled_once == FALSE) {
5946 nic->device_enabled_once = TRUE;
5948 s2io_link(nic, LINK_UP);
5950 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5952 val64 = readq(&bar0->gpio_control);
5953 val64 &= ~GPIO_CTRL_GPIO_0;
5954 writeq(val64, &bar0->gpio_control);
5955 val64 = readq(&bar0->gpio_control);
5957 s2io_link(nic, LINK_DOWN);
5959 } else { /* NIC is not Quiescent. */
5960 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5961 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5962 netif_stop_queue(dev);
5964 clear_bit(0, &(nic->link_state));
5967 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5968 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5969 u64 *temp2, int size)
5971 struct net_device *dev = sp->dev;
5972 struct sk_buff *frag_list;
5974 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5977 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5979 * As Rx frame are not going to be processed,
5980 * using same mapped address for the Rxd
5983 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5985 *skb = dev_alloc_skb(size);
5987 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5988 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5991 /* storing the mapped addr in a temp variable
5992 * such it will be used for next rxd whose
5993 * Host Control is NULL
5995 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5996 pci_map_single( sp->pdev, (*skb)->data,
5997 size - NET_IP_ALIGN,
5998 PCI_DMA_FROMDEVICE);
5999 rxdp->Host_Control = (unsigned long) (*skb);
6001 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6002 /* Two buffer Mode */
6004 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6005 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6006 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6008 *skb = dev_alloc_skb(size);
6009 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6010 pci_map_single(sp->pdev, (*skb)->data,
6012 PCI_DMA_FROMDEVICE);
6013 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6014 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6015 PCI_DMA_FROMDEVICE);
6016 rxdp->Host_Control = (unsigned long) (*skb);
6018 /* Buffer-1 will be dummy buffer not used */
6019 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6020 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6021 PCI_DMA_FROMDEVICE);
6023 } else if ((rxdp->Host_Control == 0)) {
6024 /* Three buffer mode */
6026 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6027 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6028 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6030 *skb = dev_alloc_skb(size);
6032 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6033 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6034 PCI_DMA_FROMDEVICE);
6035 /* Buffer-1 receives L3/L4 headers */
6036 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6037 pci_map_single( sp->pdev, (*skb)->data,
6039 PCI_DMA_FROMDEVICE);
6041 * skb_shinfo(skb)->frag_list will have L4
6044 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6046 if (skb_shinfo(*skb)->frag_list == NULL) {
6047 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6048 failed\n ", dev->name);
6051 frag_list = skb_shinfo(*skb)->frag_list;
6052 frag_list->next = NULL;
6054 * Buffer-2 receives L4 data payload
6056 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6057 pci_map_single( sp->pdev, frag_list->data,
6058 dev->mtu, PCI_DMA_FROMDEVICE);
6063 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6065 struct net_device *dev = sp->dev;
6066 if (sp->rxd_mode == RXD_MODE_1) {
6067 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6068 } else if (sp->rxd_mode == RXD_MODE_3B) {
6069 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6070 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6071 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6073 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6074 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6075 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6079 static int rxd_owner_bit_reset(nic_t *sp)
6081 int i, j, k, blk_cnt = 0, size;
6082 mac_info_t * mac_control = &sp->mac_control;
6083 struct config_param *config = &sp->config;
6084 struct net_device *dev = sp->dev;
6086 struct sk_buff *skb = NULL;
6087 buffAdd_t *ba = NULL;
6088 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6090 /* Calculate the size based on ring mode */
6091 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6092 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6093 if (sp->rxd_mode == RXD_MODE_1)
6094 size += NET_IP_ALIGN;
6095 else if (sp->rxd_mode == RXD_MODE_3B)
6096 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6098 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6100 for (i = 0; i < config->rx_ring_num; i++) {
6101 blk_cnt = config->rx_cfg[i].num_rxd /
6102 (rxd_count[sp->rxd_mode] +1);
6104 for (j = 0; j < blk_cnt; j++) {
6105 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6106 rxdp = mac_control->rings[i].
6107 rx_blocks[j].rxds[k].virt_addr;
6108 if(sp->rxd_mode >= RXD_MODE_3A)
6109 ba = &mac_control->rings[i].ba[j][k];
6110 set_rxd_buffer_pointer(sp, rxdp, ba,
6111 &skb,(u64 *)&temp0_64,
6113 (u64 *)&temp2_64, size);
6115 set_rxd_buffer_size(sp, rxdp, size);
6117 /* flip the Ownership bit to Hardware */
6118 rxdp->Control_1 |= RXD_OWN_XENA;
6126 static int s2io_add_isr(nic_t * sp)
6129 struct net_device *dev = sp->dev;
6132 if (sp->intr_type == MSI)
6133 ret = s2io_enable_msi(sp);
6134 else if (sp->intr_type == MSI_X)
6135 ret = s2io_enable_msi_x(sp);
6137 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6138 sp->intr_type = INTA;
6141 /* Store the values of the MSIX table in the nic_t structure */
6142 store_xmsi_data(sp);
6144 /* After proper initialization of H/W, register ISR */
6145 if (sp->intr_type == MSI) {
6146 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6147 IRQF_SHARED, sp->name, dev);
6149 pci_disable_msi(sp->pdev);
6150 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6155 if (sp->intr_type == MSI_X) {
6158 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6159 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6160 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6162 err = request_irq(sp->entries[i].vector,
6163 s2io_msix_fifo_handle, 0, sp->desc[i],
6164 sp->s2io_entries[i].arg);
6165 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6166 (unsigned long long)sp->msix_info[i].addr);
6168 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6170 err = request_irq(sp->entries[i].vector,
6171 s2io_msix_ring_handle, 0, sp->desc[i],
6172 sp->s2io_entries[i].arg);
6173 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6174 (unsigned long long)sp->msix_info[i].addr);
6177 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6178 "failed\n", dev->name, i);
6179 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6182 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6185 if (sp->intr_type == INTA) {
6186 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6189 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6196 static void s2io_rem_isr(nic_t * sp)
6199 struct net_device *dev = sp->dev;
6201 if (sp->intr_type == MSI_X) {
6205 for (i=1; (sp->s2io_entries[i].in_use ==
6206 MSIX_REGISTERED_SUCCESS); i++) {
6207 int vector = sp->entries[i].vector;
6208 void *arg = sp->s2io_entries[i].arg;
6210 free_irq(vector, arg);
6212 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6213 msi_control &= 0xFFFE; /* Disable MSI */
6214 pci_write_config_word(sp->pdev, 0x42, msi_control);
6216 pci_disable_msix(sp->pdev);
6218 free_irq(sp->pdev->irq, dev);
6219 if (sp->intr_type == MSI) {
6222 pci_disable_msi(sp->pdev);
6223 pci_read_config_word(sp->pdev, 0x4c, &val);
6225 pci_write_config_word(sp->pdev, 0x4c, val);
6228 /* Waiting till all Interrupt handlers are complete */
6232 if (!atomic_read(&sp->isr_cnt))
6238 static void s2io_card_down(nic_t * sp)
6241 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6242 unsigned long flags;
6243 register u64 val64 = 0;
6245 del_timer_sync(&sp->alarm_timer);
6246 /* If s2io_set_link task is executing, wait till it completes. */
6247 while (test_and_set_bit(0, &(sp->link_state))) {
6250 atomic_set(&sp->card_state, CARD_DOWN);
6252 /* disable Tx and Rx traffic on the NIC */
6258 tasklet_kill(&sp->task);
6260 /* Check if the device is Quiescent and then Reset the NIC */
6262 /* As per the HW requirement we need to replenish the
6263 * receive buffer to avoid the ring bump. Since there is
6264 * no intention of processing the Rx frame at this pointwe are
6265 * just settting the ownership bit of rxd in Each Rx
6266 * ring to HW and set the appropriate buffer size
6267 * based on the ring mode
6269 rxd_owner_bit_reset(sp);
6271 val64 = readq(&bar0->adapter_status);
6272 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6280 "s2io_close:Device not Quiescent ");
6281 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6282 (unsigned long long) val64);
6288 spin_lock_irqsave(&sp->tx_lock, flags);
6289 /* Free all Tx buffers */
6290 free_tx_buffers(sp);
6291 spin_unlock_irqrestore(&sp->tx_lock, flags);
6293 /* Free all Rx buffers */
6294 spin_lock_irqsave(&sp->rx_lock, flags);
6295 free_rx_buffers(sp);
6296 spin_unlock_irqrestore(&sp->rx_lock, flags);
6298 clear_bit(0, &(sp->link_state));
6301 static int s2io_card_up(nic_t * sp)
6304 mac_info_t *mac_control;
6305 struct config_param *config;
6306 struct net_device *dev = (struct net_device *) sp->dev;
6309 /* Initialize the H/W I/O registers */
6310 if (init_nic(sp) != 0) {
6311 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6318 * Initializing the Rx buffers. For now we are considering only 1
6319 * Rx ring and initializing buffers into 30 Rx blocks
6321 mac_control = &sp->mac_control;
6322 config = &sp->config;
6324 for (i = 0; i < config->rx_ring_num; i++) {
6325 if ((ret = fill_rx_buffers(sp, i))) {
6326 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6329 free_rx_buffers(sp);
6332 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6333 atomic_read(&sp->rx_bufs_left[i]));
6336 /* Setting its receive mode */
6337 s2io_set_multicast(dev);
6340 /* Initialize max aggregatable pkts based on MTU */
6341 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6342 /* Check if we can use(if specified) user provided value */
6343 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6344 sp->lro_max_aggr_per_sess = lro_max_pkts;
6347 /* Enable Rx Traffic and interrupts on the NIC */
6348 if (start_nic(sp)) {
6349 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6351 free_rx_buffers(sp);
6355 /* Add interrupt service routine */
6356 if (s2io_add_isr(sp) != 0) {
6357 if (sp->intr_type == MSI_X)
6360 free_rx_buffers(sp);
6364 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6366 /* Enable tasklet for the device */
6367 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6369 /* Enable select interrupts */
6370 if (sp->intr_type != INTA)
6371 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6373 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6374 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6375 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6376 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6380 atomic_set(&sp->card_state, CARD_UP);
6385 * s2io_restart_nic - Resets the NIC.
6386 * @data : long pointer to the device private structure
6388 * This function is scheduled to be run by the s2io_tx_watchdog
6389 * function after 0.5 secs to reset the NIC. The idea is to reduce
6390 * the run time of the watch dog routine which is run holding a
6394 static void s2io_restart_nic(unsigned long data)
6396 struct net_device *dev = (struct net_device *) data;
6397 nic_t *sp = dev->priv;
6400 if (s2io_card_up(sp)) {
6401 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6404 netif_wake_queue(dev);
6405 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6411 * s2io_tx_watchdog - Watchdog for transmit side.
6412 * @dev : Pointer to net device structure
6414 * This function is triggered if the Tx Queue is stopped
6415 * for a pre-defined amount of time when the Interface is still up.
6416 * If the Interface is jammed in such a situation, the hardware is
6417 * reset (by s2io_close) and restarted again (by s2io_open) to
6418 * overcome any problem that might have been caused in the hardware.
6423 static void s2io_tx_watchdog(struct net_device *dev)
6425 nic_t *sp = dev->priv;
6427 if (netif_carrier_ok(dev)) {
6428 schedule_work(&sp->rst_timer_task);
6429 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6434 * rx_osm_handler - To perform some OS related operations on SKB.
6435 * @sp: private member of the device structure,pointer to s2io_nic structure.
6436 * @skb : the socket buffer pointer.
6437 * @len : length of the packet
6438 * @cksum : FCS checksum of the frame.
6439 * @ring_no : the ring from which this RxD was extracted.
6441 * This function is called by the Tx interrupt serivce routine to perform
6442 * some OS related operations on the SKB before passing it to the upper
6443 * layers. It mainly checks if the checksum is OK, if so adds it to the
6444 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6445 * to the upper layer. If the checksum is wrong, it increments the Rx
6446 * packet error count, frees the SKB and returns error.
6448 * SUCCESS on success and -1 on failure.
6450 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6452 nic_t *sp = ring_data->nic;
6453 struct net_device *dev = (struct net_device *) sp->dev;
6454 struct sk_buff *skb = (struct sk_buff *)
6455 ((unsigned long) rxdp->Host_Control);
6456 int ring_no = ring_data->ring_no;
6457 u16 l3_csum, l4_csum;
6458 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6464 /* Check for parity error */
6466 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6470 * Drop the packet if bad transfer code. Exception being
6471 * 0x5, which could be due to unsupported IPv6 extension header.
6472 * In this case, we let stack handle the packet.
6473 * Note that in this case, since checksum will be incorrect,
6474 * stack will validate the same.
6476 if (err && ((err >> 48) != 0x5)) {
6477 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6479 sp->stats.rx_crc_errors++;
6481 atomic_dec(&sp->rx_bufs_left[ring_no]);
6482 rxdp->Host_Control = 0;
6487 /* Updating statistics */
6488 rxdp->Host_Control = 0;
6490 sp->stats.rx_packets++;
6491 if (sp->rxd_mode == RXD_MODE_1) {
6492 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6494 sp->stats.rx_bytes += len;
6497 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6498 int get_block = ring_data->rx_curr_get_info.block_index;
6499 int get_off = ring_data->rx_curr_get_info.offset;
6500 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6501 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6502 unsigned char *buff = skb_push(skb, buf0_len);
6504 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6505 sp->stats.rx_bytes += buf0_len + buf2_len;
6506 memcpy(buff, ba->ba_0, buf0_len);
6508 if (sp->rxd_mode == RXD_MODE_3A) {
6509 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6511 skb_put(skb, buf1_len);
6512 skb->len += buf2_len;
6513 skb->data_len += buf2_len;
6514 skb->truesize += buf2_len;
6515 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6516 sp->stats.rx_bytes += buf1_len;
6519 skb_put(skb, buf2_len);
6522 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6523 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6525 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6526 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6527 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6529 * NIC verifies if the Checksum of the received
6530 * frame is Ok or not and accordingly returns
6531 * a flag in the RxD.
6533 skb->ip_summed = CHECKSUM_UNNECESSARY;
6539 ret = s2io_club_tcp_session(skb->data, &tcp,
6540 &tcp_len, &lro, rxdp, sp);
6542 case 3: /* Begin anew */
6545 case 1: /* Aggregate */
6547 lro_append_pkt(sp, lro,
6551 case 4: /* Flush session */
6553 lro_append_pkt(sp, lro,
6555 queue_rx_frame(lro->parent);
6556 clear_lro_session(lro);
6557 sp->mac_control.stats_info->
6558 sw_stat.flush_max_pkts++;
6561 case 2: /* Flush both */
6562 lro->parent->data_len =
6564 sp->mac_control.stats_info->
6565 sw_stat.sending_both++;
6566 queue_rx_frame(lro->parent);
6567 clear_lro_session(lro);
6569 case 0: /* sessions exceeded */
6570 case -1: /* non-TCP or not
6574 * First pkt in session not
6575 * L3/L4 aggregatable
6580 "%s: Samadhana!!\n",
6587 * Packet with erroneous checksum, let the
6588 * upper layers deal with it.
6590 skb->ip_summed = CHECKSUM_NONE;
6593 skb->ip_summed = CHECKSUM_NONE;
6597 skb->protocol = eth_type_trans(skb, dev);
6598 #ifdef CONFIG_S2IO_NAPI
6599 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6600 /* Queueing the vlan frame to the upper layer */
6601 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6602 RXD_GET_VLAN_TAG(rxdp->Control_2));
6604 netif_receive_skb(skb);
6607 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6608 /* Queueing the vlan frame to the upper layer */
6609 vlan_hwaccel_rx(skb, sp->vlgrp,
6610 RXD_GET_VLAN_TAG(rxdp->Control_2));
6617 queue_rx_frame(skb);
6619 dev->last_rx = jiffies;
6621 atomic_dec(&sp->rx_bufs_left[ring_no]);
6626 * s2io_link - stops/starts the Tx queue.
6627 * @sp : private member of the device structure, which is a pointer to the
6628 * s2io_nic structure.
6629 * @link : inidicates whether link is UP/DOWN.
6631 * This function stops/starts the Tx queue depending on whether the link
6632 * status of the NIC is is down or up. This is called by the Alarm
6633 * interrupt handler whenever a link change interrupt comes up.
6638 static void s2io_link(nic_t * sp, int link)
6640 struct net_device *dev = (struct net_device *) sp->dev;
6642 if (link != sp->last_link_state) {
6643 if (link == LINK_DOWN) {
6644 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6645 netif_carrier_off(dev);
6647 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6648 netif_carrier_on(dev);
6651 sp->last_link_state = link;
6655 * get_xena_rev_id - to identify revision ID of xena.
6656 * @pdev : PCI Dev structure
6658 * Function to identify the Revision ID of xena.
6660 * returns the revision ID of the device.
6663 static int get_xena_rev_id(struct pci_dev *pdev)
6667 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6672 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6673 * @sp : private member of the device structure, which is a pointer to the
6674 * s2io_nic structure.
6676 * This function initializes a few of the PCI and PCI-X configuration registers
6677 * with recommended values.
6682 static void s2io_init_pci(nic_t * sp)
6684 u16 pci_cmd = 0, pcix_cmd = 0;
6686 /* Enable Data Parity Error Recovery in PCI-X command register. */
6687 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6689 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6691 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6694 /* Set the PErr Response bit in PCI command register. */
6695 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6696 pci_write_config_word(sp->pdev, PCI_COMMAND,
6697 (pci_cmd | PCI_COMMAND_PARITY));
6698 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6701 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6702 MODULE_LICENSE("GPL");
6703 MODULE_VERSION(DRV_VERSION);
6705 module_param(tx_fifo_num, int, 0);
6706 module_param(rx_ring_num, int, 0);
6707 module_param(rx_ring_mode, int, 0);
6708 module_param_array(tx_fifo_len, uint, NULL, 0);
6709 module_param_array(rx_ring_sz, uint, NULL, 0);
6710 module_param_array(rts_frm_len, uint, NULL, 0);
6711 module_param(use_continuous_tx_intrs, int, 1);
6712 module_param(rmac_pause_time, int, 0);
6713 module_param(mc_pause_threshold_q0q3, int, 0);
6714 module_param(mc_pause_threshold_q4q7, int, 0);
6715 module_param(shared_splits, int, 0);
6716 module_param(tmac_util_period, int, 0);
6717 module_param(rmac_util_period, int, 0);
6718 module_param(bimodal, bool, 0);
6719 module_param(l3l4hdr_size, int , 0);
6720 #ifndef CONFIG_S2IO_NAPI
6721 module_param(indicate_max_pkts, int, 0);
6723 module_param(rxsync_frequency, int, 0);
6724 module_param(intr_type, int, 0);
6725 module_param(lro, int, 0);
6726 module_param(lro_max_pkts, int, 0);
6728 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6730 if ( tx_fifo_num > 8) {
6731 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6733 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6736 if ( rx_ring_num > 8) {
6737 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6739 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6742 #ifdef CONFIG_S2IO_NAPI
6743 if (*dev_intr_type != INTA) {
6744 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6745 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6746 *dev_intr_type = INTA;
6749 #ifndef CONFIG_PCI_MSI
6750 if (*dev_intr_type != INTA) {
6751 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6752 "MSI/MSI-X. Defaulting to INTA\n");
6753 *dev_intr_type = INTA;
6756 if (*dev_intr_type > MSI_X) {
6757 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6758 "Defaulting to INTA\n");
6759 *dev_intr_type = INTA;
6762 if ((*dev_intr_type == MSI_X) &&
6763 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6764 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6765 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6766 "Defaulting to INTA\n");
6767 *dev_intr_type = INTA;
6769 if (rx_ring_mode > 3) {
6770 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6771 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6778 * s2io_init_nic - Initialization of the adapter .
6779 * @pdev : structure containing the PCI related information of the device.
6780 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6782 * The function initializes an adapter identified by the pci_dec structure.
6783 * All OS related initialization including memory and device structure and
6784 * initlaization of the device private variable is done. Also the swapper
6785 * control register is initialized to enable read and write into the I/O
6786 * registers of the device.
6788 * returns 0 on success and negative on failure.
6791 static int __devinit
6792 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6795 struct net_device *dev;
6797 int dma_flag = FALSE;
6798 u32 mac_up, mac_down;
6799 u64 val64 = 0, tmp64 = 0;
6800 XENA_dev_config_t __iomem *bar0 = NULL;
6802 mac_info_t *mac_control;
6803 struct config_param *config;
6805 u8 dev_intr_type = intr_type;
6807 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6810 if ((ret = pci_enable_device(pdev))) {
6812 "s2io_init_nic: pci_enable_device failed\n");
6816 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6817 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6819 if (pci_set_consistent_dma_mask
6820 (pdev, DMA_64BIT_MASK)) {
6822 "Unable to obtain 64bit DMA for \
6823 consistent allocations\n");
6824 pci_disable_device(pdev);
6827 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6828 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6830 pci_disable_device(pdev);
6833 if (dev_intr_type != MSI_X) {
6834 if (pci_request_regions(pdev, s2io_driver_name)) {
6835 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6836 pci_disable_device(pdev);
6841 if (!(request_mem_region(pci_resource_start(pdev, 0),
6842 pci_resource_len(pdev, 0), s2io_driver_name))) {
6843 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6844 pci_disable_device(pdev);
6847 if (!(request_mem_region(pci_resource_start(pdev, 2),
6848 pci_resource_len(pdev, 2), s2io_driver_name))) {
6849 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6850 release_mem_region(pci_resource_start(pdev, 0),
6851 pci_resource_len(pdev, 0));
6852 pci_disable_device(pdev);
6857 dev = alloc_etherdev(sizeof(nic_t));
6859 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6860 pci_disable_device(pdev);
6861 pci_release_regions(pdev);
6865 pci_set_master(pdev);
6866 pci_set_drvdata(pdev, dev);
6867 SET_MODULE_OWNER(dev);
6868 SET_NETDEV_DEV(dev, &pdev->dev);
6870 /* Private member variable initialized to s2io NIC structure */
6872 memset(sp, 0, sizeof(nic_t));
6875 sp->high_dma_flag = dma_flag;
6876 sp->device_enabled_once = FALSE;
6877 if (rx_ring_mode == 1)
6878 sp->rxd_mode = RXD_MODE_1;
6879 if (rx_ring_mode == 2)
6880 sp->rxd_mode = RXD_MODE_3B;
6881 if (rx_ring_mode == 3)
6882 sp->rxd_mode = RXD_MODE_3A;
6884 sp->intr_type = dev_intr_type;
6886 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6887 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6888 sp->device_type = XFRAME_II_DEVICE;
6890 sp->device_type = XFRAME_I_DEVICE;
6894 /* Initialize some PCI/PCI-X fields of the NIC. */
6898 * Setting the device configuration parameters.
6899 * Most of these parameters can be specified by the user during
6900 * module insertion as they are module loadable parameters. If
6901 * these parameters are not not specified during load time, they
6902 * are initialized with default values.
6904 mac_control = &sp->mac_control;
6905 config = &sp->config;
6907 /* Tx side parameters. */
6908 config->tx_fifo_num = tx_fifo_num;
6909 for (i = 0; i < MAX_TX_FIFOS; i++) {
6910 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6911 config->tx_cfg[i].fifo_priority = i;
6914 /* mapping the QoS priority to the configured fifos */
6915 for (i = 0; i < MAX_TX_FIFOS; i++)
6916 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6918 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6919 for (i = 0; i < config->tx_fifo_num; i++) {
6920 config->tx_cfg[i].f_no_snoop =
6921 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6922 if (config->tx_cfg[i].fifo_len < 65) {
6923 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6927 /* + 2 because one Txd for skb->data and one Txd for UFO */
6928 config->max_txds = MAX_SKB_FRAGS + 2;
6930 /* Rx side parameters. */
6931 config->rx_ring_num = rx_ring_num;
6932 for (i = 0; i < MAX_RX_RINGS; i++) {
6933 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6934 (rxd_count[sp->rxd_mode] + 1);
6935 config->rx_cfg[i].ring_priority = i;
6938 for (i = 0; i < rx_ring_num; i++) {
6939 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6940 config->rx_cfg[i].f_no_snoop =
6941 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6944 /* Setting Mac Control parameters */
6945 mac_control->rmac_pause_time = rmac_pause_time;
6946 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6947 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6950 /* Initialize Ring buffer parameters. */
6951 for (i = 0; i < config->rx_ring_num; i++)
6952 atomic_set(&sp->rx_bufs_left[i], 0);
6954 /* Initialize the number of ISRs currently running */
6955 atomic_set(&sp->isr_cnt, 0);
6957 /* initialize the shared memory used by the NIC and the host */
6958 if (init_shared_mem(sp)) {
6959 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6962 goto mem_alloc_failed;
6965 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6966 pci_resource_len(pdev, 0));
6968 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6971 goto bar0_remap_failed;
6974 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6975 pci_resource_len(pdev, 2));
6977 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6980 goto bar1_remap_failed;
6983 dev->irq = pdev->irq;
6984 dev->base_addr = (unsigned long) sp->bar0;
6986 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6987 for (j = 0; j < MAX_TX_FIFOS; j++) {
6988 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6989 (sp->bar1 + (j * 0x00020000));
6992 /* Driver entry points */
6993 dev->open = &s2io_open;
6994 dev->stop = &s2io_close;
6995 dev->hard_start_xmit = &s2io_xmit;
6996 dev->get_stats = &s2io_get_stats;
6997 dev->set_multicast_list = &s2io_set_multicast;
6998 dev->do_ioctl = &s2io_ioctl;
6999 dev->change_mtu = &s2io_change_mtu;
7000 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7001 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7002 dev->vlan_rx_register = s2io_vlan_rx_register;
7003 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7006 * will use eth_mac_addr() for dev->set_mac_address
7007 * mac address will be set every time dev->open() is called
7009 #if defined(CONFIG_S2IO_NAPI)
7010 dev->poll = s2io_poll;
7014 #ifdef CONFIG_NET_POLL_CONTROLLER
7015 dev->poll_controller = s2io_netpoll;
7018 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7019 if (sp->high_dma_flag == TRUE)
7020 dev->features |= NETIF_F_HIGHDMA;
7022 dev->features |= NETIF_F_TSO;
7025 dev->features |= NETIF_F_TSO6;
7027 if (sp->device_type & XFRAME_II_DEVICE) {
7028 dev->features |= NETIF_F_UFO;
7029 dev->features |= NETIF_F_HW_CSUM;
7032 dev->tx_timeout = &s2io_tx_watchdog;
7033 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7034 INIT_WORK(&sp->rst_timer_task,
7035 (void (*)(void *)) s2io_restart_nic, dev);
7036 INIT_WORK(&sp->set_link_task,
7037 (void (*)(void *)) s2io_set_link, sp);
7039 pci_save_state(sp->pdev);
7041 /* Setting swapper control on the NIC, for proper reset operation */
7042 if (s2io_set_swapper(sp)) {
7043 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7046 goto set_swap_failed;
7049 /* Verify if the Herc works on the slot its placed into */
7050 if (sp->device_type & XFRAME_II_DEVICE) {
7051 mode = s2io_verify_pci_mode(sp);
7053 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7054 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7056 goto set_swap_failed;
7060 /* Not needed for Herc */
7061 if (sp->device_type & XFRAME_I_DEVICE) {
7063 * Fix for all "FFs" MAC address problems observed on
7066 fix_mac_address(sp);
7071 * MAC address initialization.
7072 * For now only one mac address will be read and used.
7075 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7076 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7077 writeq(val64, &bar0->rmac_addr_cmd_mem);
7078 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7079 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7080 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7081 mac_down = (u32) tmp64;
7082 mac_up = (u32) (tmp64 >> 32);
7084 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7086 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7087 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7088 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7089 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7090 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7091 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7093 /* Set the factory defined MAC address initially */
7094 dev->addr_len = ETH_ALEN;
7095 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7098 * Initialize the tasklet status and link state flags
7099 * and the card state parameter
7101 atomic_set(&(sp->card_state), 0);
7102 sp->tasklet_status = 0;
7105 /* Initialize spinlocks */
7106 spin_lock_init(&sp->tx_lock);
7107 #ifndef CONFIG_S2IO_NAPI
7108 spin_lock_init(&sp->put_lock);
7110 spin_lock_init(&sp->rx_lock);
7113 * SXE-002: Configure link and activity LED to init state
7116 subid = sp->pdev->subsystem_device;
7117 if ((subid & 0xFF) >= 0x07) {
7118 val64 = readq(&bar0->gpio_control);
7119 val64 |= 0x0000800000000000ULL;
7120 writeq(val64, &bar0->gpio_control);
7121 val64 = 0x0411040400000000ULL;
7122 writeq(val64, (void __iomem *) bar0 + 0x2700);
7123 val64 = readq(&bar0->gpio_control);
7126 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7128 if (register_netdev(dev)) {
7129 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7131 goto register_failed;
7134 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7135 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
7136 get_xena_rev_id(sp->pdev),
7137 s2io_driver_version);
7138 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7139 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7140 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7141 sp->def_mac_addr[0].mac_addr[0],
7142 sp->def_mac_addr[0].mac_addr[1],
7143 sp->def_mac_addr[0].mac_addr[2],
7144 sp->def_mac_addr[0].mac_addr[3],
7145 sp->def_mac_addr[0].mac_addr[4],
7146 sp->def_mac_addr[0].mac_addr[5]);
7147 if (sp->device_type & XFRAME_II_DEVICE) {
7148 mode = s2io_print_pci_mode(sp);
7150 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7152 unregister_netdev(dev);
7153 goto set_swap_failed;
7156 switch(sp->rxd_mode) {
7158 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7162 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7166 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7170 #ifdef CONFIG_S2IO_NAPI
7171 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7173 switch(sp->intr_type) {
7175 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7178 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7181 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7185 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7188 /* Initialize device name */
7189 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7191 /* Initialize bimodal Interrupts */
7192 sp->config.bimodal = bimodal;
7193 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7194 sp->config.bimodal = 0;
7195 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7200 * Make Link state as off at this point, when the Link change
7201 * interrupt comes the state will be automatically changed to
7204 netif_carrier_off(dev);
7215 free_shared_mem(sp);
7216 pci_disable_device(pdev);
7217 if (dev_intr_type != MSI_X)
7218 pci_release_regions(pdev);
7220 release_mem_region(pci_resource_start(pdev, 0),
7221 pci_resource_len(pdev, 0));
7222 release_mem_region(pci_resource_start(pdev, 2),
7223 pci_resource_len(pdev, 2));
7225 pci_set_drvdata(pdev, NULL);
7232 * s2io_rem_nic - Free the PCI device
7233 * @pdev: structure containing the PCI related information of the device.
7234 * Description: This function is called by the Pci subsystem to release a
7235 * PCI device and free up all resource held up by the device. This could
7236 * be in response to a Hot plug event or when the driver is to be removed
7240 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7242 struct net_device *dev =
7243 (struct net_device *) pci_get_drvdata(pdev);
7247 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7252 unregister_netdev(dev);
7254 free_shared_mem(sp);
7257 pci_disable_device(pdev);
7258 if (sp->intr_type != MSI_X)
7259 pci_release_regions(pdev);
7261 release_mem_region(pci_resource_start(pdev, 0),
7262 pci_resource_len(pdev, 0));
7263 release_mem_region(pci_resource_start(pdev, 2),
7264 pci_resource_len(pdev, 2));
7266 pci_set_drvdata(pdev, NULL);
7271 * s2io_starter - Entry point for the driver
7272 * Description: This function is the entry point for the driver. It verifies
7273 * the module loadable parameters and initializes PCI configuration space.
7276 int __init s2io_starter(void)
7278 return pci_module_init(&s2io_driver);
7282 * s2io_closer - Cleanup routine for the driver
7283 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7286 static void s2io_closer(void)
7288 pci_unregister_driver(&s2io_driver);
7289 DBG_PRINT(INIT_DBG, "cleanup done\n");
7292 module_init(s2io_starter);
7293 module_exit(s2io_closer);
7295 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7296 struct tcphdr **tcp, RxD_t *rxdp)
7299 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7301 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7302 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7308 * By default the VLAN field in the MAC is stripped by the card, if this
7309 * feature is turned off in rx_pa_cfg register, then the ip_off field
7310 * has to be shifted by a further 2 bytes
7313 case 0: /* DIX type */
7314 case 4: /* DIX type with VLAN */
7315 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7317 /* LLC, SNAP etc are considered non-mergeable */
7322 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7323 ip_len = (u8)((*ip)->ihl);
7325 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7330 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7333 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7334 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7335 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7340 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7342 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7345 static void initiate_new_session(lro_t *lro, u8 *l2h,
7346 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7348 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7352 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7353 lro->tcp_ack = ntohl(tcp->ack_seq);
7355 lro->total_len = ntohs(ip->tot_len);
7358 * check if we saw TCP timestamp. Other consistency checks have
7359 * already been done.
7361 if (tcp->doff == 8) {
7363 ptr = (u32 *)(tcp+1);
7365 lro->cur_tsval = *(ptr+1);
7366 lro->cur_tsecr = *(ptr+2);
7371 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7373 struct iphdr *ip = lro->iph;
7374 struct tcphdr *tcp = lro->tcph;
7376 StatInfo_t *statinfo = sp->mac_control.stats_info;
7377 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7379 /* Update L3 header */
7380 ip->tot_len = htons(lro->total_len);
7382 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7385 /* Update L4 header */
7386 tcp->ack_seq = lro->tcp_ack;
7387 tcp->window = lro->window;
7389 /* Update tsecr field if this session has timestamps enabled */
7391 u32 *ptr = (u32 *)(tcp + 1);
7392 *(ptr+2) = lro->cur_tsecr;
7395 /* Update counters required for calculation of
7396 * average no. of packets aggregated.
7398 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7399 statinfo->sw_stat.num_aggregations++;
7402 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7403 struct tcphdr *tcp, u32 l4_pyld)
7405 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7406 lro->total_len += l4_pyld;
7407 lro->frags_len += l4_pyld;
7408 lro->tcp_next_seq += l4_pyld;
7411 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7412 lro->tcp_ack = tcp->ack_seq;
7413 lro->window = tcp->window;
7417 /* Update tsecr and tsval from this packet */
7418 ptr = (u32 *) (tcp + 1);
7419 lro->cur_tsval = *(ptr + 1);
7420 lro->cur_tsecr = *(ptr + 2);
7424 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7425 struct tcphdr *tcp, u32 tcp_pyld_len)
7429 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7431 if (!tcp_pyld_len) {
7432 /* Runt frame or a pure ack */
7436 if (ip->ihl != 5) /* IP has options */
7439 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7442 * Currently recognize only the ack control word and
7443 * any other control field being set would result in
7444 * flushing the LRO session
7450 * Allow only one TCP timestamp option. Don't aggregate if
7451 * any other options are detected.
7453 if (tcp->doff != 5 && tcp->doff != 8)
7456 if (tcp->doff == 8) {
7457 ptr = (u8 *)(tcp + 1);
7458 while (*ptr == TCPOPT_NOP)
7460 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7463 /* Ensure timestamp value increases monotonically */
7465 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7468 /* timestamp echo reply should be non-zero */
7469 if (*((u32 *)(ptr+6)) == 0)
7477 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7478 RxD_t *rxdp, nic_t *sp)
7481 struct tcphdr *tcph;
7484 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7486 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7487 ip->saddr, ip->daddr);
7492 tcph = (struct tcphdr *)*tcp;
7493 *tcp_len = get_l4_pyld_length(ip, tcph);
7494 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7495 lro_t *l_lro = &sp->lro0_n[i];
7496 if (l_lro->in_use) {
7497 if (check_for_socket_match(l_lro, ip, tcph))
7499 /* Sock pair matched */
7502 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7503 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7504 "0x%x, actual 0x%x\n", __FUNCTION__,
7505 (*lro)->tcp_next_seq,
7508 sp->mac_control.stats_info->
7509 sw_stat.outof_sequence_pkts++;
7514 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7515 ret = 1; /* Aggregate */
7517 ret = 2; /* Flush both */
7523 /* Before searching for available LRO objects,
7524 * check if the pkt is L3/L4 aggregatable. If not
7525 * don't create new LRO session. Just send this
7528 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7532 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7533 lro_t *l_lro = &sp->lro0_n[i];
7534 if (!(l_lro->in_use)) {
7536 ret = 3; /* Begin anew */
7542 if (ret == 0) { /* sessions exceeded */
7543 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7551 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7554 update_L3L4_header(sp, *lro);
7557 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7558 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7559 update_L3L4_header(sp, *lro);
7560 ret = 4; /* Flush the LRO */
7564 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7572 static void clear_lro_session(lro_t *lro)
7574 static u16 lro_struct_size = sizeof(lro_t);
7576 memset(lro, 0, lro_struct_size);
7579 static void queue_rx_frame(struct sk_buff *skb)
7581 struct net_device *dev = skb->dev;
7583 skb->protocol = eth_type_trans(skb, dev);
7584 #ifdef CONFIG_S2IO_NAPI
7585 netif_receive_skb(skb);
7591 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7594 struct sk_buff *tmp, *first = lro->parent;
7596 first->len += tcp_len;
7597 first->data_len = lro->frags_len;
7598 skb_pull(skb, (skb->len - tcp_len));
7599 if ((tmp = skb_shinfo(first)->frag_list)) {
7605 skb_shinfo(first)->frag_list = skb;
7606 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;